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Abstract

Design-to-time is an approach to real-time scheduling
in situations where multiple methods exist for many
tasks that the system needs to solve. Often these meth-
ods will have relationships with one other, such as
the execution of one method enabling the execution of
another, or the use of a rough approximation by one
method affecting the performance of a method that
uses its result. Most previous work in the scheduling
of real-time AI tasks has ignored these relationships.
This paper presents an optimal design-to-time sched-
uler for particular kinds of relationships that occur in an
actual AI application, and examines the performance of
that scheduler in a simulation environment that models
the tasks of that application.

Introduction
One of the major difficulties in the real-time scheduling of
AI tasks is their lack of predictable durations. This difficulty
occurs in non-AI systems, but it is especially prominent in
AI problem-solving because of the inherent nondeterminism
of most AI problem-solving techniques due to their exten-
sive use of search. For this reason, most AI systems use
some form of approximation to reduce the nondeterminism
and make system performance more predictable.

At least two broadly different kinds of approximation
algorithms have been examined. They are:

� Iterative refinement—where an imprecise answer is gen-
erated quickly and refined through some number of iter-
ations. There are several variations including milestone
methods where a procedure explicitly generates interme-
diate results as often as is deemed useful, and sieve func-
tions where intermediate results are refined by running
them through a series of functions (known as sieves) that
improve the results [Liu et al., 1991].
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and ONR contract N00014-92-J-1450. The content of the infor-
mation does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

� Multiple methods—where a number of different algo-
rithms are available for a task, each of which is capable
of generating a solution. These algorithms emphasize
different characteristics of the problem, which might be
applicable in different situations. These algorithms also
make tradeoffs of solution quality versus time.

The scheduling problem for approximate algorithms is
to decide how to allocate processing time among ap-
proximations for different tasks so as to optimize the
total performance of the system. Several approaches
to this scheduling problem have been described in the
literature [Dean and Boddy, 1988; Liu et al., 1991;
Russell and Zilberstein, 1991]. Nearly all of these ap-
proaches assume that tasks are either totally independent
or have only hard precedence constraints between them.
However, often AI applications do not consist of indepen-
dent tasks, but rather of a series of interrelated subproblems
whose consistent solution is required for an acceptable an-
swer. The importance of taking these relationships into
account in scheduling decisions has been observed in our
work in sensor interpretation [Garvey and Lesser, 1993;
Lesser and Corkill, 1983]. One important reason why
other work has not focused on relationships is undoubt-
edly the difficulty of scheduling related tasks efficiently.
While we don’t offer a proof of it here due to space
limitations, it is evident that the scheduling problems we
are investigating fall into the class of NP-Hard prob-
lems, as others have shown for similar problems not
involving task interrelationships [Graham et al., 1979;
Liu et al., 1991]. As we will discuss below, we have de-
veloped a scheduling algorithm for a specific class of ap-
proximation algorithms and task structures that in the worst
case has exponential performance, but, in practice, is able
to schedule tasks effectively.

Our new scheduling algorithm that exploits task interrela-
tionships is appropriate for what we have called the design-
to-time approach to real-time problem-solving [Decker et
al., 1990; Garvey and Lesser, 1993]. Design-to-time (a
generalization of what we have previously called approx-
imate processing [Lesser et al., 1988]) is an approach to
solving problems in domains where multiple methods are
available for many tasks and satisficing solutions are ac-
ceptable. These methods make tradeoffs in solution quality



versus execution time, and may only be applicable in par-
ticular environmental situations.

The methodology is known as design-to-time because
it advocates the use of all available time to generate the
best solutions possible. It is a problem-solving method of
the type described by D’Ambrosio [D’Ambrosio, 1989] as
those which “given a time bound, dynamically construct and
execute a problem solving procedure which will (probably)
produce a reasonable answer within (approximately) the
time available.”

