


Blackboard-based Sensor Interpretation using a
Symbolic Model of the Sources of Uncertainty in
Abductive Inferences

Norman Carver and Victor Lesser
Department of Computer and Information Science
University of Massachusetts, Amherst, Massachusetts 01003
(carver@cs.umass.edu, lesser@cs.umass.edu)

Abstract

Sensor interpretation involves the determination of
high-level explanations of sensor data. The inter-
pretation process is based on the use of abduction.
Interpretation systems incrementally construct hy-
potheses using abductive inferences to identify pos-
sible explanations for the data and, conversely, pos-
sible support for the hypotheses. We have developed
and implemented a new blackboard-based interpre-
tation framework called RESUN. One of the key fea-
tures of RESUN is that it uses a model of the sources
of uncertainty in abductive interpretation inferences
to create explicit, symbolic representations (called
SOUs) of the reasons why hypotheses are uncertain.
The symbolic SOUs make it possible for the sys-
tem to understand the reasons why its hypotheses
are uncertain so that it can dynamically select the
most appropriate methods for resolving uncertainty.
Our model of uncertainty defines a set of classes of
SOUs that are applicable to interpretation problems
which can be posed as abduction problems. Each
interpretation application may require slightly dif-
ferent instances of each of the classes of SOUs to
best represent uncertainty. We have implemented
the RESUN framework using a simulated aircraft
monitoring system and have run experiments that
demonstrate how the SOUs enable the use of more
effective interpretation strategies. To verify the gen-
erality of the approach, we are also using RESUN
to implement a sound understanding testbed.

Introduction

Sensor interpretation involves the determination
of high-level ezplanations of sensor and other obser-
vational data. The interpretation process is based
on a hierarchy of abstraction types like the one in
Figure 1 for a vehicle monitoring application. An
interpretation system incrementally constructs hy-
potheses that represent possible explanations for
subsets of the data. For example, in vehicle moni-

*This work was supported by the Office of Naval Re-
search under University Research Initiative grant num-
ber N00014-86-K-0764.

Attack Recon Transport
Mission Mission Mission

Acoustic R
Track
Acoustic Acoustic Acoustic
Ghost Group Noise
Sensor Acoustic
Malfunction Signal

Acoustic
Data

Figure 1: Vehicle monitoring abstraction hierarchy.

toring, data from sensors (e.g., Acoustic Data and
Radar Data) is abstracted and correlated to identify
potential vehicle “sightings” (Vehicle hypotheses),
vehicle movements (Track hypotheses), and vehicle
goals (Mission hypotheses).

The basis for interpretation is the concept of ab-
duction: if B’s can cause A’s then given some A, a;,
we might hypothesize that there is some B, b;, that
is an ezplanation for a;. Conversely, given a possi-
ble B, by, the existence of A’s that by could have
caused provide support for by. An interpretation
type hierarchy like the one in Figure 1 is effectively
a causal hierarchy. For example, the existence of an
Attack-Mission causes there to be a vehicle Track
with certain characteristics, the Track causes there
to be a sequence of Vehicle sightings with appro-
priate parameters, and this eventually causes there
to be appropriate signals that result in sensor data.
Thus an interpretation system makes abductive in-
ferences that identify possible explanations for the
data and possible support for its hypotheses.

We have developed and implemented a new
blackboard-based framework for sensor interpreta-
tion called RESUN. RESUN uses a model of the
uncertainty in abductive interpretation inferences
to create explicit, symbolic representations of the
sources of uncertainty in hypotheses. For example,
a Track hypothesis in an aircraft monitoring system
may be uncertain because its supporting sensor data



might have alternative explanations as a ghost or as
part of a different aircraft Track or it may be uncer-
tain because its evidence is incomplete or because it
is not known whether there is a valid Mission-level
explanation for the Track; these are some of the
possible sources of uncertainty for Track hypothe-
ses. As interpretation inferences are made in RE-
SUN, symbolic statements, SOUs, are attached to
the hypotheses to represent their current sources of
uncertainty.

