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Abstract

Reinforcement learning �RL� is based on the idea that the tendency to produce

an action should be strengthened �reinforced� if it produces favorable results� and

weakened if it produces unfavorable results� Q�learning is a recent RL algorithm

that does not need a model of its environment and can be used on�line� Therefore

it is well�suited for use in repeated games against an unknown opponent� Most

RL research has been con�ned to single agent settings or to multiagent settings

where the agents have totally positively correlated payo�s �team problems� or

totally negatively correlated payo�s �zero�sum games�� This paper is an empirical

study of reinforcement learning in the iterated prisoner	s dilemma �IPD�� where

the agents	 payo�s are neither totally positively nor totally negatively correlated�
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RL is considerably more di
cult in such a domain� This paper investigates

the ability of a variety of Q�learning agents to play the IPD game against an

unknown opponent� In some experiments� the opponent is the �xed strategy Tit�

for�Tat� while in others it is another Q�learner� All the Q�learners learned to play

optimally against Tit�for�Tat� Playing against another learner was more di
cult

because the adaptation of the other learner created a nonstationary environment�

and because the other learner was not endowed with any a priori knowledge

about the IPD game such as a policy designed to encourage cooperation� The

learners that were studied varied along three dimensions� the length of history

they received as context� the type of memory they employed �lookup tables based

on restricted history windows or recurrent neural networks that can theoretically

store features from arbitrarily deep in the past�� and the exploration schedule

they followed� Although all the learners faced di
culties when playing against

other learners� agents with longer history windows� lookup table memories� and

longer exploration schedules fared best in the IPD games�

Keywords� Multiagent learning� reinforcement learning� machine learning� pris�

oner�s dilemma� recurrent neural network� exploration�

� Introduction

Research in machine learning has focused primarily on supervised learning� where a

�teacher� provides the learning system with a set of training examples in the form of

input�output pairs� The usual goal of the learning system is to implement an input�

output mapping that generalizes well to inputs outside the training set� Reinforcement

learning �RL	 is applicable in cases where the learning system is not provided with a

target output for each input� but instead must select an output for which it receives

a scalar evaluation� RL is more di
cult than supervised learning since it requires

exploration� that is� �nding the best output for any given input� It applies naturally

to the case of an autonomous agent which receives sensations as inputs from its
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environment� and selects actions as outputs with the goal of aecting its environment

in a way that maximizes utility� This framework is appealing from a biological point

of view� since an animal has certain built�in preferences �such as pleasure or pain	�

but generally has no external signal telling it the best action for any given situation�

RL is based on the idea that the tendency to produce an action should be strength�

ened �reinforced	 if it produces favorable results� and weakened if it produces unfa�

vorable results� RL tasks can be divided naturally into two types� In non�sequential

tasks� the agent must learn a mapping from situations to actions that maximizes the

expected immediate payo� Sequential tasks are more di
cult because the actions

selected by the agent may in�uence its future situations and thus its future payos�

In this case� the agent interacts with its environment over an extended period of time�

and it needs to evaluate its actions on the basis of their long�term consequences� Se�

quential tasks involve a credit assignment problem� a whole sequence of actions takes

place before the long�term consequences are known� Credit for the consequences has

to be allocated among the actions in the sequence� This is di
cult because actions

in the sequence may have dierent values with respect to the consequences� Further�

more� the value of an action may depend on the other actions in the sequence�

From the perspective of control theory� RL algorithms are techniques for address�

ing stochastic optimal control problems� The agent is the controller� and the environ�

ment is the system to be controlled� The objective is to maximize some performance

measure over time� Given a perfect model of the environment� these problems can be

solved in principle using dynamic programming �DP	 algorithms� although the time

required for large problems may make their solution infeasible� Q�learning �Watkins�

����	 is a recent RL algorithm that approximates DP incrementally without requir�

ing a model of the environment� Unlike traditional DP� it can be used to improve

performance on�line while the agent and the environment interact �Barto et al�� ����	�

The Q�learning algorithm works by estimating the values of state�action pairs�
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The value Q�s� a	 is de�ned to be the expected discounted sum of future payos

obtained by taking action a from state s and following an optimal policy thereafter�

Once these values have been learned� the optimal action from any state is the one

with the highest Q�value� After being initialized to arbitrary numbers� Q�values are

estimated on the basis of experience as follows�

�� From the current state s� select an action a� This will cause receipt of an

immediate payo r� and arrival at a next state s��

�� Update Q�s�a	 based on this experience as follows�

�Q�s� a	 � ��r � � max
b

Q�s�� b	� Q�s� a	� ��	

where � is the learning rate and � � � � � is the discount factor�

�� Go to ��

This algorithm is guaranteed to converge to the correct Q�values with probability

one if the environment is stationary and Markovian�� a lookup table is used to store

the Q�values� every state�action pair continues to be visited� and the learning rate is

decreased appropriately over time� Q�learning does not specify which action to select

at each step� However� no action should be neglected forever� In practice� a method

for action selection is usually chosen that will ensure su
cient exploration while still

favoring actions with higher value estimates� The Boltzmann distribution provides

one such method� where the probability of selecting action ai in state s is

p�ai	 �
eQ�s�ai��t
P

a e
Q�s�a��t

��	

where t is a computational temperature parameter that controls the amount of ex�

ploration� It is usually annealed� i�e�� lowered gradually over time�

�An environment is Markovian if the state�transition probabilities from the current state only

depend on the current state and the action taken in it not on the history that led to the current

state
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Multiagent RL has been studied since at least the �����s� The work of Tsetlin

�����	 on the collective behavior of learning automata provides an early example�

See Narendra and Thathachar �����	 for an excellent introduction to learning au�

tomata� In zero�sum games� learning automata converge to the game�s solution� and

in identical�payo games� they converge to an equilibrium point which is a local

optimum� Traditional learning automata do not use any context in their decision

making� Barto and Anandan �����	 introduced associative learning automata that

do use context� Barto �����	 applied associative learning automata to identical�payo

games with promising results� All of these learning automata were designed for non�

sequential tasks�

Algorithms designed for sequential tasks have been studied mainly within a single

agent context �Barto et al�� ����	� �Sutton� ����	� �Watkins� ����	� Some of the

newer work has applied reinforcement learning methods such as Q�learning �Watkins�

����	 to multiagent settings� In many of these studies the agents have had indepen�

dent or rather easy tasks to learn� On the other hand� the theoretical guarantees

about Q�learning do not apply in multiagent settings because the state of the other

agents cannot be observed and because the environment is nonstationary due to the

other agents� learning� Sen et al� �����	 describe ��agent block pushing experiments�

where the agents try to make the block follow a line by independently applying forces

to it� Tan �����	 reports on grid�world predator�prey experiments with multiagent

reinforcement learning� focusing on the sharing of sensory information� policies� and

experience among the agents� Unfortunately� just slightly harder predator�prey prob�

lems have uncovered discouraging results �Sandholm and Nagendraprasad� ����	� On

the other hand� Bradtke �����	 describes encouraging results in applying multiagent

reinforcement learning to e
ciently damp out disturbances of a �exible beam� Crites

�����	 proposes applying multiagent RL algorithms to elevator dispatching� where

each elevator car would be controlled by a separate agent� Littman and Boyan �����	
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describe a distributed RL algorithm �related to the Bellman and Ford algorithm �Bert�

sekas and Tsitsiklis� ����		 for packet routing� using a single� centralized Q�function�

where each state entry in the Q�function is assigned to a node in the network which

is responsible for storing and updating the value of that entry� This diers from the

work described in this paper� where an entire Q�function� not just a single entry� is

stored by each agent� Littman �����	 experiments with Q�learning agents that try

to learn a mixed strategy that is optimal against the worst possible opponent in a

zero�sum ��player game� Markey �����	 uses a team of Q�learning agents to control a

vocal tract model with ten degrees of freedom� Wei������	 presents Bucket Brigade

based sequential reinforcement learning experiments in a simple blocks world prob�

lem� where cooperative agents with partial views share a goal but do not know what

the goal is� Other multiagent learning research uses purely heuristic algorithms for

complex real�world problems such as learning coordination strategies �Sugawara and

Lesser� ����	 and communication strategies �Kinney and Tsatsoulis� ����	 with vary�

ing success� Shoham and Tennenholtz �����	 describe a simple learning algorithm

called Cumulative Best Response that performs well in identical�payo settings but

performs poorly in the IPD� Despite some weak theoretical guarantees of eventual co�

operation� in practice� agents using this learning rule usually fail to reach cooperation

in hundreds of thousands of iterations� Ashlock et al� �����	 use a criterion �ltering

algorithm that is closely related to RL to learn the expected payos associated with

dierent IPD game partners� Their work applies RL to partner selection while this

paper applies RL to action selection within an IPD game� Samuel �����	 pioneered

the application of RL to zero�sum games with his checkers playing program� More re�

cently� Tesauro�s �����	 RL�based Backgammon program has achieved strong master

level play�

Almost all of the research described above investigates settings where the agents

have totally positively correlated payos �team problems	 or totally negatively cor�
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related payos �zero�sum games	� This paper attempts to �ll that gap by studying

RL in the IPD� where the agents� payos are neither totally positively nor totally

negatively correlated� The experiments in this paper con�rm that multiagent RL is

especially di
cult in such a setting� This paper investigates the ability of a vari�

ety of Q�learning agents to play the IPD game against an unknown opponent� In

some experiments� the opponent is the �xed strategy Tit�for�Tat� while in others it is

another Q�learner� All the Q�learners learned to play optimally against Tit�for�Tat�

Playing against another learner was more di
cult because of the other learner�s non�

stationary behavior� and because the other learner was not endowed with any a priori

knowledge about the IPD game such as a policy designed to encourage cooperation�

The learners that were studied varied along three dimensions� the length of history

they received as context� the type of memory they employed �lookup tables or recur�

rent neural networks that can theoretically store features from arbitrarily deep in the

past	� and the exploration schedule they followed� Although all these learners faced

di
culties �due to their self�interested nature	 when playing against another learner�

agents with longer history windows� lookup table memories� and longer exploration

schedules fared best in the IPD game�

The remainder of the paper is organized as follows� Section � provides an overview

of the IPD game� Section � describes the learning agents in more detail� The follow�

ing six sections describe the experiments� The last section contains conclusions and

suggestions for future research�

� Prisoner�s dilemma

The ��agent prisoner�s dilemma game is an abstraction of social situations where

each agent is faced with two alternative actions� cooperating� i�e�� doing the socially

responsible thing� and defecting� i�e�� acting according to self�interest regardless of
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how harmful this might be to the other agent� Characteristically� each agent is better

o defecting regardless of the opponent�s choice� but the sum of the agents� payos is

maximized if both agents choose to cooperate�thus the dilemma� In game theoretic

terms� defecting is a dominant strategy of the game and so the defect�defect action

combination is the only dominant strategy equilibrium �and therefore also the only

Nash equilibrium	� On the other hand� social welfare is maximized at the cooperate�

cooperate action combination� if social welfare is de�ned to be the equiweighted sum

of the agents� payos� Table � shows a payo matrix for a ��player game� where

each agent has two possible actions� The payo matrix describes a PD game if the

column player

cooperate �C	 defect �D	

row cooperate �C	 R �� ���	 S �� ���	

player defect �D	 T �� ���	 P �� ���	

Table �� Payo� matrix for the row player� The particular values in parenthesis are

the ones used in the experiments of this paper� The column player may have di�erent

payo�s as long as they de�ne a PD game� In this paper� both players had the same

payo� matrix�

following inequalities hold�

T � R � P � S ��	

and

�R � T � S � �P� ��	

The PD game is a noncooperative game� no pregame negotiation is allowed� the

agents cannot bindingly commit to any action� no enforced threats can be made� and

no transfer of payo is possible�
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In practical situations� agents often encounter each other more than once� Cor�

respondingly� some social interactions can be modeled by repeated PD games� This

supergame of the PD game is called the iterated prisoner�s dilemma �IPD	 game� In

supergames� an agent�s policy �strategy	 is a mapping from the entire history �all

of its own and its opponent�s moves	 to an action� In a pure strategy� the mapping

is deterministic �nonprobabilistic	� In a mixed strategy� an agent chooses its action

stochastically from a distribution that is determined by the history� If an agent uses

a pure strategy� its move history is redundant since it can be reconstructed from its

strategy and its opponent�s move history�

In an IPD game� it may be bene�cial even for a sel�sh agent to cooperate on some

iterations in the hope of soliciting cooperation from its opponent� If the number of

iterations of the PD game in an IPD game is known� then the last iteration becomes

the standalone PD game� So in the last iteration each agent is motivated to defect�

Because both agents know that the opponent is going to defect on the last round� they

have no motivation to cooperate on the second to last round either� This backward

induction can be carried out all the way to the beginning of the interaction� Thus in

some sense it is rational to defect throughout the sequence �Luce and Raia� ����	

�and thus� paradoxically� some irrational agents will do better than rational ones	�

Because �xed horizon IPD games have this characteristic� this paper focuses on IPD

games with an inde�nite horizon� i�e�� the agents do not know how many iterations

are still to come� The goal of an agent at iteration n is to select actions that will

maximize its discounted return�

P�
i�n �

i�nri

where ri is the reward or payo received on iteration i� and � � � � � is the discount

factor�

Generally� describing an intelligent strategy for a supergame is di
cult because

arbitrarily long input histories must be considered� There are two main approaches
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that strategy designers have used to address this problem in practice�

� Use only a �xed number of previous moves as the context upon which the choice

of next action is based� and

� Iteratively keep a tally of some �numeric	 features that provide an abstract

characterization of the entire history�

Two classical examples of the �rst approach are the pure strategies called Tit�for�

Tat �TFT	 and PAVLOV� A player using TFT cooperates on the �rst move and then

does whatever its opponent did on the previous move� Despite its simplicity� TFT has

proven very successful in open IPD tournaments and evolutionary IPD experiments

�Axelrod� ����	� PAVLOV cooperates if and only if the agents chose the same action

on the previous move� In evolutionary IPD games with certain random disturbances

PAVLOV outperforms TFT �Nowak and Sigmund� ����	� An example of the second

approach is to compute at each time step the opponent�s discounted cumulative score�

A strategy has the desired property of being collectively stable if and only if it defects

when that score exceeds a threshold �Axelrod� ����	� Both approaches to the problem

of growing context suer from the hidden state problem� the �rst approach ignores

the older history� and the second approach can only give an abstraction of the true

state�important details may be lost� Secondly� it is a nontrivial task to identify

meaningful features�

There is no single best strategy for the IPD game� Which strategy is best depends

on the opponent�s strategy� which the player obviously does not know� The folk

theorem of repeated games �Kreps� ����	� �Fudenberg and Tirole� ����	 states that

any feasible payos that give each agent more than its minimax value can be supported

in subgame perfect Nash equilibrium as long as the discount factor � is su
ciently

high�� TFT was chosen as an opponent for the learning players not only because it

�An agent�s minimax payo� is the payo� that the agent gets when it uses its best strategy against
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has performed well in IPD tournaments� but also because the optimal way to play

against TFT is completely known� There are three dierent optimal ways to play

against TFT depending on the discount factor � �Axelrod� ����	�

� always cooperate� discounted return Vc �
R

���

� alternate between defecting and cooperating� discounted return Va �
T��S
����

� always defect� discounted return Vd � T � �P
���
�

For the payo matrix of the PD game used in this paper �T � ���� R � ���� P �

���� S � ���	� Vc �
���
���
� Va �

��	
����

� and Vd � ��� �
����
���
� In this case� the agent

playing against TFT should always cooperate if � � �
�
� alternate between defection

and cooperation if �
 � � � �
� � and always defect if � �

�

 � For the most studied payo

matrix of the PD game �T � �� R � �� P � �� S � �	 the thresholds are the same�

because that payo matrix is just a rescaling� Note that each of the three ways of

playing can be achieved by a number of strategies� For example� cooperation with

TFT is realized by another TFT strategy or by a strategy that always cooperates no

matter what the opponent does�

� Players learning by reinforcement in the IPD

A number of dierent types of Q�learning agents were generated to challenge TFT

and each other in IPD games� The whole learning session was one long trial� i�e�� the

agent had only one chance to learn and evaluation took place during the last part

of the trial� Unless otherwise stated� the experiments were run with learning rate

� � ��� and discount factor � � ����� The value of � was chosen experimentally to

enhance learning of cooperation� The � in the Q�learning algorithm is by de�nition

its opponent�s strategy that is worst for the agent
 In the IPD this corresponds to receiving a stream

of P�s �i
e
 a stream of �
��s in the example case with a discounted return of ���

���
�
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the same � as in the IPD game� Its value was chosen to be so high because higher

values tend to promote cooperation �Axelrod� ����	�

The agents diered in the way they stored Q�values and in their exploration

policies� The next two sections describe the tested alternatives in detail�

��� Storing Q�values� lookup tables vs� recurrent neural nets

If the state is considered to be the entire history� an agent is faced with a stationary

environment �the other agent	� An agent�s learning method �algorithm and parame�

terization	 is part of the agent�s strategy in the IPD game� At each decision point�

the state increases in dimension with respect to the state at the previous decision

point� so each state is visited at most once� Therefore the theoretical convergence

results of Q�learning do not apply� Similarly� because each state is visited only once

in a single supergame� an agent cannot distinguish whether its opponent is using a

pure or a mixed strategy� Thus the agent perceives its environment as deterministic�

If the �state� is viewed as some window of previous moves �call this sensation�

Figure �	� the agent may be faced with a nonstationary stochastic environment� The

environment is nonstationary if the opponent has dierent action probabilities than

at a previous time when the same decision context �window of previous moves or

some features that capture an abstraction of the entire history	 of the agent occurred�

Nonstationarity also precludes the convergence proof� Stochasticity refers to the case

where the opponent�s action probabilities are unaltered� but the chosen action may be

dierent� Ignoring exploration� which will be discussed in the next section� there are

two possible reasons why the opponent�s action probabilities may dier from what

they were earlier at the same decision context of the agent� First� the opponent

may be using a larger decision context �more previous moves or dierent features of

the history	 in which case the agent cannot distinguish between two states that the

opponent can distinguish� Once the system has reached stability this is a question
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of stochasticity with respect to the agent� Secondly� the opponent�s learning method

may have changed the opponent�s mapping from its sensations to its Q�values �a

question of nonstationarity	�

Qcoop

Qdef

deterministic

Q-storage Explorer

p(coop)

p(def)

sensation at step n: < a       , a             > 

Random
process a

reward from step n - 1

n-1 n-1

n

me opponent

Figure �� The architecture of a Q�learning agent for the PD game� Given the current

sensation� Q�values for each action are used to determine action probabilities� These

probabilities are then used to select an action� Q�values are updated based on the

rewards received�

This hidden state problem was addressed in two dierent ways� The �rst set of

agents used lookup tables to store their Q�values� The sensations of these agents were

limited to w previous moves�i�e� w of the agent�s own moves and w of the opponent�s

moves� For example� given a window of only the last move �w � �	� four dierent

sensations would be possible �CC� CD� DC� and DD	� For each possible sensation� two

