
75

An Ensemble Architecture for Learning Complex Problem-Solving
Techniques from Demonstration

XIAOQIN SHELLEY ZHANG and BHAVESH SHRESTHA, University of Massachusetts
at Dartmouth
SUNGWOOK YOON and SUBBARAO KAMBHAMPATI, Arizona State University
PHILLIP DIBONA, JINHONG K. GUO, DANIEL MCFARLANE, MARTIN O. HOFMANN,
and KENNETH WHITEBREAD, Lockheed Martin Advanced Technology Laboratories
DARREN SCOTT APPLING, ELIZABETH T. WHITAKER, and ETHAN B. TREWHITT,
Georgia Tech Research Institute
LI DING, JAMES R. MICHAELIS, DEBORAH L. MCGUINNESS,
and JAMES A. HENDLER, Rensselaer Polytechnic Institute
JANARDHAN RAO DOPPA, CHARLES PARKER, THOMAS G. DIETTERICH,
PRASAD TADEPALLI and WENG-KEEN WONG, Oregon State University
DEREK GREEN, ANTON REBGUNS, and DIANA SPEARS, University of Wyoming
UGUR KUTER, University of Maryland
GEOFF LEVINE and GERALD DEJONG, University of Illinois at Urbana
REID L. MACTAVISH, SANTIAGO ONTAÑÓN, JAINARAYAN RADHAKRISHNAN,
and ASHWIN RAM, Georgia Institute of Technology
HALA MOSTAFA, HUZAIFA ZAFAR, CHONGJIE ZHANG, DANIEL CORKILL,
and VICTOR LESSER, University of Massachusetts, Amherst
ZHEXUAN SONG, Fujitsu Laboratories of America

We present a novel ensemble architecture for learning problem-solving techniques from a very small number
of expert solutions and demonstrate its effectiveness in a complex real-world domain. The key feature of
our “Generalized Integrated Learning Architecture” (GILA) is a set of heterogeneous independent learning
and reasoning (ILR) components, coordinated by a central meta-reasoning executive (MRE). The ILRs are
weakly coupled in the sense that all coordination during learning and performance happens through the
MRE. Each ILR learns independently from a small number of expert demonstrations of a complex task.
During performance, each ILR proposes partial solutions to subproblems posed by the MRE, which are then
selected from and pieced together by the MRE to produce a complete solution. The heterogeneity of the
learner-reasoners allows both learning and problem solving to be more effective because their abilities and
biases are complementary and synergistic. We describe the application of this novel learning and problem
solving architecture to the domain of airspace management, where multiple requests for the use of airspaces
need to be deconflicted, reconciled, and managed automatically. Formal evaluations show that our system
performs as well as or better than humans after learning from the same training data. Furthermore, GILA
outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture
for learning and problem solving.

Distribution Statement (Approved for Public Release, Distribution Unlimited). This material is based upon
work supported by DARPA through a contract with Lockheed Martin (prime contract #FA8650-06-C-7605).
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA, Lockheed Martin or the U.S. Government.
Author’s address: X. S. Zhang, University of Massachusetts at Dartmouth, 285 Old Westport Road, North
Dartmouth, MA 02747-2300; email: x2zhang@umassd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 2157-6904/2012/09-ART75 $15.00

DOI 10.1145/2337542.2337560 http://doi.acm.org/10.1145/2337542.2337560

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:2 X. S. Zhang et al.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning—Knowledge acquisition

General Terms: Design, Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Ensemble architecture, learning from demonstration, complex problem-
solving

ACM Reference Format:
Zhang, X. S., Shrestha, B., Yoon, S., Kambhampati, S., DiBona, P., Guo, J. K., McFarlane, D., Hofmann,
M. O., Whitebread, K., Appling, D. S., Ontañón, S., Radhakrishnan, J., Whitaker, E. T., Trewhitt, E. B.,
Ding, L., Michaelis, J. R., McGuinness, D. L., Hendler, J. A., Doppa, J. R., Parker, C., Dietterich, T. G.,
Tadepalli, P., Wong, W.-K., Green, D., Rebguns, A., Spears, D., Kuter, U., Levine, G., DeJong, G., MacTavish,
R. L., Ram, A., Mostafa, H., Zafar, H., Zhang, C., Corkill, D., Lesser, V., and Song, Z. 2012. An ensemble
architecture for learning complex problem-solving techniques from demonstration. ACM Trans. Intell. Syst.
Technol. 3, 4, Article 75 (September 2012), 38 pages.
DOI = 10.1145/2337542.2337560 http://doi.acm.org/10.1145/2337542.2337560

1. INTRODUCTION

We present GILA (Generalized Integrated Learning Architecture), a learning and
problem-solving architecture that consists of an ensemble of subsystems that learn to
solve problems from a very small number of expert solutions. Because human experts
who can provide training solutions for complex tasks such as airspace management
are rare and their time is expensive, our learning algorithms are required to be highly
sample-efficient. Ensemble architectures such as bagging, boosting, and co-training
have proved to be highly sample-efficient in classification learning [Blum and Mitchell
1998; Breiman 1996; Dietterich 2000b; Freund and Schapire 1996]. Ensemble ar-
chitectures have a long history in problem solving as well, starting with the classic
Hearsay-II system to the more recent explosion of research in multiagent systems
[Erman et al. 1980; Weiss 2000]. In this article, we explore an ensemble learning
approach for use in problem solving. Both learning and problem solving are excep-
tionally complicated in domains such as airspace management, due to the complexity
of the task, the presence of multiple interacting subproblems, and the need for near-
optimal solutions. Unlike in bagging and boosting, where a single learning algorithm
is typically employed, our learning and problem-solving architecture has multiple
heterogeneous learner-reasoners that learn from the same training data and use their
learned knowledge to collectively solve problems. The heterogeneity of the learner-
reasoners allows both learning and problem solving to be more effective because their
abilities and biases are complementary and synergistic. The heterogeneous GILA
architecture was designed to enable each learning component to learn and perform
without limitation from a common system-wide representation for learned knowledge
and component interactions. Each learning component is allowed to make full use of
its idiosyncratic representations and mechanisms. This feature is especially attractive
in complex domains where the system designer is often not sure which components
are the most appropriate, and different parts of the problem often yield to different
representations and solution techniques. However, for ensemble problem solving to be
truly effective, the architecture must include a centralized coordination mechanism
that can divide the learning and problem-solving tasks into multiple subtasks that
can be solved independently, distribute them appropriately, and during performance,
judiciously combine the results to produce a consistent complete solution.

In this article, we present a learning and problem-solving architecture that consists
of an ensemble of independent learning and reasoning components (ILRs) coordinated
by a central subsystem known as the “meta-reasoning executive” (MRE). Each ILR

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:3

has its own specialized representation of problem-solving knowledge, a learning com-
ponent, and a reasoning component which are tightly integrated for optimal perfor-
mance. We considered the following three possible approaches to coordinate the ILRs
through the MRE during both learning and performance.

(1) Independent Learning and Selected Performance. Each ILR independently learns
from the same training data and performs on the test data. The MRE selects one
out of all the competing solutions for each test problem.

(2) Independent Learning and Collaborative Performance. The learning is indepen-
dent as before. However, in the performance phase, the ILRs share individual sub-
problem solutions and the MRE selects, combines, and modifies shared subproblem
solutions to create a complete solution.

(3) Collaborative Learning and Performance. Both learning and performance are col-
laborative, with multiple ILRs sharing their learned knowledge and their solutions
to the test problems.

Roughly speaking, in the first approach, there is minimal collaboration only in the
sense of a centralized control that distributes the training examples to all ILRs and se-
lects the final solution among the different proposed solutions. In the second approach,
learning is still separate, while there is stronger collaboration during the problem solv-
ing in the sense that ILRs solve individual subproblems, whose solutions are selected
and composed by the MRE. In the third approach, there is collaboration during both
learning and problem solving; hence, a shared language would be required for com-
municating aspects of learned knowledge and performance solution if each ILR uses
a different internal knowledge representation. An example of this approach is the
POIROT system [Burstein et al. 2008], where all components use one common repre-
sentation language and the performance is based on one single learned hypothesis.

The approach we describe in this article, namely, independent learning with limited
sharing and collaborative performance is closest to the second approach. It is simpler
than the third approach where learning is collaborative, and still allows the benefits
of collaboration during performance by being able to exploit individual strengths of
different ILRs. Since there is no requirement to share the learned knowledge, each
ILR adopts an internal knowledge representation and learning method that is most
suitable to its own performance. Limited sharing of learned knowledge does happen
in this version of the GILA architecture, though it is not required.1

The ILRs use shared and ILR-specific knowledge in parallel to expand their private
internal knowledge databases. The MRE coordinates and controls the learning and
the performance process. It directs a collaborative search process, where each search
node represents a problem-solving state and the operators are subproblem solutions
proposed by ILRs. Furthermore, the MRE uses the learned knowledge provided
by ILRs to decide the following: (1) which subproblem to work on next, (2) which
subproblem solution (search node) to select for exploration (expansion) next, (3) when
to choose an alternative for a previous subproblem that has not been explored yet, and
(4) when to stop the search process and present the final solution. In particular, GILA
offers the following features:

— Each ILR learns from the same training data independently of the other ILRs, and
produces a suitable hypothesis (solution) in its own language.

1There are two ILRs sharing their learned constraint knowledge. This is easy because they use the same
internal representation format for constraint knowledge; therefore, no extra communication translation
effort is needed (see Section 4.3.1 for more details).

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:4 X. S. Zhang et al.

— A blackboard architecture [Erman et al. 1980] is used to enable communication
among the ILRs and the MRE and to represent the state of learning/performance
managed by the MRE.

— During the performance phase, the MRE directs the problem-solving process by
subdividing the overall problem into subproblems and posting them on a centralized
blackboard structure.

— Using prioritization knowledge learned by one of the ILRs, the MRE directs the
ILRs to work on one subproblem at a time. Subproblems are solved independently
by each ILR, and the solutions are posted on the blackboard.

— The MRE conducts a search process, using the subproblem solutions as operators,
in order to find a path leading to a conflict-free goal state. The path combines ap-
propriate subproblem solutions to create a solution to the overall problem.

There are several advantages of this architecture.

— Sample Efficiency. This architecture facilitates rapid learning, since each exam-
ple may be used by different learners to learn from different small hypothesis
spaces. This is especially important when the training data is sparse and/or
expensive.

— Semi-Supervised Learning. The learned hypotheses of our ILRs are diverse even
though they are learned from the same set of training examples. Their diversity
is due to multiple independent learning algorithms. Therefore, we can leverage
unlabeled examples in a co-training framework [Blum and Mitchell 1998]. Multiple
learned hypotheses improve the solution quality, if the MRE is able to select the
best from the proposed subproblem solutions and compose them.

— Modularity and Extensibility. Each ILR has its own learning and reasoning
algorithm; it can use specialized internal representations that it can efficiently
manipulate. The modularity of GILA makes it easier to integrate new ILRs into
the system in a plug-and-play manner, since they are not required to use the same
internal representations.

This work has been briefly presented in Zhang et al. [2009]. However, this article
provides significantly more details about the components, the GILA architecture, as
well as discussions of lessons learned and additional experimental results about the
effect of demonstration content and the effect of practice. In Section 2, we present
the ensemble learning architecture for complex problem solving, which is imple-
mented by GILA. We then introduce the airspace management domain (Section 3),
in which GILA has been extensively evaluated. Components in GILA include the
MRE (Section 5) and four different ILRs: the symbolic planner learner-reasoner
(SPLR) (Section 4.1), the decision-theoretic learner-reasoner (DTLR) (Section 4.2),
the case-based learner-reasoner (CBLR) (Section 4.3), and the 4D-deconfliction and
constraint learner-reasoner (4DCLR) (Section 4.4). In rigorously evaluated compar-
isons (Section 6), GILA was able to outperform human novices who were provided
with the same background knowledge and the same training examples as GILA, and
GILA used much less time than human novices. Our results show that the quality of
the solutions of the overall system is better than that of any individual ILR. Related
work is presented in Section 7. Our work demonstrates that the ensemble learning
and problem-solving architecture as instantiated by GILA is an effective approach
to learning and managing complex problem solving in domains such as airspace
management. In Section 8, we summarize the lessons learned from this work and
discuss how GILA can be transferred to other problem domains.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:5

Fig. 1. Ensemble learning and problem solving architecture.

2. ENSEMBLE LEARNING AND PROBLEM-SOLVING ARCHITECTURE

In this section, we will give an overview of the GILA architecture, presenting the rea-
sons behind our choice of this architecture and explaining its usefulness in a variety
of different settings.

2.1. Problem Statement

Given a small set of training demonstrations, pairs of problems and corresponding
solutions {〈Pi,Si〉}m

i=1 of task T , to solve a complex problem, we want to learn the general
problem-solving skills for the task T .

2.2. GILA’s Ensemble Architecture

Most of the traditional ensemble learning algorithms for classification, such as
bagging or boosting, use a single hypothesis space and a single learning method. We
use multiple hypothesis spaces and multiple learning methods in our architecture
corresponding to each Independent Learner-Reasoner (ILR), and a Meta Reasoning
Executive (MRE) that combines the decisions from the ILRs. Figure 1 shows GILA’s
ensemble architecture.