Interpretation problems have often been ap-
proached using blackboard frameworks. However,
most existing blackboard-based interpretation sys-
tems have been limited to incremental hypothesize
and test strategies for resolving uncertainty in hy-
potheses instead of being able to use more power-
ful differential diagnosis strategies [4]. The RESUN
framework is capable of supporting a wide variety of
interpretation strategies—including differential di-
agnosis strategies. Because the symbolic SOUs al-
low the system to understand the reesons why the
hypotheses are uncertain, they make it possible for
the system to dynamically select methods for resolv-
ing its uncertainty instead of being limited to a fixed
strategy like hypothesize and test. In RESUN, in-
terpretation is viewed as an incremental process of
gathering evidence to resolve particular sources of
uncertainty in the hypotheses. RESUN’s planning-
based control mechanism is described in more detail
in [3, 4].

Hypotheses and Extensions

Before we examine the representation of uncer-
tainty, we must introduce another aspect of the
framework. In RESUN, a hypothesis is viewed as a
set of eztensions, each representing a different pos-
sible version (or set of versions) of the hypothesis.
Because interpretation requires constructive prob-
lem solving (see the section on interpretation vs.
classification below), the hypothesis versions of in-
terest are identified as a part of the problem solving
process. As evidence is gathered for a hypothesis,
the values of the hypothesis’ parameters are defined
by the parameters of the data and hypotheses that
make up its support and explanation evidence. For
example, Vehicle (sighting) hypotheses not only can
support Track hypotheses, they also constrain the
values of the aircraft ID and positions parameters
of a Track they support.

However, for any set of evidence, the values of
the hypothesis’ parameters may be uncertain—i.e.,
the evidence may only partially constrain the pa-
rameters. We handle parameter uncertainty by al-
lowing the use of sets or ranges to represent the
potentially correct values for a parameter and by al-
lowing array-valued parameters to be incompletely
specified (e.g., aircraft positions over time). For ex-
ample, the value of the ID parameter of a Track
hypothesis may be represented as a set of possible

values and the positions parameter may be incom-
plete (representing complete uncertainty about the
positions of the aircraft at certain times). Because
parameter values may be uncertain, every time ev-
idence is added to a hypothesis it may further con-
strain the possible parameter values (see the discus-
sion of Figure 2 below). In other words, gathering
evidence for an interpretation hypothesis not only
justifies the hypothesis, it may also refine it by fur-
ther constraining its parameter values.

Because most interpretation evidence is uncer-
tain and because there can be multiple instances
of any data or hypothesis types, it is possible for
there to be alternative pieces of evidence for a hy-
pothesis. For example, there might be two differ-
ent Vehicle hypotheses for time t¢; that are both
consistent with an existing (partial) Track hypoth-
esis. Because alternative evidence may refine a hy-
pothesis differently and because each alternative is
uncertain, multiple versions of the hypothesis may
have to be maintained. When these versions are
maintained as independent hypotheses—as they are
in most blackboard-based interpretation systems—
valuable information about the relationships be-
tween the versions is lost. Instead, we maintain al-
ternative hypothesis versions as different extensions
of a single root hypothesis. This allows us to un-
derstand, for example, that a Track hypothesis may
very likely be correct even though we are still uncer-
tain about the correct eztension of the hypothesis—
i.e., we are quite certain that there is an aircraft in
the monitored region, but we are uncertain about
its exact path.

Evidence and Uncertainty

As we have already stated, the basis of the interpre-
tation process is abduction. An interpretation sys-
tem makes abductive inferences that identify possi-
ble explanations for data and, conversely, possible
support for hypotheses. Abductive inferences are
uncertain rather than logically correct inferences.
In other words, abductive interpretation inferences
provide evidence for the hypotheses rather than con-
clusively proving them.

