
Sharing Meta�Information to Guide Cooperative

Search among Heterogeneous Reusable Agents

Susan E� Lander and Victor R� Lesser

CMPSCI Technical Report �����

June ����

Sharing Meta�Information to Guide Cooperative

Search among Heterogeneous Reusable Agents

Susan E� Lander and Victor R� Lesser

Department of Computer Science

University of Massachusetts

Amherst� MA �l���

flander�lesserg�cs�umass�edu

Index terms� reusable agents� information �knowledge� sharing� dis�
tributed search� multiagent systems� mechanical design�
distributed arti�cial intelligence

Abstract

A reusable agent is a self�contained computational system that implements some

speci�c expertise and that can be embedded into diverse applications requiring that

expertise� Systems composed of heterogeneous reusable agents are potentially highly

adaptable� maintainable� and a�ordable� assuming that integration issues such as in�

formation sharing� coordination� and con�ict management can be e�ectively addressed�

In this article� we investigate the e�ectiveness of sharing meta�level search information

to improve system performance� speci�cally with respect to how sharing a�ects the

quality of solutions and the runtime e�ciency of a reusable�agent system�

We �rst give a formal description of shareable meta�information in systems where

agents have private knowledge and databases and where agents are speci�cally in�

tended to be reusable� We then present experimental results from a mechanical design

system for steam condensers that demonstrate performance improvements related to

information sharing and assimilation� Finally� we discuss the practical bene�ts and

limitations of information sharing in application systems comprising heterogeneous

reusable agents� Issues of pragmatic interest include determining what types of infor�

mation can realistically be shared and determining when the costs of sharing outweigh

the bene�ts�

This work was supported by ARPA contract N���������J����	
 and NSF contract CDA 	������
 The
content of the information does not necessarily re�ect the position or the policy of the Government and no
o�cial endorsement should be inferred

�

� Introduction

The computational equivalent to a team of human specialists is the reusable�agent system�
a multiagent system in which expert agents are dynamically selected from an existing li�
brary and integrated with minimal customized implementation	 With reusable�agent sys�
tems� diverse information can be applied in situations that were not explicitly anticipated
at agent�development time	 The bene�ts of this type of system to an application builder are
potentially large� for example� agents can be
exibly and inexpensively added to or deleted
from a system in response to changes in speci�cations� resources� and technology� agents will
be more reliable over many uses� and the cost of building an agent can be amortized over
multiple uses	 However� in order to participate in an application system� reusable agents
must be technically capable of e�ective interaction	 They must be able to communicate in�
formation about the state of problem solving� to coordinate actions� and to resolve con
icts
stemming from inconsistent or incomplete knowledge and evaluation criteria	

As noted by Neches et	 al	
���� software reuse in any form is di�cult and is impeded
by the lack of tools available to foster information sharing	 Concurrent investigations of
languages� ontologies� and protocols for agent interaction such as KQML
�� complement
our research but focus on the development of enabling technologies for information sharing
rather than on the e�ect of shared meta�information on problem solving	 In this article� we
investigate how the communication of speci�c information among agents a�ects the quality
of solutions and the e�ciency of a reusable�agent system	 Our goal is to show that reusable
agents involved in distributed search can improve their joint performance by sharing meta�
information with other agents� assimilating shared information from other agents� and using
this information to re�ne their local views of the global solution space	

��� Shared Meta�Information

Multiagent systems generally assume some form of result�sharing
���� i	e	� the sharing of
partial solutions to facilitate global coherence	 In our experiments� result�sharing is an
integral part of problem solving�agents are able to examine� evaluate� and extend others�
proposed partial solutions	 However� our focus is on the sharing of a di�erent type of
information� namely� information that describes some abstraction of an agent�s solution
space rather than a speci�c solution instance	 This will be referred to as meta�information	�

To illustrate the use of meta�information� consider a generic example of meeting schedul�
ing	 �Sen and Durfee investigate the e�ectiveness of various forms of shared information in
a meeting scheduling domain in
����	 Assume two agents� A and B� are seeking a mutually
acceptable meeting time	 A simple result�sharing approach would be for A to examine its
local schedule and propose a time based on its constraints� �How about Monday at ������ B
responds with �No good	 How about Tuesday at ������� A responds with �Maybe Monday
at ������ and so on until one of the agents suggests a mutually acceptable time	 In contrast�
the use of meta�information is seen in the following exchange	 A again begins with �How

�In the following text
 information and meta�information are used interchangeably where it is clear from
the context that this is the case

�

about Monday at ������� but now B responds� �No good	 I�m tied up all day Monday	 I�ve
got some time Tuesday morning though and I�m free most of Thursday	� Often some combi�
nation of a speci�c proposal and meta�information is o�ered� e	g	� B would say ��� � � I�m free
most of Thursday	 How about Thursday at �������	 The goal of sharing meta�information
is not to pinpoint a speci�c solution� but to guide other agents in their search for a solution	

��� Distributed Search

We explore the use of shared meta�information using a prototype application system� STEAM�
that represents a class of cooperative distributed search systems for parametric design	
Search systems are historically described in the Arti�cial Intelligence literature as com�
prising three components� a state space describing the current state of the search� a set of
operators used to manipulate the state space� and a control strategy used for deciding what
to do next� speci�cally� deciding what operator to apply and where to apply it
��	 When
all operators reside in a single program or logical entity and have access to a central store
of knowledge and databases� the search is centralized	 In this article� we are concerned with
the problem of distributed search as described in
����

A distributed search involves partitioning the state space and its associated
operators and control regime so that multiple processing elements can simulta�
neously perform local searches on di�erent parts of the state space� the �inter�
mediate� results of the local searches are shared in some form so that the desired
answer is produced in a timely manner	

The partitioning of the state space in a reusable�agent system is induced by the a priori
division of expertise of agents in the agent set	 The set of operators available at an agent is
also an a priori attribute of the agent	 The control strategy used for a solving a particular
problem should be tailored to the problem but must be chosen from the set of strategies
known to the agents in the system	 The selection of operators and control strategies for
distributed search are addressed elsewhere in
��� ���	

��� The STEAM Application System

Throughout the article� we will augment the presentation of concepts with examples from a
seven�agent system� STEAM� that performs parametric design of steam condensers	 Figure �
shows the general form of a steam condenser	 The agents in STEAM each take responsibility
for either� �� designing some component of a steam condenser� or �� critiquing some aspect
of the condenser	 The agent set in STEAM is�

fpump�designer� heat�exchanger�designer� motor�designer�
platform�designer� vbelt�designer� shaft�designer�

system�frequency�criticg

�

vbelt
drive

simply
supported

elastic platform

pump
shaft

from water
source steam input

water
exhaust

condensed
steam output

pumpmotor

heat exchanger

pump
output

Figure �� A Steam Condenser

��� Globally Cooperative Systems

The STEAM system is a globally cooperative system� meaning that there is assumed to be a
global measure of system performance that overrides any local measures	 This is generally
true for design problems� there is some measure of the quality of a design that is distinct
from the quality of any subcomponents of that design	 An important aspect of globally
cooperative systems is that it is not useful for agents to attempt to maximize their local
payo�s for solutions by withholding information from other agents	 The overriding goal of
the system is to maximize the global� rather than local� payo� for solutions	 In this situation�
sharing information is not restricted by sel�sh or adversarial motives of agents as in some
multiagent domains
��� ���	

Another example of a globally cooperative multiagent system is given by de Souza and
Talukdar in
��� which describes the Asynchronous Team �A�Team� approach to solving a
class of problems where multiple partially satisfactory algorithms exist but no completely
satisfactory algorithm is known �such as the Traveling Salesman Problem�	 In the A�Team
approach� each agent represents one of the known algorithms and the goal is to cooperate in
such a way that the agent set produces better results as an organization than any one agent
would produce alone	 In this work� the only information shared among agents is in the form
of partial solutions and the emphasis of the research is on how intermingling of the control

ow of the agent organization improves performance	

In contrast� our emphasis is on the communication and assimilation of meta�information
among reusable agents� the in
uence of shared information on an agent�s ability to focus its
search e�orts� and the resulting performance improvements within an application system	
In Section � we give a formal description of shareable meta�information in reusable�agent
systems	 The next section� Section �� presents experimental results from STEAM that sub�
stantiate our hypothesis that meta�information sharing can improve solution quality and
problem�solving e�ciency	 Section � discusses what costs are involved in sharing meta�

�

information and what the practical limitations of the technology are from an application�
system perspective	 We conclude with a summary of observed results and some speculation
as to the signi�cance of these results within the STEAM system and within the more general
realm of multiagent systems	

� Solution Spaces

When discussing the solution spaces of agents� we distinguish between the local space of an
agent and the composite space of the system	 A local space is one that is private to an agent�
the composite space is one that is shared by all agents	� In a parametric design application�
the local solution space of an agent is de�ned by the parameters that are assigned values by an
agent in its local solutions� i	e	� its output parameters	 An agent�s initial view of the composite
solution space is equivalent to its local solution space	 However� this local view is unlikely
to be e�ective in �nding solutions that are mutually agreeable to all agents �solutions in the
composite space�	 A primary goal of communication among agents� therefore� is for each
agent to end up perceiving the closest approximation possible to the part of the composite
solution space that contains its local output parameters	 In nontrivial cases� it is unlikely
that a complete and correct global view can be achieved at every agent	 However� to the
extent that its local view approaches the global view� an agent is likely to be more e�ective
at proposing solutions that will be mutually acceptable	

��� De�ning a Local Solution Space

We will use examples from the STEAM system to illustrate the concepts being discussed	
Figure � shows a simpli�ed version of the solution space of pump�designer	 This �gure is
simpli�ed both in the number of parameters and the speci�cation of the parameters� domains	
The set of parameters in the solution space of an agent � is P�� the parameter set of �	
The parameter set of pump�designer� as shown in Figure �� is fwater�
ow�rate�head�run�
speed�pump�costg	

The set of legal values for a parameter � at agent � is its parameter space� V�
� 	 To illus�

trate� the parameter space of run�speed from Figure � is the set of integers f���������������
���������g	 The parameter space of an agent can be de�ned over various domains including
integers� reals� numeric intervals of the form f�min�max�� min�max � Rg� or discrete labels
such as fmodel��� model���� � � �model�ng	

A solution in the solution space of � is a tuple s�j � �p�� p�� � � � � pn� such that px � V�
x

and such that any constraining relationships on or between the px � s�j are satis�ed	 A
parameter space may be constrained by explicit constraints on solutions such as �run�speed
� ����� or through implicit constraints that are embedded in the functions an agent uses
to search for solutions	 As a trivial example of an implicit constraint � consider the following

�Spaces may also be shared by some subset of agents
 but not the entire agent set ����
 These common

spaces are outside the scope of this article
 however
 and we will not discuss them further here

�

w
a
t
e
r

f
l
o
w

r
a
t
e

p
2

p
3

p
4

R RX X X

A simplified
view of the
solution space
of the pump
designer.
Shaded areas
represent
potential legal
values of the
parameters.

The tuple
(p1,p2,p3,p4) is
a specific
solution in the
space.

R
0

4000

I

p
u
m
p

c
o
s
t

r
u
n

s
p
e
e
d

h
e
a
d

p
1

Figure �� The Local Solution Space Of Pump�Designer from the STEAM System

loop in pseudo�code�

head ��� ��

DO water�flow�rate � � to ���

new�head ��� calculate�head water�flow�rate�

head ��� select�best new�head head�

END DO�

An agent using this code implicitly constrains the parameter space of water�flow�rate
to be the set of integers from � to ���� although it may not declaratively represent this
anywhere	 In reality� functions tend to be more complex and the implicit constraints more
di�cult to discern	 In the above example� the value of head is tacitly constrained by the
implicit constraint on water�flow�rate	 However� the e�ect of this implicit constraint on
the parameter space of head is not determinable without a deeper understanding of the
constraining relationship	

The existence of implicit constraints� goals� and heuristics must be expected in the gen�
eral case of expert agents	 Implicit meta�information cannot normally be shared since it is
an integral part of an agent�s expertise and cannot be easily extricated	� Unshareable infor�
mation strongly a�ects properties of the agent sets in which it is embedded	 For example�
in
���� Khedro and Genesereth present a distributed�search model in which agents provably
converge on a globally satisfactory solution if one exists	 However� the property of conver�
gence can only be guaranteed if all constraining information can be explicitly exchanged	
When implicit constraints are added� this desirable property no longer holds	

�It is possible that some agents may be able to share either code or some form of abstracted explanation
of implicit information
 However
 this requires specialized capabilities on the part of both the sending and
receiving agents
 Although it is possible to support these capabilities in speci�c situations
 generalized code
exchange and assimilation among heterogeneous reusable agents is not a realistic option

�

Explicit �declaratively represented� meta�information can be shared and� as will be dis�
cussed in Section �� this sharing can greatly enhance the e�ectiveness and coherence of the
agent set	 In STEAM� shareable information is limited to simple boundary constraints with
the basic form �water�flow�rate � ���� that specify minimum or maximum values for a
parameter �see Section �	� for a more complete explanation of shareable constraints�	 This
limitation is not mandated by either our model of shareable information or the STEAM sys�
tem� but rather was chosen due to its simplicity and accessibility	 The costs of information
sharing increase as agents apply more sophisticated techniques	 Restricting information to
boundary constraints may result in lower e�ciency or lower�quality solutions than could be
achieved by sharing more complex forms of information	 However� the associated overhead
costs are low and these constraints provide a manageable� �rst�cut view of the composite
solution space	 In Section �� we will further discuss the tradeo�s inherent in supporting
the sharing and assimilation of more complex forms of information� namely� the tradeo�
between improved system performance due to better�informed agents and degraded system
performance due to the overhead associated with sharing	

To include explicit boundary constraints in the de�nition of a solution space� we use the
following notation� let c�j be a declaratively represented boundary constraint of agent � in
the set of all explicit boundary constraints of �� C�	 Then� let the notation fc�j � s�kg mean
that c�j is satis�ed with respect to a particular solution� s�k 	 For example if c�

�
is �p� � ���

and s�
�
� ��� �� �� ��� then c�

�
is satis�ed with respect to s�

�
� fc�

�
� s�

�
g	 When c�j is neutral with

respect to s�k �it does not constrain any parameters in s�k �� it is considered to be satis�ed	
Using this notation� the shareable solution space of agent � can be de�ned by specifying

the parameter set of �� P� and the set of explicit constraints over those parameters� C�	 This
shareable solution space is an approximation of the actual local solution space since it does
not represent any implicit solution requirements that are embedded in the agent	 We formally
describe the shareable local solution space of agent � as follows� �� � f�p�� p�� � � � � pn� j �p� �
V�
� �� ��cj � C

�� fcj � �p�� p�� � � � � pn�g�g	 In nontrivial cases� �� will be a superset of the valid
solutions of agent � since it does not take implicit constraints into account	

��� De�ning the Composite Solution Space

Given a set of agents� A� and a problem that they are cooperating to solve� the desired
composite solution must derive its parameter values from the local solution spaces of the
agents	 However� the parameter set of the composite solution space� PC � is not necessarily
the union of the parameter sets in the local solution spaces� as can be seen in Figure �	

In this �gure� the solution space of agent p �the pump agent� contains the parameters
water��ow�rate� head� run�speed� and pump�cost	 The solution space of agent h �the heat�
exchanger agent� contains the parameters water��ow�rate� head� required�capacity� and heatx�
cost	 We �nd in Figure � that the parameters water��ow�rate and head are common to both
agents while run�speed� pump�cost� required�capacity� and heatx�cost represent parameters
unique to individual agents	 The composite solution space shown in Figure � contains the
shared parameters water��ow�rate and head� the parameter required�capacity from agent h�
and also a unique parameter� cost	 Cost is not local to either agent p or agent h� but

�

w
a
t
e
r

f
l
o
w

r
a
t
e

0

2500
p
u
m
p

c
o
s
t

r
u
n

s
p
e
e
d

h
e
a
d

local
pump
solution
space

local
heat-
exchanger
solution
space

r
e
q
u
i
r
e
d

c
a
p
a
c
i
t
y

h
e
a
t
x

c
o
s
t

0

2500
w
a
t
e
r

f
l
o
w

r
a
t
e

h
e
a
d

A simplified view
of the
relationship of
the solution
spaces of the
pump agent and
heat-exchanger
agent to the
composite
solution space.

w
a
t
e
r

f
l
o
w

r
a
t
e

0

2500
c
o
s
t

h
e
a
d

p

r
e
q
u
i
r
e
d

c
a
p
a
c
i
t
y

composite
solution
space

A solution in the
composite space,
(p1,p2,p3,p4), is in
the intersection of the
local solution spaces
of the agents.