Meta Reasoning Executive (MRE). The MRE is the decision maker in GILA. It
makes decisions such as which subproblem spi to focus on next (search-space ordering)
and which subproblem solution to explore among all the candidates provided by ILRs
(evaluation).

Independent Learner-Reasoner (ILR). We developed four ILRs for GILA, as shown
in Figure 1. Each ILR learns how to solve subproblems spi from the given set of train-
ing demonstrations {〈Pi,Si〉}m

i=1 for task T . Each ILR uses a different hypothesis repre-
sentation and a unique learning method, as shown in Table I.

The first ILR is a symbolic planner learner-reasoner (SPLR) [Yoon and
Kambhampati 2007], which learns a set of decision rules that represent the ex-
pert’s reactive strategy (what to do). It also learns detailed tactics (how to do it)
represented as value functions. This hierarchical learning closely resembles the
reasoning process that a human expert uses when solving the problem. The second
ILR is a decision-theoretic learner-reasoner (DTLR) [Parker et al. 2006], which learns a

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:6 X. S. Zhang et al.

Table I. The Four Independent Learner-Reasoners (ILRs)

Name Hypothesis Representation Performance Functions
SPLR decision rules (what to do) propose subproblem solutions

value functions (how to do)
DTLR cost function propose subproblem solutions

provide evaluations of subproblem solutions
CBLR feature-based cases propose subproblem solutions

rank subproblems
4DCLR safety constraints generate resulting states of applying subproblem solutions

check safety violations

cost function that approximates the expert’s choices among alternative solutions. This
cost function is useful for GILA decision-making, assuming that the expert’s solution
optimizes the cost function subject to certain constraints. The DTLR is especially suit-
able for the types of problems that GILA is designed to solve. These problems generate
large search spaces because each possible action has numerical parameters whose
values must be considered. This is also the reason why a higher-level search is con-
ducted by the MRE, and a much smaller search space is needed in order to find a good
solution efficiently. The DTLR is also used by the MRE to evaluate the subproblem
solution candidates provided by each ILR. The third ILR is a case-based learner-
reasoner (CBLR) [Muñoz-Avila and Cox 2007]. It learns and stores a feature-based
case database. The CBLR is good at learning aspects of the expert’s problem solving
that are not necessarily explicitly represented, storing the solutions and cases, and
applying this knowledge to solve similar problems. The last ILR is a 4D-deconfliction
and constraint learner-reasoner (4DCLR), which consists of a Constraint Learner (CL)
and a Safety Checker (SC). The 4DCLR learns and applies planning knowledge in the
form of safety constraints. Such constraints are crucial in the airspace management
domain. The 4DCLR is also used for internal simulation to generate an expected world
state; in particular, to find the remaining conflicts after applying a subproblem solu-
tion. The four ILR components and the MRE interact through a blackboard using a
common ontology [Michaelis et al. 2009]. The blackboard holds a representation of the
current world state, the expert’s execution trace, some shared learned knowledge such
as constraints, subproblems that need to be solved, and proposed partial solutions
from ILRs.

We view solving each problem instance of the given task T as a state-space search
problem. The start state S consists of a set of subproblems sp1, sp2, . . . , spk. For exam-
ple, in the airspace management problem, each subproblem spi is a conflict involving
airspaces. At each step, the MRE chooses a subproblem spi and then gives that cho-
sen subproblem to each ILR for solving. ILRs publish their solutions for the given
subproblem on the blackboard, and the MRE then picks the best solution using the
learned knowledge for evaluation. This process repeats until a goal state is found or
a preset time limit is reached. Since the evaluation criteria are also being learned by
ILRs, learning to produce satisfactory solutions of high quality depends on how well
the whole system has learned.

Connections to Search-Based Structured Prediction. Our approach can be viewed
as a general version of Search-Based Structured Prediction. The general framework
of search-based structured prediction [Daumé III and Marcu 2005; Daumé III et al.
2009] views the problem of labeling a given structured input x by a structured output
y as searching through an exponential set of candidate outputs. LaSo (Learning as
Search optimization) was the first work in this paradigm. LaSo tries to rapidly learn

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:7

Fig. 2. GILA’s system process.

a heuristic function that guides the search to reach the desired output y based on all
the training examples. Xu et al. [2007] extended this framework to learn beam search
heuristics for planning problems. In the case of greedy search [Daumé III et al. 2009],
the problem of predicting the correct output y for a given input x can be seen as making
a sequence of smaller predictions y1, y2, . . . , yT with each prediction yi depending on
the previous predictions. It reduces the structured prediction problem to learning a
multiclass classifier h that predicts the correct output yt at time t based on the input
x and partial output y1, y2, . . . , yt−1. In our case, each of these smaller predictions yi
corresponds to solutions of the subproblems spi, which can be more complex (structured
outputs) than a simple classification decision.

2.3. System Process

GILA’s system process is divided into three phases: demonstration learning, practice
learning and collaborative performance, as shown in Figure 2. During the demonstra-
tion learning phase, a complete, machine-parsable trace of the expert’s interactions
with a set of application services is captured and made available to the ILRs via the
blackboard. Each ILR uses shared world, domain, and ILR-specific knowledge to ex-
pand its private models, both in parallel during demonstration learning and in col-
laboration during the practice learning. During the practice learning phase, GILA is
given a practice problem (i.e., a set of airspaces with conflicts) and a goal state (with no
remaining conflicts) but it is not told how this goal state was achieved (via actual mod-
ifications to those airspaces). The MRE then directs all ILRs to collaboratively attempt
to solve this practice problem and generate a solution that is referred to as a “pseudo
expert trace.” ILRs can learn from this pseudo expert trace (assuming it is successful),
thus indirectly sharing their learned knowledge through practice. In the collaborative
performance phase, GILA solves an evaluation problem based on the knowledge it has
already learned. A sequential learning feature has been implemented in GILA, so that
each ILR can build upon its previous learned knowledge by loading a file that contains
its learned knowledge when the system starts.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:8 X. S. Zhang et al.

2.3.1. Demonstration Learning - Individual ILR Learning. The system is provided with a
set of training examples (demonstrations) {〈Pi,Si〉}m

i=1 of task T and the correspond-
ing training examples {〈Pi,Ri〉}m

i=1 of ranking the subproblems when performing task
T . Learning inside the ensemble architecture happens as follows. First, the system
learns a ranking function R using a rank-learning algorithm. This function R provides
an order in which subproblems should be solved. Then each ILR i learns a hypothesis
hILRi from the given training examples; this process is called Individual ILR Learn-
ing. We will describe the learning methodology of each ILR in Section 4. Recall that
ILRs are diverse because they use different hypothesis representations and different
learning methods, as shown in Table I.

ALGORITHM 1: ENSEMBLE SOLVING PROCESS

Input: problem instance P of task T ;
learned hypothesis of each ILR: hILR1 , hILR2 , . . . , hILRn;
ranking function R to rank subproblems;

Output: solution of the given problem sol.
1: Initialize the start state s = sp1, sp2, . . . , spk

2: root node n = new Node(s)
3: Add node n to the open list
4: Create evaluation function E using hILR1 , hILR2 , . . . , hILRn.
5: repeat
6: node n′ = best node popped from the open list based on evaluation E(s′), s′ = state(n′)
7: if s′ is goal state then
8: sol = sequence of subproblem solutions applied from start state s to goal state s′

9: return solution of the given problem: sol
10: else
11: sp focus = highest ranked subproblem in current state s′ based on ranking R(s′)
12: for each ILR i = 1 to n do
13: Solve subproblem: solILRi = SolveH(hILRi, s′, sp focus)
14: new resulting state si = applying solILRi to current state s′

15: add new Node(si) to the open list
16: end for
17: end if
18: until open list is empty or a preset time limit is reached
19: return no solution found

2.3.2. Ensemble Solving - Collaborative Performance. Algorithm 1 describes how a new
problem instance P for task T is solved with collaborative performance. The start
state s is initialized as the set of subproblems sp1, sp2, . . . , spk. The highest ranked
subproblem sp focus is chosen based on the learned ranking function R. The MRE in-
forms all ILRs of the current focused subproblem sp focus and each ILR i publishs its
solution(s) solILRi, which may be a solution to a different subproblem if one ILR can-
not find a solution to the current focused subproblem sp focus. New states, resulting
from applying each of these subproblem solutions to the current state, are generated
by the 4DCLR through internal simulation. These new states are evaluated based on
an evaluation function E , which is created using the knowledge learned by ILRs. The
MRE then selects the best state to explore n′, according to E . This process is repeated
until reaching a goal state, that is, a state where all subproblems are solved, or a pre-
set time limit is reached. If a goal state is found, then a solution is returned, which

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:9

is the sequence of subproblem solutions applied from the start state to the goal state;
otherwise, the system reports no solution found.

This ensemble solving process is a best-first search, using the subproblem solutions
provided by ILRs as search operators. This process can be viewed as a hierarchical
search since each ILR is searching for subproblem solutions in a lower-level internal
search space with more details. The top-level search space is therefore much smaller
because each ILR is only allowed to propose a limited number of subproblem solutions.
The performance of this search process is highly dependent on how well each ILR
has learned. A solution can only be found if, for each subproblem, at least one ILR
has learned how to solve it. A better solution can be found when some ILRs have
learned to solve a subproblem in a better way and also some ILRs have learned to
evaluate problem states more accurately. A solution can be found quicker (with less
search effort) if the learned ranking function can provide a more beneficial ordering of
subproblems. The search can also be more efficient when a better evaluation function
has been learned, which can provide an estimated cost closer to the real path cost. As
a search process, the ensemble solving procedure provides a practical approach for all
ILRs to collaboratively solve a problem without directly communicating their learned
knowledge, which is in heterogeneous representations, as shown in Table I. Each ILR
has unique advantages, and the ensemble works together under the direction of the
MRE to achieve the system’s goals, which cannot be achieved by any single ILR. The
conjecture that no single ILR can perform as well as the multi-ILR system is supported
by experimental results presented in Section 6.3.1.

ALGORITHM 2: PRACTICE LEARNING

Input: Lp = {〈Pi,Si〉}m
i=1: the set of training examples for solving problems of task T

(demonstrations);
Lr = {〈Pi,Ri〉}m

i=1: the set of training examples for learning to rank subproblems;
U = set of practice problem instances for task T .

Output: the learned hypothesis of each ILR: hILR1 , hILR2 , . . . , hILRn and ranking function R.

1: Learn hypotheses hILR1 , hILR2 , . . . , hILRn from solved training examples Lp

2: Learn Ranking function R from Lr

3: Lnew = Lp

4: repeat
5: for each problem P ∈ U do
6: S = Ensemble-Solve(P, hILR1 , hILR2 , . . . , hILRn, R)
7: Lnew = Lnew

⋃ 〈P,S〉
8: end for
9: Re-learn hILR1 , hILR2 , . . . , hILRn from new examples Lnew

10: until convergence or maximum co-training iterations
11: return the learned hypothesis of each ILR hILR1 , hILR2 , . . . , hILRn and ranking function R

2.3.3. Practice Learning. In practice learning, we want to learn from a small set of
training examples,

〈
Lp,Lr

〉
for solving problems and for learning to rank subproblems

respectively, and a set of unsolved problems U . Our ideas are inspired by the iterative
co-training algorithm [Blum and Mitchell 1998]. The key idea in co-training is to take
two diverse learners and make them learn from each other using the unlabeled data.
In particular, co-training trains two learners h1 and h2 separately on two views φ1 and
φ2, which are conditionally independent of the other given the class label. Each learner
will label some unlabeled data to augment the training set of the other learner, and

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:10 X. S. Zhang et al.

then both learners are re-trained on this new training set. This process is repeated
for several rounds. The difference or diversity between the two learners helps when
teaching each other. As the co-training process proceeds, the two learners will become
more and more similar, and the difference between the two learners becomes smaller.
More recently, a result that shows why co-training without redundant views can work
is proved in Wang and Zhou [2007]. Wang and Zhou show that as long as learners are
diverse, co-training will improve the performance of the learners.

Any set of learning algorithms for problem solving could be used as long as they
produce diverse models, which is an important requirement for practice learning to
succeed [Blum and Mitchell 1998; Wang and Zhou 2007]. In our case, there are four
different learners (ILRs) learning in a supervised framework with training demon-
strations (Lp, Lr). The goal of supervised learning is to produce a model which can
perfectly solve all the training instances under some reasonable time constraints. For
example, our Decision Theoretic Learner and Reasoner (DTLR) attempts to learn the
cost function of the expert in such a way that it ranks all good solutions higher than bad
solutions by preserving the preferences of the expert. Each practice problem P ∈ U is
solved through collaborative performance – ensemble solving (Algorithm 2). The prob-
lem P along with its solution S is then added to the training set. The system re-learns
from the new training set and this process repeats until convergence is achieved or the
maximum number of co-training iterations has been reached.

