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Abstract

Negotiated search, a paradigm for cooperative search
and conflict resolution among heterogeneous, reusable,
expert agents has been implemented in a flexible frame-
work, TEAM. We present negotiated search and discuss
the use of customized negotiated-search strategies that
take advantage of specific capabilities and relationships
that exist in an agent set. Strategies are dynamically
selected based on the individual agents’ views of the
problem-solving situation and on communicated knowl-
edge about the characteristics of agents in the agent
set. We present experiments that show strategies can
reduce the amount of search required to find mutually-
acceptable solutions and can improve the quality of
those solutions. The use of customized negotiated-
search strategies has far-reaching implications for the
design of agents that are intended to be reusable and
for the assembly of agents into application systems.

1 Introduction

We present negotiated-search, a distributed-search
paradigm for cooperation among heterogeneous expert
agents. Agents can be both logically heterogeneous and
tmplementationally heterogeneous. Logically heteroge-
neous agents may have different long-term knowledge
(expertise), goals, views or perspectives on objects and
relationships in the domain, constraints or preferences,
or criteria for evaluating solutions. Implementation-
ally heterogeneous agents may have different knowledge
representations, languages, architectures, inference en-
gines, software tools, or specialized processors. Inte-
grating agents with these kinds of differences into a

This research was supported by ONR Contract #N00014-89-J-
1877, DARPA Contract #N00014-92-J-1698, and by a University
Research Initiative Grant, Contract #N00014-86-K-0764. The
content of the information does not necessarily reflect the posi-
tion or the policy of the Government, and no official endorsement

should be inferred.

cooperative set requires either: 1) an intensive knowl-
edge engineering/design effort at system-development
time; or 2) a sophisticated framework for supporting
information exchange and independent agent-level ca-
pabilities at run-time.

Run-time support for agent integration further en-
ables agent reusability: an agent can be built generi-
cally with the intention of using that agent in multi-
ple problem sets rather than a single problem set [16].
In this paper, we describe a framework that supports
the integration of heterogeneous, reusable agents, and a
generic algorithm for cooperative distributed search by
agents within the framework. We then discuss how dis-
tributed search can be customized to take advantage of
characteristics of both the individual agents within an
agent set, and inter-agent characteristics of the agent
set itself. Customized search strategies may be more ef-
ficient and/or result in better solutions than a generic
distributed search algorithm, but cannot be uniformly
applied across heterogeneous agents. In order to apply
a particular strategy, it must be known to all partici-
pating agents, and some agent must be able to perform
each required task. It may be the case that agents must
meet strict criteria to participate in a strategy, such as
using a particular knowledge representation. We de-
scribe the information flow required among agents to
enable them to select and apply the most effective strat-
egy possible within the current agent set.

Agent sets are dynamically formed by grouping
agents with the specific expertise required for the prob-
lem. Agents do not have a priori knowledge of what
other agents will be included in the set and what their
capabilities will be. The agent sets we are consider-
ing are cooperative, i.e., agents are not hostile and will
not intentionally mislead or otherwise try to sabotage
another agent’s reasoning. Agents are willing to con-
tribute both knowledge and solutions to other agents as
appropriate and to accept solutions that are not locally



optimal in order to find a mutually-acceptable solution.
However, even in this cooperative environment, con-
flicts are inherent in the agent set due to inconsistent
knowledge among agents, incomplete knowledge and /or
incorrect assumptions, different problem-solving tech-
niques, and different criteria for evaluating solutions. It
is not possible to anticipate and engineer out all poten-
tial conflicts at agent-development time since it is not
known what knowledge will be contained in the com-
plete system [7]. Thus, conflict resolution is an integral
part of problem solving among logically heterogeneous
agents and is an important aspect of negotiated search.

There are two basic ways to characterize approaches
to conflict resolution in negotiated search: extended
search and relaxation. The first, extended search, is ap-
plied by an agent when it recognizes a conflict with an-
other agent in an existing solution. The agent sidesteps
the conflict by extending its local search until a solution
is found that does not conflict. Extended-search meth-
ods are used when an agent believes that a mutually-
acceptable solution can be developed if it continues to
examine its local solution space for additional solutions.