2
p
1

p
4

p
3

Figure �� Constructing a Composite Solution from the Local Solutions of Agents

represents a transformation on local parameters of those agents� i	e	� the sum of pump�cost
and heatx�cost	 To summarize� each parameter in the composite solution space is local to
either agent p or agent h� local to both agent p and agent h� or is a unique parameter whose
value can be derived from parameters local to agent p and or agent h	

The run�speed output parameter of pump�designer does not appear in the composite
solution	 In this application system� run�speed can be characterized as a throw�away param�
eter� one that does not appear in a composite solution and is not used as an input parameter
by any other agent	 Throw�aways are a common occurence in reusable�agent systems since
the agents are constructed without any foreknowledge of what output information will be
required for any speci�c application system	 Therefore� there is no guarantee that the set of
output parameters chosen by the agent implementor will be exactly what is needed for any
particular application	

In Figure �� notice that the constrained set of values �the shaded areas� of the shared
parameters� water��ow�rate and head� are not identical for the two agents	 If we are looking
only at constraint�satisfaction problems� problems in which all constraints must be satis�ed

�

or no solution can be found� the constrained composite parameter space of a shared param�
eter is the intersection of the constrained local parameter spaces	 For example� the shared
composite parameter space of water��ow�rate from Figure � is the intersection of the local
water��ow�rate parameter spaces of the two agents p and h	 We denote the composite water�
�ow�rate parameter space as wC 	 If wC is empty� no solution exists that will be mutually
acceptable to agents p and h	

As discussed earlier� an agent�s perception of wC will not be identical to the actual
composite parameter space in the general case	 Formally� let wC

� be an agent�s perception of
the composite parameter space� wC 	 After all shareable information has been communicated
and assimilated� agent � perceives some superset of wC as de�ned by the explicit constraints
of other agents and its own explicit and implicit constraints	 If wC

� is not empty� there
are two possibilities� �� a mutually acceptable composite solution� sCx � �p�� p�� � � � � pn��
exists with pw � wC � or �� no composite solution exists because there implicit constraints
at other agents that exclude values in wC � but that do not exclude values in wC

� 	 Therefore�
because of the possibility that implicit constraints exist� it is impossible to tell by looking
at wC

� whether or not a mutually acceptable solution exists	 An example of the discrepancy
between an agent�s local solution space and other agents� perceptions of that space based on
transmitted constraints is shown in the next section in Figure �	

Intersection of the fully constrained local solution spaces of agents �spaces constrained by
both implicit and explicit constraints� de�nes the composite solution space in a constraint�
satisfaction problem	 However� in a constraint�optimization problem� not all constraints
must be satis�ed in a solution	 Instead an attempt is made to satisfy constraints to the
fullest extent possible	 Constraints may have di�ering amounts of
exibility� some may
be hard � meaning that they must be satis�ed in any legal solution� while others may be
soft � meaning that they can be relaxed if necessary	 Soft constraints again can have di�erent
degrees of
exibility� some can be �softer� than others	 In these types of problems� composite
solutions must lie within the intersection of the local parameter spaces under the set of hard
constraints� but not necessarily under all soft constraints	 The order in which constraints are
relaxed can strongly a�ect system performance and solution quality
�� ��� ���	 A discussion
of these issues is beyond the scope of this article� however� in
���� we present the algorithms
used by STEAM agents to determine which constraints to relax in con
ict situations and in
situations where problem�solving progress has stalled	

In this section� we have de�ned the local� composite� and locally perceived composite
solution spaces of a system of heterogeneous reusable agents	 In complex application systems�
the composite solution space is an amalgam of local spaces� each of which may be constrained
in ways that cannot be articulated outside of the local context	 Information sharing is viewed
as a mechanism for reducing the di�erence between agents� local perceptions of the composite
solution space and the actual space	 The hypothesis is that as agents begin to understand
the �big picture� they become more e�ective at generating high�quality solutions quickly	 In
the next section� we investigate this hypothesis through experimental observation of how
information�sharing a�ects solution quality and processing time in the STEAM system	

�

� Empirical Analysis of Information Assimilation

In this section we empirically demonstrate the e�ectiveness of sharing potentially useful in�
formation among agents during distributed search	 The experiments reported below were
run in the STEAM system with the seven active agents listed in Section �	�	 There were two
categories of experimental trials� non�assimilation trials and assimilation trials	 For the
assimilation trials� three agents instantiate the capabilities required for information assimi�
lation� the pump designer � motor designer � and heat�exchanger designer agents	 The other
agents do not attempt to assimilate information as will be explained in Section �	�	 In the
non�assimilation trials� the assimilation capabilities are not active at any agent	

In these experiments� agents transmit boundary constraints directly in response to con
ict
situations rather than transmitting information that is anticipated to be potentially useful	
In other words� a boundary constraint is shared only when it con
icts with a proposed
solution	 The relative bene�ts of reactive information sharing and proactive information
sharing are not explored here	

The system was run on each of ��� di�erent feasible problem speci�cations� once with
active assimilation capabilities and once without	 The problem speci�cations were generated
by randomly choosing a feasible value for each of the steam condenser attributes� frequired
capacity� maximum platform de�ection� platform side lengthg� for each speci�cation	 The
complete set of input problem speci�cations and observed data from the experiments are
tabulated in
���	

In order for an agent to use information received from an external source to guide its local
processing �i	e	� learn about other agents� requirements for solutions�� the agent must be able
to receive constraining information sent from other agents� translate that information into
a locally usable form� and store the translated information into a local knowledge base so
that it can be easily retrieved and applied	 We call this process information assimilation	
Notice� however� that with reusable agents� the usefulness of shareable information cannot
be determined at agent�development time since it is dependent on capabilities and interests
of other agents that may eventually be integrated into a joint agent set	 Therefore� not all
shared meta�information will be assimilated by all agents	

Assimilated information is used by the assimilating agent to guide its search for local
solutions	 We have developed mechanisms that extend or replace the traditional retrieval
capability of an agent to extract relevant constraining information from its knowledge base	
These mechanisms were developed speci�cally to enable reusable agents to handle poten�
tially con
icting information that has been received from external sources since there is no
guarantee that shared external information will be consistent with internal information	 The
goal of the retrieval process is to �nd the most restrictive� but non�con
icting� set of known
constraints on solutions for the current problem using both local and assimilated informa�
tion	 This set of constraints de�nes the closest possible approximation of the composite
solution space in which globally acceptable solutions must lie	 However� it requires that in�
telligent con
ict�resolution capabilities be applied to select which constraints to relax when
con
icts do occur	 Although we do not address speci�c techniques for con
ict management
in this article� it is an important and encompassing problem	 Work describing computational

��

con
ict�management techniques includes
�� ��� ��� ��� ��� ��� ���	

��� Information Shared in the STEAM System

The information shared in these experiments was limited to simple boundary constraints of
the form fconstraint�form� flexibilityg	 A constraint�form is a single clause with
the syntax �x � n�� �x �� n�� �x � n�� or �x �� n�� as previously discussed in Section �	�	
x is a shared numeric parameter and n is some numeric value although the concepts could
be extended to processing sets of labels as well	 These constraints de�ne an n�dimensional
�box� in the solution space� where each dimension represents a parameter in the parameter
set of the agent �� P�	 Ignoring for the moment the flexibility attribute� Figure � shows
the boundary constraints derived by two agents to represent their local solution spaces	 The
accuracy of the representation is dependent upon characteristics of the space	 For example�
when the solution space is sparse� as in Figure �a� the shareable view de�ned by boundary
constraints will not be highly accurate� as shown in Figure �c	

Y

X0

350

473 X0 473

4a. Agent A's solution space.