For each interpretation type 7T, the interpreta-
tion specification defines the type’s support, Sr,
and its possible explanations, Ex. The support, Sz,
is a set of support sources—i.e., St = {Si}, Each
support source consists of a set of type instance
specifications—i.e., for each S; € S, §; = {Su}
where each S;; € §; is a type instance specification.
By type instance specification, we mean an interpre-
tation type along with parameter constraints—e.g.,
a Vehicle type with constraints on the position and
ID parameters. For example, a Track hypothesis
constrains the aircraft IDs of its supporting Vehi-
cle hypotheses to be identical and their positions to
be consistent with the movement characteristics of
the particular aircraft. This definition of the sup-



port, St, as a set of support sources, {S;}, is done
to model domains like aircraft monitoring where
there may be multiple sources of evidence for some
types—e.g., a Vehicle hypothesis may be supported
by radar data or by a set of Group hypotheses based
on acoustic sensor data (see Figure 1).

The possible explanations, Er, is a set of types,
{E;}, each of which might explain some type T hy-
pothesis. For example, a Track hypothesis might be
able to be explained as an Attack-Mission, a Recon-
Mission, or a Transport-Mission; these are the three
possible explanation types for the Track type. Note,
though, that because of the constraints which each
of these Mission types places on the vehcle ID and
positions of associated Tracks, each particular Track
hypothesis may only be able to be explained by some
subset of these Missions types. Based on these def-
initions, every hypothesis of type T, Hr, is the re-
sult of a set of abductive inferences each of which
is of the form: {Hg, = Hr} (support evidence) or
Hr = Hpg, (explanation evidence) where Hy,, is a
hypothesis corresponding to type instance specifica-
tion S; € Sy, S; € St and Hg; is a hypothesis of
type E; € Er.

Our symbolic representation of interpretation un-
certainty is based on a model of the underlying un-
certainties in abductive inferences and on the re-
quirements for controlling interpretation systems—
i.e., that the system be able to identify the methods
it could use to resolve its uncertainty. The basic
source of interpretation (abduction) uncertainty is
the possibility of alternative explanations for data;
uncertain data and incomplete models of the possi-
ble explanations prevent the direct, conclusive de-
termination of the interpretations of the data. How-
ever, there are factors other than the possibility of
alternative explanations for data that influence the
level of belief in hypotheses. As a result, there are
several ways for interpretation systems to go about
resolving uncertainty. In order to enable the use of
all possible methods, our symbolic SOUs represent
more information than just the possible alternative
explanations for data.

Hypothesis correctness can only be guaranteed
by discounting all of the possible explanations for
the supporting data—i.e., doing complete differen-
tial diagnosis; even if complete supporting evidence
can be found for a hypothesis there may exist alter-
native explanations for all of this support. However,
while complete support cannot guarantee hypothe-
sis correctness, the amount of supporting evidence
is often a significant factor when evaluating the be-
lief in a hypothesis (this is the basis of hypothesize
and test strategies). For example, once an aircraft
Track hypothesis is supported by sensor data from a
“significant” number of (correlated) individual sen-
sor sightings, the belief in the track may be fairly
high regardless of whether alternative explanations
for its supporting data are still possible. In addi-

tion, complete differential diagnosis is typically very
difficult because it requires the enumeration of all
of the possible interpretations which might include
the supporting data—many of which may not be
able to be conclusively discounted. Thus, a com-
bination of hypothesize and test and (partial) dis-
counting of critical alternative explanations must be
used to gather sufficient evidence for interpretation
hypotheses; our SOU representation is designed to
drive this sort of process.