The second negotiated-search method, relaxation,
occurs when an agent relaxes some requirement on a
solution, thereby expanding its local search space. Re-
laxation may lead directly to a solution: if a history
of existing, but unacceptable, solutions is kept, one of
these solutions may become immediately acceptable.
If not, extended search can now be applied in the ex-
panded space to increase the chance of finding a solu-
tion. Relaxation methods are utilized when the solu-
tion space is believed to be overconstrained or when
the expense of further local search is unjustified.

Both extended search and relaxation are realized
as negotiated-search operators within an agent. A
negotiated-search operator is defined as an agent-
independent entity with specific inputs, outputs, and
functionality. It is instantiated in a domain-dependent
way by a particular agent within that agent’s architec-
tural and representational restrictions. General meth-
ods that can be implemented as negotiated-search op-
erators for extended search include heuristic search,
searching for alternate goal expansions, or case-based
search. General methods that can be implemented as
relaxation operators include relaxing or relinquishing
constraints, relaxing or relinquishing goals, manipulat-
ing constraints (e.g., unlinking, bridging [17]), or ma-
nipulating evaluation criteria [22].

In negotiated search, two interwoven processes oc-
cur: first, local search for an optimal solution to a sub-
problem under the local requirements for solutions; and

second, composition! of local subproblem solutions into
an overall solution. Local search is guided by the do-
main expertise of an agent. Composition relies on the
group problem-solving skills of each agent: communi-
cation, coordination, evaluation of mutual acceptabil-
ity, and assimilation of externally provided information.
Effective integration of these two processes is captured
in the TEAM framework described in Section 2.

A difficult problem in any multi-agent system is to
decide whether or not a solution is acceptable. We
present a two-level view of solution evaluation, taking
into account both local agent utility measures and a
global objective function. Consider an example: an
agent produces its best proposal where “best” is defined
as minimal cost. When this proposal is used as the
basis for a complete solution however, all other agents
must produce proposals that are higher cost than they
might have been with some other base proposal. The
overall effect is that the cost of the solution is higher
than it would have been had the first agent produced a
higher cost base proposal. Due to its local perspective,
the agent could not predict this effect: some global
perspective is required to reasonably evaluate solutions.

Although a global objective function provides an
agent-independent measure of solution quality, there
is reason to respect the individual agents’ criteria for
evaluating solutions as well. The information needed to
calculate and evaluate solution attributes is often em-
bedded in local expertise. For example, in mechanical
design a solution often consists of interacting, but fairly
autonomous, components. For some components, life
expectancy may be an important attribute. Compo-
nent life expectancy can only be calculated at the agent
level, however, because it involves procedures and infor-
mation that are private to an agent. Global objective
functions provide a way to rank alternative solutions
on attributes that do not require domain expertise to
evaluate (cost, for example) while local criteria are used
to evaluate solutions using agent-level expertise. Thus,
we attempt to maximize the global evaluation while
respecting local utility.

Within the TEAM framework, it is possible to find
mutually-acceptable solutions with loose coordination
between agents because agents are able to work inde-
pendently and asynchronously. However, more effective
behavior is likely to be achieved using a negotiated-
search strategy that guides the selection of operators
to execute at each agent. A negotiated-search strategy
is designed to reduce the amount of search required
to find mutually-acceptable solutions by taking advan-

1Sathi similarly uses the term composition as the name of a
specific negotiated-search operator that combines local informa-
tion [18].



tage of specific attributes of both individual agents and
agent sets. The use of a particular strategy requires
that certain capabilities, characteristics, and relation-
ships exist among some agents in the agent set. This is
a problem that is unique to heterogeneous multi-agent
systems where the agents do not share an underlying
and integrated architecture and where these attributes
are not explicitly built into the agents and agent set.
We will describe a negotiated-search strategy and its
required attributes in Section 6.

Section 2 describes TEAM. In Section 3, we relate our
work to that of other researchers. Requirements for
knowledge consistency are discussed in Section 4. Sec-
tion b gives a brief description of the negotiated-search
paradigm and its realization in the TEAM framework.
A more detailed description is available in [11]. Sec-
tion 6 presents the general concept of negotiated-search
strategies, defines a specific strategy called linear-
compromise, and compares the performance of the sys-
tem with and without linear-compromise.