Design-to-time can only be successful if the duration and
quality associated with methods is fairly predictable. The
predictability issue was investigated in detail in a previous
paper [Garvey and Lesser, 1993] with the result that the
predictability necessary for execution times is based on a
complex set of factors that include how busy the agent is
and how difficult it is for the agent to determine when a
method is not performing as expected. An agent can tolerate
uncertainty in its predictions if

� monitoring can be done quickly and accurately, so that
when a task will not meet its deadline enough time re-
mains to execute a faster method, or

� intermediate results can be shared among methods, so
that when it is necessary to switch to a faster method the
intermediate results generated by the previous method
can be used, or

� there exists a fall back method that quickly generates an
minimally acceptable solution.

The next section presents a model of task structures that
supports satisficing real-time tasks. The following section
describes a particular class of task structure, then presents
an algorithm for scheduling that class and gives an example
of that algorithm scheduling a set of task groups. That
is followed by a section that examines the performance of
that algorithm in a simulation environment. Finally, we
summarize our results and discuss future directions.

Task Structures
This section defines a model of task structures that has
the complexity necessary to describe the unpredictability
of tasks and the interactions among tasks�. In this model a
problem consists of a set of independent task groups. Each
task group contains a structured set of dependent tasks. Task
groups T occur in the environment at some frequency, and
induce tasks T to be executed by the agent under study.
Each task group has a deadline D�T �.

In this model the value of performing a task is known as
the quality of the task. The term quality summarizes several
possible properties of actions or results in a real system: cer-
tainty, precision, and completeness of a result, for example
[Decker et al., 1990]. Task group quality (Q�T �) is based
on the subtask relationship. In the experiments described in
this paper tasks accumulate quality using minimum or max-
imum functions, i.e., a task’s quality at time t is either the

�A more detailed mathematical description of this model can
be found in [Decker et al., 1992].

minimum or maximum of the qualities of each of its subtasks
at time t. This quality function is constructed recursively;
each task group consists of tasks, each of which consists
of subtasks, etc., until individual executable tasks (known
as executable methods) are reached. Executable methods
have a base level quality and duration, which in this work
are generated randomly for the experimental evaluation, but
are correlated with one another (i.e., higher quality methods
tend to take longer than lower quality methods).

Besides task/subtask relationships, tasks can have other
relationships to tasks in their task group. Many such rela-
tionships are possible including:

� enables constraints — Task A must be executed before
Task B. This is usually a hard constraint.

� facilitates relationships [Decker and Lesser, 1993] — If
Task A is executed before Task B, then Task B will have
increased quality and/or decreased duration. This could
result, for example, from Task A performing part of the
work that would have been done by Task B.

� hinders relationships — If Task A is executed before
Task B, then Task B will have decreased quality and/or
increased duration. This could result, for example, from
Task A using an approximation that reduces the precision
with which Task B can be performed.

These relationships can affect the base level quality and
duration of affected methods. In this work we have exam-
ined task structures that have acyclic enables and hinders
constraints.

For each task in a task structure there may be multiple sets
of subtasks that can be combined to solve the task, although
a particular scheduling algorithm may not enumerate all
such combinations. Each of these sets is known as a method
for solving the task. At least some of these methods may
involve approximations and thus be satisficing.

The scheduling problem for sets of task groups is to find
an ordered set of executable methods that

� generate non-zero quality for each task group, T,

� maximize the total quality,Q�T �, of all task groups added
together (possibly weighted by the importance of the task
group, although that is not examined in this paper),

� do not execute any executable methods after the deadline
of their task group, D�T �.

Figure 1 is an example of a simple task group. In this
task group Composed Task is solved by solving each of
Task A, Task B and Task C in order. (In order because of
the enables constraints.) Each of these tasks has multiple
solution methods available for solving it, where increasing
method number means longer, more complete method. The
thick gray lines represent hindering constraints from Method
A1 to each of Task B and Task C. This means that if Method
A1 (presumably a fast, imprecise method) is used to solve
Task A then Tasks B and C will take longer to complete
and/or produce lower quality results.
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Figure 1: An example task group. The dark lines indicate
subtask relationships. The thin gray lines represent enables
constraints. The thick gray lines represent hindering con-
straints. The standard notation for minimum as and and
maximum as or are used.

A Design-to-time Scheduler
This section describes an algorithm for scheduling the exe-
cution of executable methods in environments where:

� The task/subtask relationship forms a tree with a single
root for each task group. This means that each task and
method has exactly one supertask.