The model of uncertainty in interpretation infer-
ences is based on the basic uncertainty of abduc-
tive inferences, the factors which affect the belief
in hypotheses, the alternative methods for resolving
uncertainty, and our extensions model of hypothe-
ses. The model specifies a set of potential classes of
SOUs for any hypothesis extension (see [3] for more
complete definitions). Particular instances of these
SOU classes will be instantiated for each application
and for each set of inferences supporting an inter-
pretation hypothesis. We have defined the following
potential classes of SOUs for a hypothesis extension
HT:

e partial evidence — Denotes the fact that there
is incomplete evidence for the hypothesis. For ex-
ample, a No Explanation SOU means that no ex-
planation has been determined and a Partial Sup-
port SOU means that for some support source,
I, the current set of support hypotheses, {Hs, }
is incomplete—i.e., {Sj;;} C S; and {S;;} # Si.
For example, a Track hypothesis which has not
yet have been examined for valid mission-level ex-
planations will have an No Explanation SOU as-
sociated with it. typically have incomplete sup-
porting Vehicle hypothesis evidence (no support-
ing Vehicle hypotheses for some times included
within Track).

e possible alternative support — Denotes the
possibility that there may be alternative evidence
which could play the same role as a current piece
of support evidence—i.e., that there exists a hy-
pothesis H.’S‘jz which is the correct S;; support

rather than Hg,. This reflects the fact that
though “a hypothesis” may be quite certain, there
can still be uncertainty over the correctness of in-
dividual pieces of evidence for the hypothesis—
i.e., uncertainty over the correct extension. This
is an additional complication for differential diag-
nosis in interpretation problems as compared with
classification problems (see Section 2). Classifica-
tion problems do not have to contend with mul-
tiple instances of the types and so do not have
this source of uncertainty. Interpretation must
consider the possibility that there is alternative
supporting evidence for a hypothesis—i.e., that
there is a different version of the hypothesis which
is actually correct.

e possible alternative explanation — Denotes
the possibility that there may be alternative ex-



planations for the hypothesis—i.e., that there ex-
ists a hypothesis ku, E}, € Ex which is the cor-
rect explanation rather than Hg,. These SOUs
explicitly identify the possible explanation types
based on the characteristics of the hypothesis.

e alternative extension — Denotes the existence
of a competing, alternative extension of the same
hypothesis. In other words, an alternative version
of the hypothesis has been created using one or
more pieces of evidence that are inconsistent with
the existing versions of the hypothesis—i.e., using
alternative support and/or an alternative expla-
nation. This is the primary representation of the
relationships between hypotheses.

e negative evidence — Denotes the failure to be
able to produce some particular support evidence,
S;1, or to find any valid explanations in Er. Neg-
ative evidence is not conclusive because it also
has sources of uncertainty associated with it—
e.g., that sensors may have missed some data.

e uncertain constraint — Denotes that a con-
straint associated with the inference could not be
validated because of incomplete evidence or un-
certain parameter values. This SOU represents
uncertainty over the validity of an evidential infer-
ence whereas the other SOUs are concerned with
the correctness of inferences. See the example de-
scribed below for further explanation of this SOU.

e uncertain evidence — Technically, this is not
another source of uncertainty class. Uncertain
evidence SOUs merely serve as placeholders for
the uncertainty in the evidence for a hypothesis
because the sources of uncertainty are not auto-
matically propagated as evidential inferences are
made. They denote the fact that an evidential in-
ference is uncertain because the inference contains
uncertain constraint SOUs and/or the hypothesis
extension which is the basis for the inference con-
tains SOUs.

Figure 2 shows three extensions of a Track hy-
pothesis along with their associated SOUs and pa-
rameters. Track-Ext; is an iniermediate eztension
while Track-Ext, and Track-Ext; are alternative
mazimal extensions. The alternative extensions re-
sult from competing possible explanations of the
Track as an Attack-Mission or as a Recon-Mission.
This alternatives relationship between these Mission
hypotheses is represented by the alternative ezten-
ston SOUs in Track-Exty and Track-Extz. These
SOUs indicate that there is a negative evidential re-
lationship between the extensions: more belief in
Track-Ext, or Attack-Mission results in less belief
in Track-Exts or Recon-Mission (and vice versa).
They also make it possible for the system to rec-
ognize that the uncertainty in Attack-Mission need
not be directly resolved, but can be pursued by re-
solving the uncertainty in Recon-Mission or by re-
solving the uncertainty in the Track’s parameter
values (in order to limit its consistent interpreta-