3. DOMAIN BACKGROUND

The domain of application used for developing and evaluating GILA is airspace
management in an Air Operations Center (AOC). Airspace management is the process
of making changes to requested airspaces so that they do not overlap with other
requested airspaces or previously approved airspaces. The problem that GILA tackles
is the following. Given a set of Airspace Control Measures Requests (ACMReqs), each
representing an airspace requested by a pilot as part of a given military mission,
identify undesirable conflicts between airspace uses and suggest changes in latitude,
longitude, time or altitude that will eliminate them. An Airspace Control Order (ACO)
is used to represent the entire collection of airspaces to be used during a given 24-hour
period. Each airspace is defined by a polygon described by latitude and longitude
points, an altitude range, and a time interval during which the air vehicle will be
allowed to occupy the airspace. The process of deconfliction assures that any two
vehicles’ airspaces do not overlap or conflict. In order to resolve a conflict that involves
two ACMs, the expert, who is also called the subject matter expert (SME), first chooses
one ACM and then decides whether to change its altitude (Figure 3(a)), change its
time (Figure 3(b)), or move its position (Figure 3(c)). The complete modification process
is an expert solution trace that GILA uses for training.

This airspace management problem challenges even the best human experts be-
cause it is complex and knowledge-intensive. Not only do experts need to keep track
of myriad details of different kinds of aircraft and their limitations and requirements,
but they also need to find a safe, mission-sensitive and cost-effective global schedule
of flights for the day. An expert system approach to airspace management requires
painstaking knowledge engineering to build the system, as well as a team of human
experts to maintain it when changes occur to the fleet, possible missions, safety pro-
tocols and costs of schedule changes. For example, flights need to be rerouted when
there are forest fires occurring on their original paths. Such events require knowledge
re-engineering. In contrast, our approach based on learning from an expert’s demon-
stration is more attractive, especially if it only needs a very small number of training
examples, which are more easily provided by the expert.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:11

Fig. 3. Expert deconfliction examples. (ROZ:Restricted Operations Zone. AEW: Airborne Early Warning
Area. SSMS: Surface-to-Surface Missile System).

To solve the airspace management problem, GILA must decide in what order to
address the conflicts during the problem-solving process and, for each conflict, which
airspace to move and how to move the airspace to resolve the conflict and minimize the
impact on the mission. Though there are typically infinitely many ways to resolve a
particular conflict, some changes are better than others according to the expert’s inter-
nal domain knowledge. However, such knowledge is not revealed directly to GILA in
the expert’s solution trace. The solution trace is the only input from which GILA may
learn. In other words, learning is from examples of the expert performing the problem-
solving task, rather than by being given the expert’s knowledge. The goal of the system
is to find good deconflicted solutions, which are qualitatively similar to those found by
human experts. GILA’s solutions are evaluated by experts by being compared to the
solutions of human novices who also learn from the same demonstration trace.

4. INDEPENDENT LEARNING REASONING SYSTEMS (ILRS)

The GILA system consists of four different ILRs, and each learns in a unique way. The
symbolic planner learner-reasoner (SPLR) learns decision rules and value functions,
and it generates deconfliction solutions by finding the best fitting rule for the input
scenario. The decision-theoretic learner-reasoner (DTLR) learns a linear cost function,
and it identifies solutions that are near-optimal according to the cost function. The
case-based learner-reasoner (CBLR) learns and stores a feature-based case database;
it also adapts and applies cases to create deconfliction solutions. The 4D-deconfliction

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:12 X. S. Zhang et al.

and constraint learner-reasoner (4DCLR) learns context-sensitive, hard constraints on
the schedules in the form of rules. In this section, we describe the internal knowledge
representations and learning/reasoning mechanisms of these ILRs and how they work
inside the GILA system.

4.1. The Symbolic Planner Learner-Reasoner (SPLR)

The symbolic planner learner and reasoner (SPLR) represents its learned solution
strategy as a hybrid hierarchical representation machine (HHRM), and it conducts
learning at two different levels. On the top level, it employs decision rule learning
to learn discrete relational symbolic actions (referred to as its directed policy). On the
bottom level, it learns a value function that is used to provide precise values for param-
eters in top-level actions. From communication with the SMEs, it is understood that
this hybrid representation is consistent with expert reasoning in Airspace Deconflic-
tion. Experts first choose a top-level strategy by looking at the usage of the airspaces.
This type of strategy is represented as a direct policy in the SPLR. For example, to
resolve a conflict involving a missile campaign, experts frequently attempt to slide the
time in order to remove the conflict. This is appropriate because a missile campaign
targets an exact enemy location and therefore the geometry of the missile campaign
mission cannot be changed. On the other hand, as long as the missiles are delivered to
the target, shifting the time by a small amount may not compromise the mission objec-
tive. Though natural for a human, reasoning of this type is hard for a machine unless a
carefully coordinated knowledge base is provided. Rather, it is easier for a machine to
learn to “change time” reactively when the “missile campaign” is in conflict. From the
subject matter expert’s demonstration, the machine can learn what type of deconflic-
tion strategy is used in which types of missions. With a suitable relational language,
the system can learn good reactive deconfliction strategies [Khardon 1999; Martin and
Geffner 2000; Yoon and Kambhampati 2007; Yoon et al. 2002]. After choosing the
type of deconfliction strategy to use, the experts decide how much to change the alti-
tude or time, and this is mimicked by the SPLR via learning and minimizing a value
function.

4.1.1. Learning Direct Policy: Relational Symbolic Actions. In order to provide the machine
with a compact language system that captures an expert’s strategy with little human
knowledge engineering, the SPLR adopts a formal language system with Taxonomic
syntax [McAllester and Givan 1993; Yoon et al. 2002] for its relational representa-
tion, and an ontology for describing the airspace deconfliction problem. The SPLR
automatically enumerates its strategies in this formal language system, and seeks a
good strategy. The relational action selection strategy is represented with a decision
list [Rivest 1987]. A decision list DL consists of ordered rules r. In our approach, a
DL outputs “true” or “false” after receiving an input action. The DL’s output is the
disjunction of each rule’s outputs,

∨
r. Each rule r consists of binary features Fr. Each

of the features outputs “true” or “false” for an action. The conjunction (
∧

Fr) of them
is the result of the rule for the input action.

The learning of a direct policy with relational actions is then a decision list learning
problem. The expert’s deconfliction actions, for example, move, are the training exam-
ples. Given a demonstration trace, each action is turned into a set of binary values,
which is then evaluated against pre-enumerated binary features. We used a Rivest-
style decision list learning package implemented as a variation of PRISM [Cendrowska
1987] from the Weka Java library. The basic PRISM algorithm cannot cover negative
examples, but our variation allows for such coverage. For the expert’s selected actions,
the SPLR constructs rules with “true” binary features when negative examples are

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:13

the actions that were available but not selected. After a rule is constructed, examples
explained (i.e., covered) by the rule are eliminated. The learning continues until there
are no training examples left. We list the empirically learned direct policy example
from Figure 3(a), 3(b), and 3(c) in the following:

(1) (altitude 0 (Shape ? Polygon)) & (altitude 0 (Conflict ? (Shape ? Circle))) : When
an airspace whose shape is “polygon” conflicts with another airspace whose shape
is “circle”, change the altitude of the first airspace. Learned from Figure 3(a).

(2) (time 0 (use ? ROZ)) & (time 0 (Conflict ? (Shape ? Corridor))) : When an airspace
whose usage is “ROZ” conflicts with another airspace whose shape is “corridor”,
change the time of the first airspace. Learned from Figure 3(b).

(3) (move 0 (use ? AEW)) & (move 0 (Conflict ? (use ? SSMS))) : When an airspace
whose usage is “AEW” conflicts with another airspace whose usage is “SSMA”,
move the position of the first airspace. Learned from Figure 3(c).

To decide which action to take, the SPLR considers all the actions available in the
current situation. If there is no action with “true” output from the DL, it chooses a
random action. Among the actions with “true” output results, the SPLR takes the
action that satisfies the earliest rule in the rule set. All rules are sorted according
to their machine learning scores in decreasing order, so an earlier rule is typically
associated with higher confidence. Ties are broken randomly if there are multiple
actions with the result “true” from the same rule.

4.1.2. Learning a Value Function. Besides choosing a strategic deconfliction action, spe-
cific values must be assigned. If we opted to change the time, by how much should it be
changed? Should we impose some margin beyond the deconfliction point? How much
margin is good enough? To answer these questions, we consulted the expert demon-
stration trace, which has records concerning the margin. We used linear regression
to fit the observed margins. The features used for this regression fit are the same as
those used for direct policy learning; thus, feature values are Boolean. The intuition
is that the margins generally depend on the mission type. For example, missiles need
a narrow margin because they must maintain a precise trajectory. The margin repre-
sentation is a linear combination of the features, for example, Move Margin =

∑
wi× Fi

(margin of move action). We learned weights wi with linear regression.

4.1.3. Learning a Ranking Function. Besides the hierarchal learning of deconfliction so-
lutions, the SPLR also learns a ranking function R to prioritize conflicts. The SPLR
learns this ranking function R using decision tree learning. First, experts show the
order of conflicts during demonstration. Each pair of conflicts is then used as a train-
ing example. An example is true if the first member of a pair is given priority over the
second. After learning, for each pair of conflicts (c1, c2), the learned decision tree an-
swers “true” or “false.” “True” means that the conflict c1 has higher priority. The rank
of a conflict is the sum of “true” values against all the other conflicts, with ties broken
randomly. The rank of a conflict is primarily determined by the missions involved. For
example, in Table II, the first conflict that involved a missile corridor (SSMS) is given
a high priority due to the sensitivity to changing a missile corridor.

4.2. The Decision Theoretic Learner-Reasoner (DTLR)

The Decision-Theoretic Learner-Reasoner (DTLR) learns a cost function over possible
solutions to problems. It is assumed that the expert’s solution optimizes a cost function
subject to some constraints. The goal of the DTLR is to learn a close approximation
of the expert’s cost function, and this learning problem is approached as an instance
of structured prediction [Bakir et al. 2007]. Once the cost function is learned, the

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:14 X. S. Zhang et al.

Table II. GILA’s and an Expert’s Deconfliction Solutions for Scenario F

Expert’s Conflict Expert’s Solution GILA Solution GILA’s
priority priority

1 ACM-J-18 (SSMS)
ACM-J-19 (SOF)

Move 19 from 36.64/-116.34,
36.76/-117.64 to 36.64/-116.34,
36.68/-117.54

Move 19 from 36.64/-116.34,
36.76/-117.64 to 36.6/-116.18,
36.74/-117.48

4

2 ACM-J-17 (SSMS)
ACM-J-19 (SOF)

Already resolved Move 17 from 37.71/-117.24,
36.77/-117.63 to 37.77/-117.24,
36.84/-117.63

1

3 ACM-J-12 (CASHA)
ACM-J-23 (UAV)

Change alt of 12 from 16000-
35500 to 17500-35500

Change alt of 23 from 1500-
17000 to 1500-15125

7

4 ACM-J-11 (CASHA)
ACM-J-24 (UAV)

Move 11 from 36.42/-117.87,
36.42/-117.68 to 36.43/-117.77,
36.43/-117.58

Change the alt of 11 from 500-
35500 to 17000-35500

10

5 ACM-J-17 (SSMS)
ACM-J-18 (SSMS)

Move 17 from 37.71/-117.24,
36.78/-117.63 to 37.71/-117.24,
36.85/36.85/-117.73

Resolved by 17/19 (Step 1)

6 ACM-J-4 (AAR)
ACM-J-21 (SSMS)

Move 4 from 35.58/-115.67,
36.11/-115.65 to 36.65/-115.43,
35.93/-115.57

Move 4 from 35.58/-115.67,
36.11/-115.65 to 35.74/-115.31,
36.27/-115.59

5

7 ACM-J-1 (AEW)
ACM-J-18 (SSMS)

Move 1 from 37.34/-116.98,
36.86/-116.58 to 37.39/-116.89,
36.86/-116.58

Move 1 from 37.34/-116.98,
36.86/-116.58 to 37.38/-116.88,
36.9/-116.48

8

8 ACM-J-3 (ABC)
ACM-J-16 (RECCE)

Move 16 from 35.96/-116.3,
35.24/-115.91 to 35.81/-116.24,
35.24/-115.91

Move 16 from 35.96/-116.3,
35.24/-115.91 to 35.95/-116.12,
35.38/-115.65

3

9 ACM-J-3 (ABC)
ACM-J-15 (COZ)

Change 3 alt from 20500-
24000 to 20500-23000

Change the alt of 15 from
23500-29500 to 25500-29500

9

10 Hava South
ACM-J-15 (COZ)

Change 15 time from 1100-
2359 to 1200-2359

Change 15 time from 1100-
2359 to 1215-2359

2

11 ACM-J-8 (CAP)
ACM-J-15 (COZ)

Move 8 from 35.79/-116.73,
35.95/-116.32 to 35.74/-116.72,
35.90/-116.36

Move 8 from 35.79/-116.73,
35.95/-116.32 to 35.71/-116.7,
35.87/-116.3

6

12 ACM-J-3 (ABC) Already resolved Resolved by 8/15
ACM-J-8 (CAP) (Step 6)

13 Hava South Already resolved Resolved by 4/21
ACM-J-4 (AAR) (Step 5)

14 ACM-J-1 (AEW) Already resolved Resolved by 1/18
ACM-J-10 (CAP) (Step 8)

performance algorithm of the DTLR uses this function to try to find a minimal cost
solution with iterative-deepening search.