� Tasks generate quality using one of minimum (AND) or
maximum (OR).

� Enables relationships may exist among the subtasks of
tasks that accumulate quality using minimum. The en-
ables relationships are mutually consistent (i.e., there are
no cycles). This corresponds to the situation where there
is a body of work that must be completed to satisfy a task
and this work must be done in a particular order.

� Hinders relationships may exist in situations where en-
ables may exist and an enabling subtask has a maximum
quality accumulation function. In this situation there may
be a hinders relationship from the lowest quality method
for solving the subtask to the tasks that the subtask en-
ables. This corresponds to the situation where using a
crude approximation for a task can have negative effects
on the behavior of tasks that use the result of the approx-
imated task.

These environmental characteristics closely model charac-
teristics seen in a sensor interpretation application. In par-
ticular, the enables relationships appear as requirements that
low level data be processed before high level interpretations
of that data are made, and the hinders relationships appear
in the situation where fast, imprecise approximations of low
level data processing can both increase the duration and de-
crease the precision of high level results [Garvey and Lesser,
1993; Lesser and Corkill, 1983].

The Algorithm
Briefly, this algorithm recursively finds all methods for exe-
cuting each task in the task structure, pruning those methods
that are superseded by other methods that generate greater
or equal quality in equal or less time. In calculating the
expected quality of a method it takes enables and hinders
constraints into account. When it has found all unpruned
methods for every task group, it orders the task groups by
deadline and finds the combination of methods for the task

groups that generates the highest total quality while meet-
ing all deadlines. It then schedules the execution of each
individual executable method using a simple algorithm that
ensures that no enables constraints are violated and avoids
hinders constraints if possible. If no schedule can be found
that generates quality for all task groups, the scheduler re-
turns a schedule that generates some quality for as many
task groups as possible.

This algorithm works its way up from the leaves of the
tree. In all examples in this paper, those leaves are ex-
ecutable methods, however, there is no reason why they
could not be higher level tasks (with an estimated duration
and quality) whose detailed execution is scheduled at a later
time.

The optimality of this algorithm follows from the fact
that it is effectively generating all possible alternatives, then
choosing the ones that generate the maximum quality pos-
sible without missing any deadlines. As the alternatives
for each task are generated, ones that could never be cho-
sen because other alternatives exist that are always better
are pruned. This pruning is effective only because we can
make this determination locally, because of the constraints
on where relationships can occur.

In the worst case this algorithm takes time exponential
in the number of tasks, but, in practice, pruning and a clus-
tering effect (to be described) usually make it much more
efficient. The pruning reduces the number of alternatives
that need to be considered for each task. In fact, pruning
can reduce the number of alternatives for a task to no more
than the number of distinct quality values possible. In the
case where quality is a real number, this is not particularly
helpful. However, if quality values are symbols from a
small set of possible values or are somehow otherwise lim-
ited, this can significantly reduce the number of alternatives
considered. As illustrated by the example in the next sec-
tion, our experiments achieved a clustering effect by using
small integer values for quality and combining them using
minimum and maximum, resulting in a small set of possible
quality values.

Method Duration Quality
Method A1 5 5
Method A2 7 7
Method A3 10 9
Method B1 9 8
Method B2 12 12
Method C1 4 4
Method C2 7 6
Method D1 6 5
Method D2 5 5

Table 1: Duration and quality for the executable methods in
the example problem.



Task A

Task Group 1

Task B

Method A2 Method A3 Method B1 Method B2Method A1

Task C

Task Group 2

Task D

Method C2 Method D1 Method D2Method C1

D(TG2) = 35

D(TG1) = 25

Figure 2: An example problem consisting of two task
groups. The dark lines indicate subtask relationships. The
thin gray lines represent enables constraints. The thick gray
line represents a hinders constraint.

An Example

To describe the details of the algorithm more specifically
we now show how it would schedule the two task groups
shown in Figure 2 with associated durations and qualities
shown in Table 1. Task group 1 (TG1) has both a hinders
and an enables relationship, while TG2 has only an en-
ables relationship. TG1 and TG2 have deadlines of 25 and
35 respectively. The hinders relationship has the effect of
reducing quality by 50% and increasing duration by 25%.