tions). This example also demonstrates how exten-
sions represent different versions of hypotheses: the
uncertainty in the value of Track-Ext;’s ID param-
eter has been resolved differently by the alterna-
tive explanations. The uncertainty that results from
each explanation only being consistent with a sub-
set of the possible values for the Track’s ID param-
eter is represented by uncertain constraint SOUs.
These SOUs do not appear in the figure because
they are maintained as part of the inferences; they
are accessed through the “placeholder” wncertain-
ezplanation SOUs which represent the overall un-
certainty in the explanations.

Numeric Summarization of SOUs

In addition to the symbolic uncertainty encoding,
RESUN’s evidential representation system also in-
cludes a framework for numerically summarizing the
symbolic SOUs in the evidence for a hypothesis.
The summarization process produces a composite
characterization of the uncertainty in a hypothesis
in terms of an overall belief rating and the rela-
tive uncertainty contributions of the different classes
of SOUs (listed above). This composite numeric
summary is used in evaluating the satisfaction of
termination criteria and in selecting the hypothe-
ses to pursue and the methods to use to pursue
them. Having a composite rating allows more de-
tailed reasoning about termination and focusing de-
cisions than would be possible with a single number
rating. For example, it can distinguish between a
hypothesis that has low belief due to a lack of evi-
dence having been gathered for it and one for which
there is negative evidence—i.e., evidence that it is
incorrect. It can also show whether residual un-
certainty results from actual competing hypotheses
(that may need to be examined further) or whether
it is simply due to the possibility of alternative ex-
planations, etc.

The summarization process evaluates the SOUs
for a hypothesis extension using evaluation func-
tions specific to each interpretation type. Hypothe-
sis extensions are summarized by rating the relative
contribution of each SOU to the uncertainty of the
extension and then using a combining function to
produce the composite rating. The placeholder un-
certain evidence SOUs are evaluated by evaluating
the evidence they represent. This results in a re-
cursive summarization process which examines the
evidential structure supporting a hypothesis exten-
sion. Alternative extension SOUs result in the evalu-
ation of the alternative hypothesis extensions using
the same process. The evaluation functions effec-
tively compute the conditional probabilities for the
hypothesis extensions. Domain-specific evaluation
functions are currently used because neither Bayes’
Rule nor Dempster’s Rule are applicable to inter-
pretation in general because interpretation evidence
typically fails to meet the necessary independence
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Figure 2: Example hypothesis extensions with their symbolic sources of uncertainty.

criteria. Despite this fact, the use of composite rat-
ings does permit the use of modular evaluation func-
tions (see [Pearl 1988]).

Interpretation vs. Classification

In order to understand why we have taken the ap-
proach that we have, it is necessary to recognize
the differences between interpretation problems and
similar problems that we will refer to as “classi-
fication problems.” Clancey [6] has distinguished
between two basic types of problem solving ap-
proaches: classification problem solving and con-
structive problem solving. In classification prob-
lem solving, solutions are selected from among a
pre-enumerated set of possible solutions. “Clas-
sification problems” are those problems that can
be solved using classification problem solving tech-
niques. This includes many of the kinds of diagno-
sis problems that have been studied—e.g., [1, 12].
There are some well-developed numeric techniques
(e.g., Bayesian networks [11]) that are applicable to
classification problems.

Constructive problem solving is required when
the set of possible solutions cannot be pre-
enumerated; the possible solutions for the problem
must be determined as part of the problem solv-
ing process. In general, interpretation problems re-
quire constructive problem solving because the com-
binatorics of their answer spaces preclude the enu-
meration of all potential solutions. Thus while in-
terpretation involves the classification of data, in-
terpretation problems cannot be solved using the
techniques that suffice for classification problems.
Clancey [6] notes that constructive problem solving
systems must be able to incrementally create and
extend hypotheses, maintain large numbers of in-
complete hypotheses, and apply significant amounts

of knowledge to focus the construction process. In
other words, interpretation problems require search
so control is critical for interpretation systems.

There are a variety of factors responsible for inter-
pretation problem answer spaces being very large.
One reason is that there may be an extremely large
or even infinite number of possible hypotheses that
must be considered; interpretation hypotheses are
compound structures that include parameters which
typically have either large numbers of discrete val-
ues or continuous values. As a result, there are often
a very large or even infinite number of possible ver-
stons of each type of hypothesis. For example, Track
hypotheses in an aircraft monitoring system include
an “ID” parameter that represents the type of the
aircraft out of all of the aircraft types and a “posi-
tions” parameter that represents the X—Y positions
of the aircraft over time. The set of possible versions
of any Track hypothesis is then the “cross-product”
of the sets of possible values for each of these pa-
rameters. Even if positions are not represented by
continuous values (because sensor resolution limita-
tions are taken into account), there can be an ex-
tremely large set of possible Track hypotheses.

The combinatorics of representing hypotheses is
further complicated by the fact that evidence for a
hypothesis may only partially constrain the values
of the hypothesis’ parameters. In other words, ev-
idence for a hypothesis may leave the hypothesis’
parameters uncertain—it may support a subset or
range of the possible values for each hypothesis pa-
rameter. For example, each piece of acoustic sensor
data may be capable of supporting Track hypothe-
ses with a number of different aircraft IDs because
several different types of aircraft can produce the
same acoustic frequencies. Furthermore, limitations
in sensor resolution results in uncertainty in the ac-



tual acoustic frequency being sensed which leads in
turn to an even greater number of aircraft types
that might be supported by each piece of acoustic
sensor data. It is only by combining many pieces
of sensor data that this aircraft ID uncertainty can
be resolved—i.e., that the subset of possible aircraft
types which the available data supports can be de-
termined.

Another source of solution combinatorics for in-
terpretation problems is the possibility of multiple
correct hypotheses of each type (i.e., multiple cor-
rect instances of each interpretation type). For ex-
ample, in an aircraft monitoring application, mul-
tiple aircraft may be monitored so there may be
multiple correct Track (or Mission-level) hypothe-
ses. However, the number of aircraft that will be
monitored in a given region and period of time can-
not be known a priori. This means that the set
of potential “solutions” to the aircraft monitoring
problem must include no Track hypotheses, one of
any of the possible Track hypothesis versions, two of
any of the possible Track hypothesis versions, etc.—
up to some maximum number of vehicles that might
be monitored (in the specified region and time).

Another consequence of the possibility of multiple
instances of hypotheses is that the goal of an inter-
pretation system is somewhat different from that
of a classification system. The overall goal of an
interpretation system is not only to resolve its un-
certainty about the correctness of the hypotheses it
has created, but to be sure that these hypotheses
cover all of the valid interpretations. For example,
an aircraft monitoring system must not only resolve
uncertainty about the correctness of any Track or
mission-level hypotheses that it creates, but must
also be sure that it has examined enough of the data
to create hypotheses for all possible aircraft.

The possibility of multiple correct hypotheses of
each type also results in what is known in data fu-
sion terminology as the problem of “correlation am-
biguity” [8]. What this means is that even if it is
certain that a hypothesis supports (is explained by)
some type of hypothesis, it may still be uncertain
which particular hypothesis (of that type) it sup-
ports. Correlation ambiguity is an important source
of uncertainty for interpretation problems, but does
not affect classification problems.

Another way to look at the differences between in-
terpretation and classification problems is by think-
ing about the use of belief networks [11]. Classi-
fication problems can be approached using belief
networks (though there may still be some difficult
problems involved in determining the “best” answer
in terms of possible covering sets [12]). Interpreta-
tion problems cannot be approached in this way:
it would be difficult or impossible to instantiate a
network of all possible hypotheses, this would also
be very inefficient since only a small percentage of
the possibilities will be supported by the data, be-

cause an indeterminate number of instances of each
type of hypothesis may be correct the system effec-
tively needs to instantiate an indeterminate number
of networks, and the network to which any piece of
data applies would be uncertain. When interpre-
tation problems have been “solved” with classifica-
tion techniques alone (see [9, 10]), what has actually
been done is that many of the difficult aspects of the
problems have been simplified or ignored. See [2, 3]
for further dicussions of these issues.