*

*

*
*

*

*
*

*

*

30 < X < 445
40 < Y < 310

100 < X < 350
155 < Y < 340

Shareable
Boundary

Constraints

4b. Agent B's solution space.

Y

350

Y

X0

350

473 X0 473

4c. Agent A's shareable view
of its solution space.

4d. Agent B's shareable view
of its solution space.

Y

350

Figure �� Shareable Views of Agent Solution Spaces Built using Boundary Constraints

Continuing the example in Figure �� Figure � shows the perceived situation from each
agent�s perspective after the boundary constraints have been transmitted� along with the
actual composite space	

��

*
*

*

indicates a composite
solution exists at this
point

o

Y

X0

350

473 X0

350

473

Agent A's perception of the
merged spaces.

Agent B's perception of the
merged spaces.

The composite space.

0

350

X 473

Y

Y

*

*

o
o

*

*
*

*

*

Figure �� Perceived Solution Spaces Contrasted with the Actual Space

Agent A has a much more accurate perspective than Agent B because� as noted earlier�
Agent B�s boundary constraints more accurately represent its solution space	 Therefore� it
is important to note that when boundary constraints are used as the primary mechanism
for information sharing� it is possible to either predict �through agent analysis� or learn
which agents have the best global perspective	 This is the basis of work that has been
done by Lander
��� on making e�ective assignments of roles to agents within an agent
set	 It also provides the foundation for ongoing work in building reusable�agent sets that
can automatically adjust role assignments for e�ective problem solving without requiring
knowledge�based analysis of agent characteristics
���	

Returning to our discussion of how boundary constraints represent shareable perspectives
of agents� solution spaces� notice that in some situations an agent may choose its boundary
constraints such that some local solutions are excluded from the shared information	 For
example� if there are spurious outlying points� it may be advantageous to the entire system
to exclude those points	 By excluding them� the area that needs to be searched can be
made much smaller� although this may result in missing valid or even optimal solutions	
This idea is similar to that of relaxing the admissibility condition in A	 search whereby h	
is allowed to overestimate the distance to the goal� resulting in less search but a possibly
non�optimal solution	 If an agent intentionally misstates its boundaries� whether its motives
are benevolent or malicious� issues of deception arise	 Deception in multiagent environments
is an important and ongoing area of research
�� ��� ��� that must be addressed in the larger
scope of multiagent systems in general� however� in the STEAM system� agents are assumed

��

to never lie	
In addition to the constraint�form clause of a constraint� the boundary constraints used

by the STEAM agents include a flexibility attribute� loosely based on the notion of utility
suggested by Fox
��	 flexibility is represented as an integer from � to �	 A
exibility of
� speci�es a hard �nonrelaxable� constraint that must be met by any feasible solution	 A

exibility of � implies that solutions satisfying the constraint are of high quality	 The use
of a
exibility attribute on boundary constraints de�nes a set of n�dimensional boxes in the
solution space� each representing an equivalence class of solutions of a given quality	 For
example� the box circumscribed by an agent�s boundary constraints at
exibility � contains
solutions that satisfy the most demanding local constraints of the agent	 In contrast� the box
circumscribed by an agent�s boundary constraints at
exibility � contains solutions that are
feasible but not necessarily desirable	 For example� pump�designer speci�es a soft constraint�
f�water��ow�rate � ����� �g� meaning that all pumps rated as excellent will have a water�

ow�rate less than ���	 It also speci�es a hard constraint� f�water��ow�rate � ����� �g� that
indicates any value �� ��� will result in an infeasible solution	 Figure � illustrates possible

excellent solutions
good

solutions

fair
solutions

poor solutions

Relaxation is inclusive. Relaxation is not guaranteed to
be inclusive.

excellent
solutions

good solutions

fair solutions

poor solutions

Figure �� Quality Equivalence Classes within an Agent
s Local Solution Space

partitionings of a two�dimensional solution space according to the
exibility values of known
boundary constraints on the space� one in which the partitionings are inclusive and one in
which they are not	

In STEAM� solution quality classes are inclusive	 In other words� all �excellent solutions
fall within the boundary constraints of the �good class so that searching for a solution in one
quality class does not preclude the possibility of �nding a solution of higher quality �as in
Figure �a�	 This need not be true in the general case however	 Figure �b illustrates a set
of quality classes that is only partially inclusive	 This distinction is only important from
an agent implementation standpoint� conceptually it does not a�ect problem solving but it
does a�ect the algorithms used for constraint manipulation and search	

The boundary constraints described above are only one form of information that can
potentially be shared	 They will not be adequate or appropriate in all domains	 However�
one result of our work has been the recognition that they are adequate to signi�cantly im�
prove processing in our domain	 There is a high degree of complexity inherent in building
heterogeneous agents that can understand each other well enough to positively a�ect mutual

��

work	 As the type of information to be shared increases in sophistication� the design and
implementation of agents needs to be more tightly coordinated to support e�ective gener�
ation and assimilation of shared information	 Even the simple form of sharing shown here
requires some uniform mechanisms across agents for representing� assimilating� and applying
constraints	 A primary principle in the development of reusable agents is that the degree of
coordination required among agent implementors should be kept as small as possible	 These
constraints provide a minimal basis for interaction that can be shown to positively in
uence
the overall search activity of the agent set	

There are two measures of system performance in the STEAM system� solution quality
and runtime	 We expected to see that extra costs associated with sharing information would
be balanced� in the majority of cases� by improvements in performance	 In the following
sections� we �rst present the results from the information�sharing experiments on solution
quality and runtime	 We then discuss the underlying mechanisms in the STEAM system
that produce the results� what is it about the agents that is a�ected by having external
information available�

��� Solution Quality

We compared the results of running the system when agents assimilated constraining infor�
mation and when they did not	 In STEAM� solution quality is determined by the monetary
cost of each solution� the minimum�cost acceptable design is considered the most highly
rated	 The results of the ��� experimental trials are graphically summarized in Figure �	 In
this �gure� the results are sorted into ascending order based on cost in the assimilation trial	

ooo
oooooo

ooooooooo
oooooooooooooooo

ooooooooo
oooooo

oooooo
oooo

ooooooooo
oooo

ooooooooo
oooo

oooooo
o
ooo
o
oo
o
o

••••••
•••••••••••••••••••••••

••••••••••••••••
••••
••••••••

••
•••••••••

•
•
•••
•
•••
•••••
••••
••••••
•••
•
••
••

0

5000

10000

15000

20000

25000

30000

M
in

im
um

 d
es

ig
n

co
st

 (
do

lla
rs

)

Trials

o Minimum Cost with Assimilation

• Minimum Cost without Assimilation

Figure �� Solution Quality Results in Assimilation Experiments

For the ��� problem speci�cations tested� the mean cost in the assimilation trials was
!����	��� in the non�assimilation trials� it was !����	��	 The mean cost improvement with

��

assimilation operators enabled was �	��"� meaning that the monetary cost of the most highly
rated solution in an assimilation trial was �	��" lower on average than that in the associated
non�assimilation trial under the identical problem speci�cation	 We had hypothesized that
enabling assimilation would lower the cost of a design �thereby improving solution quality�
and the experimental results appeared to support this hypothesis	 To statistically con�rm
this result� we applied a paired di�erence t�test	 In this type of test� the results from two
matched trials are compared�in our case non�assimilation trials are compared to assimilation
trials performed under the same problem speci�cation	 For each paired trial� the di�erence
between the resulting design costs is calculated	 Then the mean of the di�erences is computed
over the entire set of trials	 The null hypothesis in this case is Ho � �D � � �the population
mean of the di�erences is ��� meaning that the results of the two types of trials are not
signi�cantly di�erent	 The alternative hypothesis is Ha � �D � � �the population mean
of the non�assimilation trial results minus the assimilation trial results is greater than ���
meaning that the cost of designs in the non�assimilation trials are higher than those in the
assimilation trials	 Applying the paired t�test results in a t�score of �	���� which allows us
to reject the null hypothesis with a con�dence of more than ��"	 We can thus say with a
high level of con�dence that when STEAM agents apply assimilation capabilities� the average
quality of solutions improves	

An inherent characteristic of the STEAM domain is that good solutions are easy to �nd
under many problem speci�cations �the solution space is dense�	 We believe that there is a
signi�cant �oor e�ect in the domain� meaning that minimum�cost designs are easy enough
to �nd even in the non�assimilation trials that it is di�cult to dramatically improve solution
quality	 However� the ability to consistently lower design costs approximately �	��" by
sharing simple boundary constraints is compelling evidence that information sharing and
assimilation is an important technique for improving solution quality in multiagent systems	
Furthermore� if it is the case that a
oor e�ect is in
uencing our results� larger improvements
could be expected in some domains	

The �	��" �gure given above for the improvement in solution quality may understate
the signi�cance of the improvement if the assimilation trials are approaching optimality	 For
example� assume that our average �gures of !����	�� and !����	�� represent the results of
a matched pair trial	 If the optimal solution in this trial was actually !����� the assimila�
tion run is suboptimal by !���	�� while the non�assimilation run is suboptimal by !���	��	
With respect to the optimal solution� then� the assimilation run shows approximately a ��"
improvement over the non�assimilation run	

��� Runtime

Runtime is directly measured in these experiments as the elapsed real time from the invoca�
tion of the system until termination of the system	� The average runtime with assimilation
is ���	�� seconds� without assimilation the average runtime is ���	�� seconds	 The assimi�

�These experiments were run on a TI Explorer II
 Incremental garbage collection was turned o� during the
runs
 However
 the recorded time includes time spent on process and memory management tasks
 Therefore

recorded times varied slightly across identical runs

��

lation runtimes are� on average� �	��" lower than the non�assimilation runtimes	 However�
direct comparison of the runtimes of assimilation and non�assimilation trials is somewhat
misleading	

STEAM is a satis
cing system
���� there is no way to determine if an optimal solution
has been achieved� and it is di�cult to decide when to stop looking for a better solution	 In
any satis�cing system� some policy must be generated that de�nes under what conditions
the system will terminate processing	 The termination policy used in the STEAM system is
that when three acceptable solutions are found� the system enters a termination phase	 The
rationale behind creating at least three alternative solutions is that alternative solutions
represent various design tradeo�s� and the user should have the opportunity to decide which
of the tradeo�s is best for her needs	 Furthermore� instead of halting immediately with the
�rst three completed acceptable solutions� STEAM �nishes all remaining acceptable partial
solutions �as long as they remain acceptable�	 This policy is appropriate for the STEAM

domain since solution quality and user participation are higher priorities than runtime	
Due to the focused search that occurs when information is shared� there are likely to

be more acceptable solutions produced per run in the assimilation trials than in the non�
assimilation trials	 We found that this is indeed the case� more of the solution paths that are
started in the assimilation trials turn out to result in acceptable solutions	 Therefore� one
result of the termination policy used in STEAM is a bias in which direct runtime measures favor
non�assimilation trials	 In those trials� the system doesn�t complete as many solutions as it
does in the matching assimilation trial because many of the solutions it tries are unacceptable
and need not be completed	

To make runtime comparisons more meaningful� we divided the runtime of each trial
by the number of solutions completed during that trial� resulting in a runtime�per�solution
measure	 The results obtained using this method are graphed in Figure �	

ooooooooo
ooooooooooooooo

oooooooooooooooooooo
ooooooooooooo

ooooooooooooooo
ooooooooooo

oooooo
oooooo

ooo

o
o

•••••
•
•

•
•
••
•
•
•
•

•

•
•
••

•
••

•

•
•

••
••
••
•
•

•
••

•

••

•

••
••
••

•
••
•
••

•

••
•
•
••
•
•
•
••

•

••

•

••
•

•

•

••

•
•

•

••

•

•

•
•
••

•

••
•••
•

•
•••

•

•

0

5

10

15

20

25

30

35

40

R
un

tim
e

pe
r

so
lu

tio
n

(s
ec

on
ds

)

Trials

o Runtime per Solution with Assimilation

• Runtime per Solution without Assimilation

Figure �� Runtimes�per�Solution Results in Assimilation Experiments

��

The runtime�per�solution observations in the assimilation and non�assimilation trials were
averaged over the ��� experiment sets for comparison	 The average runtime per solution in
the assimilation trials was ��	�� seconds and in the non�assimilation trials it was ��	��
seconds	 The average percent improvement achieved by the assimilation trials over the non�
assimilation trials in runtime�per�solution was ��	��"	 In addition to highlighting the im�
provement in system e�ciency in the assimilation trials� this indicates that the system could
be tuned for faster runtime at the expense of solution quality by changing the termination
policy to halt without �nishing partial acceptable solutions	

��� Understanding the E�ect of Shared Meta�Information on

System Performance

We stated above� based on the t�test analysis of solution quality� that when STEAM agents
apply assimilation capabilities� the average quality of solutions improves	 However� knowing
that quality improves is not equivalent to understanding why it improves	

As described earlier� the goal of meta�information sharing is to improve agents� local
perceptions of the composite solution space in order to make local search more productive	
The more accurate the view of the composite solution space� the less time is wasted in
producing solutions that are locally� but not globally� acceptable	 Therefore� we expected to
see runtime measurements improve in the assimilation trials because agents would waste less
time in unproductive tasks	 This expectation was ful�lled in the experiments performed	

Though it seems clear that system runtime would be a�ected by information sharing�
it is not as easy to see why solutions would improve in quality as well	 To understand the
relationship between solution quality and information assimilation in the STEAM system� it is
necessary to understand the relationship between constraint relaxation and solution quality	
In this section� we describe the mechanisms of constraint relaxation that are a�ected by
information sharing and that� in turn� a�ect the quality of solutions produced	

In any non�trivial agent environment� there will be con
icts among the boundary con�
straints of di�erent agents	 These con
icts are often soft con�icts� meaning con
icts that
occur over soft constraints	 In order to �nd any solution in the composite solution space�
these soft con
icts must be resolved by relaxing one or more of the con
icting constraints	 In
the STEAM domain� there is an approximate mapping between the degree of local constraint
satisfaction and the quality of a solution	 In general� the more relaxation has occurred in the
environment� the lower the quality of solutions produced	 This is an approximate mapping
because the global evaluation of a design in a globally cooperative system is not necessarily
a direct function of local agent evaluations	 For that matter� a local agent evaluation is not
necessarily a direct function of local constraint satisfaction	 However� it is usually the case
that there is a relationship between constraint satisfaction and solution quality and� in the
STEAM domain� this is a reasonable assumption	

There are three primary types of constraint relaxation used in STEAM� unilateral� respon�
sive� and automatic
���	 Unilateral relaxation occurs at an agent in direct response to a
problem speci�cation�the agent will relax local soft constraints in order to meet require�
ments imposed by the speci�cation	 Unilateral relaxation is not dependent on information

��

sharing and will not be further discussed	
Responsive relaxation occurs when there are explicit con
icts between an agent�s con�

straints and some other agent�s constraints	 In responsive relaxation� an agent that has
received con
icting constraints from another agent determines which of its own constraints
to relax or which of the received constraints to ignore based on some con
ict�management
criteria	 In this case� relaxation is used to remove a con
ict and it is speci�cally enabled by
information sharing	