2 The TEAM Framework

The TEAM framework supports loosely coupled, het-
erogeneous agents engaged in problem-solving through
negotiated search. Agents are distinct and independent
entities that communicate through a shared memory.?
In TEAM, agents can be added to or deleted from an
agent set using a standard procedure detailed in [11].
To enable this level of agent autonomy, information in
the system is partitioned in layers of abstraction. There
are three major classes of information: one that is ac-
cessible only to the system, one that is accessible to all
agents, and one that is accessible only to an individ-
ual agent. The architecture and knowledge partitions
of the TEAM framework are shown in Figure 1. By par-
titioning information in this way, agents can operate
within the framework without having detailed knowl-
edge about other agents in the set or about the im-
plementation of data structures within the framework.
When an agent wants to make changes to shared mem-
ory, it sends a message to the framework controller and
the controller makes the actual changes. For example,
an agent may ask the framework controller to create
a new solution from a base proposal it has generated.
The controller will build an empty solution object, copy

2Though the current shared memory implementation of TEAM
is appropriate for many types of search problems, we are begin-
ning to look at applications in domains that would benefit from
a fully distributed architecture. The current architecture can be
extended without any loss of functionality or philosophy since
centralized mechanisms are limited to domain-independent tasks
that could be performed by any agent.
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Figure 1: Architecture of the TEAM Framework

values from the proposal to the solution, and install the
new solution in shared memory.

The shared memory, framework structures, and
framework functions are implemented as a blackboard
system using a blackboard shell, GBB. Framework
functions or, more precisely, framework knowledge
sources (KSs), operate on shared memory objects either
in direct response to a message from an agent or to per-
form maintenance and bookkeeping operations on those
objects. For example, a framework KS is responsible for
linking proposals from different agents into a single so-
lution. This functionality is domain-independent. The
domain language, however, is system-specific and must
be shared by all agents. Notice though that the agents
do not need to use the shared language internally as
long as they can use whatever subset of it is required
for communication.

During processing, there are two distinct phases: 1)
an agent cycle; and 2) a framework cycle. During the
agent cycle, each agent is invoked sequentially. The
agent uses information in shared memory to choose ap-
plicable negotiated-search operators and add them to
its agenda. It then invokes its highest-priority opera-
tor and returns the result. After all agents have ex-
ecuted, the framework controller is invoked to update
the shared memory based on messages from agents and
to propagate the effect of changes to shared memory
objects.



3 Related Research

Negotiated search has roots in blackboard problem-
solving, constraint-directed search, system integra-
tion, and in negotiation, both human and compu-
tational. From blackboard problem-solving, we take
ideas about shared and competing solutions, oppor-
tunism, flexibility, knowledge modularity, and incre-
mental extension of partial solutions [4]. Although
the blackboard literature provides a great deal of in-
sight into the behavior of semi-independent knowl-
edge modules [14], TEAM provides specific modularity,
decentralized-control, conflict-resolution, and coordi-
nation capabilities that are not present in traditional
blackboard systems[13].

Coordination in multi-agent systems has been ex-
tensively investigated [1, 3, 20, 23]. The themes of co-
ordination and conflict resolution are closely related:
conflict resolution activities often require coordination
and coordination activities often require conflict resolu-
tion. Negotiated search focuses on the coordination of
agents through recognition of and reaction to conflicts
and with respect to agent and agent set characteristics.

An active research area is the integration of sys-
tems with different architectures (e.g., neural nets
vs. production systems) or algorithms (e.g., case-based
vs. rule-based search) where each agent implements
the most appropriate technology for the class of prob-
lems it is designed to handle [19]. Other investigators
are looking at integrating systems with different lan-
guages, dialects, communication protocols, and model
mismatches [16]. Cooperation among these agents is
problematic—an obvious and immediate need is seen
for a shared language for interacting objects and events
and for integrating machinery. An effort is under way
to develop techniques to support sharing of knowledge
among systems, The Knowledge-Sharing Effort, spon-
sored by the Air Force Office of Scientific Research,
the Defense Advanced Research Projects Agency, the
Corporation for National Research Initiatives, and the
National Science Foundation. Whereas the focus of this
initiative is the development of the technical infrastruc-
ture for knowledge sharing, we investigate high-level
knowledge sharing issues as part of a complete frame-
work for agent integration and agent-oriented control.