4.2.1. Learning a Cost Function via Structured Prediction. The cost function learning is for-
malized in the framework of structured prediction. A structured prediction problem is
defined as a tuple {X ,Y, �, L}, where X is the input space and Y is the output space.
In the learning process, a joint feature function � : X × Y �→ �n defines the joint fea-
tures on both inputs and outputs. The loss function, L : X × Y × Y �→ �, quantifies
the relative preference of two outputs given some input. Formally, for an input x and
two outputs y and y′, L(x, y, y′) > 0 if y is a better choice than y′ given input x and
L(x, y, y′) ≤ 0 otherwise. We use a margin-based loss function used in the logitboost
procedure [Friedman et al. 1998], defined as L

(
x, y, y′) = log

(
1 + e−m

)
, where m is the

margin of the training example (see Section 4.2.2 for details).

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:15

The decision surface is defined by a linear scoring function over the joint features
�(x, y) given by the inner product 〈�(x, y), w〉, where w is the vector of learned model
parameters, and the best y for any input x has the highest score. The specific goal of
learning is, then, to find w such that ∀i : argmaxy∈Y〈�(xi, y), w〉 = yi.

In the case of ACO scheduling, an input drawn from this space is a combination
of an ACO and a deconflicted ACM to be scheduled. An output y drawn from the
output space Y is a schedule of the deconflicted ACM. The joint features are x-y co-
ordinate change, altitude change and time change for each ACM, and other features
such as changes in the number of intersections of the flight paths with the enemy
territory.

4.2.2. Structured Gradient Boosting (SGB) for Learning a Cost Function. The DTLR’s Struc-
tured Gradient Boosting (SGB) algorithm [Parker et al. 2006] is a gradient descent
approach to solving the structured prediction problem. Suppose that there is some
training example xi ∈ X with the correct output yi ∈ Y, ŷi defined as the highest
scoring incorrect output for xi according to the current model parameters. That is,

ŷi = argmaxy∈Y\yi
〈�(xi, y), w〉 .

Then the margin is defined as the amount by which the model prefers yi to ŷi as an
output for xi. The margin mi for a given training example is mi = 〈δ(xi, yi, ŷi), w〉, where
δ (xi, yi, ŷi) is the difference between the feature-vectors � (xi, yi) and � (xi, ŷi). The
margin determines the loss as shown in Step 5 of the pseudocode of Algorithm 3. The
parameters of the cost function are adjusted to reduce the gradient of the cumulative
loss over the training data (see Parker et al. [2006] for more details).

ALGORITHM 3: STRUCTURED GRADIENT BOOSTING

Input: {〈xi, yi〉}: the set of training examples;
B: the number of boosting iterations.

Output: weights of the cost function w.
1: Initialize the weights w = 0
2: repeat
3: for each training example (xi, yi) do
4: solve Argmax: ŷi = argmaxy∈Y\yi

〈�(xi, y), w〉
5: compute training loss: L(xi, yi, ŷi) = log(1 + e−mi), where mi = 〈δ(xi, yi, ŷi), w〉
6: end for
7: compute cumulative training loss: L =

∑n
i=1 L(xi, yi, ŷi)

8: find the gradient of the cumulative training loss ∇L
9: update weights: w = w − α∇L
10: until convergence or B iterations
11: return the weights of the learned cost function w

The problem of finding ŷi, which is encountered during both learning and perfor-
mance, is called the Argmax problem. A discretized space of operators, namely, the
altitude, time, radius and x-y coordinates, is defined based on the domain knowledge
to produce various possible plans to deconflict each ACM. A simulator is used to un-
derstand the effect of a deconfliction plan. Based on their potential effects, these plans
are evaluated using the model parameters, and the objective is to find the best scor-
ing plan that resolves the conflict. Exhaustive search in this operator space would be
optimal for producing high-quality solutions, but has excessive computational cost. It-
erative Deepening Depth First (IDDFS) search is used to find solutions by considering

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:16 X. S. Zhang et al.

Fig. 4. In all of these figures, ⊕ corresponds to the feature vectors of the training examples with respect to
their true outputs,
 corresponds to the feature vectors of the training examples with respect to their best
scoring negative outputs and the separating hyperplane corresponds to the cost function. (a) Initial cost
function and negative examples before 1st iteration; (b) Cost function after 1st boosting iteration; (c) Cost
function and negative examples before 2nd iteration; (d) Cost function after 2nd boosting iteration; (e) Cost
function and negative examples before 3rd iteration; (f) Cost function after 3rd boosting iteration.

single changes before multiple changes, and smaller amounts of changes before larger
amounts of changes, thereby trading off the quality of the solution with the search
time. Note that the length of the proposed deconfliction plan (number of changes) is
getting iterative deepened in IDDFS. Since a fixed discrete search space of operators is
used, the search time is upper bounded by the time needed to search the entire space
of operators.

4.2.3. Illustration of Gradient Boosting. Figure 4 provides a geometrical illustration of the
gradient boosting algorithm. There are four training examples (x1, y1), (x2, y2), (x3, y3)
and (x4, y4). As explained in the previous section, the features depend on both the in-
put x and the output y, that is, �(x, y). The data points are represented corresponding
to features �(xi, yi) of the training examples xi with respect to their true outputs yi

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:17

with ⊕, that is, positive examples and data points corresponding to features �(xi, ŷi)
of the training examples xi with respect to their best scoring outputs ŷi with
, that is,
negative examples. Note that the locations of the positive points do not change, unlike
the negative points whose locations change from one iteration to another, that is, the
best scoring negative outputs ŷi change with the weights, and hence the feature vec-
tors of the negative examples �(xi, ŷi) change. Three boosting iterations of the DTLR
learning algorithm are shown in Figure 4, one row per iteration. In each row, the left
figure shows the current hyperplane (cost function) along with the negative examples
according to the current cost function, and the right figure shows the cost function
obtained after updating the weights in a direction that minimizes the cumulative loss
over all training examples, that is, a hyperplane that separates the positive examples
from negative ones (if such a hyperplane exists). As the boosting iterations increase,
our cost function is moving towards the true cost function and it will eventually con-
verge to the true cost function.

4.2.4. What Kind of Knowledge Does the DTLR Learn? We explain, through an exam-
ple case, what was learned by the DTLR from the expert’s demonstration and how
the knowledge was applied while solving problems during performance mode. Before
training, weights of the cost function are initialized to zero. For each ACM that was
moved to resolve conflicts, a training example is created for the gradient boosting algo-
rithm. The expert’s plan that deconflicts the problem ACM corresponds to the correct
solution for each of these training examples. Learning is done using the gradient
boosting algorithm described previously, by identifying the highest scoring incorrect
solution and computing a gradient update to reduce its score (or increase its cost). For
example, in one expert’s demonstration that was used for training, all the deconflicting
plans are either altitude changes or x-y coordinate changes. Hence, the DTLR learns
a cost function that prefers altitude and x-y coordinate changes to time and radius
changes.

During performance mode, when given a new conflict to resolve, the DTLR first
tries to find a set of deconflicting plans using Iterative Deepening Depth First (IDDFS)
search. Then, it evaluates each of these plans using the learned cost function and
returns the plan with minimum cost. For example, in Scenario F, when trying to
resolve conflicts for ACM-J-15, it found six plans with a single (minimum altitude)
change and preferred the one with minimum change by choosing to increase the
minimum altitude by 2000 (as shown on row #9 in Table II).

4.3. The Case-Based Learner-Reasoner (CBLR)

Case-based reasoning (CBR) [Aamodt and Plaza 1994] consists of solving new prob-
lems by reasoning about past experience. Experience in CBR is retained as a collection
of cases stored in a case library. Each of these cases contains a past problem and
the associated solution. Solving new problems involves identifying relevant cases
from the case library and reusing or adapting their solutions to the problem at hand.
To perform this adaptation process, some CBR systems, such as the CBLR, require
additional adaptation knowledge.

Figure 5 shows the overall architecture of the CBLR, which uses several specialized
case libraries, one for each type of problem that the CBLR can solve. A Prioritiza-
tion Library contains a set of cases for reasoning about the priority, or order, in which
conflicts should be solved. A Choice Library is used to determine which ACM will be
moved, given a conflict between two ACMs. Finally, a Constellation Library and a De-
confliction Library are used within a hierarchical process. The Constellation Library
is used to characterize the neighborhood surrounding a conflict. The neighborhood
provides information that is then used to help retrieve cases from the Deconfliction

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:18 X. S. Zhang et al.

Fig. 5. The architecture of the Case-Based Learner-Reasoner (CBLR).

Library. For each of these libraries, the CBLR has two learning modules: one capable
of learning cases and one capable of learning adaptation knowledge. The case-based
learning process is performed by observing an expert trace, extracting the problem
descriptions, features and solutions, and then storing them as cases in a case library.
Adaptation knowledge in the CBLR is expressed as a set of transformation rules and a
set of constraints. Adaptation rules capture how to transform the solution from the re-
trieved case to solve the problem at hand, and the constraints specify the combinations
of values that are permitted in the solutions being generated.

4.3.1. Learning in the CBLR. Each case library contains a specialized case learner,
which learns cases by extracting them from an expert trace. Each case contains a
problem description and an associated solution. Figure 6 shows sample cases learned
from the expert trace.

Prioritization. Using information from the expert trace available to the CBLR, the
Priority Learner constructs prioritization cases by capturing the order in which the
expert prioritizes the conflicts in the trace. From this, the CBLR learns prioritization
cases, storing one case per conflict. Each case contains a description of the conflict,
indexed by its features, along with the priority assigned by the expert. The CBLR uses
these cases to build a ranking function R to provide the MRE with a priority order for
deconfliction. The order in which conflicts are resolved can have a significant impact
on the quality of the overall solution.

Choice. Given a conflict between two ACMs, the CBLR uses the Choice Case Li-
brary to store the identifier of the ACM that the expert chose to modify. Each time the
expert solves a conflict in the trace, the CBLR learns a choice case. The solution stored
with the case is the ACM that is chosen to be moved. The two conflicting ACMs and
the description of the conflict are stored as the problem description for the case.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:19

Fig. 6. A set of sample cases learned from the expert trace.

Hierarchical Deconfliction. The CBLR uses a hierarchical reasoning process to
solve a conflict using a two-phase approach. The first phase determines what method
an expert is likely to use when solving a deconfliction problem. It does this by describ-
ing the “constellation” of the conflict. “Constellation” refers to the neighborhood of
airspaces surrounding a conflict. The choices for deconfliction available to an airspace
manager are constrained by the neighborhood of airspaces, and the Constellation Case
Library allows the CBLR to mimic this part of an expert’s decision-making process. A
constellation case consists of a set of features that characterize the degree of congestion
in each dimension (latitude-longitude, altitude and time) of the airspace. The solution
stored is the dimension within which the expert moved the ACM for deconfliction (e.g.,
change in altitude, orientation, rotation, radius change, etc.).

The second CBLR phase uses the Deconfliction Case Library to resolve conflicts
once the deconfliction method has been determined. A deconfliction case is built from
the expert trace by extracting the features of each ACM. This set of domain-specific
features was chosen manually based on the decision criteria of human experts. In
addition to these two sets of features (one for each of the two conflicts in a pair), a
deconfliction case includes a description of the overlap.

The solution is a set of PSTEPs that describe the changes to the ACM, as illustrated
in Figure 6. A PSTEP is an atomic action in a partial plan that changes an ACM.
These PSTEPs represent the changes that the expert made to the chosen ACM in order
to resolve the conflict. Whereas the constellation phase determines an expert’s likely
deconfliction method, the deconfliction phase uses that discovered method as a highly
weighted feature when searching for the most appropriate case in the deconfliction
case library. It then retrieves the most similar case based on the overall set of features
and adapts that case’s solution to the new deconfliction problem. We refer to this two-
phase process as hierarchical deconfliction.

In order to learn adaptation knowledge, the CBLR uses transformational plan adap-
tation [Muñoz-Avila and Cox 2007] to adapt deconfliction strategies, using a combina-
tion of adaptation rules and constraints. Adaptation rules are built into the CBLR.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:20 X. S. Zhang et al.

This rule set consist of five common-sense rules that are used to apply a previously
successful deconfliction solution from one conflict to a new problem. For example, “If
the overlap in a particular dimension between two airspaces is X, and the expert moved
one of them X+Y units in that dimension, then in the adapted PSTEP we should com-
pute the overlap Z and move the space Z+Y units.” If more than one rule is applicable to
adapt one PSTEP, the adaptation module will propose several candidate adaptations,
as explained later.

During the learning process, one challenge in extracting cases from a demonstration
trace involves the identification of the sequence of steps that constitutes the solution
to a particular conflict. The expert executes steps using a human-centric interface, but
the resulting sequence of raw steps, which is used by the ILRs for learning, does not
indicate which steps apply to which conflict. The CBLR overcomes this limitation by
executing each step in sequence, comparing the conflict list before and after each step
to determine if a conflict was resolved by that step.

Constraints are learned from the expert trace both by the CBLR and by the Con-
straint Learner (CL) inside the 4DCLR. To learn constraints, the CBLR evaluates the
range of values that the expert permits. For instance, if the expert sets all altitudes of
a particular type of aircraft to some value between 10,000 and 30,000 feet, the CBLR
will learn a constraint that limits the altitude of aircraft type to a minimum of 10,000
feet and a maximum of 30,000 feet. These simple constraints are learned automati-
cally by a constraint learning module inside the CBLR. This built-in constraint learner
makes performance more efficient by reducing the dependence of the CBLR on other
modules. However, the CL in the 4DCLR is able to learn more complex and accurate
constraints, which are posted to the blackboard of GILA, and these constraints are
used by the CBLR to enhance the adaptation of its solutions.

4.3.2. Problem Solving in the CBLR. The CBLR uses all the knowledge it has learned
(and stored in the multiple case libraries) to solve the airspace deconfliction problems.
The CBLR is able to solve a range of problems posted by the MRE. For each of the
case-retrieval processes, the CBLR uses a weighted Euclidean distance to determine
which cases are most similar to the problem at hand. The weights assigned to each
feature are based on the decision-making criteria of human experts, and were obtained
via interviews with subject-matter experts. Automatic feature weighting techniques
[Wettschereck et al. 1997] were evaluated, but without good results given the limited
amount of available data.

During the performance phase of GILA, a prioritization problem is sent by the MRE
that includes a list of conflicts, and the MRE asks the ILRs to rank them by priority.
The assigned priorities will determine the order in which conflicts will be solved by
the system. To solve one such problem, the CBLR first assigns priorities to all the con-
flicts in the problem by assigning each conflict the priority of the most similar priority
case in the library. After that, the conflicts are ranked by priority (and ties are solved
randomly).

Next, a deconfliction problem is presented to each of the ILRs so that they can
provide a solution to a single conflict. The CBLR responds to this request by producing
a list of PSTEPs. It solves a conflict using a three-step process. First, it decides which
ACM to move using the choice library. It then retrieves the closest match from the
Constellation Library and uses the associated solution as a feature when retrieving
cases from the Deconfliction Library. It retrieves and adapts the closest n cases (where
n = 3 in our experiments) to produce candidate solutions. It tests each candidate
solution by sending it to the 4DCLR module, which simulates the application of that
solution. The CBLR evaluates the results and selects the best solutions, that is, those

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:21

that solve the target conflict with the lowest cost. A subset of selected solutions is sent
to the MRE as the CBLR’s solutions to the conflict.

Adaptation is only required for deconfliction problems, and is applied to the solution
retrieved from the deconfliction library. The process for adapting a particular solution
S, where S is a list of PSTEPs, as shown in Figure 6, works as follows:

(1) Individual PSTEP Adaptation. Each individual PSTEP in the solution S is adapted
using the adaptation rules. This generates a set of candidate adapted solutions AS.

(2) Individual PSTEP Constraint Checking. Each of the PSTEPs in the solutions in
AS is modified to comply with all the constraints known by the CBLR.

(3) Global Solution Adaptation. Adaptation rules that apply to groups of PSTEPs in-
stead of to individual PSTEPs are applied; some unnecessary PSTEPs may be
deleted and missing PSTEPs may be added.

4.3.3. CBLR Results. During GILA development, we were required to minimize en-
coded domain knowledge and maximize machine learning. One strength of the case-
based learning approach is that it learns to solve problems in the same way that the
expert does, with very little pre-existing knowledge. During the evaluation, we per-
formed “Garbage-in/Garbage-out” (GIGO) experiments that tested the learning nature
of each module by teaching the system with incorrect approaches, then testing the
modules to confirm that they used the incorrect methods during performance. This
technique was designed to test that the ILR used knowledge that was learned rather
than encoded. The case-based learning approach successfully learned these incorrect
methods and applied them in performance mode. This shows that the CBLR learns
from the expert trace, performing and executing very much like the expert does. This
also allows the CBLR to learn unexpected solution approaches when they are provided
by an expert. If such a system were to be transitioned with a focus on deconfliction
performance (rather than machine learning performance), domain knowledge would
likely be included.

The CBLR also responded very well to incremental learning tests. In these tests,
the system was taught one approach to problem solving at a time (Table V). When the
system was taught to solve problems using only altitude changes, the CBLR responded
in performance mode by attempting to solve all problems with altitude changes. When
the system was taught to solve problems by making geometric changes, the CBLR
responded in performance mode by using both of these methods to solve problems,
confirming that the CBLR’s problem-solving knowledge was learned rather than being
previously stored as domain knowledge.

Moreover, the different ILRs in GILA exhibit different strengths and weaknesses,
and the power of GILA consists exactly of harnessing the strong points of each ILR.
For instance, one of the CBLR’s strengths is that its performance during prioritization
was close to the expert’s prioritization. For this reason, the CBLR priorities were used
to drive the deconfliction order of the GILA system in the final system evaluation.

4.4. The 4D Constraint Learner-Reasoner (4DCLR)

The 4D Constraint Learner-Reasoner (4DCLR) within GILA is responsible for auto-
mated learning and application of planning knowledge in the form of safety con-
straints. A safety constraint example is: “The altitude of a UAV over the course of
its trajectory should never exceed a maximum of 60000 feet”. Constraints are “hard”
in the sense that they can never be violated, but they are also context-sensitive, where
the “context” is the task mission as exemplified in the ACO. For instance, a recom-
mended minimum altitude of an aircraft may be raised if the problem being solved
involves the threat of enemy surface-to-air missiles.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:22 X. S. Zhang et al.

The 4DCLR consists of the following two components: (1) the Constraint Learner
(CL), which automatically infers safety constraints from the expert demonstration
trace and outputs the constraints for use by the other ILRs in the context of planning,
and (2) the Safety Checker (SC), which is responsible for verifying the correctness of so-
lutions/plans in terms of their satisfaction or violation of the safety constraints learned
by the CL. The output of the Safety Checker is a degree of violation, which is used by
the MRE in designing safe subproblem solutions.

The approach adopted in the 4DCLR is strongly related to learning control rules for
search/planning. This area has a long history, for example, see Minton and Carbonell
[1987], and has more recently evolved into the learning of constraints [Huang et al.
2000] for constraint-satisfaction planning [Kautz and Selman 1999]. The Safety
Checker, in particular, is related to formal verification, such as model checking
[Clarke et al. 1999]. However, unlike traditional verification, which outputs a binary
“success/failure,” our GILA Safety Checker outputs a degree of constraint violation
(failure). This is analogous to what is done in Chockler and Halpern [2004]. The
difference is that when calculating “degree” we not only calculate the probabilities
over alternative states as Chockler and Halpern do, but we also account for physical
distances and constraints.

4.4.1. The Constraint Learner and the Representations It Uses. We assume that the system
designer provides constraint templates a priori, and it is the job of the Constraint
Learner (CL) to infer the values of parameters within these templates. For example,
a template might state that a fighter has a maximum allowable altitude, and the CL
would infer what the value of that maximum should be. In the future, the CL will
learn the templates as well.

Learning in the CL is Bayesian. A probability distribution is used to represent the
uncertainty regarding the true value of each parameter. For each parameter, such as
the maximum flying altitude for a particular aircraft, the CL begins with a prior prob-
ability distribution, P f (c)(ω) or Pg(c1,c2)(ω), where c, c1, c2 ∈ C, f ∈ F , g ∈ G, and ω is a
safety constraint. If informed, the prior might be a Gaussian approximation of the real
distribution obtained by asking the expert for the average, variance and covariance of
the minimum and maximum altitudes. If uninformed, a uniform prior is used.

Learning proceeds based on evidence, e, witnessed by the CL at each step of the
demonstration trace. This evidence might be a change in maximum altitude that
occurs as the expert positions and repositions an airspace to avoid a conflict. Based
on this evidence, the prior is updated applying Bayes’ Rule to obtain a posterior
distribution, P f (c)(ω|e) or Pg(c1,c2)(ω|e), given the assumption for the likelihood that the
expert always moves an airspace uniformly into a “safe” region. After observing evi-
dence, the CL assigns zero probability to constraint parameters that are inconsistent
with the expert’s actions, and assigns the highest probability to more constraining
sets of parameters that are consistent with the expert’s actions. With a modest
amount of evidence, this approach leads to tight distributions over the constraint
parameters.

4.4.2. The Safety Checker and Its Outputs for the MRE. The Safety Checker (SC) takes
candidate subproblem solutions from the ILRs as input, the current ACO on which to
try the candidate solutions, and the safety constraints output by the CL; it outputs
a violation message. The SC uses its 4D spatio-temporal Reasoner to verify whether
any constraint is violated by the candidate solution. A violation message is output by
the SC that includes the violated constraint, the solution that violated the constraint,
specific information about the nature of the violation in the context of the ACO and the
expected degree (severity) of the violation, normalized to a value in the range [0, 1].

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:23

The expected degree of violation is called the safety violation penalty, or simply the
violation penalty. The SC calculates this penalty by finding a normalized expected
amount of violation, based on the constraint posterior distribution learned by the CL.
Let P f (c)(ω|E) represent the posterior distribution over the safety constraint governing
property f applied to concept c, given expert trace E. An example might be the maxim-
imum altitude property of the “Combat Air Patrol” airspace concept. Given a proposed
solution that involves repositioning an airspace matching concept c, let v represent f (c)
in that solution (e.g., let it represent the maximum altitude of a “Combat Air Patrol”
in the proposed solution). Then, the safety violation penalty is calculated as:

penaltyunnormalized =
∫

P f (c)(ω|E) · max(0, (v − ω))dω . (1)

For a minimum threshold, the unnormalized penalty would be:

penaltyunnormalized =
∫

P f (c)(ω|E) · max(0, (ω − v))dω . (2)

The method is identical for relational constraints g. The unnormalized penalty is
normalized based on the range of possible parameter values, so that violations in dif-
ferent dimensions (altitude versus horizontal distance versus time) can be compared
(additional details in Rebguns et al. [2009]). The MRE uses the violation penalty to
discard subproblem solutions that are invalid because their penalty is above the safety
threshold.

Why is the SC needed if the ILRs already use the safety constraints during plan-
ning? The reason is that the ILRs do not interact with one another during planning.
Because each ILR may not have the domain knowledge, representational expressive-
ness, or learning and planning capabilities to solve the entire input problem, the ILRs
output subproblem solutions, which are partial and incomplete solutions. The MRE
subsequently composes these subproblem solutions into one final complete solution
using search. This final solution needs to be checked because interactions between the
subproblem solutions will not emerge until after they have been composed into a single
solution, and these interactions might violate constraints.

5. THE META-REASONING EXECUTIVE (MRE)

In both the practice learning phase and the collaborative performance phase (see
Figure 2), the system is required to solve a test problem using the learned knowledge.
The Meta-Reasoning Executive (MRE) directs a collaborative performance process
(Algorithm 1) during which the ILRs contribute to solving the test problem. This
collaborative performance process is modeled as a search for a path from the initial
state to a goal state (where the problem is fully solved). The complete solution is a
combination of the partial solutions contributed by each ILR.

First, the given test problem is decomposed into a set of subproblems. In general,
problem decomposition is a difficult task, and the quality of problem solving depends
on how the problem is decomposed. In this application, GILA uses domain knowledge
to decompose the original problem: given an ACO and a set of proposed ACMs, solving
the problem consists of removing all existing conflicts; so the whole problem is then
decomposed as a set of subproblems, and the purpose of each subproblem is to remove
one conflict. These subproblems are interrelated, that is, how a subproblem is solved
may affect how others can be solved. Solving one subproblem can also generate new
subproblems. To manage these interrelationships, the MRE conducts an internal
search process, as described in this section. In addition, one ILR in particular –
the CBLR – learns the priority of these subproblems and provides guidance on the
ordering to solve them.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:24 X. S. Zhang et al.

Next, the MRE posts these subproblems on the blackboard, and each ILR then posts
its solutions to some of these subproblems. These subproblem solutions are treated as
the search operators available at the current state. They are applied to the current
state, which results in new states. New conflicts may appear after applying a subprob-
lem solution. These new states are then evaluated and stored in an open list. The best
state is selected to be explored next: if it is a goal state (no remaining conflicts), the
problem is fully solved; otherwise, the MRE posts all subproblems that correspond to
conflicts existing in this current state, and the previous process is repeated.

Figure 7 shows part of the search tree constructed when GILA is performing on
Scenario F after learning from the expert demonstration that solves Scenario E, and
practice on Scenario G. The nodes marked with “MREDM-9-XXXX” represent problem
states and the nodes marked with “CBLR-6,” “SPLR-5” or “DTLR-8” represent sub-
problem solutions (sequences of ACM modifications) posted by the ILRs. The problem
state node and subproblem solution nodes alternate. If a problem state node repre-
sents the problem state s, and one of its child nodes is a subproblem solution sol se-
lected for exploration, a new problem state node is generated representing the result of
applying sol to s. The ordering of nodes to be explored depends on the search strategy.
A best-first search strategy is used in this work. The node n that contains state s with
the best evaluation score E(s) is selected from the open list and explored next.

This search process is directed by the learned knowledge from the ILRs in the fol-
lowing two ways. First, GILA learns a ranking function R to decide which subproblems
to work on initially. It is not efficient to have all ILRs provide solutions to all subprob-
lems, as it takes more time to generate those subproblem solutions and also requires
more effort to evaluate them. Because solving one subproblem could make solving the
remaining problems easier or more difficult, it is crucial to direct the ILRs to work on
subproblems in a facilitating order. Though multiple ILRs are learning this ranking
function, the CBLR is the best one for this task. In the beginning of the search process,
the MRE asks the CBLR to provide a priority ordering of the subproblems. Based on
this priority list, the MRE suggests which subproblem to work on first. This sugges-
tion is taken by all the ILRs as guidance to generate solutions for subproblems. The
ILRs work on the subproblems simultaneously.