Automatic relaxation occurs in response to a lack of problem�solving progress	 Because
not all relevant information is shareable� it is sometimes the case that problem solving stalls
over implicit con
icts without any agent being able to pinpoint the cause	 One way to handle
this situation is to set up the system so that one or more agents must select and relax a local
constraint after some amount of time has gone by	 Decisions about which agent should relax
which constraint are not discussed here�this is a complex problem and in general these
decisions are highly domain�dependent and agent�set speci�c	 However� the basic rationale
for automatic relaxation is that unless it is possible to directly attribute any lack of problem
solving progress to a particular constraint� there must be a mechanism for selecting and
relaxing arbitrary constraints until the obstacle is removed	 This basic idea has been part
of the DAI literature for some time	 For example� in the Hearsay�II speech understanding
system developed in the late ����s� a group of hypotheses for words were generated and rated�
and the most highly rated hypotheses were passed to the word�sequence level of processing
that would then try to build multiword sequences	 If problem solving stagnated at that
level� rating thresholds were relaxed at the word level in order to provide more breadth in
the word�sequence search space
��	

Given this brief introduction to constraint relaxation� we now return to our discussion
of how information sharing and assimilation a�ects global solution quality in a globally co�
operative system	 Without information sharing� the default form of constraint relaxation is
automatic relaxation� basically a blind search for the source of a problem	 In the course
of ��xing� the problem� other non�problematic constraints are also often relaxed	 This leads
to lower standards for solutions and� ultimately� lower quality solutions	 In contrast� re�
sponsive relaxation supports the agents in making globally bene�cial decisions about which
constraints to relax	 By providing an agent with speci�c knowledge about the source of the
problem� information sharing enables the agent to make an intelligent decision about the
most appropriate solution to the problem	 Knowledge that can be brought to bear in decid�
ing which constraint to relax includes power relationships between agents and the
exibility
of the constraints involved in the con
ict	

Automatic constraint relaxation is also in
uenced by information sharing and assimila�
tion	 The general e�ect of automatic relaxation policies is that the local quality of proposed
solutions degrades over time as requirements become less stringent	 Because of this� the
timing of solution generation is important�it is important that each agent quickly focus its
local search as narrowly as possible	 Because information assimilation and sharing accom�
plishes precisely that� the quality of solutions improves simply because good solutions are
proposed before any arbitrary relaxation occurs	

��

��	 Summary

The results presented in this section demonstrate that information sharing can positively
a�ect both solution quality and runtime in a heterogeneous reusable�agent system	 However�
there are costs associated with information sharing and� in fact� the more sophisticated
information sharing becomes� the higher the costs are likely to become	 In the following
section� we discuss the costs involved in information sharing with an eye toward determining
how sophisticated it is practical to become	

� Information�Sharing Costs

Sharing information has �ve primary costs �where cost is measured in time��

�	 Generation� the cost of generating shareable information at the sending agent speci��
cally intended to be transmitted to other agents to guide their local searches�

�	 Determination� the cost of determining what information to share at a given point in
problem solving�

�	 Transmisssion� the actual costs associated with the physical transmission of messages
among agents�

�	 Translation� the cost of translating shared information either directly from one agent�s
language to another�s or from the local language to a shareable format at the sending
agent and then from the shareable format into a local language at the receiving agent�

�	 Local Management � the cost of managing shared information at the receiving agent� de�
termining the applicability of received information �sorting� �ltering� detecting con
icts
and locally resolving those con
icts� and managing the greater volume of information
that results from accumulating received information �storage and retrieval costs�	

In the timing analysis described below� we do not include transmission costs �those
associated with the physical transfer of information from one agent to another�	 This is
consistent with the current implementation of STEAM in which all agents reside on the same
machine and run in the same process� making transmission costs virtually nil	 This exclusion
of transmission costs should not be extended to the general case however	

The list above summarizes the types of costs incurred as a direct result of information
sharing	 We next give a more complete description of those costs and present observed data
from their measurements in the STEAM system	 We then move on to discussing the relevance
of our observations in the more general context of reusable�agent systems	 We conclude
with some thoughts on how agent reusability a�ects information sharing� discussing both
the positive and negative issues that arise	

Generation� The costs listed as generation costs should represent only the time an agent
spends generating shareable information that would not otherwise be declaratively repre�
sented	 This can potentially entail a great deal of �self�analysis�	 Types of information that

��

can be used to focus other agents� searches include� �� constraints that are completely in�
dependent of the speci�c problem being addressed �independent constraints�� �� constraints
that are dependent only on the problem speci�cation without regard to any particular so�
lution �problem�dependent constraints�� and �� constraints that are dependent on existing
instantiated parameters for a particular solution �solution�dependent constraints�	 These
di�erent categories are explained in more detail in
���	

In the timing studies reported here� we investigated the use of problem�dependent con�
straints	 In other words� we measure the time it takes to construct boundary constraints
that are dependent on a particular problem speci�cation	 For example� a problem speci�ca�
tion in STEAM includes a �xed value for the required capacity of the desired steam condenser	
Required capacity is an input parameter to the heat�exchanger�designer and a�ects the map�
ping between parameter value and solution quality of other local parameters	 Therefore� each
time a new problem speci�cation is provided to the system� heat�exchanger designer must
recompute the boundary constraints on any parameters a�ected by the assigned value of
required capacity	

Costs associated with generating independent constraints are not considered to be part
of the normal cost of developing a solution because these constraints can be generated in a
one�shot preprocessing procedure	

Solution�dependent constraints are not used in STEAM although� in some domains� it is
possible to exploit these constraints	 If the agents in an application system �or some subset
of the agents� have a limited number of local alternative solutions� it may be e�ective to
develop guiding information that relates speci�cally to a single solution	 For example� say
an agent� Z� in a globally cooperative system has only two alternative local solutions� either
proposal � or proposal �	 Any global solution will therefore incorporate one of the those
two proposals	 In this situation� it might well be worthwhile to specify solution�dependent
constraints such as fif x � proposal��x � then y � ��g	 Even though deriving this constraint
might entail considerable runtime analysis� it will be applicable ��" of the time	 However�
assume instead that Z has ������� alternative solutions	 In this case� the above constraint
is only applicable in 	���" of the potential solutions and it is unlikely that the time spent in
generating the constraint will be recovered by its e�ect on focusing the composite search	 In
their work on multistage negotiation� Conry et	 al	 have developed a formalism that generates
solution�dependent constraints for a set of subplans through iterative agent interactions	
These constraints focus the system and enable it to determine that no solution exists when
no non�con
icting constraint set can be found
��	 However� solution�dependent constraint
generation and manipulation techniques are not useful in the STEAM domain because of the
size of the solution spaces at each of the agents	

Determination� An agent must decide what information to transmit	 In STEAM� agents
transmit information directly in response to con
ict situations rather than transmitting
information that is anticipated to be potentially useful	 Therefore� only constraints that
are in direct con
ict with an existing solution are transmitted	 The costs of retrieving
potentially con
icting constraints and checking each constraint to see if it con
icts with the
existing solution are reported in this measure	

��

Notice that in some domains� agents might be more proactive than reactive with respect
to when information is transmitted	 For example� an agent might broadcast some of its
strongest constraints without waiting for a con
ict to occur� thereby facilitating con
ict
avoidance rather than con
ict resolution	 No matter when transmission occurs� however�
the agent must still determine what to send	

Translation� In the general case of heterogeneous reusable�agent systems� local infor�
mation can be represented at an agent in any form that is appropriate for that agent but
some mechanism must be provided to ensure that agents are able to understand each other	
When translation is necessary� the cost can vary greatly depending on exactly what is en�
tailed	 Some agents may share a language and have no translation costs� others may translate
using simple syntactic procedures� and others may require complex semantic translation	 In
STEAM� the local representation of an agent�s information is unrestricted� but in order for
information to be shared� it must be translated into a globally speci�ed language	 All agents
use the same simple syntactic procedures for translation between local and global formats	
Translation costs� therefore� do exist but are relatively small	

Local Management � Con
ict between local and assimilated information is one factor
that potentially mitigates the bene�ts of information sharing� what happens when an agent
receives information that contradicts something it already knows� With logically heteroge�
neous agents� it must be assumed that con
ict will occur	 In the STEAM system� the costs
of managing con
icts between inconsistent local and external information are categorized as
local management	 Other local management costs include costs that accrue from the greater
volume of information that must be stored and retrieved due to assimilated information	