From constraint-directed reasoning, we adapt a
simple representation of constraints to bound local
and shared problem spaces. Sophisticated constraint-
directed reasoning such as that developed by Fox [6]
is not directly applicable to heterogeneous-agent prob-
lem solving because its relies on developing an un-
derstanding of the solution space through analysis of
constraints and constraint variables. In heterogeneous

agent problem solving, each agent can analyze its lo-
cal solution space but there is no effective method for
analyzing the shared space in a general way since no
agent has enough knowledge about the constraints of
other agents. This problem has been addressed some-
what by Sathi [18], Sycara [21], and Mammen [15] in
their work on constraint-directed negotiation. How-
ever, these investigations of constraint-directed rea-
soning in multi-agent systems have required that the
agents share an underlying integrated problem-solving
methodology and agent architecture. Although these
agents have heterogeneous resource requirements, they
are implementationally homogeneous and use that ho-
mogeneity implicitly for control.

The negotiation literature provides insight into the
underlying mechanisms of conflict resolution and the
development and application of specific negotiated-
search operators. Klein [9] has focused on the devel-
opment of a taxonomy of conflict types. Werkman has
developed a multi-agent system that relies on an inte-
grated knowledge representation and mediation frame-
work to discriminate among alternative solutions from
different perspectives [24]. Sycara describes a negotia-
tion system, PERSUADER, for a non-cooperative la-
bor/management domain [22]. Because of the hostile
nature of the agents, a mediator is used to buffer inter-
actions and make objective decisions. Pruitt [17] and
Fisher [5] offer insights into human negotiation. Much
of the human conflict-resolution process is driven by the
need to protect the egos of the participants and is not
directly applicable. However, some ideas about search
and creativity in computational conflict resolution have
evolved from this work.

4 Knowledge Consistency

In this section, we describe how private and shared
information is maintained and assimilated by an agent
in negotiated search. In [8], Huhns describes a dis-
tributed truth-maintenance approach to database man-
agement. We do not intend to imply that we use dis-
tributed truth-maintenance techniques. However, by
examining the definitions of terms presented in that
work, we can contrast and justify our approach under
the requirements of agent heterogeneity and reusability.

In negotiated search, each agent maintains a lo-
cal database that contains its domain-level declarative
knowledge and information about the current state of
problem solving. This information is assumed to be
internally consistent. As information is communicated
however, consistency is not expected with respect to
incoming information.



There are several ways to circumvent the prob-
lems associated with inconsistent internal and external
knowledge: 1) ignore any externally obtained knowl-
edge that conflicts with internal beliefs; 2) replace in-
ternal knowledge with conflicting external knowledge
when it is received; 3) allow conflicting internal and
external knowledge to co-reside; or 4) always resolve
any inconsistency that becomes apparent when infor-
mation is communicated so that the entire agent set
maintains local-and-shared consistency. Maintaining
local-and-shared-consistency implies that any time an
inconsistency is found, some decision will be made as
to which information is correct and that decision will
be propagated through all agents that have shared the
knowledge.

Global consistency, the strictest form of consistency,
implies that all knowledge is consistent across all knowl-
edge bases, whether or not the agents interact. With
reusable, heterogeneous agents, we claim that global
consistency is neither feasible nor desirable. From a
feasibility standpoint, it is impossible to knowledge-
engineer agents that are created independently by dif-
ferent people at different times with different exper-
tise. Furthermore, global consistency requires that dif-
ferent perspectives and beliefs cannot co-exist within an
agent set. However, different perspectives can actually
be quite beneficial, particularly in creative problem-
solving situations [2].

The question then becomes whether or not local-
and-shared consistency, as described above, is achiev-
able and desirable. To maintain this level of consis-
tency, it must be the case that every disagreement
is fundamentally resolved when it is noticed and the
effects of that resolution are propagated throughout
the set of participating agents. To do this would be
a very large burden, both computationally and philo-
sophically. Computationally, we would want to try to
resolve the conflict based on some concrete evidence
that one or the other perspective is more valid: perhaps
by invoking some deep model of the domain, apply-
ing naive physics, maintaining measures of certainty of
each agent for a particular piece of information, or col-
lecting collaborating evidence. Although there are cer-
tainly situations in which the validity of some agent’s
belief should be tested, it can be computationally inten-
sive to do so. Furthermore, in many situations, there is
no absolute measure of correctness, e.g., agents might
have different color preferences for an object. And
again, philosophically, it is often not desirable to en-
force consistency among agents.

For the reasons given above, we have decided against
enforcing any type of consistency across the borders of
agents. The decision about how to handle conflicting

information is agent- and strategy-specific. However,
we have defined a representative operator, assimilate-
mformation.