Second, GILA learns an evaluation function E to evaluate the problem state result-
ing from applying a proposed subproblem solution to the current state. This evaluation
function E is constructed using the learned knowledge from the ILRs in the following
ways:

(1) The Safety Checker (SC) checks for safety violations in a problem state. Some sub-
problem solutions may cause safety violations that make them invalid. The Safety
Checker determines whether there is a safety violation and, if yes, how severe the
violation is, which is represented by the violation penalty. If the violation penalty
is greater than the safety threshold, the MRE discards the subproblem solution
that causes this violation. For example, as shown in Figure 7, there is a red box
for safety value “1.05” on Node “CBLR-6-10053.” The red safety box means that
the problem state represented by this node has a violation penalty greater than
the safety threshold (1.0 in this example); hence, the corresponding subproblem
solution is discarded. Otherwise, if the violation penalty is less than or equal to
the safety threshold, the following evaluations are performed.

(2) The DTLR derives the execution cost for a new problem state after applying a
subproblem solution. The execution cost is learned by the DTLR to measure how
close this subproblem solution is to the expert’s demonstration. Ideally, GILA
is looking for a solution that best mimics the expert, which is a solution with
minimal execution cost. However, this cost estimation is not exact due to various

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:25

Fig. 7. Partial search tree example - GILA performs on Scenario F.

assumptions in its learning, such as discretization of the action space and inexact
inference.

(3) Another ILR, the 4DCLR, performs an internal simulation to investigate the
results of applying a subproblem solution to the current state. The resulting new
problem state is evaluated, and the number of remaining conflicts is returned to
the MRE as an estimate of how far it is from the goal state, which is the state with
no remaining conflicts.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:26 X. S. Zhang et al.

If a subproblem solution does not solve any conflict at all, it is discarded; otherwise,
the new problem state resulting from applying this subproblem solution is evaluated
based on the following factors: the cost of executing all subproblem solutions selected
on this path from the initial state to this current state (cumulative exec cost), safety vi-
olation penalties that would be present if the path were executed (safety penalties), and
the estimated execution cost and violation penalties from this current state to a goal
state, in other words, to resolve the remaining conflicts (estimated remaining cost).
These factors are combined using a linear function with a set of weight parameters:

(1) execution.cost.weight (w1)
(2) safety.violations.weight (w2)
(3) solved.to.remaining.conflict.balance.weight (w3)

The estimation of execution cost and violation penalties for resolving the remaining
conflicts is calculated as:

estimated remaining cost =
actual cost

number of resolved conflicts
∗ number of remaining conflicts

actual cost = w1 ∗ cumulative exec cost + w2 ∗ safety penalties

The estimated total cost is calculated as:

estimated total cost = w3 ∗ actual cost + (1 − w3) ∗ estimated remaining cost

The values of the weight parameters w1, w2, and w3 can be varied to generate
different search behaviors. Based on the estimated total cost, the MRE determines
the ordering of nodes to be explored. The search process stops when a goal state
is reached, that is, when there are no remaining conflicts, or a preset time limit
is reached. In Figure 7, there is a brown box with the 4DCR value of “0” on Node
“SPLR-5-11679.” This node represents a goal state because the 4DCLR reports that
the number of remaining conflicts in the current state is “0.”

6. EXPERIMENTAL SETUP AND RESULTS

The GILA system consists of an ensemble of distributed, loosely-coupled components,
interacting via a blackboard. Each component is a standalone software module that
interacts with the GILA system using a standard set of domain-independent APIs
(e.g., interfaces). The distributed nature of the design allows components to operate
in parallel, maximizing efficiency and scalability. The GILA system is composed of
distributed GILA Nodes, which contain and manage the GILA components. Each node
runs in parallel and the components (e.g., ILRs, MRE) are multithreaded within the
node. Each node efficiently shares OWL data via the networked blackboard, and the
MRE can queue problems for the ILRs, minimizing any idle time. The deployment of
components to GILA Nodes is configurable – to optimize performance and scalability.
There is no logical limit to the number of nodes or components in the GILA system.

6.1. Test Cases and Evaluation Criteria

The test cases for experiments were developed by subject matter experts from Blue-
Force, LLC. The experimental results were graded by these SMEs. One expert did the
majority of the work, with help from one or two other experts. In the remainder of this
section, we use “the expert” to refer to this group. Notice that the expert is independent
of the GILA team and is not involved in designing the GILA system.

For the final evaluation, four scenarios, D, E, F and G, were developed. The eval-
uator randomly chose three of them, namely, E, F, and G. In each test scenario, there
are 24 Airspace Control Measures (ACMs). There are 14 conflicts among these ACMs

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:27

as well as existing airspaces. Each test case consists of three test scenarios for demon-
stration, practice and performance, respectively.

The core task is to remove conflicts between ACMs and to configure ACMs such that
they do not violate constraints on time, altitude or geometry of an airspace. The quality
of each step (action) inside the solution is judged in accordance with the following
factors:

— Whether this action solves a conflict.
— Whether the result of this action still satisfies the original purpose of the mission.

For example, changing the flying altitude of a missile may still satisfy its original
purpose; however, changing the destination of a missile would dissatisfy its original
purpose.

— The simplicity of the action. A conflict may be solved in different ways, and a simple
solution should use as few steps as possible and affect the fewest number of conflicts.

— Proximity to the problem area.
— Suitability for operational context.
— Originality of the action, which is how creative it is. For example, one action may

solve two conflicts. Most of the time, this refers to solutions that the SMEs consider
to be quite clever and, perhaps, something that they did not even consider.

Each factor is graded on a 0-5 scale. The score for each step is the average of all
above factors. The final score for a solution is an average of the scores for each step,
which is then multiplied by 20 to normalize it in the range [0,100].

GILA’s solution and the expert’s solution for Scenario F are both shown in Table II.
Out of the 14 conflicts to be resolved, four of them are resolved as side-effects of solving
the other conflicts in both GILA’s and the expert’s solution. Three of these four conflicts
are solved the same way by both GILA and the expert. Among nine other conflicts for
which both GILA and the expert provided direct modifications, seven are conflicts for
which GILA chose to change the same ACM (in conflict) and make the same type of
change as the expert, although the new values are slightly different from the values
chosen by the expert. There are two conflicts for which GILA chose to change a
different ACM (in conflict), but make the same type of change as the expert. There is
one conflict for which GILA changed a different ACM and also made a different type
of change. There are four conflicts to which GILA gave the same (or very similar –
the difference was 1) priority as the expert. Based on the criteria described above,
this GILA solution is scored by the expert with a score of 96 out of 100, as shown in
Table III.

6.2. GILA Versus Human Novice Performance Comparison

Comparative evaluation of the GILA system is difficult because we have not found
a similar man-made system that can learn from a few demonstrations to solve
complicated problems. Hence we chose the human novices as our baseline. The
hypothesis we tested is:

Hypothesis 1. GILA has achieved 100% human novice performance, measured by
the trimmed mean score, which is calculated by ignoring the two highest and two
lowest scores.

To compare the performance of GILA with novices, we first recruited human vol-
unteers from engineers at Lockheed Martin. After eliminating those who had prior
experience with airspace management, we got 33 people for the test. These 33 people
were randomly grouped into six groups. Each group was given a demonstration case,
a practice case and a test case on which to perform. We used three test cases in six

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:28 X. S. Zhang et al.

Table III. Solution Quality: GILA versus Human Novices and Number of Solutions Contributed by Each ILR

Scenario Human Novices GILA SPLR CBLR DTLR
Demo Practice Performance

E F G 93.84 95.40 75% 25% 0
E G F 91.97 96.00 60% 30% 10%
F E G 92.03 95.00 64% 36% 0
F G E 91.44 95.80 75% 17% 8%
G E F 87.40 95.40 75% 25% 0
G F E 86.3 95.00 75% 17% 8%

Average 90.5 95.4 70% 24% 6%
STDEV 7.05 0.41

95% Confidence Interval [88.05, 92.87] [95.10, 95.76]

combinations for demonstration, practice and performance. The test could have been
more stable if each group could have worked on more than one combination; however,
given the availability of the subjects’ time, this could not be implemented in our test.

We started with an introduction of the background knowledge. Each of the par-
ticipants was given a written document that listed all the knowledge that GILA had
before learning. They also received GUI training on how to use the graphical inter-
face designed to make human testing fair in comparison with GILA testing. After the
training, each participant was handed a questionnaire to validate that they had gained
the basic knowledge to carry out the test. The participants were then shown a video
of the expert demonstration traces on how to deconflict airspaces. Based on their ob-
servations, they practiced on the practice case, which only had the beginning and the
ending states of the airspaces, without the detailed actions to deconflict them. Finally,
the participants were given a performance test case on which they were expected to
work. The test ended with an exit questionnaire.

Table III shows the scores achieved by GILA and human novices. The score for the
human novices shown in the table is the average score of all human novices in a group
who are working on the same testing scenario. The score of a solution represents
the quality of the solution, which is evaluated by the SME based on the six factors
described in Section 6.1. To avoid any experimental bias, the scoring process was blind.
The solution was presented in a manner that prevented the expert from determining
whether it was generated by GILA or by a human. The maximum possible score for
one solution was 100. For example, the first row in Table III shows that for experiment
EFG (using Scenario E for demonstration, F for practice and G for performance), the
average score for human novices is 93.84, while the score of the GILA solution is 95.40.
It is shown that based on the average of all six experiments, GILA has achieved 105%
of human novices’ performance. The trimmed mean score of human novices (which
ignores the two highest and two lowest scores) is 91.24. Hypothesis 1 that “GILA
has achieved 100% human novice performance (measured by trimmed mean score)” is
supported with 99.98% confidence using a t-test.

Here are some general observations of how human novices performed differently
from GILA in solving an airspace management problem.

(1) GILA sometimes gave uneven solutions, for example 35001 ft instead of 35000 ft.
Novices can infer from the expert trace that 35000 is the convention. It seems that
the human reasoning process uses a piece of common knowledge that is missing
from GILA’s knowledge base.

(2) Overall, novices lacked the ability to manage more than one piece of information.
As the complexity of the conflicts increased, they started to forget factors (e.g.,

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:29

Table IV. Comparison of GILA and Single ILRs for Conflict
Resolution (Test Scenario: EFG)

GILA SPLR CBLR DTLR
Conflict Solved 14 14 7 5
Quality Score 95.40 81.2 N/A N/A

which ACM, which method to change, etc.) that needed to be taken into account.
GILA demonstrated a clearly higher level of information management ability in
working with multiple conflicts at the same time.

The last three columns of Table III show the percentage of contribution made by
each ILR in the final solution output by GILA. Note that the 4DCLR is not in this
list because it does not propose conflict resolutions, but only checks safety constraint
violations. On average, the SPLR clearly dominates the performance by contributing
70% of the final solution, followed by the CBLR which contributes 24%, and finally
the DTLR, which contributes 6%. One reason why SPLR’s performance is so good
is that its rule language, which is based on taxonomic syntax, is very natural and
appropriate for capturing the kind of rules that people seem to be using. Second, its
lower-level value function captures nuanced differences between different parameter
values for the ACM modification operators. Third, it does a more exhaustive search
during the performance phase than the other ILRs – to find the best possible ACM
modifications. The CBLR does well when its training cases are similar to the test cases,
and otherwise does poorly. In the reported test cases, it is found to make poor geometry
decisions. The DTLR suffers from its approximate search and coarse discretization of
the search space. Although it uses the same cost function as the SPLR to search for
the solution, its solutions are often suboptimal because it discretizes the parameter
space more coarsely than the SPLR. Because of this, it sometimes completely fails to
find a solution that passes muster by the 4DCLR, although such solutions do exist in
the search space.

6.3. Effect of Collaborations Among Components

To test the importance of the collaboration among various ILRs, we performed two
additional sets of experiments. The first set is to run GILA with only one ILR for
solving conflicts. The second set is to evaluate the influence of the 4DCLR on GILA’s
performance.

6.3.1. GILA Versus Single ILRs for Solving Conflicts. In this set of experiments, GILA ran
with only one ILR for solving conflicts. However, in all these experiments, the DTLR
was still used for providing cost information for the MRE, and the 4DCLR was used
for internal simulation and safety constraint checking. The hypothesis to test here is:

Hypothesis 2. No single ILR (for generating deconflicting solutions) can perform as
well as GILA.

Table IV shows that the DTLR is able to solve 5 conflicts out of 14 total conflicts,
while the CBLR is able to solve 7 of them. Though the SPLR is able to solve all 14
conflicts, the quality score of its solution (81.2) is significantly lower than the score
achieved by GILA as a whole (95.4). The lower score for the SPLR-only solution is
caused by some large altitude and time changes, including moving the altitude above
66000. Though there are multiple alternatives to resolving a conflict, usually an action
that minimizes change is preferred over those with larger changes. Such large-change
actions were not in the solution produced using all ILRs because other ILRs proposed
alternative actions, which were preferred and chosen by the MRE. Although the DTLR

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:30 X. S. Zhang et al.

is unable to solve some conflicts because of its incomplete search, it learns a cost func-
tion used by the MRE to guide the overall problem solving process. The CBLR fails to
solve conflicts if its case library does not contain similar conflicts. The above results
support Hypothesis 2 positively. These experiments verify that the collaboration of
multiple ILRs is indeed important to solve problems with high-quality solutions.

6.3.2. Performance of the 4DCLR. The performance improvement gained by including
the 4DCLR in GILA has been experimentally tested. Here, we summarize the results;
for details, see Rebguns et al. [2008]. Specifically, we did an experimental investigation
of the following hypothesis:

Hypothesis 3. GILA with the 4DCLR generates airspace-deconfliction steps that are
more similar to those of the expert than GILA without the 4DCLR.

Two performance metrics were applied in testing this hypothesis. The first, more gen-
eral, metric used was:2

Metric 1. Compare all airspaces moved by GILA and the expert by grouping
them as true positives, that is, those moves performed by both GILA and the ex-
pert, false positives, that is, those moves that were only done by GILA but not the
expert, and false negatives, that is, those that were done by the expert but not by GILA.

The score of GILA, with versus without the 4DCLR, was provided by the following
formula:

T P
T P + FP + FN

,

where T P, FP and FN are the number of true positives, false positives and false
negatives in an experiment, respectively. The maximum possible score was 1.0,
corresponding to complete agreement between GILA and the expert. The lowest score,
0.0, occurred when GILA and the expert chose completely disjoint sets of airspace
modifications.

Across five experimental cases, the system generated the following results with the
4DCLR: T P = 30, FP = 18 and FN = 22. Based on this outcome, GILA’s score using
the first metric was 0.429 when the 4DCLR was included. The score of the system
dropped to 0.375 when the 4DCLR was excluded, with the following results: T P = 27,
FP = 20 and FN = 25. Based on these results, it can be concluded that the 4DCLR is
helpful for GILA’s improved performance.

6.4. Effect of Demonstration Content on GILA’s Performance

Though GILA has achieved quite a good performance score after learning from the
expert’s demonstration, there is a remaining question of how important the expert’s
demonstration is. In other words, is GILA solving the problem mainly based on its
built-in domain knowledge? (Although this prior domain knowledge was minimized,
its presence could affect the performance.) To answer this question, we designed the
following two sets of experiments.

6.4.1. Performance Without Learning. The hypothesis being tested here is:

Hypothesis 4. GILA performs much worse without learning from the expert’s
demonstration.

2See Rebguns et al. [2008] for the more specific second metric.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:31

Fig. 8. Comparison of the impact of learning on novices and GILA.

In this set of experiments, we have both GILA and human novices perform on two
scenarios, without learning from the expert’s demonstration. As shown in Figure 8,
GILA’s performance time increases significantly (about 10 times slower) when it has
to solve the same problem without learning. This is due to the fact that GILA has
to rely on brute force search to solve the problem. Also, without learning, GILA per-
forms poorly on some of the harder subproblems. The difference in the solution quality
score does not seem to be significant; however, small differences in score can mean
big differences to the mission. As the SME explains, “An unacceptable altitude in one
conflict only brought that conflict resolution’s score down to 4.5 [of 5.0]. Put this in the
mix for the entire 14 conflicts, and the overall score would change from 4.83 down to
4.81.... yet this could begin a snowball effect that negatively impacted the entire day’s
ATO.” The above analysis of results support Hypothesis 4 positively. Additionally, an
analysis of GILA’s solutions shows that the improved scores are due to learning. With
learning, GILA’s solution is nearly identical to the expert’s solution.

In addition, we have compared novices and GILA, with and without learning, on
two matched settings:

— Setting 1: Perform on Scenario E without learning and on G with learning;
— Setting 2: Perform on Scenario G without learning and on E with learning

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:32 X. S. Zhang et al.

Table V. ILRs’ Proposed Actions After Learning From Bias Trace

Altitude Altitude. Geometry Altitude. Geometry, Time
PSTEP Demo CB SP DT Demo CB SP DT Demo CB SP DT

Trace LR LR LR Trace LR LR LR Trace LR LR LR
SetACMMinAltitude 9 24 35 12 7 6 11 7 4 3 11 5
SetACMMaxAltitude 10 29 35 8 7 7 11 4 6 5 11 4

SetACMPoint - - - 54 10 8 12 - 5 3 14 -
SetStartTime - - - 1 - - - 2 2 1 - 2
SetEndTime - - - 1 - - - 2 1 - - 2
SetRadius - - - 14 - - - - - - - -

As illustrated in Figure 8, when learning was not a part of the task, novices also
showed a similar drop in performance in both settings. Without learning, novices took
a little bit longer to solve the problem, but not as much as GILA. This is because
humans often rely on common sense rather than excessive search to solve problems.

6.4.2. Learning from a Biased Expert Trace. To verify that GILA is actually learning
what the expert demonstrates, we designed the following bias test. As we described in
Section 3, in order to resolve a conflict, there are three types of changes an expert can
make to an ACM: altitude change, geometry change and time change. In our bias test,
GILA learned from three different expert traces:

(1) An expert trace that contains only altitude changes
(2) An expert trace that contains only altitude and geometry changes
(3) An expert trace that contains all three types of changes

We observed how GILA performed after learning from each of above traces. The
hypothesis that was tested is:

Hypothesis 5. The content of the demonstration has substantial impact on how each
ILR solves the problem.

Table V shows how many times each ILR proposed a certain type of change after
learning from a specific demonstration trace. Notice that the actions (PSTEPs) for al-
titude change are SetACMMinAltitude and SetACMMaxAltitude, actions for geometry
change are SetACMPoint and SetRadius, and actions for time change are SetSatrt-
Time and SetEndTime. Both the CBLR and the SPLR learned to strongly prefer the
action choices demonstrated by the expert, and they did not generate any choice that
they had not been seen in the demonstration. However, biased demonstrations led the
DTLR to propose a more diverse set of changes. This was due to the DTLR’s unique
learning and reasoning mechanism. The DTLR always internally considers all possi-
ble changes. If there are only altitude changes in the demonstration, and they do not
resolve conflicts during the DTLR’s internal search, then it proposes other changes.
These results support Hypothesis 5 positively.

6.5. Effects of Practice

To study the effect of the internal practice phase, we compared GILA’s performance
score on six scenarios, A, B, C, E, F, and G, with and without practice. The average
score is 0.9156 with practice, and 0.9138 without practice. The improvement due to
practice is small, which shows that GILA has not taken full advantage of practice. In

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:33

fact, given the limited time working on this project, the following questions have not
been addressed thoroughly in the practice phase:

— How should an ILR learn from the pseudo-expert trace generated by practice? Cur-
rently, the pseudo-expert trace is treated as another expert trace, and an ILR learns
from it exactly as it learns from the original expert trace. However, this solution
does not properly deal with the potentially inconsistent knowledge learned from
these two traces.

— How should an ILR share its learned knowledge more actively with other ILRs? A
pseudo-expert trace actually provides more feedback to ILRs about what they have
learned. By analyzing the pseudo-expert trace, an ILR can see, for each subprob-
lem, whether its proposed solution has been selected. If not selected, the ILR can
learn from the reason why it is not selected, and also learn from the actual selected
solution.

Though the questions have not been answered, even now practice shows good
promise for improving solutions. For example, without practice, GILA moves an
airspace across the FEBA (Forward Edge of the Battle Area) over into enemy territory,
which is not safe. With practice, GILA finds a better way to solve the same conflict –
by changing the altitude of one ACM involved in the conflict. Hence, we are confident
that the practice phase provides a good opportunity for GILA to exercise its learned
knowledge and to improve its solution quality.

7. RELATED WORK

GILA is one of two efforts in the DARPA Integrated Learning Program to integrate
multiple learning paradigms for learning a complex task from very few examples. The
other effort is POIROT (Plan Order Induction by Reasoning from One Trial) [Burstein
et al. 2008]. POIROT is an integrated framework for combining machine learning
mechanisms to learn hierarchical models of web services procedures. Individual learn-
ers in POIROT share a common language (LTML – Learnable Task Modeling Lan-
guage) in which to express their hypotheses (generalizations) and other inferences
from the demonstration traces. LTML is based on ideas from OWL and PDDL. Mod-
ules can also formulate learning goals for other modules. There is a Meta-Controller
that manages the learning goals following the goal-driven learning paradigm [Ram
and Leake 1995]. The hypotheses generated are merged together into a single hypoth-
esis, using a computational analogy-based method. POIROT incorporates ReSHOP,
an HTN planner capable of interpreting planning domains in LTML, generating plans
and executing them by invoking web service calls. While GILA’s integration approach
is “Independent learning with collaborative performance,” POIROT’s is closer to “Col-
laborative learning and performance.” In fact, GILA’s modules (ILRs) are capable of
both learning and solving problems; in POIROT, on the other hand, modules only
have learning capabilities. Thus, they collaborate during learning, whereas perfor-
mance is accomplished by a separate module. In machine learning terms, we could see
POIROT as using the different modules to explore the same generalization space us-
ing different biases, whereas in GILA, each module explores a different generalization
space.

The MABLE system [Mailler et al. 2009] developed in the DARPA Bootstrapped
Learning effort also uses heterogeneous learners that learn with very limited train-
ing (not just example based) and perform using their own representations and mech-
anisms. This system was developed later than GILA. Unlike GILA, the hierarchical
breakdown of the overall learning into subproblems (“concepts”) is provided to MABLE
and the training associated with each concept is identified directly and the concepts

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:34 X. S. Zhang et al.

are taught and tested in precedence order. MABLE faces challenges of identifying
which learners (“learning strategies”) are appropriate for the training “method” (“by
example,” “by telling,” etc.) provided for a concept and extremely limited graded testing
available to identify if a concept has been learned successfully.

FORR (For the Right Reason) [Epstein 1994] is another domain-independent
ensemble learning architecture. This architecture assumes initial broad domain
knowledge, and gradually specializes it to simulate expertise for individual problem
classes. FORR contains multiple heuristic agents called “advisors” that collaborate on
problem-solving decisions. A FORR-based program learns both from the performance
of an external expert and from practice in its domain. This architecture has been
implemented for game playing. The major difference between the FORR architecture
and the GILA architecture is that FORR contains one single learner, and all advisors
perform based on the same learned knowledge, whereas GILA contains multiple
ILRs, and each learns using its own methods and proposes solutions based on its own
internal learned knowledge. We believe that multiple diverse learning methods can
be advantageous for capturing knowledge from various sources, especially when the
expert demonstration examples are very few.

In addition to POIROT, MABLE and FORR, our work on GILA is related to several
areas of research on the integration of learning methods (ensemble learning and mul-
tiagent learning) and on learning from demonstration. The rest of this section outlines
the connections between GILA and those areas.

Ensemble learning focuses on constructing a set of classifiers and then solving new
problems by combining their predictions [Dietterich 2000a]. Ensemble learning meth-
ods, such as Bagging [Breiman 1996] or Boosting [Freund and Schapire 1996], improve
classification accuracy versus having an individual classifier, given that there is diver-
sity in the ensemble. Thus, the focus on ensemble learning is to increase the classifica-
tion accuracy. Moreover, except for a few exceptions, ensemble learning methods focus
on creating multiple classifiers using the same learning method, but providing differ-
ent training or feature sets. GILA, however, focuses on integrating different learning
paradigms in order to reduce the number of training examples required to learn a com-
plex task. Moreover, ensemble learning techniques have been studied for classification
and regression tasks, whereas GILA operates on a planning task.

GILA’s ILRs could be considered “agents.” Multiagent learning (MAL) studies mul-
tiagent systems from a machine learning perspective [Stone and Veloso 2000]. Most
recent work in MAL focuses on multiagent reinforcement learning. GILA, however,
is closely related to work on distributed learning [Davies and Edwards 1995], where
groups of agents collaborate to learn and solve a common problem. Work in this
area focuses on both the integration of inductive inferences during learning [Davies
2001] (closely related to the POIROT project), and on the integration of solutions dur-
ing problem solving [Ontañón and Plaza 2007] (which is closely related to the GILA
project).

Learning from Demonstration, sometimes called “programming by demonstration”
(PBD) or “imitation learning,” has been widely studied in robotics [Bakker and
Kuniyoshi 1996], and offers an alternative to manual programming. Lau [2001]
proposed a machine learning approach for PBD based on Version Space algebra. The
learning is conducted as a search in a Version Space of hypotheses, consistent with the
demonstration example. Human demonstrations have also received some attention to
speed up reinforcement learning [Schaal 1996], and as a way of automatically acquir-
ing planning knowledge [Hogg et al. 2008], among others. Könik and Laird present a
Relational Learning from Observation technique [Könik and Laird 2006] able to learn
how to decompose a goal into subgoals, based on observing annotated expert traces.
Könik and Laird’s technique uses relational machine learning techniques to learn how

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:35

to decompose goals, and the output is a collection of rules, thus showing an approach
to learning planning knowledge from demonstrations. The main difference between
GILA and these learning from demonstration techniques is that GILA analyzes expert
demonstrations using multiple learning modules in order to learn as much knowledge
as possible, and thus increase its sample efficiency.