Q�values would need to be stored �corresponding to actions C and D	� Conceptually�

these agents ignore the older history�

The second set of agents had the same input sensations� but they stored the Q�

values in a recurrent neural network that can �at least in theory	 store information of

arbitrarily old actions and automatically learn which history features are important

to keep track of� Figure �� Sensations were presented to the net in four bits because a
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unary encoding resulted in faster learning than a two bit binary encoding� The �rst

bit was on if the opponent�s previous action was cooperate� and the second bit was on

if the action was defect� The third bit was on if the agent�s own previous action was

cooperate� and the fourth bit was on if its action was defect� We had a separate net for

both actions� which has been shown empirically to enhance learning speed in certain

situations �Lin� ����	� Each net was constructed along the lines of Elman �����	� the

net was a normal feedforward net except that the hidden�unit outputs were copied

into context units� whose activations were fed back to the normal hidden�units on

the next forward sweep� The copy connections from the normal hidden�units to the

context units were �xed to one� This allowed the use of the standard backpropagation

learning algorithm� In his experiments� Lin �����	 did not �x the copy connections�

and was thus forced to do backpropagation through time� He did this by exhaustive

unfolding in time in batch mode �i�e�� weights were updated after each entire trial	�

which would have been impossible in the case of only one long trial as opposed to his

many short trials of length �� steps� A real�time version of backpropagation through

time exists which does not require the �xing of weights �Williams and Zipser� �����

Hecht�Nielsen� ����� Haykin� ����	� It was not used here because it is computationally

intensive and its derivation assumes that the new inputs to the net are not a function

of the old outputs� which is not true in control tasks such as this�

Each network had four input units� three normal hidden�units� three context �hid�

den	 units and one output unit� The normal hidden�units were logistic units with

outputs in the range between � and �� The input units and context units did not do

any processing�they simply passed on their input� The output unit �representing

the estimated Q�value	 was a linear unit� The number of hidden�units was chosen

based on common practice and on the experimental results of Lin �����	� The normal

hidden�units and the output unit received input from a bias unit �not shown in Fig�

ure �	� The net was trained using the error backpropagation algorithm �Rumelhart
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Figure �� The recurrent neural net acting as a Q�value storage� Each action had a

separate net�

et al�� ����� Hecht�Nielsen� ����	 with the learning rate for logistic units set to ���

and their momentum set to ����� The learning rate for the linear output unit was set

to ����� All of these parameters were chosen experimentally to enhance learning�

The output of a unit in the recurrent net depends not only on the inputs of the net�

but also on the outputs of units on the prior forward pass� Therefore� the updating of

Q�values and the choice of an action must be done carefully so that both nets �one for

each action	 get exactly one forward pass per PD game iteration� For the action that

was not taken in the previous time step this is simple� because no Q�value backup

is required� To compute the new Q�estimate� one forward pass is done with the new

sensation as input� For the action that was chosen on the previous time step� the

�rst step is to save the activations� Then a forward pass with the new sensation is

performed to determine this action�s alternative Q�value to back up �the Q�update

rule will choose the highest alternative over all actions	� Next the activations are

restored so that the net will be in the state that it was before the forward pass� Now

the Q�update is done by changing the weights in the net by a backward pass� Last�

a forward pass is done with the new weights and the new sensation to give the new
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Q�estimate for this action� This Q�estimate is used to choose the next action�

��� Exploration methods

Agents must explore the consequences of their actions in order to be able to choose

good actions later� It is not su
cient for an agent to always choose the action that it

thinks best� It should try other actions as well to identify the environment�especially

in potentially nonstationary situations�

Even if the players use the same decision context ��xed number of previous moves

or some abstraction of the entire history	 and the opponent�s Q�values have not

changed� due to the opponent�s exploration� its action probabilities may be dierent

at a certain decision context of the agent from what they were at the same decision

context of the agent before� In general� an agent�s exploration policy �mapping from

Q�values to action probabilities	 can be a function of the entire history �true state	�

So� with respect to the agent�s limited decision context� the opponent�s exploration

policy may be nonstationary� In this paper� each learning agent�s exploration policy

was a function of the length of the history so far� not a function of the speci�c events

in the history� The length of the history was used to decrease the temperature for

Boltzmann exploration� Speci�cally� an agent�s probability of selecting action ai from

state s was

p�ai	 �
eQ�s�ai��t

P
a�fC�Dg e

Q�s�a��t
��	

where the temperature t was a function of the number n of PD games played so far�

t � � � �����n� ��	

If t � ���� then no exploration was performed� i�e�� the action with the highest Q�

value estimate was chosen with certainty� The constants for the annealing schedule

��� ������ ����	 were chosen experimentally� � and ���� are speci�c to the range of

Q�values de�ned by the payo matrix� In this domain the true Q�values �discounted
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payos	 range between � �getting the sucker�s payo all the time	 and �� �defecting

on a cooperator all the time	� An annealing schedule where t decreased linearly with

n was also tested but was not as eective�

In all� there are four distinct reasons why the opponent may act dierently at a

certain decision context of the agent than it did earlier at the same decision context

of the agent�

� The opponent may be using a dierent decision context than the agent �e�g�

longer time window or dierent history features	 in which case the agent cannot

distinguish between two states that the opponent can� Once the system has

reached stability this is a question of stochasticity with respect to the agent�

� The opponent may have learned� i�e�� its mapping from decision contexts to

Q�values may have changed� This may make the environment appear nonsta�

tionary to the agent�

� The opponent�s exploration policy �mapping from Q�values to action probabil�

ities	 may have changed� The environment may thus appear nonstationary to

the agent�

� The opponent�s stochastic action selector may choose a dierent action even

though its action probabilities have not changed� This makes the environment

appear stochastic to the agent�

A player cannot distinguish which of these eects is causing the opponent to act

dierently� If the same decision context occurs multiple times� the agent may be able

to dierentiate between stochasticity and nonstationarity� The convergence proof of

