Presenting AI to Non PhD-Bound Students

Frank Klassner
Computer Science Department
University of Massachusetts
Ambherst, MA 01003

klassner@cs.umass.edu

Introduction

Graduate students are often introduced to Al as a
collection of research problems from which they will
select a dissertation topic and, ultimately, a research
career. After they earn their PhD’s and become fac-
ulty at computer science departments, this view of Al
serves them well in attracting their own research assis-
tants. AI curricula for PhD students, therefore, tend
to be based on this view of Al as a field of future re-
search promise. However, I argue that this view is
not an appropriate basis for an Al curriculum for non
PhD-bound students. Considering that this category
represents the large majority of computer science stu-
dents, it is important that undergraduate AI curric-
ula take these students’ needs into account. Having
taught three undergraduate computer science courses
as a research-oriented AI PhD student, I want to ad-
dress two issues that AI faculty must face in estab-
lishing curricula for non PhD-bound computer science
students. Using a curriculum sketch this paper dis-
cusses (1) how to present Al as a field with practical
value and concrete progress as well as research promise
and (2) how to provide and encourage links between AI
and computer science curricula.

Curriculum Philosophy

Too often, the term “AI” has been applied to a research
problem’s murkiness or perceived difficulty, leading to
the common situation where people consider a prob-
lem as “AI” only until a well-understood solution is
developed [Shank 1991]. Introductory textbooks and
courses designed with the “future research promise”
view perpetuate this attitude by presenting Al as a
set of fields independently engaged in making comput-
ers do various tasks that humans could do well, often
for no other purpose than for showing that computers
could do them.

The curriculum in this paper champions a practical
view of Al as a field with the dual goals of making the
human interface with computers as anthropocentric as
necessary and the computer interface with the environ-
ment as complete as necessary. Many advanced under-
graduate Al topics such as natural language process-

ing, machine vision, speech recognition, and robot con-
trol can easily be motivated with this definition. More
importantly, the view makes it possible to present tra-
ditional AT topics (i.e. search, planning, logic, knowl-
edge representation, and probabilistic reasoning) along
with advanced topics from other fields such as signal
processing and cognitive modeling as tools that achieve
AT’s goals to different degrees. The definition deliber-
ately leaves the definitions of “anthropocentricity” and
“completeness” to the performance requirements of the
AT application at hand. By recognizing that different
applications can require interfaces of varying capabil-
ities, this view encourages students to see various Al
techniques as components that can be used depending
on how powerful each interface has to be. Conversely,
it discourages students from dismissing Al techniques
simply because they are not universally applicable.

In solving the presentation and motivation prob-
lems, the curriculum’s AI definition does not restrict
the field. It remains respectful of AI’s strong research
component when we consider research to represent at-
tempts at achieving the dual goals when “necessary”
is extended to “possible.” The definition does not re-
duce the field to traditional interface design, since its
conception of “interface” goes far beyond the issues
of program display layouts. The definition also avoids
any commitment to human intelligence by acknowledg-
ing that we often want computers to interact with the
environment or to solve problems differently than hu-
mans can. For example, we may want a computer to
monitor the environment with infrared sensors or to
verify an assertion with resolution theorem proving.

As noted earlier, not all college students are bound
for graduate work; however, Al is often portrayed to
undergraduates as a field whose only available jobs re-
quire doctorates. If we want to encourage students to
enroll in AT courses and apply Al techniques to their
future work, the field of Al must be portrayed as a
source of solutions to practical problems arising in the
interaction between humans and computers. Although
industry might not currently be sanguine about Al re-
search per se, it does look favorably on many tradi-
tional skills used as tools in achieving the performance-



oriented Al interface goals: statistical reasoning, logic
analysis, signal processing, etc. Students who employ
AT techniques or use traditional skills in nontraditional
ways to solve practical problems will make Al-flavored
solutions more familiar and attractive to industry.

In an AI curriculum emphasizing practicality, pro-
gramming must be an important component. Intro-
ductory courses without programming can leave stu-
dents (especially those with little experience in pro-
gramming nontrivial projects) with a picture of Al as
“magic programming.” Confrontations with combina-
torially explosive search problems in programming as-
signments make theoretical results in search complex-
ity analysis more immediate to undergraduates who
are often still developing their own theoretical reason-
ing capabilities. While many undergraduates may not
be interested initially in pursuing AI to the graduate
level, programming assignments that bring some of the
experimental fun of AI down from the graduate level
can provide interesting enticements.

Curriculum Content

I propose an Al curriculum with two courses and a
LISP programming laboratory. The first course is
an introductory course offered in conjunction with
the programming laboratory to second-semester ju-
niors. The course would include a series of assign-
ments following a progression from evaluating the be-
havior of complete software packages such as Macsyma
to modifying programs for performance improvements
to building a final project from scratch. The initial
behavior-evaluation assignments and progression in as-
signment complexity are important since the program-
ming laboratory will require some lead time to orient
those students who have had no LISP experience. The
second course is an advanced-topics course offered to
first-semester seniors. It would rotate among topics
such as machine learning, natural language processing,
and machine perception.

The debate over using LISP versus some other lan-
guage for assignments is too involved to present here
completely. The curriculum outlined in this paper fa-
vors LISP because (1) its use would provide extended
experience in the functional programming paradigm,
(2) its support for list and type-inspecific symbols elim-
inates the drudgery of re-implementing the support in
another language, and (3) its support for rapid proto-
typing makes experimental program modification as-
signments more feasible.

