
Retrieval and Reasoning in Distributed Case
Bases�

M V Nagendra Prasad, Victor R Lesser and Susan Lander
Department of Computer Science

University of Massachusetts
fnagendra,lesser,landerg@cs.umass.edu

UMass Computer Science Technical Report 95-27
CIIR Technical Report IC-5

Abstract

Recent explosion in networked information resources has been attracting much attention to the
problem of automated methods for gathering information in response to a query from a user.
However, most of this literature deals with locating, gathering and selecting the best response
to a query from among a multitude of responses from different sources. In this paper, we deal
with a different model of response to a query. No single source of information may contain the
complete response to a query and hence may necessitate piecing together mutually related partial
responses from disparate and possibly heterogeneous sources. We present a system for cooperative
retrieval and composition of a case in which sub-cases are distributed across different agents in a
multi-agent system. From a Gestalt perspective, a good overall case may not be the one derived
from the summation of best subcases. Each agent’s partial view may result in local cases that are
best matches based on the local view. However, these local cases when assembled may not result
in the best overall case in terms of global measures. We propose a negotiation-driven case retrieval
algorithm as an approach to dynamically resolving inconsistencies between different case pieces
during the retrieval process.

�The work reported here is supported in part by NSF Center for Intelligent Information Retrieval (CIIR),
ARPA contract N00014-92-J-1698, Office of Naval Research contract N00014-92-J-1450, the National
Science Foundation contract CDA 8922572. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be inferred.

1 Introduction

Recent explosion in networked information resources has been attracting much attention towards
automated methods for gathering information in response to a query from a user [1, 4, 21]. However,
most of this literature deals with locating, gathering and selecting the best response to a query from
among a multitude of responses from different sources. In this paper, we deal with a different model
of response to a query. No single source of information may contain the complete response to a query
and hence may necessitate piecing together mutually related partial responses from disparate and
possibly heterogeneous sources[21]. For example, imagine a multi-agent parametric mechanical
design system where each agent has to contribute a component to assemble a complete design. An
agent has to obtain its components from manufacturer-specified catalogue casebases that may be
distributed across the Internet. For example, it may treat WWW-accessible distributed component
database system like PARTNET[5, 22] as its case-base from which to draw its component. In
addition to the constraints arising from the overall design requirements, constraints on a component
could also arise from the specifications of other components in the design. A response to a query
in the form of a specification of design requirements consists of the integrated set of components
forming the design. Central to the presentation in this paper is the view that a complex query is
presented to a set of agents, each of which is responsible for retrieving information relevant to a
part of the query. The agents negotiate to piece together a mutually acceptable response to the
query. More specifically, we deal with agents retrieving pieces of a distributed case to assemble a
composite case from them.

How do distributed case bases arise in these systems? A system that performs rote learning
by storing good cases, where each agent stores its own local case in its case base, could give rise
to such a Distributed Case Base (DCB). However, this may not be the only way. In the case of a
set of reusable agents[16], each agent could have acquired its own independent problem-solving
experiences by participating in different teams of agents. Or a Case-Knowledge Engineer could
design each of the case bases by giving them episodes from his collection of cases. Another
scenario one could envisage is the existence of casebases spread across a communication network,
like PARTNET on World Wide Web.

A multi-agent system comprises a group of intelligent agents working towards a set of common
global goals or separate individual goals that interact[3]. In such a system, each of the agents
may not be individually capable of achieving the global goal and/or their goals have interactions
and hence a need for coordination among the set of agents arises. Due to its partial view of
the problem-solving situation, an agent may have access only to a part of the environment, and
communication bandwidth limitations and heterogeneity of representations may limit its view of
other agents’ state. Given these uncertainties[18], an agent may have to do evidential reasoning
and focused negotiation to resolve them to the extent that it can make positive contributions to the
on-going problem solving process. More specifically, in a distributed case-based reasoning system
(DCBR), each agent’s partial view may result in best local cases that when assembled may not
result in the best overall case in terms of global measures. This gives rise to a need for the agents
to cooperatively access their casebases to retrieve the “best sub-cases” which can be combined in a
consistent manner to provide a complete case most useful for the present problem-solving situation.
This paper is concerned with this kind of cooperative retrieval of compatible distributed cases. In

1

our work on Negotiated Search[17]� and DRESUN[6], we proposed certain general mechanisms
for performing distributed search in multi-agent systems. We draw upon our experience with these
methods to extend them to case-based systems in a distributed environment.

The issue of distributed casebases, to our knowledge, has not been studied in the multi-agent
context. Barletta et al[2] and Redmond et al [23] deal with distributed cases in single agent
systems. In these approaches, each case is divided into subcases or snippets and a snippet is
indexed using both global goals and the local context of that snippet within the case. This kind of
elaborate engineering in the form of indexing the case pieces using both global and local problem
solving contexts may not be feasible for multi-agent CBR systems. The agents may only have a
partial view of the global problem solving context and the internal context of a case piece. Case
bases for individual agents may be built independently, without the knowledge of the kinds of
problem solving systems in which they are going to participate. In this paper, we propose an
alternative to using elaborate indexing to avoid interactions when case pieces are re-instantiated in
a new problem solving context. Case pieces are iteratively retrieved and assembled into a case,
dynamically resolving any conflicts that arise during the process through negotiation among the
participant agents. There are a few other important issues to note here. It may be that even though
the cases for individual agents were derived from past problem-solving experience, there could be
combinations of these subcases that may be assembled into a case that the system as a whole has
never seen before. As discussed later, this has some important implications in DCBs. In addition,
local case integration does not require that the overall case be completely represented at any one
node; in certain situations, the distributed case components are integrated only by their mutual
consistency.

The rest of the paper is organized as follows. Section 2 discusses the Negotiated Retrieval
strategy for distributed cases. Section 3 introduces the CBR-TEAM system as our domain to
illustrate the algorithm, and provides a trace of the system run on an example. Section 4 presents
some empirical results from runs of an abstract version of CBR-TEAM. Section 5 relates our
work to some of the existing literature and Section 6 concludes the paper with a discussion of the
implications of the proposed mechanism and future work.