Assimilate-information is instantiated at an agent
to collect and absorb information that has been com-
municated by other agents. Information received from
other agents is placed in a separate database, the non-
local database, rather than in the local database of the
agent. Logical connections are established between the
two databases that indicate which information should
be used during problem solving. When no explicit
conflict exists between these two knowledge bases over
some shared variable, the most restrictive information
available from either is chosen for any required reason-
ing. For example, if an agent has the local constraint
{z < 10} and receives the constraint {z < 5} from
some other agent, it will use the latter in its decision-
making since it does not conflict with its own knowl-
edge. However, when there are explicit inconsisten-
cies in the two knowledge bases, an agent must choose
what information it will use in making future decisions.
Figure 2 shows the process of assimilating conflicting
knowledge. The agent can decide to either: 1) over-
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Figure 2: Assimilating Conflict Information

ride local knowledge and use the conflicting external
information; 2} ignore conflicting external information
and use the local knowledge; or 3} relax local solution
requirements to reduce the inconsistency and reexam-
ine the situation within the new solution boundaries.
By allowing conflicting information to co-reside within
an agent, decisions about what information to use in
problem solving can be made dynamically based on the
current problem-solving situation.



A possible selection mechanism (implemented in
TEAM) attempts to fairly distribute the burden of re-
laxation. Each piece of information has an associated
flexibility value that measures the degree to which an
agent is willing to relax that information. When as-
similating conflicting information, an agent will choose
to relax its own solution requirements if its own infor-
mation is more flexible than the received information.
If the received information is more flexible or equally
flexible, the agent will ignore it. However, if the re-
ceived information places a hard constraint on solutions
(a constraint that applies to all feasible solutions), the
agent will override any local information that conflicts.

5 Negotiated Search

In this section, we give an overview of the realiza-
tion of the negotiated-search paradigm in TEAM. We be-
gin with a description of how the local problem-solving
efforts of the agents are integrated. Next, the mecha-
nisms used in local problem-solving at the agent level
are presented.

5.1 Integration of Local Search

Agents communicate and coordinate their efforts
through a high-level view of problem-solving, main-
tained in a shared memory, and accessible to all agents.
Each agent works on some subproblem(s) and produces
proposals that represent subproblem solutions. Propos-
als are integrated into shared solutions in shared mem-
ory. Each solution is initiated by the generation of an
agent proposal, called the base proposal, that partially
specifies the parameters of a complete solution.

Solutions are critiqued by other agents. Conflicts are
determined locally by the agent critiquing the solution.
For example, an existing solution specifies a value of 6
for the parameter x and an agent criticizing that solu-
tion has the constraint {@ > 7 (5,3,1)} where (5,3, 1)
indicates potential relaxations of x. In other words,
the preferred value for x is greater than 7, but other
values are feasible. Each relaxation lowers the utility
of the solution to the agent. The agent is able to re-
spond with a feasible proposal given that x = 6 but
a conflict occurs because the value is not within the
preferred range. Therefore, conflict information (the
violated constraint {# > 7}) will be returned by the
agent along with a local acceptability value. In the ex-
ample above, the solution would initially be rated as
unacceptable to the agent because it violates a prefer-
ence constraint. However, at some future point, the
agent might decide to relax that constraint to the next

level, {z > 5}. If this occurs, the agent would change
its evaluation of the solution to acceptable.

The acceptability of a solution is measured by two
factors. First, all agents must consider the solution to
be acceptable. Second, the user can specify a global
objective function to be applied to the complete solu-
tion that must meet or exceed a threshold value. If a
solution is complete (all agents have examined the solu-
tion) and acceptable, the system will add it to the set of
completed solutions and will stop if it has met a user-
defined quota on the number of alternative solutions
required. If the solution is not complete, it stays active
while waiting for critiques from other agents. Agents
locally schedule their own activities and may respond
at different times.

Unacceptable solutions are saved along with infor-
mation about why they were unacceptable. A solution
that is unacceptable because of local constraint viola-
tion(s), such as the (# > 7) constraint described above,
can be considered a potential compromise. If require-
ments are relaxed at some future point, this compro-
mise may become acceptable and the solution will be
reactivated.

5.2 Local Search

Local search is performed individually by an agent
within its current view of the shared solution space.
This view includes solution requirements stored in
the local database, the nonlocal database, and re-
quirements imposed by the user-defined problem spec-
ification. FEach search action is represented by a
negotiated-search operator. For the system described
in Section 6, we define three representative operators:
mitiate-solution, critique-solution, and relax-solution-
requirement® Each of these operators has a defined
functionality that is implemented locally by each agent
in a style consistent with the agent’s architecture,
knowledge representation, and inference engine.

Initiate-solution is a negotiated-search operator that
an agent instantiates to generate a base proposal that
satisfies its locally-known set of constraints, constraints
imposed by the initial solution specification, and any
constraints that have been “learned” through the as-
similation of conflict information provided by other
agents. This operator is applied at system start-
up time by at least one agent, and may be applied
again throughout problem-solving when existing solu-
tions have not led to promising solution paths.

3 Another system, STEAM, has been implemented that uses a
more complex generic algorithm and a larger set of operators.
STEAM is described in [12, 11].



Critique-solution is an operator that takes an exter-
nally initiated solution as input and checks to see if
any local solution requirements or preferences are vio-
lated in that solution. The agent returns its evaluation
of the solution, an acceptability value for the solution,
and conflict information if a conflict has been found.

Relazx-solution-requirement changes the acceptable
threshold level of some local solution requirement and
propagates that change through any existing solutions
(possibly making unacceptable solutions acceptable).
It can be invoked unilaterally when an agent fails to
find a solution under the current problem specification.
It can also be invoked due to nonproductive, iterative
negotiation efforts: if an agent has generated multiple
base proposals and/or has responded to multiple solu-
tions without finding a suitable fit, there may not be
a fit under the current set of solution requirements. It
may also be applied when there is an explicit conflict
between a local requirement and some nonlocal infor-
mation that an agent is attempting to assimilate (as
shown in Figure 2.

Relaz-solution-requirement can be used by any agent
that has an ordered set of possible local utility values.
This ordered set is divided into classes (e.g., excellent,
good, fair, poor), assigning a class to each possible
value or range of values. For each proposal generated
during a particular agent cycle, a constraint is placed
on the class of the utility value for that proposal. The
class must must be greater than or equal to a threshold.
For example at the start of processing, any proposal
used to initiate a solution should have a utility value
in the excellent class. The first time relaz-solution-
requirement is applied, the threshold utility class drops
to good, and this process will continue through the set
of utility classes.

5.3 General Negotiated Search

The default negotiated-search strategy used to guide
agent interactions is called general negotiated search
(GNS). GNS is an opportunistic search augmented by
the communication and assimilation of conflict infor-
mation. One or more agents produce base proposals
and other agents critique the partial solutions created
from those proposals. There may be multiple partial
solutions available at any given time and the selection
of one to critique is made locally. If a conflict is de-
tected, any available constraining information is com-
municated to other agents. Agents that receive conflict
information attempt to assimilate that information. If
an agent has successfully assimilated conflict informa-
tion from another agent and later attempts to generate
a proposal, the new proposal will avoid that conflict.

An agent may both generate its own base propos-
als and critique other agents’ solutions, depending on
which negotiated-search operators it instantiates. The
order of operator application is locally specified by the
agent designer. If the required number of solutions
is not found within a specified number of agent cy-
cles, called the relaxation threshold, each agent will
apply the negotiated-search operator, relaz-solution-
requirement, to expand the solution space. Existing
solutions are reevaluated under the new acceptability
standards. If the required number of acceptable solu-
tions still aren’t found, agents will continue to initiate
and critique solutions.

Agents continue in a cycle of search and relaxation
until an acceptable solution is found, or until further
relaxation is impossible (at which point a failure is de-
clared). This strategy, GNS, is widely applicable and is
used in TEAM as a default. There are many situations
where this level of generality is unnecessary, however,
and where much more direct and effective strategies
can be applied. We will discuss one such situation in
Section 6.

6 Strategies

This section examines how a limited, but very effi-
cient, negotiated-search strategy called linear compro-
mise can be used in place of the default opportunistic-
search strategy described earlier. The linear compro-
mise strategy can be applied when two agents have in-
tersecting linear functions over some variable that de-
scribe the utilities of their solutions. The strategy can
be extended to include more than two agents as long
as each agent calculates its local utility with a linear
function over the shared variable. To investigate the
effectiveness of this strategy, we have implemented a
buyer/seller system in TEAM.

In the buyer/seller system, the artifact being con-
tracted for is not specified. A base fair market value
for the artifact is randomly generated. FEach agent
generates its own perceived market value by randomly
choosing a value within a specified percentage of the
base. This models a system in which market value is
determined subjectively, and the agents involved in a
transaction may not agree. Each agent then generates
either the maximum or minimum price it would accept
{(depending on whether the agent is minimizing or max-
imizing price} by randomly generating a value within
a specified percentage of its locally-perceived market
value. The utility of a contract is based on a normal-
ization of the difference between the contract price and
the (fixed) worst acceptable price for that agent.



In the general negotiated-search model described
earlier, each agent generates proposals at the currently
acceptable level of local utility value. If no agreement
is reached after a cycle, each agent determines whether
to drop its acceptable level of utility value. Eventu-
ally, at least some agents will drop their acceptability
levels and generate proposals at the new level. This
algorithm repeats until either a solution is found or
until the acceptable level of utility value drops below
some threshold for each of the agents, at which point
negotiated search fails, and no contract is made.
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Figure 3: Intersecting Linear Functions

In contrast, with intersecting linear utility functions
over the value of price, the intersection point of the two
functions can be algebraically calculated (Figure 3).
This point is the “fairest” value that can be assigned
for price since the utility of that solution is equal for
each of the agents.* The intersection point can be cal-
culated by an agent in one of two ways: 1) the other
agent can explicitly communicate information about its
utility function; or 2) the required information can be
extrapolated from points in the other agent’s local so-
lution space. Either or both of these methods could
be implemented but we used the latter method which
does not require any specialized communication skills
on the part of the agents.

When a strategy is applied, each agent has a par-
ticular role to play in the development of a solution.
In the linear compromise strategy, one agent calculates
a solution (solution-calculator) based on points gener-
ated by the other agent (point-generator). It may be
that either agent could play either role or one of the
agents may only be able to play one of the roles. The
requirement for successful application of the strategy
is that at least one agent must be capable of taking
responsibility for each of the roles.

A role is realized at an agent as a negotiated-search
operator. For example, in order to take the point-

4With more than two agents, a fair value for price can be
calculated with other algebraic methods.

generator role in the linear-compromise strategy, an
agent must instantiate the generate-points operator.
This operator implements the functionality defined for
that role: that the agent produce two points in its so-
lution space and store those points in a STRATEGY ob-
ject in shared memory. No further restriction is placed
on the operator. An agent may provide previously ex-
isting points or it may generate new points. Differ-
ent agents may implement the same operator in differ-
ent languages, different architectures, or with different
search mechanisms for generating points.

Using a computationally simple method with a well-
defined agent protocol for interaction to find a com-
promise is extremely effective. The problem is that
in a heterogeneous agent set, the agents must recog-
nize that they are involved in a situation where their
shared solution spaces have the appropriate character-
istics and where the agents have the capabilities re-
quired to develop the compromise solution. The search
for a negotiated-search strategy begins when a conflict
is detected. Because the agents cannot make assump-
tions about the available strategies and operators of
other agents, there are two distinct phases involved in
recognizing that an appropriate strategy exists. First,
each agent must individually determine if it is aware
of any strategies that fit the locally-perceived situa-
tion, and second, some agent(s) must determine if any
strategy is applicable over the complete agent set. Con-
sider the linear compromise strategy described above:
first, each agent must recognize that it has a linear
function that describes utility value for a solution over
some variable. Then some agent must recognize that
all agents can participate in linear compromise and
that all roles can be filled. Once this is established,
all agents must be informed that a strategy has been
chosen and the agents must be assigned roles. In the
buyer/seller system, the agent that initiates a solution
becomes the manager for any conflicts that occur in
response to the solution®. It gathers information from
other agents about their potential strategies and roles,
selects a strategy that all relevant agents can partici-
pate in and assigns roles appropriately. If no strategy
is found, the default general negotiated-search strat-
egy described earlier is used. Selection and assignment
algorithms and a communication protocol have been
implemented for TEAM and are described in [11].