8. CONCLUSIONS AND FUTURE WORK

In this article, we presented an ensemble architecture for learning to solve an airspace
management problem. Multiple components, each using different learning/reasoning
mechanisms and internal knowledge representations, learn independently from the
same expert demonstration trace. A meta-reasoning executive component directs a
collaborative performance process, during which it posts subproblems and selects par-
tial solutions from the ILRs to explore. During this process, each ILR contributes
to the problem-solving process without explicitly transferring its learned knowledge.
This ensemble learning and problem-solving approach is efficient, as the experimen-
tal results show that GILA matches or exceeds the performance of human novices
after learning from the same expert demonstration. The collaboration among various
learner-reasoners is essential to success, since no single ILR can achieve the same
performance as the GILA system. It has also been verified that the successful per-
formance of GILA is primarily due to learning from an expert’s demonstration rather
than from knowledge engineered within the system, distinguishing GILA from a hand-
engineered expert system.

The ensemble learning and problem-solving architecture developed in this work
opens a new path for learning to solve complex problems from very few examples.
Though this approach is tested within the domain of airspace management, it is pri-
marily domain-independent. The collaborative performance process directed by the
MRE is domain-independent, with the exception of the approach used to decompose
the problem into subproblems. The learning and reasoning mechanisms inside each
ILR are generally domain-independent, that is, they can be transferred to other prob-
lem domains. Each ILR can be transferred to other domains as described here.

— The SPLR is specifically designed to be domain neutral. The policy language
bias is “automatically” generated from any input domain; thus, transporting the
SPLR to other domains would be a straightforward process with minimal human
intervention.

— Whereas the CBLR case structure is domain-specific, the learning and reasoning
components are domain-independent. Transferring the CBLR to another domain
would require the identification of the most important features that would be used to
represent a case in the new domain along with the representation of the set of steps
used to solve a problem in the new domain. A similarity metric and adaptation rules
that would operate on these features in the new domain would also be needed. The
hierarchical relationships among case libraries would need to match the structure
of the new domain.

— The learning algorithm of the DTLR is similarly domain-independent, whereas the
features are domain-specific. To transfer to a different domain, the following three
things need to be redefined: (1) a joint-feature function that gives the features de-
fined on both input x and output y to successfully exploit the correlations between
inputs and outputs, (2) a loss function that gives a discrepancy score between two
outputs y and y’ for a given input x, and (3) an argmax solver, which is an oracle
that gives the best output ŷ for a given input x according to the cost function.

— In terms of task generality, the 4DCLR is easily applicable to any physical-
world application that involves physical constraints. Only the ontology and specific

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:36 X. S. Zhang et al.

domain knowledge would need to be replaced; the algorithms would remain the
same. Generalization of the 4DCLR to abstract (non-physical) tasks is a topic for
future investigation.

The GILA system can be extended in several ways. For example, GILA could be
extended to eliminate the assumption that the expert’s demonstration is perfect and
that there is no disagreement among experts. Several experts may disagree on similar
situations. Each ILR could be enhanced to handle this new challenge. For example,
SPLR learning allows negative coverage. For priority and choice learning, the SPLR
would choose to learn from the actions of the majority of experts. For margin learning,
the SPLR would learn the average margins among experts. The CBLR can currently
learn cases from multiple experts who agree or disagree. At performance time, a set of
cases that are most similar to the current problem being solved are retrieved, and this
set may contain two or more cases with radically different solutions. The CBLR will
apply these solutions one at a time, and submit the solution that results in the highest
quality airspace deconfliction (i.e., the lowest number of conflicts in the airspace). In
the case of an imperfect expert (resulting in a learned case with an incorrect solution)
the most similar case will be adapted and applied, and the resulting solution tested. In
future work, in order to improve CBLR performance, a case that results in an incorrect
solution would be identified, and another case would be adapted and applied in its
place. We would also incorporate an introspective module that will reason about the
quality of the cases learned, based on the solutions that they produce over time, and
either remove lower quality cases or flag them so that they are only applied when
higher quality cases are not successful. The DTLR can be improved by learning search
control heuristics and an informed search algorithm that helps find higher quality
solutions to its subproblems. The 4DCLR does not currently consider the situation of
multiple experts who disagree, thereby resulting in inconsistent expert traces. In the
future, we would like to extend the 4DCLR to address this, by weighting each expert’s
inputs based on his/her assessed level of expertise.

Another future direction is to introduce further collaboration among the different
ILRs. How can each ILR learn from other ILRs more actively? In the work presented in
this article, components are coordinated only by the meta-reasoning module at perfor-
mance time. As part of our future work, we are exploring the possibility of coordinating
the components at learning time by following ideas from goal-driven learning (GDL)
[Ram and Leake 1995] (see Radhakrishnan et al. [2009] for preliminary results). We
can also provide feedback on each ILR’s solution, including an explanation of why its
solution was not selected, thereby allowing it to learn from solutions provided by other
ILRs. Such collaborations would enhance the performance of the entire GILA system.

REFERENCES
AAMODT, A. AND PLAZA, E. 1994. Case-based reasoning: Foundational issues, methodological variations,

and system approaches. Artif. Intell. Commun. 7, 1, 39–59.
BAKIR, G. H., HOFMANN, T., SCHLKOPF, B., SMOLA, A. J., TASKAR, B., AND VISHWANATHAN, S. V. N.,

Eds. 2007. Predicting Structured Data. MIT Press, Cambridge, MA.
BAKKER, P. AND KUNIYOSHI, Y. 1996. Robot see, robot do: An overview of robot imitation. In Proceedings

of the Workhsop on Learning in Robots and Animals (AISB’96). 3–11.
BLUM, A. AND MITCHELL, T. 1998. Combining labeled and unlabeled data with co-training. In Proceedings

of the Annual Conference on Learning Theory (COLT).
BREIMAN, L. 1996. Bagging predictors. Mach. Learn. 24, 2, 123–140.
BURSTEIN, M. H., LADDAGA, R., MCDONALD, D., COX, M. T., BENYO, B., ROBERTSON, P., HUSSAIN, T. S.,

BRINN, M., AND MCDERMOTT, D. V. 2008. POIROT - Integrated learning of web service procedures. In
AAAI. 1274–1279.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

Learning Complex Problem-Solving Techniques from Demonstration 75:37

CENDROWSKA, J. 1987. PRISM: An algorithm for inducing modular rules. Int. J. Man-Machine Stud. 27, 4,
349–370.

CHOCKLER, H., AND HALPERN, J. Y. 2004. Responsibility and blame: A structural-model approach. J. Artif.
Intell. Res. (JAIR) 22, 93–115.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.
DAUMÉ III, H. AND MARCU, D. 2005. Learning as search optimization: Approximate large margin methods

for structured prediction. In Proceedings of the 22nd International Conference on Machine Learning
(ICML).

DAUMÉ III, H., LANGFORD, J., AND MARCU, D. 2009. Search-based structured prediction. Mach. Learn. J.
75, 3, 297–325.

DAVIES, W. AND EDWARDS, P. 1995. Distributed learning: An agent-based approach to data-mining. In
Working Notes of the ICML’95 Workshop on Agents that Learn from Other Agents.

DAVIES, W. H. E. 2001. The communication of inductive inference. Ph.D. dissertation, University of
Aberdeen.

DIETTERICH, T. 2000a. Ensemble methods in machine learning. In Proceedings of the 1st International
Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science. Springer Verlag, 1–15.

DIETTERICH, T. G. 2000b. An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting, and randomization. Mach. Learn. 40, 2, 139–157.

EPSTEIN, S. L. 1994. For the right reasons: The FORR architecture for learning in a skill domain. Cogn.
Sci. 18, 3, 479–511.

ERMAN, L. D., HAYES-ROTH, F., LESSER, V. R., AND REDDY, D. R. 1980. The HEARSAY-II speech under-
standing system: Integrating knowledge to resolve uncertainty. Comput. Surv. 12, 2, 213–253.

FREUND, Y. AND SCHAPIRE, R. E. 1996. Experiments with a new boosting algorithm. In Proceedings of the
13th International Conference on Machine Learning. Morgan Kaufmann, 148–156.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 1998. Additive logistic regression: A statistical view of
boosting. Ann. Stat. 28, 2000.

HOGG, C. M., MUÑOZ-AVILA, H., AND KUTER, U. 2008. HTN-MAKER: Learning htns with minimal addi-
tional knowledge engineering required. In Proceedings of the 23rd AAAI Conference on Artificial Intel-
ligence (AAAI). 950–956.

HUANG, Y., SELMAN, B., AND KAUTZ, H. 2000. Learning declarative control rules for constraint-based
planning. In Proceedings of the 17th International Conference on Machine Learning (ICML). 337–344.

KAUTZ, H. AND SELMAN, B. 1999. Unifying SAT-based and graph-based planning. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI). 318–325.

KHARDON, R. 1999. Learning action strategies for planning domains. Artif. Intell. J. 113, 1–2, 125–148.
KÖNIK, T. AND LAIRD, J. E. 2006. Learning goal hierarchies from structured observations and expert an-

notations. Mach. Learn. 64, 1–3, 263–287.
LAU, T. 2001. Programming by demonstration: A machine learning approach. Ph.D. dissertation, University

of Washington.
MAILLER, R., BRYCE, D., SHEN, J., AND O’REILLY, C. 2009. Mable: A framework for learning from natural

instruction. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent
Systems - Volume 1 (AAMAS’09). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 393–400.

MARTIN, M. AND GEFFNER, H. 2000. Learning generalized policies in planning domains using concept
languages. In Proceedings of the 7th International Conference on Principles of Knowledge Representation
and Reasoning.

MCALLESTER, D. AND GIVAN, R. 1993. Taxonomic syntax for first order inference. J.ACM 40, 2, 246–283.
MICHAELIS, J. R., DING, L., AND MCGUINNESS, D. L. 2009. Towards the explanation of workflows. In

Proceedings of the IJCAI 2009 Workshop on Explanation Aware Computing (ExaCt).
MINTON, S. AND CARBONELL, J. 1987. Strategies for learning search control rules: An explanation-

based approach. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
228–235.

MUÑOZ-AVILA, H. AND COX, M. 2007. Case-based plan adaptation: An analysis and review. IEEE Intelli-
gent Systems.

ONTAÑÓN, S. AND PLAZA, E. 2007. Learning and joint deliberation through argumentation in multiagent
systems. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems.
971–978.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

75:38 X. S. Zhang et al.

PARKER, C., FERN, A., AND TADEPALLI, P. 2006. Gradient boosting for sequence alignment. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI). AAAI Press.

RADHAKRISHNAN, J., ONTAÑÓN, S., AND RAM, A. 2009. Goal-driven learning in the GILA integrated in-
telligence architecture. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). 1205–1210.

RAM, A. AND LEAKE, D. 1995. Goal-Driven Learning. The MIT Press.
REBGUNS, A., GREEN, D., LEVINE, G., KUTER, U., AND SPEARS, D. 2008. Inferring and applying safety

constraints to guide an ensemble of planners for airspace deconfliction. In Proceedings of CP/ICAPS
Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS’08).

REBGUNS, A., GREEN, D., SPEARS, D., LEVINE, G., AND KUTER, U. 2009. Learning and verification of
safety parameters for airspace deconfliction. Tech. rep. CS-TR-4949/UMIACS-TR-2009-17, University of
Maryland.

RIVEST, R. L. 1987. Learning decision lists. Mach. Learn. 2, 3, 229–246.
SCHAAL, S. 1996. Learning from demonstration. In Proceedings of the Advances in Neural Information

Processing Systems (NIPS). 1040–1046.
STONE, P. AND VELOSO, M. M. 2000. Multiagent systems: A survey from a machine learning perspective.

Autonom. Robots 8, 3, 345–383.
WANG, W. AND ZHOU, Z. 2007. Analyzing co-training style algorithms. In Proceedings of European Confer-

ence on Machine Learning (ECML).
WEISS, G., Ed. 2000. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT

Press.
WETTSCHERECK, D., AHA, D. W., AND MOHRI, T. 1997. A review and empirical evaluation of feature

weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11, 273–314.
XU, Y., FERN, A., AND YOON, S. 2007. Discriminative learning of beam-search heuristics for planning. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
YOON, S. AND KAMBHAMPATI, S. 2007. Hierarchical strategy learning with hybrid representations. In

Proceedings of the AAAI 2007 Workshop on Acquiring Planning Knowledge via Demonstration.
YOON, S., FERN, A., AND GIVAN, R. 2002. Inductive policy selection for first-order MDPs. In Proceedings of

the 18th Conference in Uncertainty in Artificial Intelligence (UAI).
ZHANG, X., YOON, S., DIBONA, P., APPLING, D., DING, L., DOPPA, J., GREEN, D., GUO, J., KUTER, U.,

LEVINE, G., MACTAVISH, R., MCFARLANE, D., MICHAELIS, J., MOSTAFA, H., ONTAÑÓN, S., PARKER,
C., RADHAKRISHNAN, J., REBGUNS, A., SHRESTHA, B., SONG, Z., TREWHITT, E., ZAFAR, H., ZHANG,
C., CORKILL, D., DEJONG, G., DIETTERICH, T., KAMBHAMPATI, S., LESSER, V., AND ET AL. 2009. An
ensemble learning and problem-solving architecture for airspace management. In Proceedings of the
21st Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-09). 203–210.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 75, Publication date: September 2012.