2 Negotiated Case Retrieval

Reasoning with cases drawn from a casebase that is a component of a DCB presents an agent with
additional uncertainties versus single agent CBR systems. As discussed previously, each agent has
to rely on its possibly incomplete local view of problem-solving to retrieve a local case that best
contributes to the overall case. However, a combination of the best local cases for the agent set need
not lead to a best overall case because it may happen that the sub-cases cannot be effectively put
together or there may be requirements on the solution that cannot be ascertained until the sub-cases
are aggregated. Thus, agents need to augment their local views with constraining information from
other agents to achieve the retrieval and assembly of a better overall case.

A simple way to overcome the problem of distributed retrieval is to let the set of agents form
their DCB by each agent storing its sub-case when the agents come across a good case and labeling
the sub-cases under the same unique label. During retrieval, each agent retrieves a set of sub-cases

�In this paper, we view negotiation as a form of goal-directed communication among agents.

2

which are good matches. Each of the agents exchanges the labels of its locally retrieved cases
with other agents and the agents try to assemble a complete case with a unique label. If they fail,
they can expand their retrieval set, or if most of the case is assembled under a unique label, those
agents with incompatible labels can do another round of retrieval for sub-cases with the label of
the overall case�. However, this strategy may not work due to a variety of reasons. The casebases
may not be formed with the same set of agents participating in the task. They may be formed in
any of the ways discussed previously. This eliminates the possibility of labeling the corresponding
local cases belonging to a unique case by the same label; local cases are not assembled from the
cases seen by these agent sets. In addition, the agent sets may themselves be varying - some agents
may go off-line and some other new ones may come on-line - during the problem-solving process.
Yet another reason for the infeasibility of this strategy is the possible heterogeneity of the different
agents. Unique labeling schemes may not be possible in heterogeneous systems with disparate
representations.

In view of the discussion above, we propose that the agents need to perform a coordinated
retrieval of local cases through communication of relevant non-local information. We will now
elaborate on a negotiated case retrieval (NCR) strategy which is more general than the unique
labeling scheme. The NCR strategy involves each agent asynchronously executing one of the set of
possible operations: initiate a seed subcase, extend an existing partial case, merge existing partial
subcases or inform others about a new partial case. Initiating a seed subcase involves an agent
retrieving a local subcase from its local casebase using the local problem solving state and the
relevant portion of the user specification and forming a seed subcase which can be extended by
local cases from other agents to obtain a complete case. An agent intending to extend a subcase
from another agent obtains the subcase’s relevant feature values that serve as an anchor for the
local case retrieval, the result of which is integrated with the corresponding partial case. Merge is
similar to the extend operation. An agent intending to merge one of its chosen partial cases with
another agent’s partial case obtains the relevant feature values and performs the merge operation.
The inform operation involves an agent telling others about the existence of a newly formed partial
case that results from the local execution of one of the three previous operators. An extend or
merge operation involves checking for any violations of local constraints by the set of feature
values from the non-local partial subcase and the local case or partial subcase. Detection of such
violations leads to an interaction process among the agents by which they negotiate on conflict
resolution alternatives. The negotiation process involves an agent communicating feedback to other
agents on the causes and possible resolutions for each of the constraint violations. The receiving
agents assimilate this feedback, leading to an enhanced view of the global requirements for future
operations. The subsequent initiation or extend or merge is more likely to avoid the same conflicts.
Thus, our problem is cast as a distributed constraint optimization problem[16] implying that not
all constraints need to be satisfied in a solution. As many constraints are satisfied as is possible.
Constraints have differing amounts of flexibility. Some may be hard, meaning that they must be
satisfied in any legal solution. Some others may be soft constraints that may be relaxed as and when
needed. Figure 1 shows the conceptual view of a two agent DCBR system. Before we formally
present our NCR strategy, we need to introduce some notation.

Let the set of agents be denoted by �. Let �i denote the locally known constraint set of agent

�Note that even this strategy is not a solution to all problems that can arise in this scenario and in the
worst case, the labeled sub-case retrieval is as complex as unlabeled sub-case retrieval.

3

AGENT i AGENT j

Ωi1 = f1(θ1 ... θs1
)

Ωiu = ft(θ1 ... θsu
)

.

.

Ωj1 = g1(θ1 ... θs1
)

Ωjv = gt(θ1 ... θsv
)

.

.

Feedback (set of advises)

Σ11

Σ

Σ13

12
Σ21

Σ22

LOCAL CASEBASE i LOCAL CASEBASE j

Initiate
Extend
Merge
Inform

Send Feedback

Assimilate Feedback

<operators>

<constraints
 at time t>

<emerging
 solutions>

<emerging
 solutions>

Initiate
Extend
Merge
Inform

Send Feedback

Assimilate Feedback

<operators>

<constraints
 at time t>

Figure 1: Schematic for Negotiated Case Retrieval

Ai. Let �p
i , � � p � j�ij represent the p th constraint at Ai and let Fp

i represent the set of features
on which �p

i is defined.
Let the user-specified query be denoted by �. The part of the query that is relevant to Ai is

denoted by �i which is cast as a set of constraints ��i
� �i. Casting both user specifications

and the set of required subcase consistency constraints as the set of hard constraints for an agent
gives us a uniform way to ensure that the user specifications are satisfied and the subcases are
mutually acceptable. Subcase consistency constraints arise from the knowledge an agent has about
the requirements of the context in which its local subcase can usefully participate�. The output
of the system is a case, whose subcases are mutually acceptable to the entire set of agents. As
discussed previously, the subcases need not all reside at a single physical site and may be integrated
just by their mutual consistency.

Let a locally retrieved case t by agent Ai be denoted by �t
i (we simply denote it as �i when the

name of the case is not important). A partial case s, denoted by �s, is composed of one or more
locally retrieved cases (from different agents):

�s � �t�
i�
�t�
i�
� � � �tz

iz

where � � z � j�j

�For example in TEAM[16], from which our DCBR system draws its inspiration, an agent’s sub-design
possesses shared features with another agent’s sub-design. Pump and Motor share a parameter required-
power. Both agents have to arrive at the same value for the required-power parameter. This is equivalent to
having a constraint Pump-required-power = Motor-required-power.

4

We will introduce a simple example from the ABSTRACT-TEAM system to be discussed in
the later sections. Let the agent set be fA�, A�g. In ABSTRACT-TEAM, a query is denoted by
specifying the ranges of the features f� and f�. For example ���� � f� � 	�� & �� � f� � �
.
�� is ���� � f� � 	�� and �� is �� � f� � �
. In our example, A� retrieves a local case which is
simply a set of three features ff�, f�, f�g andA� retrieves a local case ff�, f�, f�, f�g. �� contains
four constraints fC1:f� � ����, C2:f� � 	��, C3:f� � ��

, C4:f� � ���
,g� and �� has three
constraints fC5:f� � ����, C6:f� � �
��, C7:f� � ���g.