First the algorithm recursively finds all alternatives for
each element of the task structure. Each executable method
has exactly one alternative, the method itself. Task’s A,
B, and C each accumulate quality using maximum, so they
only need to execute one of their subtasks, giving them 3,
2, and 2 alternatives respectively�. Task D accumulates
quality using minimum, so it has only one alternative, that
which executes both of its subtasks. No pruning is possible
in any of these situations. Finally, the algorithm finds the
alternatives for each task group by combining alternatives
from the associated subtasks. The possible alternatives for
TG1 shown in Table 2.

In this case alternatives 1,2 and 4 can be pruned (as indi-
cated by the lines through them) because other alternatives
exist that can generate equal or higher quality in equal or
shorter time. Note that the effects of the hinders relation-
ship from Method A1 to Task B are shown in the reduced
qualities and increased durations of Methods B1 and B2 in
alternatives 1 and 2. Similarly the possible alternatives for
TG2 (neither of which can be pruned) are shown in Table 3.

Finally, the alternatives for the entire set of task groups
are shown in Table 4.

�There is no need to consideralternatives that involve executing
more than one of these subtasks, because no possible gain could
result. However, in cases where such gain could result, for example
when quality is accumulated in an additive fashion, all possible
subgroupings must be considered.

Alternatives 4, 5, and 6 can be pruned because TG2 does
not meet its deadline of time 35. Alternative 3 can be pruned
because it is redundant with Alternative 2. The scheduler
chooses Alternative 2, which generates the maximum pos-
sible quality while meeting all deadlines. It then finds an
ordering for the chosen alternative that meets all enables
constraints, for example it could choose the schedule: A2,
B1, C2, D1, D2.
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Figure 3: Maximum number of possible quality values ver-
sus the average runtime of the scheduler.

Experimental Results
In order to be practically useful, a design-to-time scheduling
algorithm needs to be subject to the same kind of controls
that it expects from domain level tasks. In particular it
needs to be able to tradeoff the quality of its schedules as a
function of the time devoted to scheduling.

This section describes two measures of the performance
of our scheduling algorithm as a function of the task struc-
tures it is scheduling. The first experiment measures the ef-
fect of the number of distinct possible quality values on the
performance of the scheduler. The second experiment mea-
sures the effect of the size of the task structure (as reflected
in the number of executable methods) on the performance
of the scheduler.

Our experiments were conducted on randomly generated
sets of task groups with enables and hinders relationships
of the form described above. In the first experiment the
number of task groups varied from 1 to 4 (to vary the size of
the problems significantly); in the second experiment there
was always 1 task group (to isolate the effect of the number
of methods on scheduler performance). We controlled the
size of the trees generated by having a maximum branch-
ing factor and a maximum depth—in these experiments the



ID Set of methods Expected quality Expected duration
1 fMethod A1, Method B1g min��� ��� � �� � � � � 	�
� � � � 	��
�
2 fMethod A1, Method B2g min��� ��� � 	
� � � � � 	�
� � 	
 � 
�
3 fMethod A2, Method B1g min�
� �� � 
 
 � � � 	�
4 fMethod A2, Method B2g min�
� 	
� � 
 
 � 	
 � 	�
5 fMethod A3, Method B1g min��� �� � � 	� � � � 	�
6 fMethod A3, Method B2g min��� 	
� � � 	� � 	
 � 



Table 2: Alternatives for Task Group 1.

ID Set of methods Expected quality Expected duration
1 fC1, D1, D2g min��� �� �� � � � � � � � � 	�
2 fC2, D1, D2g min��� �� �� � � 
 � � � � � 	�

Table 3: Alternatives for Task Group 2.
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Figure 4: Number of executable methods versus the average
runtime of the scheduler. The middle line is the median
runtime. The upper and lower line are the 95th and 5th
quartiles respectively.

maximums were set to 5. We also controlled the likelihood
that enables and hinders relationships would appear in sit-
uations where they were possible—these values were 50%
and 100% respectively.

Figure 3 shows the effect of the maximum number of
distinct quality values on the performance of the sched-
uler. This experiment was conducted by generating a task
structure, then randomly assigning quality values to the ex-
ecutable methods by choosing them uniformly from the set
of possible quality values. As this graph shows the runtime
of the scheduler appears to increase in a logarithmic fashion
as the number of possible quality values increases.

Figure 4 shows the effect of the number of methods in
the task structure on the performance of the scheduler. This
experiment was conducted by generating random task struc-
tures, scheduling them using the design-to-time scheduling
algorithm, recording a number of statistics including both
the runtime of the scheduler and the number of executable
methods in the task structure. We then collected together
all of the data from each of several thousand runs and found
the average runtime for each distinct number of executable
methods. This suggests that the performance of the sched-
uler is polynomial in the number of executable methods,
and that performance becomes significantly less predictable
as the number of methods increases.

The results of these experiments suggest that a design-
to-time scheduler could control its own performance by
dynamically modifying the task structures it is scheduling.
The result relating to the number of possible quality val-
ues suggests that a scheduler could reduce its runtime by
reducing the number of distinct quality values in the task
structure it is scheduling. It could do this by bucketizing the
quality values into a smaller set of buckets and treating all
quality values in the same bucket as identical. This approx-
imation will have the effect of reducing the precision of the
final schedule, because the scheduler will not consider fine-
grained distinctions among methods. However, because it
does not throw away any methods, the scheduler will al-
ways find a schedule in those situations where it would have



ID Set of methods Expected quality Expected finish times
1 fA2, B1, C1, D1, D2g 
 � � � 		 	�� 	�� 	� � �	
2 fA2, B1, C2, D1, D2g 
 � � � 	
 	�� 	�� 	� � ��
3 fA3, B1, C1, D1, D2g � � � � 	
 	�� 	�� 	� � ��
4 fA3, B1, C2, D1, D2g � � � � 	� 	�� 	�� 	� � �

5 fA3, B2, C1, D1, D2g � � � � 	� 

� 

� 	� � �

6 fA3, B2, C2, D1, D2g � � � � 	� 

� 

� 	� � ��

Table 4: Alternatives for set of task groups.

found a schedule originally; it just might not be as good a
schedule.

The result concerning the number of methods suggests
that if a scheduler could reduce the number of methods
it had to consider it could reduce its runtime. It could
do this by reducing the number of methods considered for
tasks that generate quality in a maximum fashion. It is
probablybest to not remove the fastest method or the highest
quality method, but methods in between can be ignored.
This approximation will have the effect of reducing the
completeness of the schedule. Not all possible schedules
will have been considered, so the best schedule may not be
found. However, if the scheduler does not throw away the
fastest methods, it will always be able to find a schedule in
those situations where it could find one originally.

Another approximation that we have thought of, but not
yet investigated carefully, is to schedule without consider-
ing hinders relationships. Preliminary investigation sug-
gests that this has the positive effect of reducing the run-
time of the scheduler, but the negative effect of having the
scheduler occasionally produce schedules that do not meet
deadlines (because the scheduler mis-estimates the duration
of executable methods). One approach to this problem is
to monitor the execution of methods. For a more detailed
discussion of monitoring see [Garvey and Lesser, 1993].

We intend to investigate these issues and build schedulers
that take their own performance into account when schedul-
ing. This should result in schedulers for design-to-time
tasks that are themselves design-to-time in character.

Conclusions and Future Work
Previously we have examined the scheduling of tasks with
multiple methods, but few task interdependencies, in both
the Distributed Vehicle Monitoring Testbed (DVMT) and
in a simulation environment [Garvey and Lesser, 1993].
Currently we are working on developing a more sophis-
ticated scheduler that efficiently schedules more complex
task structures that include additional types of relationships
between tasks such as facilitates, another relationship that
occurs in the DVMT environment. We are also looking
at scheduling for distributed agents that are cooperating to
solve complex, real-time problems. Finally, we intend to
study this scheduler in a sound understanding application
[Lesser et al., 1993].

More generally, we would like to investigate the issues
raised in the Experimental Results section by moving in

the direction of building design-to-time schedulers that can
control their own performance. These schedulers should be
able to trade off the quality of the schedules they produce
with the time it takes to produce them. This will have the
effect of creating schedulers for design-to-time tasks that
have a design-to-time character.
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