��� Observed Information�Sharing Costs in STEAM

In these experiments� the costs attributed to sharing information are broken down into the
categories� �� generation �for problem�dependent constraints�� �� determination� �� transla�
tion� and �� local management� as described earlier	 The observed costs for each of these
categories over the ��� problem speci�cations are summarized in Figure � �the complete set
of data is tabulated in
����	

The approximate average time spent in constraint generation per problem is �	� seconds�
constraint transmission is 	� seconds� translation is 	� seconds and local management is
�	� seconds� for an average total time for information assimilation of approximately ��	�
seconds per run �out of ���	�� seconds average runtime�	 The average total percentage
of time spent in information sharing in these trials is ��	��"	 These �gures are highly
domain�dependent and each of the di�erent areas could be more or less expensive in other
situations	 For example� if more elaborate constraints were being generated or if a more
sophisticated analysis of the local search space was performed� the constraint generation
time would be higher and consume a larger proportion of the processing time	 Likewise� if
translation were more di�cult and involved some semantic interpretation as well as strict
syntactic replacement� it would take more time	 The question that must be asked is not
whether information sharing and assimilation takes time�it does	 Rather� the questions to
ask are�

��

B

B

B

BB
B

B
B

B

BB

BB
B

B
B

BB

B
B
B

B

B

B

B

B

B
B
BB
BBB

B

B
BBB

BB
B

BB

BB
B
BBB

B

B

BBBB
B

B
B
B

B
B
B
BBB

BB

B

B

B

BBBB

B
B

B

B
B

BBBBB
B

B

B
BB

B

BBBBB

B

BBB
B

JJJ
JJ
JJJJJJ

JJJJJ
JJJJJJJJJ

JJJ
JJ
JJ
J
JJ
JJ
JJ
J
JJJ

JJJJJJ
J
J

J

J
JJJJJ

J
J
J
JJJ

J
J
J
J
J
JJJ

JJJJJ
J
J

J
J
JJJ

JJ
J
JJJJJJJ

J
JJ
J
J
J

HHHHHHHHHHH
HHHHHHHHHHHHHH

HHHHHHHHHHHHHH
H
HHH

HHHHHHHHHHHH

H

HHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHH

H

HHHHH
HHH

H

0

1

2

3

4

5

6

7

8

9

S
ec

on
ds

Trials

B Constraint Generation Time

J Transmission Determination Time

H Translation Time

Local Management Time

Figure �� Information�Sharing Costs in STEAM

�	 What information can be shared and assimilated by each agent�

�	 For each type of information that can potentially be shared� will sharing it decrease
the processing time of the system�

�	 For each type of information that can potentially be shared� will sharing it improve
solution quality in the system�

It is possible to empirically answer the second and third questions for a particular system
and� therefore� to tune the system to appropriate tradeo�s in quality and processing time
based on information sharing� either manually or automatically using machine learning tech�
niques	 The �rst question cannot be answered in any general way when agent reusability is
an issue	

In the assimilation experiments described above� only three of the seven agents instanti�
ated information�assimilation capabilities	 The primary reason for this is that implementing
these capabilities is very di�cult	 For each agent� the implementation is unique and requires
a thorough understanding of the information requirements and search mechanisms of that
agent	 This suggests that it must be done by the agent implementor at the time the agent
is built	 The agent implementor cannot be responsible for determining what local informa�
tion will be relevant in a particular application system since the agent may be embedded in
di�erent systems	 However� the agent implementor must determine what local information
will be shareable	 Furthermore� the agent developer must anticipate the types of information
that may become available to the agent during problem solving and build into the agent the
capabilities required to e�ectively apply that information	

We demonstrate the di�culty inherent in implementing e�ective information assimi�
lation through an example	 Say that the pump designer receives a constraint from the

��

heat�exchanger designer that restricts a parameter called run�head of pumps proposed
by the pump agent	 This constraint is not directly applicable during the search for candidate
pumps because the value of run�head is computed after the speci�c pump is chosen� it is
an output parameter rather than an input parameter	 However� once a candidate pump
has been generated� the run�head for that pump can be computed and the constraint can
be applied as a �ltering mechanism to eliminate non�viable candidates	 If pump�designer
does apply the �ltering constraint� it will still have to iteratively generate and test candidate
pumps locally� but will eliminate infeasible ones before other agents are asked to respond
to them	 Therefore� by appropriately applying assimilated information� it can reduce the
workload of other agents	

The point here is that it is not only necessary to understand the language of received
information� it is also necessary that the agent know how to apply it	 Applying the infor�
mation appropriately can be subtle�it may have to be applied di�erently than the agent�s
own local information� for example� as a post�search �lter as described above	 This implies
that an agent must anticipate the kinds of information it may receive and have internal
procedures available to e�ectively use that information	

� Conclusions

In this article� our objective was to clarify the costs and bene�ts that are attributable
to information sharing in systems of heterogeneous reusable agents	 The experiments in
Section � demonstrated that the ability of agents to share and assimilate information about
the composite solution space positively a�ects both solution quality and runtime	 When
external information is assimilated by an agent� that agent is able to focus its search e�orts in
areas of its local solution space that are more likely to be contained in the composite solution
space as well	 By focusing its search in areas that are likely to be mutually acceptable� the
agent�s work is more productive and will tend to improve both solution quality and system
performance	 However� there are implementation and performance costs associated with
information sharing and� in some situations� these costs may outweigh the bene�ts	

After empirically demonstrating the bene�ts of information assimilation in multiagent
problem solving� we took a detailed look at the costs of assimilation	 We classi�ed the costs
of information sharing as involving� the generation of information to share� the translation
of information into and out of a shared language� the determination of what information to
communicate at any given time� the transmission of information�� and local management
�storage� retrieval� and use of potentially con
icting assimilated information�	 We observed
these costs within the STEAM system and found them to total approximately ��	��" of
the overall runtime	 Although this is not a trivial �gure� in this domain� the time spent
in sharing information is more than balanced by the productivity enhancement that comes
from focusing on mutually acceptable areas of the composite solution space	 With these costs

�Although we recognize that transmission of information will add to the cost of information sharing
 it
was not included as one of the categories in our experiments
 Because of the physical environment in which
our experiments were run
 this cost was trivial

��

included� we recorded mean improvements in solution quality of �	��" and in runtime�per�
solution of ��	��" and can conclude with a high probability that these results are signi�cant	

Our experience with information assimilation suggests some con
icting perspectives on
achieving information sharing in systems of heterogeneous reusable agents	 On the one hand�
the experiments showed that information sharing and assimilation can be highly e�ective in
improving system performance� both in terms of solution quality and runtime	 On the other
hand� we found sharing and assimilation di�cult to actualize because they require in�depth
understanding of the domain characteristics of individual agents	 The application�system
developer that is responsible for integrating a set of reusable agents into a system cannot
be expected to have a deep enough understanding of individual agent domains to install the
necessary mechanisms into the agents post�implementation	

Sharing meta�information requires that each agent know� �� what information it can
share� �� what information it can assimilate� and �� how information that is assimilated from
external sources is to be applied	 When the mechanisms required for information sharing
are installed at agent�implementation time� the implementor will not know whether shared
information will ever be used� whether anticipated information will ever arrive� or whether
functional capabilities for applying certain types of information will ever be applied	 If the
agent is implemented with highly sophisticated information�sharing capabilities� it must be
expected that in any given application system� these capabilities may be beyond what is
required or even usable for the domain	 The price of generality goes beyond implementation
costs for the agent� since there may be system�wide runtime repercussions based on the
transmission of unusable information� or on applying assimilated information that degrades
system performance rather than enhancing it	