After an introduction to AI problems and evalua-
tion, the first course would present the basic Al topics
of search, planning, and knowledge representation dur-
ing the first half of the semester and then repeat this
material in the second half with emphasis on the use
of probability, other evidential reasoning frameworks,
and logic techniques to control search and planning.
Continuing the curriculum’s emphasis on applied Al
tools, the advanced course’s first month would be a

tutorial in the advanced-topic’s applied skills (e.g. ap-
plied signal processing for machine perception, linear
algebra for neural nets). In both courses, the curricu-
lum’s AT definition gives the instructor the means to
present historically significant programs as examples of
techniques for solving Al-related problems under var-
ious limiting circumstances (e.g. planning where sub-
goals don’t clobber other subgoals, or image processing
where scenes are high-contrast), rather than as failed
attempts at creating intelligence.

The advanced-topics course is intended to give stu-
dents the opportunity to apply basic Al techniques ex-
tensively in a real problem domain and to glimpse the
domain’s research boundaries that might entice them
into graduate school. While the introductory course
would use problem instances from various Al subdis-
ciplines such as natural language processing or game-
playing to motivate homework assignments, the ad-
vanced course’s dedication to one or two topics should
ensure that students leave with a feeling that AI’s sub-
disciplines are substantial. The topic rotation not only
allows instructors to periodically refresh their acquain-
tance with AT fields outside their immediate interests,
but also prevents the curriculum from degenerating
into a course sequence dealing exclusively with the in-
structor’s research forte.

Links with the Local Academic
Environment

At the undergraduate level it is important to ground
AT within the computer science discipline. Computers
and computation are, after all, central to the field’s
attempts at implementing entities that interact “intel-
ligently” with humans and the environment. An un-
dergraduate Al curriculum should therefore unhesitat-
ingly point out and explain similarities between tech-
niques and tools used in AI and various computer sci-
ence fields. Such a grounding combines with program-
ming assignments to prevent students from developing
an “Al as magic programming” view. The curriculum
sketched here offers several possibilities for substan-
tively linking AI with a computer science department’s
existing course of studies.

In many programming languages (PL) courses, the
functional programming paradigm is often presented
via a two- or three-week LISP tutorial. The LISP pro-
gramming laboratory provides the opportunity for a
more comprehensive presentation of the paradigm. If
the department schedule does not permit an extra pro-
gramming laboratory, the Al curriculum could rely on
an extended treatment of LISP in the local PL course.
In either case, the AI curriculum and the PL course
can reinforce each other.

Computer science undergraduate students often re-
ceive their only exposure to statistical interpreta-
tion and probability theory in a third-year mathe-
matics course that focuses on these topics’ formal
bases. By presenting evidential-reasoning methods



from Bayesian theory and Dempster-Shafer theory as
tools for controlling search, the introductory Al course
can provide students with an example of how the the-
ory behind probability and statistics can be used prac-
tically. If the department schedule requires the proba-
bility and statistics course in the fourth year, the de-
partment can still profit from the third-year introduc-
tory Al course as an applied introduction to the topics’
later formal treatment.

The majority of computer science curricula offer a
course in data structures and/or complexity analysis in
the second or third year. The introductory Al course,
through its emphasis on search, can serve as an excel-
lent environment for reinforcing students’ understand-
ing of graph-traversal algorithms. Lectures on the re-
quirements of maintaining various knowledge represen-
tations can give students a more intuitive grasp of com-
plexity analysis techniques.

Finally, and perhaps most importantly, the AI cur-
riculum can serve as a bridge between central computer
science topics and outside fields. During questions af-
ter his “Paper Tiger in a Cage” invited talk at the 1993
AAAT conference, Edward Feigenbaum lamented the
restricted range of computer applications traditionally
presented to undergraduate computer science students.
Because the advanced-topics course will present prac-
tical knowledge from fields such as biology, electrical
engineering, and psychology, it can broaden students’
capacity for applying their skills in “nontraditional”
fields. In 1991 the ACM/IEEE-CS Joint Curriculum
Task Force [Turner 1991] recommended that under-
graduate computer science programs provide approxi-
mately 11 lecture hours on social, ethical, and profes-
sional issues. The advanced-topics course can provide
an excellent forum for the AI instructor and possibly
a guest lecturer from the local philosophy department
to address these issues.

Conclusion

Faced with the less research-oriented futures of typical
undergraduate students, Al faculty must present their
field as being practical and progressive in addition to
being full of research promise. This problem takes on
special significance for AIl’s future when one considers
that while most undergraduate students probably will
not extend AI’s research in PhD dissertations, they all
have the potential to extend AI’s recognition in indus-
try.

The curriculum sketched in this paper tries to solve
the practicality problem by (1) presenting existing
AT techniques as tools for achieving various levels of
user/computer and computer/environment interaction
and (2) relating Al to other computer science topics.
At the same time, the curriculum’s advanced-topics
course remains respectful of AI’s strong research com-
ponent by introducing students on a rotating basis to
selected subfields and their open issues.

Acknowledgments
I am grateful to Scott D. Anderson and Bruce A.

Draper for discussions that clarified my philosophy for
teaching Al

References

[Shank 1991] Shank, R. C., “Where’s the AI?” AT
Magazine, vol. 12, no. 4, pp. 38—-49, Winter 1991.

[Turner 1991] Turner, A J., “Computing Curricula
1991,” Communications of the ACM, vol. 34, no.
6, pp. 69-84, June 1991.