Once a strategy has been chosen and roles are as-

5Note that negotiating over possible strategies and role assign-
ments can itself be treated as a conflict situation with the same
type of iterative search/relaxation methodology that applies to
domain problem-solving. We have adopted a fixed protocol for
resolving these conflicts rather than allowing the full range of con-
flict resolution activities. However, this has been and remains an
open research issue[20, 10]



Buyer’s Seller’s Buyer’s Seller’s Buyer/Seller Contract Contract #

Run Maximum | Minimum Utility Utility Utility Price Price Agent

Price Price (GNS) (GNS) (LC) (GNS) (LC) Cycles
1 968982 752096 4.55 4.49 4.53 909152 908615 30
2 629300 484763 4.59 5.58 4.96 568264 575015 30
3 230783 141469 7.87 7.68 7.79 196178 195638 15
4 572992 426629 7.06 7.02 7.04 488249 488087 15
5 686769 477945 3.89 4.30 4.07 588534 593710 35
6 495098 322499 7.08 7.57 7.22 443309 445691 15
7 755135 609051 5.05 5.07 5.05 738834 738883 25
8 408309 432317 NA NA NA no solution | no solution 50
9 536765 398897 4.99 4.64 4.86 488217 485873 30
10 545477 456101 5.06 5.04 5.04 474928 474882 25

Table 1: Comparison of General Negotiated Search and Linear Compromise

signed, the strategy is instantiated. The number of
further agent cycles that are required to execute the
strategy is dependent on the strategy. For linear-
compromise, there is a constant agent-cycle cost of two.
On the first cycle, the point generator communicates
the point set and on the second cycle, the solution cal-
culator receives the information and calculates the in-
tersection. In contrast, the agent-cycle cost of the gen-
eral negotiated-search strategy is on the order of nr
where n is the cardinality of the set of possible utility
values (e.g., n = 4 when possible utility values are ex-
cellent, good, fair, and poor) and r is the relaxation
threshold (as described in Section 5.2). Experiments
have been run with the buyer/seller system in which
1) the agent set recognizes and applies the linear com-
promise strategy, 2) some agent does not recognize the
strategy, and 3) appropriate role assignments cannot be
made. In Cases 2 and 3, the default negotiated search
strategy, GNS, executes and eventually finds a solution
that reasonably approximates the optimal one achieved
by linear compromise.

A comparison of the results obtained by the two dif-
ferent strategies is presented in Table 1. In the GNS
experiments, the cardinality of the rating set (n) is 10,
and the relaxation threshold (r) is 5, for a maximum
agent cycle cost of 50. The agent cycle cost for LC is
not shown in the table as it is constant for all runs:
agent cycle cost in LC is always 2. The LC contract
price is optimal where optimality is defined as having
equal seller and buyer utilities.

Linear compromise can be thought of as a shortcut
to iterative applications of search and relaxation oper-
ators. By taking advantage of the situational charac-
teristics, it is possible to algebraically calculate a solu-
tion and skip multiple search/relaxation cycles. How-
ever, the applicability of the linear compromise strat-
egy depends on the existence of the intra-agent util-
ity /parameter value relationship, the inter-agent linear

intersection relationship, and the existence of required
capabilities at agents in the agent set.

7 Conclusions

In this paper, we introduce the concept of negoti-
ated search to integrate a wide variety of approaches
to local-agent search and inter-agent cooperation and
conflict resolution. We present TEAM, an implemented
framework for empirical investigation of negotiated
search. We note that a negotiated-search strategy
(a coordinated sequence of negotiated-search operators
across agents) can take the place of loosely coordinated
iterative cycles of search and relaxation if a specified
set of conditions exist. By taking advantage of these
conditions, the amount of search required can be signif-
icantly reduced and the quality of solutions can be im-
proved. Linear compromise, a customized negotiated-
search strategy implemented in TEAM, is analyzed and
compared to a more widely applicable strategy, GNS.
Experimental results are presented that show perfor-
mance improvements using the customized strategy.
We will be exploring other strategies and their require-
ments through future experimentation with TEAM.

The use of customized strategies can improve per-
formance and quality, but depends on the ability of
heterogeneous agents to recognize that required agent
capabilities and characteristics exist, both locally and
across the agent set. Agents must also be able to dy-
namically select a strategy and adjust their problem
solving in accordance with the selected strategy. TEAM
has proven to be an effective tool for investigating the
requirements inherent in the integration of heteroge-
neous and reusable agents. This work provides a foun-
dation for guiding the design of agents for multi-agent
sets, for deciding whether or not a particular agent is
an appropriate candidate for inclusion in a particular
set, and for determining the role an agent should play.
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