A case has a number associated attributes that involve measures of certain characteristics of a
case and are functions of the feature values of a case. Examples of attributes include reliability,
quality, uncertainty and cost. In addition to being acceptable to all agents, it is desirable that a case be
optimized along the attribute set. These requirements lead to organization of an agent’s constraints
as soft constraints and hard constraints where the former set represents solution preferences and
the later set represents those constraints that are relaxed only as a result of explicit recognition by
the agents that the set is too constrained to lead to a mutually acceptable solution[19]. Relaxing a
soft constraint may only involve penalties in terms of loss of optimality in the desirable attributes.
For example, relaxing a soft constraint in a multi-agent design system like CBR-TEAM (to be
discussed below) leads to less reliable components. Softness of a constraint represents its degree
of flexibility with some constraints being softer than others. On the other hand, hard constraints
are generally not relaxed except with an explicit understanding that the resulting responses satisfy
the query specifications only partially or are consistent with only a subset of the agents.

More formally, let a local solution space S be defined as a region in an n-dimensional feature-
space Rn. Each point in this space represents a local case of n features. The set of hard-constraints
in an agent defines S . We can then define subspaces of S that represent satisfaction of various sets
of soft-constraints in addition to the set of hard constraints. Given Sc, a subspace of S satisfying
a set of soft-constraints c and the set of hard constraints, relaxing a constraint ci � c leads to a
subspace Sc�ci such that

Sc � Sc�ci � S

An agent iteratively identifies those regions in its local solution space S that satisfy as many of the
soft constraints as possible and the relevant non-local requirements of the other agents.

Adding a locally retrieved subcase �tm
im

to �s to form ��s is represented as:

��s � �s�
tm
im

Let the set of features for �s be represent by F�s
. Note that the feature set Fp

k of a constraint
�p

k may involve features that are not members of the feature set of the local subcase. Such features
are called non-local features (or non-local parameters). For example, f� is a non-local parameter
for A�.

A projection of a partial case �s onto �k, the constraint set of agent Ak, represents the set of
features from �s that participate in some constraint of �k .

�k
s � ff jf � F�s

� ���p�j	k jf � F
p
kg

�In a specific problem-solving situation, an agent can substitute for its local features from the problem-
specification in its local constraint to get new constraints that are described only on non-local features.
Though the example here deals with simple numerical constraints, note that the mechanisms presented in
the paper are general enough to deal with constraints of any form.

5

An agentAi wanting to obtain the projection of a partial case �s = �t�
i�
�t�
i�
� � � �tz

iz
communicates

with agents i�� i�� � � � � iz to obtain the those relevant feature values that were not already commu-
nicated to the agent previously. An agent Aik , upon a request for the value of a particular feature
in a local case �tk

ik
, responds with transmission of the value to the requesting agent. Each agent’s

organizational knowledge� about the distribution of relevant features among the set of agents can
aid it in deciding which agents to ask for what features. Projection is the minimum information an
agent needs to check the consistency of a partial case against its local constraint set. However, an
agent which anticipates and intends to serve the needs of other agents may obtain more information
than the projection and pass it on to these other agents, saving them the need to communicate
with a number of agents to obtain a projection. We have here a trade-off between the number of
communication events versus the amount of information communicated in these events. An agent
obtaining more information than a projection increases the number of bytes of communication but
can reduce the necessity for some other agents to communicate with a number of agents to obtain
their projections and consequently reduces the communication events.

For example, in order to check a partial case against ��, A� has to obtain its projection by
requesting A� for the value of feature f� of the corresponding local case, as f� is the only feature
participating in some constraint in �� and is not available locally. Similarly, A� requests A� for
the value of feature f� of the corresponding local case to validate a partial case against ��.

Each agent can choose to execute one of the following operators at a particular instance of time.

� Initiate a seed subcase:
Input: Agent Ai that chooses to initiate a seed subcase uses the problem specification �i,
and locally known problem-solving state.

Output: A partial case �s = �i
s

Ai retrieves a subcase from its local casebase and forms a partial subcase with just one
local subcase. It uses the problem specification �i and the presently available information
on the problem-solving state (including previously tried solutions, conflicts they caused and
feedback in the form of violated constraints from other agents) to achieve this task�.

� Extend an existing partial case:
Input: �i

s to Ai

Output: ��s = �s�
t
i or a failure to extend.

Ai decides to extend a partial subcase �s residing at Ak and obtains the projection with
respect to the local constraints �i. It tries to retrieve a local case based on the information
available in �i

s and the locally known problem solving state. Ai can either succeed or fail to
return a subcase or return an infeasible subcase that violates some constraints in the set �i.
If any violations are detected due to poor or infeasible values for features then feedback is
provided to the relevant agents (the feedback process is discussed in detail below). Note that
the extension operation need not assemble all the local cases in ��s at any one physical site.

�Organizational knowledge consists of a specification of general node interaction patterns[9] or static
meta-level information about knowledge/case organization in the local databases of the agents.

�In general, a locally retrieved subcase is re-instantiated in the present context during this operation.
Adaptation of the retrieved subcase to the new context could also be performed in some systems.

6

It just needs to record the labels of all the subcases that can be assembled without any local
constraint violations with regard to the relevant agents.

� Merge existing partial subcases:
Input: �i

s and �i
t to Ai

Output: �u = �s�t

An agent Ai tries to merge two partially assembled composite cases �sj and �sk from agent
Aj and Ak respectively. Merging involves obtaining projections �i

sj
and �i

sk
and testing for

violations on the set �i. If any violations are detected due to poor or infeasible values for
parameters then feedback is provided to the relevant agents�.

� Inform other agents about a partial subcase:
Input: A set of partial cases that are the result of initiate or extend or merge operations at an
agent Ai.

Output: A message sent to other agents.

An agent Ai forms a new partial case �u due the successful execution of an operation like
initiate or extend or merge. Other agents have to be informed of the existence of this new
partial case so that they can make their decisions on the next operator to execute taking into
consideration this new partial case. An agent need not immediately inform all the others of
the existence of every new partial case it forms. It can decide to inform the existence of only
the “best” ones or to inform once every few time units, all the new partial cases that emerged
during the last time window. An agent may also decide to inform others about more than
just the existence of the cases. It may inform others about certain features or attributes of the
partial cases to aid them in their choice and execution of their operators.

