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Abstract

In this paper, we extend our previous work on model
variety analysis of a signal processing algorithm with
respect to the class of all input signals that may po-
tentially arise in a given signal understanding appli-
cation. This analysis has two related objectives. The
first objective 1s to partition the set of all possible sig-
nals i the application domain into two sets according
to whether each signal s correctly or incorrectly pro-
cessed by the signal processing algorithm under consid-
eration. The second objective of model variety analy-
sis is to characterize the nature of the distortions in
the signal processing output for the cases where the
mput stgnal is incorrectly processed. The results of
model variety analysis are useful for designing signal
understanding systems for applications where it is nec-
essary for the signal processing to be carried out in a
situation-dependent manner. Model variety analysis
and its usefulness for the design of signal understand-
g systems are illustrated in this paper through exam-
ples involving the use of STFT processing for a sound
understanding application.

1 Introduction

The analysis of signal processing algorithms has
traditionally been motivated by considerations such as
computational efficiency, finite precision effects, and
performance degradation when the signals for which
an algorithm is designed are contaminated by noise.
The need for a new type of analysis of signal process-
ing algorithms has been pointed out [1] in the context
of signal understanding systems that must carry out
situation-dependent signal processing. This type of
analysis of a signal processing algorithm has been re-
ferred to as model variety analysts. The basic idea
behind such analysis is to determine how a given sig-
nal processing algorithm performs on a class of signals
which includes signals which are not compatible with
the assumptions under which the signal processing al-
gorithm was originally designed. The results of such
an analysis may be used by a signal understanding
system for one of the two following purposes:
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e to decide whether or not to use the given algo-
rithm in a situation where the input signal is
likely to belong to a particular class of signals.

e to decide whether the output from a particular
application of the given algorithm may have been
due to an input signal for which the use of that
algorithm is inappropriate.

We have previously reported [1, 2] a relatively sim-
ple example of model variety analysis of the short-
time Fourier transform (STFT) algorithm. We have
now extended the scope of that example and in the
process we have attempted to establish a methodol-
ogy for carrying out model variety analysis in general.
The primary purpose of this paper 1s to present the re-
sults of our extensions to the model variety analysis of
the STFT algorithm and to indicate the generalizable
aspects of the methodology used in the example.

In section 2 we provide some background on why
situation-dependent signal processing may be required
in some signal understanding applications. In partic-
ular, we use the example of a sound understanding
application for which we have developed an experi-
mental knowledge-based signal understanding system
[3, 4]. That system performs STFT signal processing
and utilizes the results of the model variety analysis
presented in this paper to guide the situation depen-
dent application of STFT algorithms with different
analysis-window lengths, fft lengths, and temporal-
decimation factors. In section 3, we describe our latest
results on model variety analysis of the STFT algo-
rithm.

2 Background

In this section we discuss why situation-dependent
signal processing is deemed necessary for some signal
understanding applications. In particular, we point
out that the signal processing requirements for a par-
ticular situation depend upon the particular mix of
transient, steady-state, and noise-like characteristics
in the signal data corresponding to the situation. Con-
sequently, for an application in which the mix of such
characteristics varies considerably from situation to
situation, it is crucial for a signal understanding sys-
tem to be able to adjust its signal processing in a
situation-dependent manner.

Imagine a household robot that has a hearing ca-
pability. This robot can tell when a smoke alarm goes



off, when a baby is crying, or when the telephone is
ringing etc. and can take appropriate action in re-
sponse to such events. Alternatively, imagine an as-
sistive device for the hearing impaired that can alert
a deaf person about important events such as ringing
fire alarms, door knocks, the sound of an oven buzzer
etc. Finally, consider a computer that can understand
verbal instructions in an office environment that may
include other sounds such as ringing telephones, the
noise of a copy machine, music etc. A generic activ-
ity involved in all these tasks is sound understanding.
Broadly speaking, a sound understanding system must
be able to obtain evidence from sound signals in order
to produce descriptive assertions about the events tak-
ing place in a sound producing environment. In a real-
istic environment there is typically an enormous vari-
ety of possible sound producing events. Furthermore,
these events can occur simultaneously and with differ-
ent relative loudnesses and durations. Consequently,
the characteristics of the signals received by a sound
understanding system also tend to vary enormously.
It is generally considered unrealistic to design a single
signal processing algorithm that can perform satisfac-
torily under such a diverse set of conditions. The more
realistic approach is for a sound understanding system
to have access to a database of different signal process-
ing algorithms from which it can intelligently select
the most appropriate algorithms to use in a situation-
dependent manner.

In our experimental sound understanding system,
the database of signal processing algorithms consists
of STFT algorithms with different values for the STFT
control parameters (window-length, fft-length, and
temporal decimation factor). Also considered part of
the STFT processing is a signal detection procedure
that picks the N most prominent spectral peaks of the
STFT for each analysis window position. The param-
eter N is considered yet another control parameter of
the STFT processing. Selection of a particular STFT
algorithm from the database is equivalent to selecting
the values for each of the control parameters.

A concrete illustration of the need to adjust the
STFT control parameters in a situation-dependent
manner can be obtained by considering two simple
sound producing events: a car passing by and a
hairdryer being turned on. The first event generates
a prominent harmonic signal with several harmonics
with an interharmonic spacing of about 90 Hz. The
second event generates a prominent narrowband signal
with a strong frequency modulation. The processing
results for the two events with STFT’s that utilize a
2048 point analysis window and a 256 point analysis
window are illustrated in Figure 1. From the figures,
it is clear that the window length which is appropriate
for one event is inappropriate for the other.

If we now imagine these two events taking place si-
multaneously, using either one of the window lengths
for the STFT would lead to incorrect results. In
such situations a compromise window length would
be needed. In some situations, the uncertainty princi-
ple intervenes to make it impossible to correctly pro-
cess the data with one particular window length. For
such situations, our sound understanding system has

Figure 1: STFT processing output for two sound pro-
ducing events. A) “hairdryer turned on”, window
length is 2048. B) “hairdryer turned on, window
length is 256. C) “car passing by”, window length
is 256. D) “car passing by”, window length is 2048.



the capability to first process the signal data with one
window-length and then to reprocess the signal data
with another window length. A thorough discussion
of how this can be practically accomplished is given in

[1].
3 Model Variety Analysis

In this section we describe our latest results on
model variety analysis of the STFT algorithm. These
results were obtained by extending the analysis re-
ported in [2]. There are two basic objectives in per-
forming model variety analysis:

e To partition the class of possible input signals into
two sets according to whether each signal is cor-
rectly or incorrectly processed by the signal pro-
cessing algorithm under consideration.

e To characterize the nature of the distortions in
the output of the signal processing algorithm for
the cases where the input signal is incorrectly pro-
cessed.

How model variety analysis may be performed to
achieve each of the above two objectives is described
in sections 3.1 and 3.2 respectively.

3.1 Partitioning

The algorithm under consideration is the STFT. It
1s assumed that the STFT has window-length N,,, fIt-
length N;¢:, and temporal decimation L. The class
of possible input signals is considered to include lin-
ear combinations of multiple finite-duration sinusoids.
The individual sinusoids may be linearly modulated
in frequency. More precisely, each signal #(n) in this
class may be expressed in the following form:

al 1
z(n) = Z Apcos[(wi+ §akn)n] [u(n—n})—u(n—nj)]

k=1
(1)
where,
Ay, is the amplitude,
wy 1s the frequency offset,
ay, 18 the frequency modulation slope,
ng 1s the start time,
ng is the end time,
wi(n) = (w + apn) is the instantenous frequency,
dp = (n§, — n}) is the duration of the kt? sinusoid.

The various parameters of each z(n) are termed the
signal generation parameters for that x(n). We also
assume that the signal generation parameters of the
class of input signals are such that it is possible to
distinguish between the different signals if estimates
of the signal generation parameters are obtained in
accordance with the following “compatibility criteria”.

compatibility criteria: The criteria for compat-
ibility between the actual values of the signal genera-
tion parameters (wy(n),d;) and the estimated values

(wr(n), cik) are given as:

wi(n) — wi(n)

e <0.1 (A)

dy — dk(n)
T an) < 0.1 (B)
. . 2w
() = G(m)] = we(n) =wi(m)|| < o0 (C)

Criteria A and B stipulate the requirement that the
estimate of instantenous frequency and the duration
of sinusoids be within 10% of their actual values. Cri-
terion C stipulates the requirement that the frequency

changes of % radians or higher must be detected.

Following the procedure detailed in [2], we then de-
rive the data-model for the STFT algorithm with re-
spect to the class of input signals described above.
The data-model specifies a set of conditions which the
signal generation parameters of any input signal must
satisfy in order for the signal to be correctly processed
by the STFT. In this analysis, a signal is considered
correctly processed if the significant peaks detected
in the STFT output are compatible with the signal
generation parameters of that signal. Here compati-
bility is determined in accordance with the compat-
ibility criteria described above. The data-model we
have derived for the STFT with respect to the class of
input signals under consideration is presented in Table
1. The conditions in this data-model specify how the
signal generation parameters of a signal must be re-
lated to the control parameters of the STFT in order
to be correctly processed by that STFT. The data-
model therefore represents a partitioning of the set of
possible input signals into two subsets according to
whether or not they are correctly processed.
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Table 1: STFT data-model.

3.2 Characterization

We now consider the problem of characterizing the
results of incorrect processing when the conditions in
the data-model are violated. It should be noted that
the data-model of section 3.1 was derived with repect
to a larger class of possible input signals than those
considered for the data-models in [1] and [2]. The rea-
son for this i1s that in our previous research we were
primarily concerned with showing that the set of sig-
nals that would be incorrectly processed is non-empty.
In contrast, the research reported in this paper is also



concerned with characterizing how the signal process-
ing output violates the compatibility criteria when the
input signal is incorrectly processed. To be useful in
the design of a signal understanding systems, such a
characterization must encompass as many possible in-
put signals in the application as can be accomodated.
Although a large number of possible input signals in
the sound understanding application can be modelled
by equation 1, it is clear that not all of them can be
modelled this way. Our on-going research is aimed at
expanding the class of input signals for which data-
models can be derived. This is indeed the challenge
of research in the area of model variety analysis of the
STFT algorithm.

The methodology we have adopted for characteriz-
ing the results of incorrect processing is to construct
distortion operators that specify how the signal gener-
ation parameters of every input signal are mapped into
STFT output parameters if the signal is incorrectly
processed. The analysis 1s conducted by considering
each condition in the data-model separately and using
the theory behind STFT processing to determine the
mapping from signal generation parameters to STFT
output parameters. We have derived such distortion
operators corresponding to each of the conditions in
the data-model of Table 1. A description of a few of
those operators is given below.

1. insufficient-data distortion: The associated
data-model condition (1, Table 1) is derived on
the basis that the frequency of a sinusoid must

be higher than <~ in order to eliminate the ef-

fects of the interaction between the negative and
positive frequency components of that sinusoid.
When this condition is violated spectral leakage
between the negative and positive frequency com-
ponents of a sinusoid gives rise to a local max-
imum at 0 frequency. The following distortion
operator specifies how instantenous frequency es-
timates deviate from their actual values when this
distortion arises.

wa(n) € [o, NL] —a=0 ()

w

All signals that satisfy the condition on the left
hand side of equation 2 give rise to identical in-
stantenous frequency estimates.

2. low-time-resolution distortion: The associ-
ated data-model condition (3, Table 1) is derived
on the basis that two signals with identical fre-
quencies should be separated in time by a dura-
tion greater than the duration of the STFT win-
dow length in order for STFT to resolve them. If
this condition is violated, duration estimates de-
viate from their actual values as described in the
equation below.

(di,dm) — di = di + dim + (05, —nf)  (3)

In the equation above, dj,d,, are the durations
of two distinct sinusoids, ny, is the starting time

of the m'" sinusoid, n¢ is the end time of the

kt? sinusoid, and d; is the duration estimate as-
socited with this sinusoid pair. Notice that there
are many sinusoid pairs with different durations
and different start and end times that give rise to
the same duration estimate.

3. low-frequency-discrimination  distortion:
The corresponding data-model condition (6, Ta-
ble 1) is derived on the basis that the fft-length
must satisfy a lower bound in order that the fre-
quency of a sinusoid be estimated within a tol-
erance given in compatibility criterion A. If this
condition is violated, instantenous frequency esti-
mates deviate from their actual values as specified
by the equation below.

om—1) (2 1
wi(n) € m(2m ),ﬂ-(m—i— ) — O
Ny Ny

27m
k fu—
Nipe
(4)
In the equation above, m is an integer such that
m € [0, %] All sinusoids that have a fre-

quency within the range given by equation 4 give
rise to identical instantenous frequency estimates.
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