Related Research

Numeric representations of uncertainty like proba-
bilities and Dempster-Shafer belief functions cannot
to be used to identify methods for directly resolv-
ing uncertainties because they summarize the rea-
sons that the evidence is uncertain [11]. We have
chosen to maintain a representation of the reasons
that hypotheses are uncertain in order to allow the
system to use a wide range of strategies to resolve
uncertainty. Our use of a symbolic representation of
uncertainty is similar to Cohen’s [7] symbolic repre-
sentations of the reasons to believe and disbelieve
evidence which he calls endorsements. However,
whereas Cohen was trying to develop a semantics for
general evidential reasoning, our representation is
tailored to the needs of interpretation control. This
means that we only had to be concerned with the
one type of well-understood inference which is the
basis for interpretation: abductive inference. Co-
hen’s task was very difficult because he was try-
ing to capture the uncertainty in a wide variety of
poorly understood types of inferences and develop
methods for combining the endorsements from these
inferences. Because of the complexity of the prob-
lem, the work on endorsements did not result in
any general-purpose formalism for representing and
reasoning with symbolic uncertainties. Owur work
demonstrates that it is possible to maintain and
reason with detailed information about the sources
of uncertainty in evidence when dealing with well-
defined types of inferences.

Since an interpretation specification is effectively
a specification of causal relations, the network of in-
terpretation hypotheses that is constructed by the
interpretation process is similar to a Bayesian net-
work [11]. However, because it is impossible to pre-
enumerate the possible solutions, interpretation is
not simply a matter of instantiating a belief net-
work and then propagating probability information
as new evidence is added. It is also important to rec-
ognize that while Pearl’s work addresses the issue of
evaluating belief given a set of evidence, it does not
address the problem of identifying evidence which
could be gathered to resolve uncertainty—unless
nodes for such evidence are already instantiated in
the network (without any “diagnostic evidence”).
Thus Pearl’s work does not eliminate the need for
explicit representations of the factors affecting belief



if one is to decide how to resolve uncertainty—i.e.,
if one is to make control decisions (our principal
focus). Our system does include one of the key fea-
tures of the Bayesian network formalism: the use
of the causal relationships to recognize information
relevant to a hypothesis.

Conclusions

In order to evaluate this framework, we have imple-
mented the concepts with a simulated aircraft moni-
toring application. Aircraft monitoring is a suitable
domain for the evaluation because it has charac-
teristics that exercise all of the capabilities of the
system: there are multiple sources of evidence from
multiple types of sensors, some of these are active
sensor which are under the control of the system,
there are complex interactions between competing
hypotheses, and there are large numbers of potential
interpretations of the data due to the modeling of
ghosting, noise, and sensor errors. The experiments
that have been run (see [3, 4]) have demonstrated
that this framework can support a range of methods
for resolving uncertainty and that these methods
can improve the performance of blackboard-based
interpretation systems.

To confirm the generality of the model of inter-
pretation uncertainty, we have also implemented
a testbed for sound understanding in household
environments—such as would be necessary for
robots. So far, this research has shown that the set
of SOU classes is sufficient, but that specific SOUs
instances may need to be adapted for particular ap-
plications in order to enhance control decisions. One
issue that we are pursuing with respect to sound un-
derstanding is how low-level processing can be best
handled even when it doesn’t fit into an abductive
framework A multi-agent, distributed version of the
aircraft monitoring application is being pursued to
evaluate the usefulness of the SOU representation
for driving the communication among agents and
for doing distributed differential diagnosis [5].
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