Agents perform an asynchronous parallel distributed search to obtain a good overall case from
case pieces. At a given point in time, there may be more than one developing partial case.

Negotiation process involves an agent delivering feedback to another agent that in turn may
decide to accept it. The details of this process are discussed below
.

A partial case �s is consistent with respect to �k if the feature values of the partial case do not
violate any constraint in �k. We denote this by consistent�k

�F�s
. Two subcases �s and �t are

said to be consistent with respect to Ak if the projections of �s and �t with respect to �k , �k
s and

�k
t do not violate any constraints in �k, i.e. consistent�k

�F�k
s

	 F�k
t

.

Agent Ak has a set of predicates Ik = f��k, ��k, ..., �nkg which are applied to any detected
inconsistent partial case projections f�k

s , �k
t g. Associated with each �ik is a set of advice that can

act as a feedback to the agents corresponding to the subcases involved in the detected conflicts.

��ik � f��
�ik � �

�
�ik � ����� �

m
�ikg

�Though we talk of applying the entire set of constraints at an agent at once, this process could be
distributed in time. An agent could apply different subsets of its local constraints at different times and
perform evidential reasoning on partially satisfied sets of solutions to decide on further application of
constraints like in DRESUN[6].

 A similar method for generating feedback has been presented in [7].

7

FEED BACK �
�
f��ik��ik��

k
s ��

k
t is trueg

The set of advice could range from domain independent strategies to highly domain specific
ones. For example

1. Broaden the Retrieval: If the retrieval is similarity based i.e. based on numerical measures
of “closeness” of the retrieval feature vector to the corresponding feature vector of a retrieved
case, then broaden the search by obtaining cases with poorer similarity values.

2. Some CBR systems retrieve a case and use an adaptation strategy to massage the retrieved
case to fit the new situation. An agent could advise another agent to modify the retrieved
case in a different way - use a different adaptation strategy.

3. Each agent is expected to have some knowledge of the importance of a particular parameter’s
values and constraints, based on which it can advise another agent to relax a soft constraint
involving certain parameters.

4. An agent can advise another agent to change the values or ranges of certain parameters in
order to obtain better local solutions.

5. More Generic Retrieval: When an agent detects lack of progress either locally or at other
agents (based on the projections it receives from those agents) it could advise some of them
to relax their hard constraints. This is expected to take the retrieval process to qualitatively
different regions of the case base. Just as with soft constraints, the choice of which constraint
to relax is based on system-wide knowledge of some sort or on generic strategies each agent
possesses.

6. An agent recognizes particular features of the solution space and decides to use a more
efficient customized search strategy. It can advise the other agent to play a particular role in
this customized search. Lander[16] presents a good example of a customized search called
linear compromise where agents, upon recognizing the linear nature of their solution space,
decide to exchange end points and extrapolate between them to find the intersection point as
a mutual compromise solution.

For example, in ABSTRACT-TEAM, the feedback is very simple. When an extend or merge
violates a constraint, the constraint is communicated as feedback to agents whose local case features
include the feature on which the constraint is defined. For example, agent A� tries to merge its
locally retrieved case ((f� = 12) (f� = 0.0058) (f� 0.00154) (f� = 1.55)) with A�’s local case ((f� =
0.69) (f� = 0.48) (f� = 5)) and finds that the constraint C7:f� � ��� is violated. For each agent Ai,
the �ik is simply the violated(�k

i). Each �
violated��k

i �
is f�k

i g. In our example, A� communicates

C7 to A�.
Thus, in addition to the three operators we discussed previously for creating and extending

partial subcases, agents also have the following two operators for communicating and assimilating
feedback to/from other agents.

8

� Send FEED BACK on conflicts:
AgentAi, upon detection of conflicts during a merge or an extend, creates the FEED BACK
set and communicates a subset of it to the relevant agents.

� Assimilate FEED BACK from other agents:
The process of assimilation enhances an agent’s view of the global requirements. Agent
Ai, upon receiving a FEED BACK set, assimilates it into its local constraint set, creating
a new and updated �i. Assimilation may involve processes like relaxing a constraint �k

i ,
or adding a new constraint to �i. Note that the assimilation of FEED BACK need not
be instantaneous and different advice may be assimilated at different times. For example,
advice may be assimilated only after it is repeatedly received for at least ‘x’ times. In
addition, assimilation may be specialized based on context i.e. the feedback assimilated is
applicable only in specific contexts at the local agent. For example, a particular constraint
may be applicable only if certain features are within certain ranges of values[8]. In addition,
assimilation process may also involve transformations where an agent uses the feedback
from other agents to generate its own local constraints rather than directly incorporating the
feedback. Such a transformation may follow a process similar to that of generating feedback,
where a series of transformation operators may be applied to each piece of advice to generate
local constraints.

In both the CBR-TEAM and ABSTRACT-TEAM systems to be discussed later, the constraints
are numerical and apply to a single parameter. The feedback generated from the violation of such
a constraint simply consists of that constraint. Thus agent A� receives the constraint f� � ��� as
feedback and the next local case retrieval avoids any case with feature f� � ���. However, note
that the feedback strategies enumerated above are more general and apply to situations involving
more than just single parameter constraint violations. For example, say agentAi detects a violation
of a constraint I�R � I��C � �, where the capacitor value C is a non-local feature. Based on the
domain knowledge, Ai may advise agent Aj whose local case contains C as its feature, asking it
to initiate a case with capacitance in the next range of Farads. When this case is merged at a later
time with a local case of Ai, there is a lesser chance that the same constraint is violated again.

How do the agents decide on which operator to instantiate next and what partial cases on which
to apply the chosen operator? This decision is intricately tied to the domain. Domain imperatives
dictate the preconditions for each of these operators. These preconditions can either be coded in
by the DCBR designer or can be learned. The specifics of domain heuristics for the choice of
operators and partial cases to work on at a given time are beyond the scope of this paper.

Termination criteria depend on problem solving requirements. Various termination criteria
ranging from simple heuristics to complicated decision theoretic methods have been proposed for
multi-agent systems[8]. One simple criteria used in our DCBR systems to be discussed later is as
follows: Any agent that detects a case that has subcase contributions by all the relevant agents and
has been validated against their local constraints issues a termination message to all the agents.
More formally, a complete case �u � �i�

�i�
� � � �iz

is defined as:

�im
��in

��u
im �� in �
Aa��

��im
��u

im � a � consistent�a
�F�u

NagendraPrasad, Lander and Lesser[20] discuss in detail the issues in learning the order of instantiation
of such operators.