Can reusable�agent search systems be built without giving agents the ability to exchange
meta�information� The answer depends on what is required	 Multiagent search without
meta�information reduces to blind search or possibly search guided by local heuristics in the
composite search space	 In small� simple application systems� this may be enough	 However�
reusable agents that cannot coherently focus their search are unlikely to be e�ective in
complex application systems	 And because agent reusability implies that the agent developer
does not know the nature of potential application systems� it also implies that agents must
be prepared for at least an a system of �average� complexity	 Future research in reusable�
agent systems should examine questions of balancing the information�sharing capabilities of
agents with the bene�ts of sharing various types of information	 It may be that some general
guidelines will emerge that can be applied by agent implementors to decide what capabilities
are likely to be most bene�cial and cost�e�ective in an agent	

In conclusion� we have shown that information sharing and assimilation can enhance
system performance in the STEAM system	 Although there is no basis on which to generalize
any speci�c �gures outside of STEAM� the STEAM domain is typical of a class of small�scale
globally cooperative design domains and our results indicate that information sharing and
assimilation can improve performance in this class of systems	 Furthermore� the categories of
information�sharing costs hold across all domains	 Both the empirical evidence demonstrated
here and intuitive arguments for the bene�ts of focused search suggest that information
sharing and assimilation will be e�ective in more complex domains	

��

Although sharing meta�information is potentially bene�cial� it is not particularly easy
to achieve	 Most of the work must be done at agent�implementation time when nothing is
known about the application system�s� into which the agent will be embedded	 The costs
of making agents that are highly pro�cient in sharing and using assimilated information
may outweigh the bene�ts that accrue from those capabilities	 Future work may clarify the
boundaries of bene�t versus hindrance based on types of information and the capabilities
required by agents to use those various types	 However� it is clear that information sharing
and assimilation should be considered a potential source of performance enhancement when
designing distributed�search systems comprising heterogeneous reusable agents	

Acknowledgements

We thank Nagendra Prasad and Daniel Corkill for their assistance and suggestions	

References

�� M	R	 Adler� A	B	 Davis� R	 Weihmayer� and R	W	 Worrest	 Con
ict�resolution strate�
gies for non�hierarchical distributed agents	 In L	 Gasser and M	N	 Huhns� editors�
Distributed Arti
cial Intelligence� Volume �� Research Notes in Arti�cial Intelligence�
pages ���#���	 Pitman� London� ����	

�� A	 Barr and E	A	 Feigenbaum	 The Handbook of Arti
cial Intelligence� Volume �	
William Kaufmann� Inc	� ����	

�� S	E	 Conry� K	 Kuwabara� V	R	 Lesser� and R	A	 Meyer	 Multistage negotiation for dis�
tributed satisfaction	 IEEE Transactions on Systems� Man and Cybernetics� ����������#
����� November December ����	

�� P	S	 de Souza and S	 Talukdar	 Asynchronous organizations for multi�algorithm prob�
lems	 In Proceedings of the ACM Symposium on Applied Computing� Indianapolis�
Indiana� February ����	

�� E	 Ephrati and J	S	 Rosenschein	 The Clarke Tax as a consensus mechanism among
automated agents	 In Proceedings of the Ninth National Conference on Arti
cial Intel�
ligence� pages ���#���� Anaheim� California� July ����	

�� L	D	 Erman� F	 Hayes�Roth� V	R	 Lesser� and D	R	 Reddy	 The Hearsay�II speech�
understanding system� Integrating knowledge to resolve uncertainty	 Computing Sur�
veys� ���������#���� June ����	

�� T	 Finin� R	 Fritzson� D	 McKay� and R	 McEntire	 KQML� A language and protocol
for knowledge and information exchange	 Technical report� Universitiy of Maryland�
Baltimore� MD� ����	

��

�� M	S	 Fox	 Constraint�Directed Search� A Case Study of Job Shop Scheduling	 Research
Notes in Arti�cial Intelligence	 Pitman Publishing� London� ����	

�� M	S	 Fox� B	 Allen� and G	 Strohm	 Job�shop scheduling� an investigation in constraint�
directed reasoning	 In Proceedings of the National Conference on Arti
cial Intelligence�
pages ���#���� Pittsburgh� Pennsylvania� August ����	

��� P	J	 Gmytrasiewicz and E	H	 Durfee	 Toward a theory of honesty and trust among
communicating autonomous agents	 Group Decision and Negotiation� ��������#����
����	

��� T	 Khedro and M	R	 Genesereth	 Progressive negotiation for resolving con
icts among
distributed heterogeneous cooperating agents	 In Proceedings of the Twelfth National
Conference on Arti
cial Intelligence� Seattle� Washington� July August ����	

��� M	 Klein	 Supporting con
ict resolution in cooperative design systems	 IEEE Transac�
tions on Systems� Man� and Cybernetics� ����������#����� November December ����	

��� S	E	 Lander	 Distributed Search and Con�ict Management Among Reusable Heteroge�
neous Agents	 PhD thesis� University of Massachusetts� Amherst� Massachusetts� May
����	

��� S	E	 Lander and V	R	 Lesser	 Customizing distributed search among agents with hetero�
geneous knowledge	 In Proceedings of the First International Conference on Information
and Knowledge Management� pages ���#���� Baltimore� Maryland� November ����	

��� S	E	 Lander and V	R	 Lesser	 Understanding the role of negotiation in distributed search
among heterogeneous agents	 In Proceedings of the International Joint Conference on
Arti
cial Intelligence� pages ���#���� Chambery� France� August September ����	

��� V	R	 Lesser	 An overview of DAI� Viewing distributed AI as distributed search	 Journal
of the Japanese Society for Arti
cial Intelligence� ��������#���� July ����	

��� T	 Moehlman� V	 Lesser� and B	 Buteau	 Decentralized negotiation� An approach to
the distributed planning problem	 Group Decision and Negotiation� ��������#���� ����	

��� R	 Neches� R	 Fikes� T	 Finin� T	 Gruber� R	 Patil� T	 Senator� and W	R	 Swartout	
Enabling technology for knowledge sharing	 AI Magazine� ��������#��� Fall ����	

��� Y	 Nishibe� K	 Kuwabara� and T	 Ishida	 E�ects of heuristics in distributed constraint
satisfaction� Towards satis�cing algorithms	 In Workshop on Distributed Arti
cial In�
telligence� pages ���#���� Michigan� February ����	

��� M	V	N	 Prasad and V	R	 Lesser	 Learning decision�analytic control in a heterogeneous
multi�agent system	 Technical report� University of Massachusetts� Amherst� MA� ����	
�In preparation	�	

��

��� A	 Sathi and M	S	 Fox	 Constraint�directed negotiation of resource reallocations	 In
Les Gasser and Michael Huhns� editors� Distributed Arti
cial Intelligence� Volume ��
chapter �� pages ���#���	 Pitman Publishing� London� ����	

��� S	 Sen and E	H	 Durfee	 A formal study of distributed meeting scheduling� Preliminary
results	 In Proceedings of the Conference on Organizational Computing Systems� pages
��#��� Atlanta� Georgia� November ����	

��� H	A	 Simon	 The Sciences of the Arti
cial	 The M	I	T	 Press� ����	

��� R	G	 Smith and R	 Davis	 Frameworks for cooperation in distributed problem solving	
In Alan H	 Bond and Les Gasser� editors� Readings in Distributed Arti
cial Intelligence	
Morgan Kaufmann� ����	

��� K	 Sycara	 Resolving Adversarial Con�icts� An Approach Integrating Case�Based and
Analytic Methods	 PhD thesis� Georgia Institute of Technology� Atlanta� Georgia� June
����	 Also published as Technical Report GIT�ICS��� ��	

��� K	 Sycara	 Resolving goal con
icts via negotiation	 In Proceedings of the Seventh
National Conference on Arti
cial Intelligence� pages ���#���� Saint Paul� Minnesota�
August ����	

��� G	 Zlotkin and J	S	 Rosenschein	 Cooperation and con
ict resolution via negotiation
among autonomous agents in noncooperative domains	 IEEE Transactions on Systems�
Man and Cybernetics� ����������#����� November December ����	

��� G	 Zlotkin and J	S	 Rosenschein	 A domain theory for task oriented negotiation	 In
Proceedings of the Thirteenth International Joint Conference on Arti
cial Intelligence�
pages ���#���� Chambery� France� August ����	

��

