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Abstract

A common paradigm in object recognition is to
extract symbolic and/or numeric features from
an image as a preprocessing step for classifica-
tion. The machine learning and pattern recogni-
tion communities have produced many techniques
for classifying instances given such features. In
contrast, learning to extract a distinguishing set
of features that will lead to unambiguous instance
classification has received comparatively little at-
tention. We propose a learning paradigm that
integrates feature extraction and classifier induc-
tion, exploiting their close interrelationship to give
improved classification performance.

Introduction

Object recognition systems can conceptually be di-
vided into two phases: feature extraction and recog-
nition. In the feature extraction phase, feature vectors
are extracted for each instance. In general, the features
are hand selected, as are their parameters, for exam-
ple the cut-off frequencies of a bandpass filter or the
window size of a convolution operator. In the recogni-
tion phase, the extracted feature vectors are classified
by comparing them to implicit or explicit object rep-
resentations.

In other words, the conventional approach to im-
age to symbol conversion is to use a fixed set of hand
selected features, where a feature is a specific feature
extraction procedure (FEP) with preset parameter val-
ues (see Figure 1). The learning algorithm induces a
classifier by partitioning the feature space into distinct
regions corresponding to different classes of objects.

*This work was supported by the Rome Air Devel-
opment Center of the Air Force Systems Command un-
der contract F30602-91-C-0037 and F30602-91-C-0038, by
the Office of Naval Research under contract N00014-92-J-
1450 and by the Advanced Research Projects Agency (via
Tacom) under contract DAAFE07-91-C-R035. The content
does not necessarily reflect the position or the policy of
the Government, and no official endorsement should be
inferred.

Classification success is directly dependent on whether
the selected features are sufficient to distinguish among
the classes. To increase the likelihood of including a
distinguishing set of features, some systems use a large
set of features. The drawbacks of such an approach
are: a need for greater computational resources (to
compute the additional features), redundant, possibly
confusing features for the learning element, and a need
for more training examples to cover the expanded fea-
ture space. Other classification systems restrict their
domains of applicability to tasks for which the hand-
selected features are known to be sufficient.
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Figure 1: Conventional approach to learning
image to symbol conversion.

For complex scenarios that are characterized by
varying image to noise ratio, unpredictable activity
and possible object occlusion, the optimal features are
neither easily identifiable nor stationary. Adaptive fea-
ture extraction (adaptive front-end) capabilities are
necessary to cope with such perceptual tasks. The
Schema Learning System [Draper93], Goldie [Kohl87],
and TRIPLES [Ming90] concentrate on selecting a sub-
set from a large but finite set of features to efficiently
disambiguate classes. Flexible software architectures
[Bhanu90, Lesser93] have been developed for adapting
FEP and parameters to the environment being moni-
tored. The above systems rely, however, on either im-
plicit or explicit hand-crafted object descriptions. The
issue of automating the acquisition of object descrip-
tions for such adaptive front-end systems has not been
addressed.

The space of potential features is infinite in adaptive
front-end systems because the parameters of feature
extraction procedures may take on an infinite number



of values. Each parameter instantiation gives rise to a
distinct feature. The features are considered distinct
in that when different instantiation of a FEP are ap-
plied to an image, the feature vector or “signatures”
obtained may be different. For example, consider an
edge detection algorithm that first smoothes the im-
age before looking for discontinuities. When such a
FEP is applied to an image with two nearby parallel
discontinuities, it will yield zero, one or two edges de-
pending on the amount of smoothing. However, the
signatures are consistent in that the loss of detail in-
herent in smoothing can be predicted given knowledge
about the FEP and the image.

The edge extraction example serves to illustrate that
features are a function of feature extraction procedures
and their associated parameter values, that is, instan-
tiated feature extraction procedures (IFEPs). In the
absence of domain knowledge, the signatures obtained
from two distinct parameterizations of a single FEP
are not directly comparable. Additionally, the de-
gree of detail that must be extracted cannot be pre-
determined, but is a function of the recognition task
at hand. For example, the more similar the object
classes, greater the detail that may be necessary to
disambiguate among them.

Since feature extraction, object representation, and
classification are so closely tied in perceptual domains,
we propose a learning paradigm that integrates them.
Learning image to symbol conversion is envisaged as
a search process in the infinite space of features to-
wards selecting a subset that performs to satisfaction
the given classification task.

We present details of the proposed learning
paradigm, and discuss issues such as object representa-
tions, selection of features, termination criteria, and re-
processing effort. Finally we present some initial ideas
for testing the paradigm and our conclusions.

Integrated Feature Extraction
and Classifier Induction

The proposed learning paradigm integrates feature ex-
traction, object representation and classifier induction,
exploiting their close interrelationship in an attempt
to improve classification performance; see Figure 2.
The underlying principle is to iteratively extract ad-
ditional/alternate features until the desired classifica-
tion goal is attained. Note the feedback from the
Learning Element to the Feature Extractor via
the FEP /param Adaptor.

The input to the system consists of image/label
pairs. The Feature Extractor applies the initial fea-
ture extraction procedures(FEP) with selected param-
eter values, giving a feature vector (of one or more
tuples). This forms the input to the Learning El-
ement. During successive iterations, in addition to
the new features extracted, previously extracted but
not discarded features, are provided to the Learning
Element.

1l

. . feature N
(image,label) pairs | Feature vector | Learning
fixed — | Extractor [ Fgpg | Element
FEPs/params params
new ambiguous/
FEPs/params €erroneous
Adaptor
FEPs/params

Figure 2: Integrated Feature Extraction
and Classifier Induction

The Learning Element can be any type of clas-
sifier, including an artificial neural network, decision
tree, or an instance based classifier. Its goal is to in-
duce a classifier using the object representations pro-
vided by the feature extractor. Training terminates
when the classification goal is met. For instance, classi-
fication goals such as minimizing misclassification cost,
or maximizing classification accuracy may be used. If
the classification goal is not met, the Learning El-
ement declares a failure and passes control to the
FEP /param Adaptor along with information about
which instances and/or classes of objects were poorly
classified, and the feature extraction procedures and
parameters used.

The goal of the FEP /param Adaptor is to sug-
gest alternate IFEPs to achieve the classification goal.
It does so based on the information provided by the
Learning Element, either recommending alternate
parameters for the current FEP or a new FEP (with
parameters). In the absence of domain knowledge, a
gradient approach may be used. Gradient approaches
vary slightly one or more of the independent variables
in directions which cause the value of the dependent
variable to move in the desired direction. The gra-
dient method may be generalized to include features.
For instance, consider a goal of maximizing classifica-
tion accuracy. If a given feature provides improved
performance, a related feature would be a candidate
for further exploration. Related could be in terms of
the physical quantity being measured or the method
of manipulation. One or both could be varied slightly.
Consider a two dimensional color image. Let us as-
sume that the intensity in a particular spectral band
has significantly contributed to classification success.
A gradient heuristic is to explore the spectral content
of adjoining bands. This corresponds to measuring a
related physical quantity. Alternately, texture infor-
mation could be extracted from the image focusing on
the promising band. This would correspond to vary-
ing the manipulation technique. On the other hand, if
there is no perceived improvement in meeting the clas-
sification goal, either an unrelated or random feature
could be explored, which might dislodge the system
from a possible local minima.



Yet another approach would be to use Case Based
Reasoning techniques to aid in the search for appropri-
ate features (IFEPs). As always, if domain knowledge
is available, it is used in recommending alternate fea-
tures, i.e., IFEPs.

Discussion
Object Representations

In the context of adaptive feature extraction systems,
the features extracted are a function of the IFEPs used.
As a result, three different approaches to object repre-
sentation are possible: a canonical representation, i.e.,
arepresentation that encompasses all object signatures
in a comprehensive manner, uniform feature vectors (
features and their number not prefixed, but uniform),
and finally variable feature vectors (features and their
number variable).

To construct canonical representations domain
knowledge is necessary. It involves combining object
signatures obtained using different IFEPS. Such a rep-
resentation would be more comprehensive, with the
advantage of transparency to interpretation and pre-
diction tasks. Such a representation would lend itself
to conventional matching approaches.

A uniform feature vector representation would have
the advantage of ease of matching without significant
domain knowledge requirements. On the other hand it
is computationally inefficient because it requires that
the union of all the features, deemed relevant during
training, be computed and stored for each instance.
This is regardless of the pertinence of the features to
individual object classes. For efficiency and concise-
ness, a variable feature vector representation would be
more attractive. Object matching using conventional
distance metrics though becomes infeasible. Tenta-
tively, we are exploring a distance metric that takes
into consideration only shared features. When used in
the recognition phase such a metric would direct fur-
ther feature extraction, in order to disambiguate pos-
sible classification alternatives.

The choice of object representation is also a func-
tion of the type of classifier used. For instance, neural
net classifiers require fixed length feature vectors, espe-
cially during training. Variable length feature vectors
can be employed by both decision tree and instance
based classifiers. During the object recognition phase,
in the context of decision tree and instance based clas-
sifiers, feature extraction would be guided by the tests
at the nodes and the distance metric respectively. For
recognition tasks that are complicated by object occlu-
sion and unpredictable activity, canonical models are
more appropriate. Our intuition is that the choice of
classifier and object representation may be application
dependent.

Features

The emphasis of the learning paradigm is to identify a
satisficing set of features with respect to the recogni-

tion task and classification goal. Two key questions are
how large should the feature set be, and what criteria
should be used to include or discard a feature:

Feature set size: Larger feature sets carry
with them the cost of increased computational require-
ments. This can be significant when neural net classi-
fiers are used. When a decision tree classifier is used
irrelevant features tend to carry lower weight or do
not get tested at all [Brodley93]. Large feature sets
also require larger training sets, which may be an issue
if training data is difficult to obtain.

Discarding a feature: Features that are irrele-
vant can be identified by considering the improvement
in classification accuracy as a result of including them
consecutively. Consider a feature set [f] and the inclu-
sion of a new feature f’. If the new feature set yields
little or no improvement, it implies that either f’ is
subsumed by one or more features in [f] or that f’ is
irrelevant to the recognition task. Yet another possi-
bility is to discard one or more "unused” features from
a set of features by examining the induced classifier.
This translates to identifying features that either carry
low weights in the case of artificial neural network clas-
sifiers. With respect to decision tree classifiers, these
could be features tested for only a small proportion of
training instances, or carrying a low weight in a test.

Termination Criteria

The quality of a classifier is defined with respect to the
classification goal. Several criteria are possible, such
as reducing misclassification cost, maximizing classi-
fication accuracy, minimizing classification cost with
respect to a fixed minimum classification accuracy and
combinations of these. When no domain specific ter-
mination criterion is given, training may be terminated
when it becomes apparent that a local optima has been
reached, or a certain number of features have been
tested or computational limits such as time or space
exceeded.

Experiments

Within this paradigm, we are first looking at simplified
problems and domains, before addressing the problem
in its full generality. As a first step, we are considering
the problem of pixel classification in a remote sensing
domain. Features can be as simple as the intensity of
a spectral channel or more complex, such as a spatial
property governed by mask parameters (window size,
measure etc). Although any classification technique
can be used within this framework, we are using a Lin-
ear Machine Decision Tree (LMDT) [Brodley93]. We
use a the thermal training rule which allows for mul-
tiple object classes. We shall use a gradient descent
approach in our search of the feature space.

We are testing the paradigm on the Wien landsat
data [Wein]. The Wien data consists of 512 x 512
sized images in 7 spectral channels. Also provided is
a 512 x 512 ground truth table. Each pixel belongs to



one of four classes: water, agriculture, built-up-land or
forest. Our goal is to automatically suggest and test
features to give improved performance on identifying
pixel class.

Conclusions

A novel aspect of our approach is that it recognizes
the close interrelationship between feature extraction
and object representation. By learning the classifier
and the feature extraction procedure together, reliable
and efficient classifiers can be induced, as opposed to
systems that are limited to the use of fixed feature
extraction procedures that might not necessarily be
good.
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