9

Algorithms similar to those of the negotiated retrieval already exist in the literature on multi-
agent systems. DENEGOT system[19] presents a distributed negotiation algorithm for distributed
planning and TEAM presents a negotiated search algorithm for distributed search among a set
of heterogeneous agents[16]. Negotiated retrieval is specifically tailored to distributed casebases
with strategies for broadening and deepening a search in a casebase not necessarily applicable to
planning domains dealt with in DENEGOT. In addition, negotiating over conflicts in subcases can
be qualitatively different from negotiations over plans in DENEGOT. For example, detection of
interactions in DENEGOT involves elaborate reasoning about the local plans. In Case Based Sys-
tems, elaborate reasoning about cases may be infeasible because cases often implicitly encompass
a lot of knowledge about subgoal interactions. Thus we resort to weak declarative constraint based
knowledge to reason about possible interactions between subcases. The strategies in negotiated
retrieval include the strategies in negotiated search as a subset. In this sense, negotiated retrieval
is more general than negotiated search. In addition, negotiated search as discussed in Lander[16]
imposes a sequentiality in search by giving an agent only two options — either extend an existing
solution or initiate a new solution which other agents sequentially extend.

The following section presents a multi-agent system that incorporates a restricted form of
negotiated retrieval (i.e. negotiated search as discussed in Lander[16]) and then shows a brief trace
from the system. In the section on experiments, we discuss an abstract DCBR system and show
some early empirical results on the negotiated retrieval mechanism.

3 CBR-TEAM: A Multi-Agent Design System

We now present a multi-agent system called CBR-TEAM whose core is derived from TEAM[16].
TEAM is a parametric design system that uses a cooperative heterogeneous set of reusable agents,
each of which has the capability to produce a component of the overall design which is stored in a
centralized blackboard. The TEAM system has six domain agents for the design of six components
in a steam condenser and a critic agent that checks for certain features in the assembled design. It
is a multi-strategy inferencing system[16] in which different strategies are seamlessly integrated
into a design framework. The interactions between the components generate constraints for these
strategies leading agents to iteratively negotiate on their results to find an acceptable design. When
the components of the individual agents are being assembled, violation of constraints due to
mismatches on mutually known parameters leads to information exchange followed by redesign.
Agents whose components do not “match” are said to be in conflict. The conflicting set of
agents negotiate a resolution which involves a search guided by numerical-valued constraints on
the mutually known parameters, or other strategies like linear compromise[16]. CBR-TEAM is a
modification of the TEAM system and comprises a subset of the agents that retrieve and use suitable
members from catalogues of manufacturer-specified models for designing their components. These
agents use the negotiated retrieval strategy where a new sub case is retrieved by each of the agents
in conflict. This retrieval is guided by a set of simple numerical-valued constraints on the shared
interface parameters. Interface parameters are those features of a case that are shared by more
than one agent. All the relevant agents have to reach an agreement on the values of the shared
parameters. We will discuss CBR-TEAM in more detail below.

The user gives a problem specification which consists of minimum head size for the pump in the
required design. There are three agents named Motor-agent, Pump-agent and Vbelt-agent which

10

are responsible for design of the motor, pump and Vbelt components respectively. Each of these
agents retrieves a suitable design from a catalogue of manufacturer specified designs. Indexing
into a catalogue is based on design requirements and also the requirements of the components of
other agents that may interact with the components of this agent. An agent does an initiate if it
had no subcase to extend. If a conflict is detected a send operation is performed with the constraint
that was violated. When an agent receives feedback from others, it immediately assimilates the
feedback. The retrieved local cases are placed in a central blackboard and hence there is no need
for an inform operator. Any partial case generated by an agent is completely visible to all the
other agents. During the initial phase of retrieval, the agents may have only partial information
on the requirements of other interacting components. So, each of the agents chooses the lowest
cost design based on the information available to it. Trying to assemble these components into an
overall design may lead to conflicts due to mismatches in the parameters that are shared by two or
more components. For example, Vbelt and Pump have required-pump-power as a shared parameter
and both the Vbelt agent and the Pump agent impose their own set of constraints on this parameter.
A mismatch on this parameter involves one agent assigning a value to the parameter that violates
the constraints in another agent. Each of the agents negotiate with the other agents in conflict to
resolve any mismatches. This is done by posting locally generated requirements on the shared
parameters that are involved in the conflict to the relevant agents. The agents then do another round
of retrieval using the previous information and the new requirements from other agents to get better
cases to be assembled into a design that does not produce the same conflict.

CBR-TEAM does not allow relaxation of hard constraints. It relaxes only soft constraints.
Soft constraints are arbitrarily divided into four levels, 1 to 4, with 4 being the level that involves
least loss of desirability if a constraint at this level is relaxed. Soft constraints are tied to the cost
attribute of a component. Lower cost components satisfy more soft constraints. Violations of any
hard constraints, considered to be at level 0, leads to failure. Another feature of CBR-TEAM is
unilateral relaxation. When an agent finds that its progress has been stagnated for a long time, it
unilaterally relaxes its local requirements so as to allow retrieval of subcases with poorer similarity
to the requirements.

Note that the retrieval process is iterative and can happen many times until a case of required
quality is obtained.

Below we give a simplified example trace of CBR-TEAM during a design session��. Problem
specification, known to all the agents (that understand it) is the minimum head for the pump.

An illustrative subset of constraints for the Motor agent includes:
�� motor-horse-power� pump-required-power� level �
	� motor-drive-speed � �	��, level 0
�� pump-required-power�
��, level 1
�� pump-required-power� ���, level 3

For the Pump agent:
�� motor-horse-power � pump-required-power� level�
	� pump-required-power� ��, level 0

For the Vbelt agent:

��There are a number of other constraints, but we just show an illustrative subset here.

11

�� motor-drive-speed � �	�
���
, level 0

Initially, all three agents have a local partial view of the problem solving situation. The agents
have certain local constraints on the parameters, and based on these constraints they retrieve a
template and develop the best component design. The Pump agent retrieves a PUMP TEMPLATE
“model4-impeller43-wfr1”to build PUMP “pp pump 1”. The Motor agent attempts to extend this
by retrieving MOTOR TEMPLATE “motor10” and building MOTOR "mp motor 1”. However, it
detects that this leads to a violation of soft constraints and hence enters into a negotiation with all
the relevant agents (those that know about the parameters involved in conflict). In CBR-TEAM,
the negotiation process is simple. The agent that detects any conflict on a parameter simply
communicates the constraints whose violation led to the detection of that conflict. In this example,
the Motor Agent detects and communicates conflict on the required power parameter. It sends out
the constraint — (pump-required-power � ���, 3) to the Pump agent. The Vbelt agent fails to
retrieve any templates based on the local constraints.

The following figures show the designs formed by the Pump and Motor agents during this step.
The Pump agent uses “model4-impeller43-wfr1” to build PUMP “pp pump 1” which basically

consists of slots filled in by parameters from the template and some other slots filled in by functions
for calculating case attributes.

PUMP pp_pump_1 an object of class PUMP

MODEL: "model4-impeller43-wfr1"
WATER-FLOW-RATE: 104.125
MAX-HEAD: 288.63
AVAILABLE-HEAD: 257.5425
PUMP-REQUIRED-POWER: 10.987118
RUN-SPEED-RANGE: (2700.0 3300.0)
PUMP-RUN-SPEED: 3000
COST: 228.0625
WEIGHT: 50.503906
EVALUATION: (:PUMP-AGENT :GOOD)
ACCEPTABILITY: :ACCEPTABLE

The Motor agent retrieves MOTOR-TEMPLATE “motor10” from the template database to
build MOTOR "mp motor 1".

MOTOR "mp_motor_1" an object of class MOTOR

MODEL: "motor10"
PUMP-REQUIRED-POWER: 10.987118
SPEED-RANGE: NIL
WEIGHT-RANGE: NIL
HORSEPOWER: 15.0
MOTOR-DRIVE-SPEED: 2400
COST: 650.0
WEIGHT: 150
EVALUATION: (:MOTOR-AGENT :FAIR)
ACCEPTABILITY: :UNACCEPTABLE

The Vbelt agent fails to retrieve any templates based on the local constraints. These constraints
are not tight enough to retrieve any templates that pass the tests setup by the local filters.

Note that during the time the Motor agent is extending a partial case seeded by the Pump
agent, the Pump and Vbelt agents themselves could be initiating other seed subcases due to the

12

asynchronous nature of the distributed search.
Given the increased awareness of the Motor agent’s requirements, the Pump agent attempts a

new round of retrieval and generates PUMP “pp pump 4”. It takes the Motor agent’s communicated
constraints into consideration while doing this. The Motor agent thus successfully adds its subcase
MOTOR “mp motor 4” and the Vbelt agent adds VBELT “vbelt 1” giving the final design.

The Pump agent retrieves PUMP-TEMPLATE “model4-impeller43-wfr2” from the pump tem-
plate database to build PUMP “pp pump 4”.

PUMP "pp_pump_4" an object of class PUMP

MODEL: "model4-impeller43-wfr2"
WATER-FLOW-RATE: 0.5
MAX-HEAD: 288.63
AVAILABLE-HEAD: 288.63
PUMP-REQUIRED-POWER: 0.1
RUN-SPEED-RANGE: (2700.0 3300.0)
PUMP-RUN-SPEED: 3000
COST: 228.0625
WEIGHT: 50.503906
EVALUATION: (:PUMP-AGENT :GOOD)
ACCEPTABILITY: :ACCEPTABLE

The Motor agent retrieves MOTOR-TEMPLATE “motor1” from the template database to build
MOTOR “mp motor 4”.

MOTOR "mp_motor_4" an object of class MOTOR

MODEL: "motor1"
PUMP-REQUIRED-POWER: 0.1
SPEED-RANGE: NIL
WEIGHT-RANGE: NIL
HORSEPOWER: 1.0
MOTOR-DRIVE-SPEED: 2400
COST: 100.0
WEIGHT: 33
EVALUATION: (:MOTOR-AGENT :EXCELLENT)
ACCEPTABILITY: :ACCEPTABLE

The Pump agent and the Motor agent have retrieved satisfactory design templates and the
Vbelt agent needs to attempt a retrieval of a Vbelt template. The power parameter from PUMP
“pp pump 4” and the drive speed parameter from MOTOR “mp motor 4” are the shared parameters
for the Vbelt-agent that are used to determine the retrieval of VBELT-TYPE-TEMPLATE 3VX

13

that in turn is used by the Vbelt agent to design VBELT “vbelt 1”.

VBELT vbelt_1 an object of class VBELT

BELT-TYPE: :3VX
BELT-LENGTH: 25.0
DRIVE-DIAMETER: 2.5
LOAD-DIAMETER: 2.2
NUMBER-OF-BELTS: 1
REQUIRED-POWER: 0.1
MOTOR-DRIVE-SPEED: 2400
LOAD-SPEED: 2727.2727
BELT-FORCE: 7.3234771990515d0
LOAD-PULLEY-WEIGHT: 1.0621228
BELT-LIFE: 334905.70545380004d0
COST: 34.864
WEIGHT: 2.3162665
EVALUATION: (:VBELT-AGENT :EXCELLENT)
ACCEPTABILITY: :ACCEPTABLE

This completes the design consisting of PUMP “pp pump 4”, MOTOR “mp motor 4” and
VBELT “vbelt 1”.

4 Experimental Results

In order to get a better insight into the proposed negotiated retrieval mechanism for distributed
casebases, we built an abstract version of CBR-TEAM, called the ABSTRACT-TEAM. It captures
the essential aspects of CBR-TEAM, while stripping it of domain-specific complexities. The rest of
this section will discuss ABSTRACT-TEAM in some detail and follows it with some experimental
results demonstrating the benefits of negotiated retrieval.

Agents in ABSTRACT-TEAM have to assemble a mutually consistent composite case from
local cases retrieved from local casebases. Each agent possesses constraints which may be defined
on both local and non-local features. Each agent has a local casebase which is a list of feature
vectors. At this point of our work, the control for negotiated retrieval was intentionally kept simple
to avoid obfuscating some of the more important issues that we wanted to gain insight into. During
Phase I, each of the agents retrieves best local case in parallel, based on local constraints derived
from problem specification and initiates a seed partial case. In this phase, each agent constrains its
local retrieval to avoid cases which violate constraints on local features. During Phase II, an agent
informs the other agents about the existence of a new partial case. During Phase III, each agent
tries to merge its local partial case with partial cases from the other agents. Each agent obtains the
relevant projections from other agents and checks the feature values against its local constraint set
for violations. If a violation is detected, the corresponding constraint is conveyed to the relevant
agents and is immediately assimilated. A new iteration of negotiated retrieval is then initiated, but
this time with an enhanced view of the problem-solving requirements for at least one agent.

For the experiments reported below, we used the example discussed in Section 2. A case of A�

consisted of three features, and a local casebase was built by randomly generating feature vectors
and their corresponding costs. Cases for A� had four features and a local casebase was similarly
generated. Constraints that could be communicated to other agents had a representation similar
to that in CBR-TEAM; numeric-valued constraints on single features. At present A� has a single
constraint that it could communicate to A� and A� has two constraints that it can communicate to

14

A�. ABSTRACT-TEAM in the experiments below had only hard constraints and hence did not
deal with optimizing any attributes on a case. Composite case had seven features corresponding
to three from A� and four from A�. Problem specification consists of required ranges on certain
features��.

Figure 2 shows the time taken by agents executing negotiated retrieval to obtain a mutually
acceptable best case��. Thirty runs at each casebase size are plotted. The casebases are initialized
to be different for each run. The mean time shows an almost linear rise with the casebase size. The
rectangular boxes show interquartile ranges — the top and bottom of a rectangle shows the 75th
and 25th quantiles. The median or the 50th quantile is shown as a line in the body of the box.

0

10

20

30

40

50

60

50 70 90 110 150 200 250 300

Case Base Size

N
R
A

R
e
t
r
i
e
v
a
l

T
i
m
e

Figure 2: Negotiated Retrieval Time versus Casebase Size

We next compared the negotiated retrieval against a simpler algorithm which involves retrieval
and conflict detection but no explicit feed back through negotiation and exchange of constraints.
Thus, detection of conflict simply leads to another round of retrieval. We again conducted thirty
runs at each casebase size, noting the time difference between the simple retrieval algorithm and the
negotiated retrieval algorithm for each casebase. Figure 3 shows that the difference rises sharply
with the casebase size with the simple retrieval algorithm taking increasingly larger times compared
to negotiated retrieval��.

��Note that our description of ABSTRACT-TEAM does not highlight the fact that in a more general
system some of the constraints are emergent - some of the requirements on the solutions emerge as the
problem solving progresses. In addition, the constraints exchanged could be context-dependent meaning
that they are applicable only in certain contexts which are known only during the problem solving and not
apriori. Thus simply exchanging all the constraints at the beginning of problem solving is not a feasible
method for the problem solving process described here.

��The exact units of time are unimportant here. We used (get-internal-run-time) provided by Harlequin’s
Lispworks development environment.

�� CBR-TEAM has certain constraints that can be communicated and certain others that cannot be, due
to its limited form of representation on communicable constraints. If the detected conflict is due to a non-

15

0

100000

200000

50 70 90 110 150 200 250 300

Case Base Size

D
i
f
f
e
r
e
n
c
e

T
i
m
e
s

Figure 3: Difference in times of the simple retrieval algorithm and negotiated retrieval

5 Related Work

Much of the CBR literature is concerned with casebases of a single agent. There has been some
work in breaking a single case into pieces and reasoning with these pieces in a single agent context.
MEDIATOR[15] represents large cases monolithically with pieces embedded as parts which can
be located within a larger case. A case is indexed both by its own indices and those of its pieces.
This sort of representation is different from the the distributed casebase scenario we discussed in
the paper. In a multi-agent system, there may be no monolithic case until the subcases are retrieved
and assembled.

Barletta and Mark[2] break cases into pieces where each piece is a sequence of actions used
to recover from a hypothesized fault. JULIANA[25] and CELIA[23] implement a distributed case
representation tha t is closer in spirit to the work described here. Cases are broken into pieces
called snippets, each of which represents the pursual of a goal. These snippets are linked to other
causally related snippets. Following the links can reconstruct a full case. Each snippet has a
pointer to the case header, its goal and the context in which it is embedded. During problem
solving, an individual snippet can be retrieved and used to pursue a subgoal related to its goal. The
next subgoal can be pursued using a snippet from an entirely different case. In all these systems,
both the global context and the internal context of a piece in a case are carefully extracted and
used as indices for that piece to avoid inconsistencies among pieces participating in a problem
solving run. However, in multi-agent systems the agent casebases may be developed in disparate
situations making it impractical to follow this strategy. So negotiated retrieval tries to deal with
incompatibilities between pieces by detecting and resolving them at the retrieval time.

Rissland et al[24] discuss a CBR system called FRANK for report generation. Based on user’s

communicable constraint, then the corresponding agent can only reject a composite solution without being
able to give any feedback, just as in the simple retrieval algorithm above. However, if the conflict detected
is communicable, then the behavior is similar to negotiated retrieval. Thus, the overall performance of the
system will lie somewhere in between the spectrum whose ends are represented by negotiated retrieval and
the simple retrieval algorithm.

16

preferences and requirements, a report type is selected. Each report type is associated with groups of
strategies which act as indices into a library of plans. A plan is selected and instantiated to generate
a report. Among other things, FRANK includes various types of responses to a failure to retrieve an
adequate set of plans. It exploits information about failures to select better alternatives.The system
tries alternative plans under the present group of strategies for report generation. Failing that, the
systems tries alternative grouping of strategies. If this leads to a failure, the system changes the
report type that it is trying to generate. This sort of broadening of allowed strategies upon failure
is similar to the broadening of retrieval in our algorithm.

The negotiated retrieval algorithm benefits from a long history of thought in DAI and Multi-
agent systems. Lesser[18] discusses the importance of interactions among subgoals and data
distributed across a set of agents in distributed problem solving. Selectively sharing relevant partial
results of a local search or data can enhance the global problem solving quality and efficiency
without paying a large price for communication. In some recent studies, Decker and Lesser[12]
further quantify these observations and discuss various trade-offs involved in communication vs
enhanced problem solving efficiency. However, much of the past work in DAI has primarily
focussed on exploiting interactions among subgoals to resolve control uncertainty. This paper
deals with explicit detection of inconsistencies among the local solutions and subsequent focussed
resolution of these inconsistencies[7]. In negotiated retrieval, feedback on the causes of conflicts
detected leads to an improved retrieval in subsequent rounds where these conflicts are avoided. An
agent which assimilates feedback from other agents enhances its view of global problem solving
requirements leading to an improved retrieval process.

Sycara’s work on PERSUADER[26] deals with a negotiation model for multi-agent compromise
where a mediator agent tries to persuade parties (labor and management) in conflict. The model
generates proposals and counterproposals seeking to reduce the differences between the interests
of the parties involved by incrementally modifying their beliefs to converge on common interests.
PERSUADER draws upon a variety of techniques like case-based reasoning and multi-attribute
utility theory to construct compromise solutions through incremental modifications to solution parts
rather than by a composition of partial solutions.

6 Conclusion & Future Work

This paper makes an initial foray into methods for performing retrieval of cases distributed across
multiple agents. Constraints emerge dynamically, as a result of the on-going problem solving
activity. Negotiated retrieval performs focused exchange of information on these constraints to
achieve a more coordinated distributed case retrieval. Our future work includes deploying and
testing the system on real domains like networked information retrieval.

7 Acknowledgments

The first author would like to thank Qiegang Long for providing the initial encouragement to work
on the ideas presented here and also for providing constructive criticism at various stages of the
work. The authors would like to thank K. Decker, D. Nieman, Tim Oates, Z. Rubinstien and D.
Skalak for reading draft versions of the paper and providing useful inputs.

17

References

[1] Arens,Y., Chee, C. Y., Hsu, C., and Knoblock, C. A., “Retrieving and integrating data
from multiple information sources”, in International Journal on Intelligent and Cooperative
Information Systems, 2 (2), 1993, pp. 127-158.

[2] R. Barletta and W. Mark., “Breaking cases into pieces”, In Proceedings of Case-Based
Reasoning Workshop, St. Paul, MN., 1988, pp 12-17.

[3] A. H. Bond and L. Gasser, Eds., Readings in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers, 1988.

[4] M. C. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz, “Scalable Internet Resource
Discovery: Research Problems and Approaches”, Communications of the ACM, 37(8), 1994,
pp 98 - 107, cntd on 114.

[5] D. R. Brown, R. Mecklenburg, D. L. Crandall, K. Y. Hwang, and R. Haddad, “Distributed
Component Information in Engineering Design”, 1995, submitted for review.

[6] N. Carver, Z. Cvetanovic, and V. Lesser., “Sophisticated Cooperation in FA/C Distributed
Problem Solving Systems”, in Proceedings of AAAI-91, 1991, pp 191-198.

[7] N. Carver, Q. Long, and V. R. Lesser, “Reasoning About Inconsistency in Cooperative
Distributed Problem Solving”, 1995, Forthcoming Technical Report, Department of Computer
Science, University of Massachusetts, Amherst.

[8] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, “Multistage Negotiation for
Distributed Constraint Satisfaction”, IEEE Systems, Man, and Cybernetics, 21(6), pp 1462-
1477.

[9] D. D. Corkill and V. R. Lesser, “The use of meta-level control for coordination in a distributed
problem solving network”, in Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, pp 748-756, Karlsruhe, FRG, 1983.

[10] D. D. Corkill, A Framework for Organizational Self-design in Distributed Problem-solving
Networks, Ph.D. Dissertation, Dept. of Computer Science, University of Massachusetts,
Amherst, 1983.

[11] K. Decker and V. R. Lesser, “Generalizing the Partial Global Planning Algorithm”, Interna-
tional Journal of Intelligent and Cooperative Information Systems, 1(2), 1992.

[12] K. Decker and V. R. Lesser, “ Quantitative Modeling of Complex Computational Task Envi-
ronments”, in Proceedings of the Eleventh National Conference on Artificial Intelligence, pp
217-224, Washington, 1993.

[13] E. H. Durfee and V. R. Lesser, “Partial Global Planning: A coordination framework for
distributed hypothesis formation”, IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167-1183, September 1991.

18

[14] Kolodner, J. L., Case-Based Reasoning, Morgan Kaufmann Pub., 1993.

[15] Kolodner, J. L. and Simpson, R. L., , “The MEDIATOR: Analysis of an early case-based
problem solver”, Cognitive Science 13(4), 1989, pp 507-549.

[16] Lander, S. E., Negotiated Search in Heterogeneous Multi-Agent Systems, Ph.D. thesis, De-
partment of Computer Science, University of Massachusetts, Amherst, 1993.

[17] Lander, S. E and Lesser, V. R., Understanding the Role of Negotiation in Distributed Search
Among Heterogeneous Agents, in Proceedings of the International Joint Conference on
Artificial Intelligence, Chambery, France, 1993, pp 438 - 444.

[18] Lesser, V. R., “A retrospective view of FA/C distributed problem solving”, IEEE Systems,
Man, and Cybernetics, 21(6), pp 1346-1363.

[19] Moehlman, T., Lesser, V. R., and Buteau, B., “Decentralized Negotiation: An Approach to
the Distributed Planning Problem,” Group decision and Negotiation, 1(2), Kluwer Academic
Publishers, 1992, pp 161-192.

[20] Nagendraprasad, M. V., Lesser, V. R., and Lander, S. E., “Learning Organizational Roles in a
Multi-agent System”, Submitted for publication, 1994.

[21] Tim Oates, M V NagendraPrasad, V. R. Lesser, “Cooperative Information Gathering: A
Distributed Problem Solving Approach”, Technical Report 94-66, Dept. of Computer Science,
University of Massachusetts, Amherst, 1994.

[22] Partnet: http://part.net

[23] Redmond, M.A., “Distributed cases for case-based reasoning: Facilitating use of multiple
cases”, In Proceedings of AAAI-90, Cambridge, MA, AAAI Press/MIT Press, 1990, pp
304-309.

[24] Rissland, E., Daniels, J., Rubinstein, B., and Skalak, D., “Case-Based Diagnostic Analysis
in a Blackboard Architecture”, in the Proceedings of the Eleventh National Conference on
Artificial Intelligence, pp 66-72, Washington, 1993.

[25] Shinn, H.S., “The Role of mapping in analogical transfer”, In Proceedings of the Tenth Annual
Conference of the Cognitive Science Society, Northvale, NJ:Erlbaum, 1988.

[26] Sycara, E.P., Resolving Adversarial Conflicts: An Approach to Integrating Case-Based and
Analytic Methods, Ph.D. thesis, Technical Report No. GIT-ICS-85/18, School of Information
and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1987.

19