Q�learning applies to stochastic environments� but not to simultaneous learning due

to nonstationarity�
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� Experiment �� Learning to play against Tit�for�Tat

The �rst experiment was designed to see how the dierent learning agents performed

against a player that used a �xed strategy �TFT	� For � � ����� lookup table based

Q�learning agents using the last move as the sensation consistently learned to cooper�

ate with TFT for a variety of parameter settings� The recurrent net based Q�learners

also learned to cooperate with TFT as did a learner that had the same neural net

architecture as the recurrent net but with no context units and no feedback connec�

tions� The lookup table based learners learned to cooperate with TFT in thousands

of iterations� while the net based players required tens of thousands of iterations�

The next question was whether an agent could learn the optimal play against TFT

for other values of � as well� The lookup table based Q�learner with the Boltzmann

exploration method was selected� At each setting of �� ��� IPD games were run with

������� iterations each� For � � ����� � � ���� � � ����� and � � ���� the agent

consistently learned to defect against TFT� For � � ����� � � ���� � � ����� � � ����

� � ����� � � ���� � � ����� � � ���� and � � ����� the agent learned to alternate

between defecting and cooperating� For � � ���� � � ����� � � ���� � � ����� � � ����

and � � ����� the agent learned to cooperate with TFT� Thus the agent learned to

play optimally against TFT in every one of the hundred IPD games at each setting

of ��

The Q�learning mechanism� though relatively slow� works extremely well against

stationary policies such as TFT� which take into account a short window of previous

moves� Playing against an agent with a stationary policy is analogous to single agent

learning� because the learning agent perceives a stationary environment� The next

sections discuss harder cases where both agents are learning simultaneously�
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� Experiment �� Both players learning simultaneously

Two types of learning agents were studied in the context of simultaneous learning�

They diered in how they stored their Q�value estimates� One type used lookup

tables with Boltzmann exploration �LB	 and the other type used recurrent networks

with Boltzmann exploration �RB	� All three pairings of these agents were tested �an

agent could play another agent similar to itself	� Each pairing consisted of ��� IPD

games of ������� iterations each� The way Boltzmann exploration was implemented

�see Section ���	� each agent stopped exploring after ���� iterations� Learning still

continued from that point on� however� The system always appeared to reach a stable

state within the ������� iterations� In the result tables� the �rst four columns describe

alternative �nal states �only �nal states that occurred are shown	� They show what

percentage of the last ��� iterations of an IPD game were of a certain type� CC

means that both cooperated� CD means that the �rst agent cooperated� but the

second defected� DC means that the �rst agent defected� but the second cooperated�

and DD means that both defected� The �fth column shows how many times of the ���

IPD games played each of the �nal states occurred �� � ���	� and column six shows

the results for a large � ����	� The seventh column indicates what happened when

the exploration period was extended to ������ iterations by increasing the exploration

annealing factor from ����� to ������ �at � � ���	�

Final states often included loops� e�g�� CC� CD� CC� CD� ��� � The loop length for

lookup table learners is bounded above by �m�n� where m is the number of plays that

one agent remembers and n is the number of plays that the other agent remembers�

In theory� recurrent net players can have arbitrarily long loops due to their memory�

but in practice that did not tend to occur�

When two lookup table players played each other� one never totally took advantage

of the other �e�g� CD� CD� CD� ���	� but asymmetric loops did occur �e�g� CC� CD� CC�
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CD� ���	� Between recurrent net players neither total advantage taking nor asymmetric

loops occurred� When LB and RB played� asymmetric loops only occurred to the

advantage of the lookup table player�

Increasing � from ��� to ��� enhanced cooperation in the games RB�RB� but

hindered cooperation in the games LB�LB and LB�RB�
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Recurrent net� Boltzmann expl� vs� recurrent net� Boltzmann expl�
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Figure �� Percentages of plays at exploration annealing rate ��				� 
� � ���� � �

������

The sum of the agents� payos was much higher in the game LB�LB than in LB�

RB or RB�RB �see Figure �	� If even one of the players used a recurrent neural net as

its Q�value storage� the outcome of the game was signi�cantly less cooperative� This

somewhat surprising result may be because the neural net players need more training

examples than the lookup table players� because they are performing generalization

in addition to the basic Q�learning� and are learning which history features to keep

track of� Thus� neural net players may require a longer exploration phase than lookup

table players� Naturally� there is also a chance that some other network topology� some

other learning algorithm� or some other learning rate and momentum parameters for

backpropagation would have been more appropriate� although the parameters for

these experiments were experimentally chosen to enhance cooperation�
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	 Experiment �� No exploration in simultaneous learn�

ing

The impact of turning o the Boltzmann exploration was also analyzed� A lookup

table learner that did not explore �LN	 and a recurrent net learner that did not

explore �RN	 were tested against LB� against RB� against each other and against

themselves� The non�exploring agents always picked the action with the highest

current Q�value estimate� The results of games where at least one agent does no

exploration depend heavily on the initialization of the Q�values� For example� if all

Q�values are initialized with the same negative number� a non�exploring agent will

always pick the action that it �rst picked in that state� This is because the Q�value

corresponding to that action will be reinforced by a non�negative number �and thus

exceed any other action�s Q�value in that state	� because the payos in the game

are non�negative� In the experiments� the Q�values were initialized randomly from a

uniform distribution from � to ��

In the lookup table games LB�LN and LN�LN� neither player ever totally took

advantage of the other� but asymmetric loops occurred to either player�s advantage�

more often to the the advantage of the exploring LB� The loops were longer �up to

� plays	 and more frequent than among exploring players� On some runs� RB could

totally take advantage of RN� but never of another RB� In RN�RN� either player

could be totally taken advantage of� Asymmetric loops occurred among recurrent

net players when at least one of them did not explore� These loops were always to

the advantage of the exploring player� When LN and RN played� asymmetric loops

occurred either way� but only the recurrent net player could be totally taken advantage

of� LN often had unbene�cial asymmetric loops against RB but few runs showed the

reverse� LB often took advantage of RN� but rare asymmetric loops occurred in RN�s

favor�
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The results suggest that exploration is crucial to avoid being taken advantage of

by an exploring opponent� If neither agent explores� the initialization of the Q�values

determines the outcome� In such cases� cooperation occurs quite frequently� The sum

of the agents� payos was highest in the game LB�LB� where both agents explored� see

Figure �� The sum was lowest in the games LB�RB and RB�RB� where both agents

again explored� Fig� �� In games where at least one agent did not explore� the sum

was between these extremes�


 Experiment �� Extending exploration in simultaneous

learning

This experiment analyzed the eect of extending the exploration process� The hy�

pothesis is that agents will learn collectively better strategies if they are allowed to

explore the system more thoroughly� This is not obvious in multiagent learning� be�

cause an agent�s exploration introduces nonstationarity and stochasticity in the other

agent�s learning environment� Section � illustrated that changing the annealing factor

of the exploration process from ����� to ������ often encouraged more cooperative

outcomes� This eect was strongest with lookup table learners� This section presents

experiments where two such learners play each other� but the annealing factor is in�

creased further to �������� �������� and ���������� With the extended exploration

process� learning takes more iterations� The annealing factors ������ ������� ��������

�������� and ��������� correspond to ����� ������ ������� �������� and ��������

iterations of exploration respectively� To allow for that� the maximumnumber of iter�

ations was changed from ������� to ������� �for �������	� to ��������� �for ��������	�

and to ���������� �for ���������	� This was in order to allow roughly ������� iter�
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ations of learning after the exploration had ceased in each case�� The learning rate

� was ���� and � was ����� ��� experiments were run for each setting of the explo�

ration annealing rate �except ��������� where only �� experiments were run due to

computational complexity	�
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Figure �� Percentages of di�erent plays for varying exploration annealing rates� 
� �

���� � � ������

Defect�defect plays disappeared entirely as the exploration was prolonged even

slightly� see Figure �� Surprisingly� however� cooperate�cooperate plays also disap�

peared and gave way to asymmetric loops of length two� One half of the loop was

CC and the other was CD �or symmetrically DC	� Another interesting phenomenon

was the fact that CD�DC loops occurred more frequently as the annealing factor for

exploration was increased to ������� but they became rarer as the annealing factor

�To make sure that the results were not overly sensitive to the amount of learning after exploration

��� tests were run �not shown in the table� with over ������ iterations after exploration with nearly

identical results
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was further increased to �������� and they disappeared as the annealing factor was

increased to �������� and ���������� It appears that in the limit of extending the

annealing schedule� CC plays occur �� of the time� CD plays �� of the time� and

DC plays �� of the time� The average payo in each single stage game increases

monotonically�with mostly diminishing returns�with longer exploration schedules

and appears to approach ����� �Fig� �	 which corresponds to the distribution of plays

mentioned above�
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Figure �� The average payo� within an iteration as a function of exploration length�

Di�erent payo�s are marked by dots� Error bars are presented one standard error

above and below each mean�
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� Experiment �� Learners without sensations

In all of the experiments described so far� the sensations of each agent consist of one

previous move� If this information about the previous move is removed� the agents are

reduced to learning the value of each action without regard to context� In this case�

the agents have only two Q�values to learn�one for each action� The discount factor �

can be set to zero because there is no longer any discrimination among �states�� The

goal of this experiment was to determine how these context�insensitive agents would

perform against TFT and against each other� In both cases� they learned to always

defect� This is not surprising because the defect action dominates the cooperate

action in the single shot PD game�

However� with one small modi�cation� the agents learned to cooperate with TFT�

�They still always learned to defect against each other	� Instead of estimating the

average immediate payo received for an action� the modi�ed agents estimate the

average of the next two payos received for an action� When only the immediate

payo is used� the actions that cause TFT�s responses do not receive the proper

credit� but when the ��step returns are used� the actions are more closely tied to

their consequences� The average ��step returns for the cooperate and defect actions

against TFT can easily be determined as a function of an agent�s probability p of

cooperating� There are four cases for both cooperate and defect �keep in mind that

TFT must echo the agent�s moves	�

Cooperating vs� TFT

step � step � ��step return probability

CC CC ��� � ��� � ��� p�

CC DC ��� � ��� � ��� p��� p	

CD CC ��� � ��� � ��� p��� p	

CD DC ��� � ��� � ��� ��� p	�
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Defecting vs� TFT

step � step � ��step return probability

DC CD ��� � ��� � ��� p�

DC DD ��� � ��� � ��� p��� p	

DD CD ��� � ��� � ��� p��� p	

DD DD ��� � ��� � ��� ��� p	�

From the tables above� it is easy to derive that the expected ��step return is ���p�

��� for cooperate and ���p � ��� for defect� By plotting these linear equations over

the interval ������ it is clear that in terms of the average ��step return� cooperation

dominates defection for all action probabilities� For example� assuming that the

learner�s current probability of cooperating is ���� the average ��step returns are C�

���� and D� ����� so cooperation will seem to be the better action�
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Figure �� Average ��step return for cooperate and defect actions against TFT as a

function of the cooperation probability of the agent� Cooperation dominates defection

for all values of p�

Although the ��step return strategy works well against TFT� it does not work

well against another learner� Because the other learner is using a context�free policy�
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there is no �retaliation� of the type TFT is able to provide� With the punishment

for defecting removed� cooperation does not develop�

The results of this experiment illustrate that when a learner is faced with a problem

with incomplete state information� a window of future rewards may be useful� as is

often the case with a window of past sensations�

� Experiment 	� Learners with dierent sensations

The �nal set of experiments investigated what happens when learning agents with

dierent sensations play against each other in the IPD game� All of the agents tested

used lookup tables to store Q�values� They used Boltzmann exploration with anneal�

ing factors ����� or ������� The joint behavior of the agents was very sensitive to the

annealing schedule� Slower annealing tended to produce signi�cantly more coopera�

tion and other semi�cooperative loops and a wider variety of �nal looping patterns�

while the faster annealing schedule increased defection�

Agents with history windows of one� two� and three moves were tested� For

example� a history of one means that the agent�s sensation includes its own latest

move and its opponent�s latest move� The history lengths did aect the number

and type of looping patterns that developed� With longer histories� a wider variety

of patterns developed� and longer patterns developed� The longest looping pattern

encountered was of length �� CD ! DC ! CD ! DC ! CC ! CC ! CD ! DD� It developed

in the history � vs� history � game with slow annealing� In the asymmetric contests�

the agent with the longer history tended to fare slightly better than the agent with

the shorter history �Fig� �	� but not as much as had been expected� Overall� there

was clearly more cooperation when both agents had a history of one move� Fig� ��
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History � vs� History �
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History � vs� History �
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Figure �� Percentages of di�erent plays at exploration annealing rate ��				� 
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�� Conclusions and future research

Computational learning capabilities are an important component of intelligent agents�

particularly when their designers cannot anticipate all situations that the agents might

encounter and thus cannot preprogram the agents to operate as desired� Even when all

situations are known to the designer� the optimal action that the agent should take in

any particular situationmay be unknown� Reinforcement learning �RL	 addresses this

problem by promoting actions that lead to high rewards and by demoting others� RL

has been studied primarily within a single agent setting� In multiagent domains� RL

research has focused on games where the agents� payos are either totally positively

correlated �team problems	 or totally negatively correlated �zero�sum games	� This

paper addressed this gap by studying an RL algorithm�Q�learning�in the IPD

game� where the payos are neither totally positively nor totally negatively correlated�

While sel�sh behavior is necessary in zero�sum games of pure competition and in team

situations where the goals of each agent are identical to the goals of the team� it is

often self�defeating in situations between those two extremes� which makes learning

more di
cult�

In iterated games� the true state �de�ned by the entire history of stage game

plays	 of the environment increases in dimension on every iteration� Thus� an agent

can visit a state at most once� This is one reason why the convergence proof of Q�

learning does not apply� Two dierent approaches were taken to handle this problem�

In the �rst� the agent�s Q�values were stored in a lookup table that used a �xed

length history window as its sensation and ignored the older history� In the second� a

recurrent neural net was used for the Q�value storage� In theory� such a net can store

information from arbitrarily deep in the history� learn which features are important to

keep track of� and generalize from training examples to previously unobserved states�

Both types of agents learned to play optimally against a �xed policy �TFT	 for
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all settings of the discount factor� Playing against TFT is analogous to learning in a

single agent environment� because TFT does not learn� its mapping from sensations

to actions is �xed� Moreover� TFT uses only one previous move as its sensation� so

learning against TFT is equivalent to learning in an environment where the true state

does not increase in dimension and can be revisited�

Having multiple agents learning simultaneously makes the learning process con�

siderably more di
cult� In a ��player iterated game� an agent�s environment may be

nonstationary because its opponent is learning �changing its Q�values	 or changing

its exploration method �mapping from Q�values to action probabilities	� The agent�s

environment may be stochastic because the opponent may use a dierent decision

context than the agent� and the opponent may choose actions stochastically� Accord�

ing to theory� an agent should learn the optimal Q�values even in stochastic domains�

but in nonstationary settings the convergence proof does not apply�

Clear cooperation seldom emerged in experiments with two learners even though

the discount factor was set high to stimulate cooperation� Recurrent net learners

played non�cooperatively� but the �nal payos were always equal between the play�

ers� Lookup table learners played more cooperatively� but asymmetric loops occurred

where the payos favored one player over another� When a recurrent neural net

learner played a lookup table learner� the outcomes were non�cooperative and the

asymmetric loops were always to the lookup table learner�s advantage� Surprisingly�

increasing the learning rate � from ��� to � enhanced cooperation between recurrent

net players� The outcomes of games with non�exploring agents were sensitive to the

initialization of their Q�values� An agent stood a higher risk of being exploited if it

did not explore� Non�exploring agents also exhibited more looping than agents that

explored�

A variety of Boltzmann exploration schedules were tested between lookup table

learners� Slowing the annealing of exploration monotonically increased the sum of
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the agents� payos to a level slightly lower than that of total cooperation� DD plays

disappeared �rst� but CC plays also gave way to loops of length two such as CC�CD

and CD�DC� With very slow annealing processes� loops of type CC�CD prevailed�

Lookup table learners sensing dierent lengths of history were also tested� When

the learners sensed longer histories� a wider range of interaction patterns occurred�

and longer loops developed� When the learners sensed dierent history lengths� the

agent with the longer history window received slightly higher payos on average� With

both asymmetric and long symmetric memories� the outcomes were less cooperative

than when both agents sensed a history of length one�

Future work should examine more closely the eect of exploration strategies on

the types of patterns that develop� For example� what would happen between agents

using dierent annealing schedules or strategies other than Boltzmann exploration"

In addition� it would be interesting to train agents not just against a single opponent�

but against a variety of opponents� as would be the case in tournament situations�

This might enable the agents to learn more robust strategies�

In the long run it may be desirable to integrate sound learning methods into more

complex agent architectures� Learning could help an agent adapt to the society of

other agents and to the tasks at hand� There are numerous potential applications of

multi�agent learning� For example� agents could learn pricing� timing and commit�

ment strategies for competitive negotiations �Sandholm� ����� Sandholm and Lesser�

����b	� deliberation control strategies to reduce computation overhead and to choose

the best coalitions for computationally bounded agents �Sandholm and Lesser� �����

����a	� variable and value ordering heuristics for cooperative distributed constraint

satisfaction� and communication strategies� to name just a few�

��



Acknowledgment

We thank Andy Barto� Victor Lesser� David Fogel� and two anonymous reviewers for

helpful comments�

References

��� Ashlock� D�� Smucker� M� D�� Stanley� E� A� and Tesfatsion� L� ����� Preferential

Partner Selection in an Evolutionary Study of Prisoner�s Dilemma� This Issue�

��� Axelrod� R� ����� The Evolution of Cooperation� Basic Books� New York� NY�

��� Barto� A� G�� Sutton� R�� and Anderson� C� W� ����� Neuronlike Adaptive Ele�

ments That Can Solve Di
cult Learning Control Problems� IEEE Transactions

on Systems� Man� and Cybernetics� ������#����

��� Barto� A� ����� From chemotaxis to cooperativity� Abstracted exercises in neu�

ronal learning strategies� In Durbin� R�� Miall C� and Mitchison� G�� eds�� The

Computing Neuron� ��#��� Addison�Wesley�

��� Barto� A� G�� Bradtke� S� J� and Singh� S� P� ����� Learning to act using real�time

dynamic programming� Arti�cial Intelligence� �����#����

��� Barto� A� G� and Anandan� P� ����� Pattern recognizing stochastic learning

automata� IEEE Transactions on Systems� Man� and Cybernetics� ������#����

��� Barto� A� G� ����� Learning by statistical cooperation of self�interested neuron�

like adaptive elements� Human Neurobiology� �����#����

��� Bertsekas� D� P� and Tsitsiklis� J� N� ����� Parallel and Distributed Computation

Numerical Methods� Prentice�Hall� Englewood Clis� NJ�

��



��� Bradtke� S� J� ����� Distributed Adaptive Optimal Control of Flexible Struc�

tures� Computer Science Department� University of Massachusetts at Amherst�

Unpublished draft�

���� Crites� R� ����� Multi�Agent Reinforcement Learning� PhD dissertation proposal�

Computer Science Department� University of Massachusetts at Amherst�

���� Elman� J� ����� Finding structure in time� Cognitive Science� �����������

���� Fudenberg� D� and Tirole� J� ����� Game Theory� MIT Press� Cambridge� MA�

���� Haykin� S� ����� Neural Networks A Comprehensive Foundation� Macmillan�

New York�

���� Hecht�Nielsen� R� ����� Neurocomputing� Addison�Wesley� Reading� MA�

���� Kinney� M� and Tsatsoulis� C� ����� Learning Communication Strategies in Dis�

tributed Agent Environments� Working paper WP������ Intelligent Design Lab�

oratory� University of Kansas�

���� Kreps� D� ����� A Course in Microeconomic Theory� Princeton University Press�

Princeton� NJ�

���� Lin� L�J� ����� Reinforcement Learning for Robots Using Neural Networks� Ph�D�

dissertation� School of Computer Science� Carnegie Mellon University�

���� Littman� M� ����� Markov games as a framework for multi�agent reinforcement

learning� In Machine Learning� Proceedings of the Eleventh International Con�

ference� pp� �������� Rutgers University� NJ�

���� Littman� M� and Boyan� J� ����� A Distributed Reinforcement Learning Scheme

for Network Routing� Technical Report CMU�CS�������� Carnegie Mellon Uni�

versity�

��



���� Luce� D� and Raia� H� �����Games and Decisions� Reprint� Dover Publications�

New York� �����

���� Markey� K� L� ����� E
cient Learning of Multiple Degree�of�Freedom Control

Problems with Quasi�independent Q�agents� In Proceedings of the �		� Connec�

tionist Models Summer School� Erlbaum Associates� Hillsdale� NJ�

���� Narendra� K� S� and Thathachar� M� A� L� ����� Learning Automata An Intro�

duction� Prentice�Hall� Englewood Clis� NJ�

���� Nowak� M� and Sigmund� K� ����� A strategy of win�stay� lose�shift that outper�

forms tit�for�tat in the Prisoner�s Dilemma game� Nature� ���� ��#���

���� Rumelhart� D� E�� Hinton� G� E� and Williams� R� J� ����� Learning internal

representations by error propagation� In Rumelhart� D� E� and McClellan� J�

L�� Eds�� Parallel Distributed Processing� Explorations in the Microstructure of

Cognition� �� ���#���� MIT Press� Cambridge� MA�

���� Samuel� A� L� ����� Some studies in machine learning using the game of checkers�

IBM Journal on Research and Development� ���#���� Reprinted in Feigenbaum�

E� A� and Feldman� J�� Eds�� Computers and Thought� McGraw�Hill� New York�

�����

���� Sandholm� T� ����� An Implementation of the Contract Net Protocol Based on

Marginal Cost Calculations� In Proceedings of the Eleventh National Conference

on Arti�cial Intelligence 
AAAI�	��� pp� �������� Washington D�C�

���� Sandholm T� and Lesser� V� ����� Utility�Based Termination of Anytime Al�

gorithms� In Proceedings of the European Conference on Arti�cial Intelligence


ECAI�	�� Workshop on Decision Theory for Distributed Arti�cial Intelligence

Applications� pp� ������ Amsterdam� The Netherlands� Extended version� Uni�

versity of Massachusetts at Amherst� Computer Science Technical Report ������

��



���� Sandholm T� and Lesser� V� ����a� Coalition Formation among Bounded Ratio�

nal Agents� In Proceedings of the Fourteenth International Joint Conference on

Arti�cial Intelligence 
IJCAI�	��� Montreal� Canada�

���� Sandholm T� and Lesser� V� ����b� Issues in Automated Negotiation and Elec�

tronic Commerce� Extending the Contract Net Framework� In Proceedings of the

First International Conference on Multiagent Systems 
ICMAS�	��� San Fran�

cisco� CA�

���� Sandholm� T� and Nagendraprasad� M� ����� Learning Pursuit Strategies� Class

project for CmpSci ��� Machine Learning� Computer Science Department� Uni�

versity of Massachusetts at Amherst� Spring �����

���� Sen� S�� Sekaran� M� and Hale� J� ����� Learning to coordinate without shar�

ing information� In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence 
AAAI�	��� pp� �������� Seattle� Washington�

���� Shoham� Y� and Tennenholtz� M� ����� Co�Learning and the Evolution of Coor�

dinated Multi�Agent Activity�

���� Sugawara� T� and Lesser� V� ����� On�Line Learning of Coordination Plans� Com�

puter Science Technical Report ������ University of Massachusetts� Amherst�

���� Sutton� R� S� ����� Learning to Predict by the Methods of Temporal Dierences�

Machine Learning� �������

���� Tan� M� ����� Multi�Agent Reinforcement Learning� Independent vs� Coopera�

tive Agents� In Machine Learning� Proceedings of the Tenth International Con�

ference� pp� �������� University of Massachusetts� Amherst�

���� Tesauro� G� J� ����� Practical issues in temporal dierence learning� Machine

Learning� �����#����

��



���� Tsetlin� M� L� ����� Automaton Theory and Modeling of Biological Systems�

Academic Press� New York� NY�

���� Watkins� C� ����� Learning from delayed rewards� PhD Thesis� University of

Cambridge� England�

���� Wei�� G� ����� Learning to Coordinate Actions in Multi�Agent Systems� In Pro�

ceedings of the Thirteenth International Joint Conference on Arti�cial Intelli�

gence 
IJCAI�	��� pp� �������� Chamb$ery� France�

���� Williams� R� J� and Zipser� D� ����� A learning algorithm for continually running

fully recurrent neural networks� Neural Computation� �����#����

��


