PCL: A PROCESS-ORIENTED JOB CONTROL LANGUAGE

Victor Lesser, Daniel Serrain, Jeff Bonar

Computer and Information Science Department

University of Massachusetts
Amherst, Massachusetts 01003

Abstract

A new type of network operating system is

9ge and complex process structures are required

1.1 1Inadequacies of Current Network 0s

required to efficiently implement large, complex
Process structures on processor networks. This
new type of operating system should provide a Current network operating systems are
high-level view of the process structure. It designed for small, simple process structures.
should allow the modular specification of both They do not provide the user with appropriate
static and dynamic characteristics of process process specification tools, process debugging and
Structures. We propose to provide these execution monitoring capabilities, or efficent
facilities by integrating a process-oriented job processor-independent resource scheduling for
control language called PCL (Process Control large and complex process structures.
Language) into a network operating system.
¥ Process specification tools are inadequate.
We have developed constructs in PCL which Existing network operating systems (see Forsdick
allow non-procedural specification of replication, et al [1977], wulf [1974], and Jones et al [1977]
sharing, and re-use of a pProcess structure and its for examples) have procedural process structuring
components, This specification also provides primitives, imbedded in the code of individual
information for the scheduler about control flow processes, that deal only in a limited way with
and resource usage patterns in the process groups of processes and their interconnection
Structure, permitting flexible and efficient structure. Because of this, the process
binding of processes to processors. specification code is difficult to understand,
hard to write, and lacking in modularity.
Furthermore, the specification code is unavailable
for inspection by the system. We discovered these
1.8 Introduction inadequacies while implementing two speech
A i understanding systems (Hearsay II [Fennell and
Lesser, 1977] and Dragon [Baker, 1975]) on the
3 3 Hydra operating system [Wulf, 1974] for the C.MMP
: Re .e. :
LD e " ComminiCation  strecrerer’ (il it Chnameayr Rofie 1) for she com
- packet-switching) have made it possible to Carnegie-Mellon University.
- construct networks of tens or hundreds of % g 5 3 S s
3 _ Debugging facilities in existing network
1i:geseth;angiRP§f§2two%zose%zaggup;:g operatxng' systems are inadequate pecause thgy
Crowther, 1971, to closely-coupled networks, such SRten  alfe(only one process At a fide. It 'is
the UC Irvine LOOP system [Farber, 1975] or the oL Len difficult to locate the process being
Carnegie-Mellon CM* system [Swan et al, 1977). debugged or to understand its current connections

with other processes. Primitives which allow the

exploit fully the parallelism and redundancy of nser to locate processes symbolically are  needed.

€ networks. Existing designs for network With these primitives a user can monitor the

ating systems do not facilitate the efficient transactions and state transitions of a single

ementation of such process structures. process, all processes which are executing the
same code, or some arbitrary subset of the process
structure. -

Current schedulers for network operating
systems are inadequate because they assume either
an inflexible binding of processes to processors

This research was begun at the Computer or complete independence among processes. A fixed
€ Department of Carnegie-Mellon University binding significantly reduces reliability and

I the support of the Defense Advanced Research modularity, particularly in an environment where
ts Agency (contract no. F44620-73-C-0274) the number of processors and the size, nature, and

- @ research grant from IRIA (Institue de number of memories are continually changing.
rche en Informatique et Automatique) of Furthermore, a fixed binding limits the use and
Ce. The research at the University of efficiency of process structures which dynamically
lusetts was supported under National Science evolve according to interactions with their
dation grant MCS78-04212. environment. Only processes which need a
4 specialized processor (e.g., a particular 1/0
Daniel Serrain’s present address is: Texas processor) should be tightly bound. In other
ruments, B.P.5-86270 Villeneve-Loubet, France. cases. the system should ~consider locality

315

CH1445-6/79/0000-315$00.75 © 1979 IEEE



information and control relationships among
processes before performing a (possibly dynamic)
binding. The use of this information should help
maximize parallelism, minimize communication
costs, and minimize operating system overhead.(*)

1.2 A High-Level View of Process Structure

Current network operating systems are
inadequate because they lack an appropriate
high-level view of a process structure. An
appropriate high-level view of the process

structure should include both static and _dynamic
information. For example, it should indlude the
data requirements of individual processes and the
frequency of access to these data. It should also
make clear how processes are connected, both in
terms of direct communication through messages and
indirect communication through shared data. Those
processes which run in parallel, as co-routings,
or sequentially should be discernable. Finally,
this view should include the characteristics of
the process structure’s dynamic response to new
data.

More generally, a high-level view should
allow a user to view a system as something more
complex than a network of producer and consumer
processes. We would 1like to view systems as a
"society of interacting processes" whose structure
is similar to that of a complex organization. For
instance, such organization structuring ideas as

Simon’s "Nearly-Decomposable Hierarchical System"
(1962) should be reflected in high-level
specification.

We propose to provide a high-level view of
process structure by integrating a
process-oriented job control language called PCL
(Process Control Language) into a network

operating system.

1.3 PCL for Process Structuring

PCL permits a user to specify his process
structure, both data and control, to the operating
system in a non-procedural manner. This
process-based description can be used to guide the

operating system in initially configuring the
user ‘s process structure, and also in organizing
dynamic evolution, scheduling, and process
(*) For example, the overhead for process context
swapping can be minimized if groups of closely
interacting processes can be executed
simultaneously. In particular we are concerned

with the "control working set" phenomenon (Lesser,
1972). Lesser predicts that the execution of a
closely coupled process structure on a
multiprocessor may result in a significant amount
of supervisory overhead caused by a large number
of process context switches. These process
context swaps occur because there are not enough
processors to support the simultaneous execution
of the closely coupled processes. It is analogous
to the thrashing which occurs when there is not
enough physical memory to hold a data working set.
A system scheduler can minimize this thrashing if
it is aware of clusters of closely interacting
processes.

316

communication. This description is also necessary
for the effective development of high-level,
process-oriented debugging tools.

PCL provides a mechanism to express an
arbitrarily complex process instantiation
(activation) pattern in terms of simple operations
on a finite and static description. Processes
perform simple operations within their own local
view of the process structure. When the
operations are interpreted by the system in the
context of the static PCL description, non-local
modification to the process structure may result.
For example, one process requests the creation of
another process. This involves not only the new
process and the connection from the old process,
but also the creation of other prespecified
connections between the new process and other
components currently instantiated within the
system. The process initiating creation need not
(and for modularity reasons, should not) know
about the creation of these other connections.
Specification of the process structure is not
implicit in the code of the processes themselves,
but is explicit in the PCL description of the
process structure.

The PCL’s facilities are 1largely orthogonal
to the facilities found in sequential languages
and operating systems. For this reason, PCL may
be implemented either by extending a host language
or, as we suggest, by implementing PCL as a job
control language where PCL may control execution
of user modules, and, in turn, user modules may
use functions provided by PCL. A benefit of this
approzch is that a user’s process structure can be
implemented with modules coded in a variety of
languages. (See Barnett (1975) for another
approach to implementing process control in a job
control language.)

In the remainder of the paper, we will first
describe the components that the PCL wuses to
specify a process structure. Much of the PCL

design makes sense only for a complex and dynamic
process structure. To motivate the PCL design, we
next present a problem of this type: an air
traffic controller implemented on a processor
network. With this problem, we will develop a
model for large, complex, and dynamic process
structures. After presenting an architecture for
a PCL based network operating system, we describe
the PCL constructs which implement this model.

2.9 The Nature of a Process Structure

Components in a PCL description of a process

structure are processes, memory segments, ports,
and links. These components are software
analogies to the memory, processor, and bus
connections which are used to describe the
Processor-Memory-Switch structure (Bell and
Newell, 1971) of the hardware components.
Clusters are groupings of components and are

themselves components.
in detail later.

Clusters will be explained

A process consists of a body
information, and a set of ports.
treated as processes which can be
one class of hardware components.

of code, state
1/0 devices are
bound only to

A memory segment consists of an array of
memory ~locations (possibly in a secondary file
structure) with an access function for
manipulating the information contained in the

segment.




A port represents access capabilities of a

process or cluster to other processes, clusters,
and memory segments. A port can send and receive
data and control information. Ports do not

represent the connections between components, but

are connected to links, which do represent these
connections.
A link is a channel for transferring

information from a port to other ports. For links
carrying control information or accessing memory,
the name of the object implicitly represents a
port. Links allow the specification of the
communication structure to be independent of the
specification of the communicating components.
They also allow the components to remain mutually
anonymous.

3.0 An Example Process Structure

Consider a network system for automated air
traffic control(ATC). At any given time many
planes are in the air. Each plane sends
information about itself (position, speed, amount
of fuel, etc.) in a burst of data. These bursts
of information are sent periodically or on demand
from the system. The controller process receives
each burst of information, updates its global
information, and based on that information decides
which planes to contact next and what messages to
send to those planes.

We will describe the system with the
structure in figure 3.1. CONTROLLER, the master
process, takes all bursts received but not
processed. With these it updates a global data
base, IN AIR, and after initiating two processes
for each plane in the air, goes to sleep. These
processes are DISTILL(i) and NEXT_ACTION(i).
DISTILL(i) preprocesses information in IN_AIR for
the use of NEXT_ACTION(i). NEXT ACTION(i)
determines the message to be sent to plane i and
the priority of that message. DISTILL(i) and
NEXT ACTION(i) are coroutines with NEXT_ACTION(i)
initally in control. They share PLANE LOCAL(i),
a working memory segment. When NEXT ACTION(i) is
completed it places its results in
POSSIBLE ACTIONS and signals its completion to
CONTROLLER. When all NEXT_ACTION(i) are
completed, CONTROLLER is awakened, selects which
messages in POSSIBLE ACTIONS are to be sent to the
planes, sends them, and reinitiates the cycle.
The number of NEXT ACTION and DISTILL processes
vary from cycle to cycle based on how many planes
are in the air.(*)

process

3.1 static Characteristics of the ATC

First, let us consider the static
~ characteristics of the ATC process structure. we
; specify the type, number, and

terconnections of structure components. In some
‘cases this information is parameterized. For
ple, there are n copies of DISTILL,

ACTION, and PLANE LOCAL, where n (the number

~ Planes in the air) is determined by CONTROLLER
d communicated at run-time.

') In order to keep the example simple, we have
t specified a process structure that reuses
ructure based on expectation of a plane

maining in the air from cycle to cycle.

317

We must describe the nature and the structure
of the communications among the components. For
example, the data link between CONTROLLER and the
memory segment IN AIR specifies the read-write
access capability of CONTROLLER to IN_AIR. The
communication link between CONTROLLER and
NEXT ACTION components has a broadcast structure;
the same message is sent to the n NEXT_ACTION
processes in order to wake them up to work on new
data. The structure of this link is different
from the one going back from NEXT ACTION(i) to
CONTROLLER. This return link acts as a
"concentration semaphore"; a single message is
received only when all n are sent.

Finally, component sharing is to be
described. For example, multiple links connected
to the memory segment IN_AIR indicates that it is
shared.

Figure 381:1
characteristics.

summarizes these static
The diagram lacks information
about dynamic aspects of the structure, but
contains all information necessary to build an
arbitrary dynamic structure out of the static
components described. One task of the PCL is to
capture and localize the static characteristics of
a process structure.

3.2 Dynamic Characteristics of the ATC

There are several important dynamic
characteristics of the ATC process structure.

Thare are master processes. In the example,
the master process CONTROLLER distributes work in
parallel with many NEXT ACTION processes, which
themselves locally distribute work to the DISTILL
processes.

Components or groups of components can be
copied at will. For example, there are n copies
of DISTILL, NEXT_ACTION, and PLANE LOCAL where

n
is determined dynamically by CONTROLLER. Each
copy has the same internal process structure but

with different initial wvalues. Note that even
with potential sharing, the 1link structure must
conform to the static specification. For example,
L2, the link between CONTROLLER and NEXT_ACTION,

should remain a single broadcast 1link  to all
NEXT_ACTION processes, no matter how many are
created.

Components can be shared. IN AIR is shared
by CONTROLLER and all DISTILL processes. Again,
the link structure must conform no matter how

components are shared.

Components can be instantiated dynamically.
When the process structure 1is initialized, for
example, CONTROLLER and IN AIR must be fully
instantiated. The rest of the structure, however,
can exist as simply a static description. (The
nature of the static and dynamic descriptions will
be explained later.)

?CL must allow a user to represent these
dynamic aspects of a process structure, as well as
the static aspects previously discussed.

Figures 3.2.1 and 3.2.2 show the PCL
description and skeleton code for the ATC. The
details of the PCL description will be discussed
later.



Processes

Controller
Distill (i)
Next_action (i)

1.6
Distill (1) ]\(” Memories

Plane_ In_air
13 14(1) L5(1) local (1) Plane_local (i)
Possible_actions
Controller_work
I t i
n_air Nex Telu):t on L7(1) Links - L1 to L10
13 access to memory
inter-process
LY ° communication
L3\ *
Controller ks L6(2)
- Distill (2
work ¥ s ) (ports are unnamed for
clarity)
Plane_
Mm'v‘ Ax.s(z) local (2)
(L2 L
[ Contrallex . Broadcast /I- Next_action L7(2)
. 12) Concentration
[> ¢ . o =
]
L10 °
Y/ L ®
Possible_ | Distill (n) L6 (n)
actions
Plane_
%
Lo M(":v Q L5 (n) local (n)
Next_action L7(n)
(n) _1
Figure 3.1 - Air Traffic Controller Process Structure
World Work
L3 data Dlatill data
impl L6 (simple)
Controller_ Ll (simple) (simple) "o
work
Data_
ready
1 L5 (simple) Plane_local
impl.
Ridio controll n?u_s g
oBtIoleer, Slane 12 (broadcast) Request |
data
L7
All_
actions b % Local _
“?—b"— Next_action data
done "

oo l,_
Lo *inished|

(multiple write)

‘Possible_
actions

L10
(simple)

L8 (concentration)

Figure 3.1.1 - Static Summary of Air Traffic Controller Process Structure

318



Figure 3.2.1 - AIR TRAFFIC CONTROLLER PCL

Cluster Air_traffic
Internal port Radio
Master Process Controller (copies = B b
phase = execute
creation = local )
external port Radio
internal port World, All _planes, All actions
memory Controller_work (size = 1000,
mode = readwrite,

end/* Controller */
Memory Possible_actions

phase = execute )
(phase = bind, expand with (N),
creation = local, copies = N )’
internal port Finished, 'l‘o_be__done
master process Next_action (coEies =1,
phase = initialized
creation = local )
external port Finished, To_be_done
internal port Request_data, Local_data
end /* Next_action */ :
process Distill (copies = 1,
phase = initialized
creation = local )
internal port World_data, Work_data, Daf.a_ready
end /* Distill */
Memory Plane_local (copies = 1,
. phase = bind,
creation = local,
size = 100,
mode = readwrite )
(copies = 1,
phase = execute,
evolves with Controller,
creation = own,
size = (N*40),
mode = readwrite )

link (connections = Next_action. Request_data: Distill,

———

type = simple,

carry = control,
traffic = high )
link (connections = Next_action. Local_data: Plane local,
type = simple,
carry = data )
link (connections = Distill. Data_ready: Next_ action,
type = simple,
carry = control,
traffic = high )
(connections = Distill. Work_data: Plane_local,
type = simple,
carry = data )
(connections = Distill. World_data: In_air,
= simple,
= data,
traffic = high )
end /* Plane */
link (connections = Controller. World: In_air,
type = simple,
ca = data,
traffic = medium )
link (comnections = Controller. All_planes: Plane,
type = broadcast,
carry = control )
link (connections = Controller. All_actioms: Possible_actions,
type = simple,
carry = data )
link (connections = Next_action. Finished: Controller,
type = concentration,
= control )
(connections = Next_action. To_be_done: Possible_actions,
type = multiple write,
carry = data )
end /* Air_traffic */

Cluster Plane

Memory In_air
emory. 5,

5
i

5

ik

:

319

Figure 3.2.2 - SKELETON CODE FOR THE AIR TRAFFIC
CONTROLLER

Controller:
while true do
begin
while not IS_EMPTY (Radio)
do begin
RECEIVE (Radio, Controller_work (1),
Length_radio_message) ;

Update_all planes
end;

EXECUTE (All_planes, N = Numplanes_in_air);

SLEEP

end

Next_action:
begin
Compute_own_situation;
/* Examine all near-by planes */
for i :=1lton
do begin g
Plane_local (COPY_NUMBER) := i;
EXECUTE (Request_data);
SLEEP;
if Plane_local (Plane_near)
then Update_situation
end;
Compose_message;
SEND (ro_be_done, Local data (Final_situation),
situation__description__length) ;
WAKEUP (Finished);
BIND
end

Distill:
begin
Get_raw_data (In_air (Plane local (COPY_NUMBER)) ) ;
Massage_data;
Construct_situation;
WAKEUP (Data_ready):
INITIALIZE
end

4.9 The Nature of Complex Process Structures

From the static connectivity pattern and the
dynamic control flow of the example process
structure, some observations about decomposing a
task into a set of cooperating processes can be
made. These observations have motivated a PCL
design which allows us to represent both the
static and dynamic aspects of a process structure
in a modular and non-procedural way.

A complex task can be decomposed into
subtasks or clusters. This decomposition is
somewhat arbitrary and may be based on shared data

within a subtask, functionalfly of a subtask,
interaction intensity, and component life
histories.

Clusters are themselves made up of
subclusters, in terms of both information and
control flow. This permits a hierarchical

description of a process structure. The use of
hierarchy in specifying a process structure is

very useful but should be formulated so that
non-hierarchical communication still can be
represented conveniently. This method of

describing a process structure is compatible with
simon’s (1962) view of an organization as a
"Nearly Decomposable Hierarchical System".



An important method for obtaining parallelism
in a decomposition is by replicating the structure
of a subtask and partitioning the data among the
instances. A wide variety of different process
structures can be constructed by specifying the
replication attributes of the components of the
subtask. For example, within a substructure, a
component may be replicated or may be shared by
other components which are replicated themselves.
In the ATC we cluster DISTILL, NEXT ACTION,
PLANE LOCAL, and IN AIR. Figure 4.1 is an n-copy
replication of this structure. N copies are made
of DISTILL, NEXT_ACTION, and PLANE_ LOCAL. A
single copy of IN AIR, however, is shared by each
copy of the other three components in the cluster.

Replication and sharing are specifiéﬁ by a
component s creation characteristics. Creation
characteristics, which can be parameterized,
specify how the component ‘s structure is
instantiated. They can be used to specify
automatic modification of the process structure
upon certain predefined events.

Plane (1)
oiatiny

b

Next _
action

LIET

Figure 4.1 - N copy replication of Distill,
Next Action, Plane local,
In_air cluster

Replication need for

synchronization

implies the
communication paradigms in
order to coordinate and communicate with the
multiple component copies. These paradigms
include lock-step control, broadcasting of data,
and others which will be detailed later. Many of
these control paradigms . can be implemented
directly by communication protocols that deal with
groups of processes. For example, the lock-step
control paradigm specified in the example can be
defined by combining two group communication
protocols. One protocol broadcasts the same
message to a group of processes, the other
protocol waits until all processes in a group have
replied before sending a composite message.

and

320

The communicatior paradigms
components of a process structure can be made
independent of the number of replications and the
manner of component sharing. A given link is
statically specified to connect certain components
with a specified communication protocol. When
this link is instantiated, it connects all copies
of the components in its static specification with

linking

the specified ' communication protocol. For
example, a simple 1link is replicated for each
instantiated process so that messages can be

directed to specific instantiations. A broadcast
link sends a copy of each received message to each
receiver, independent of the number of receivers.
Decomposition of a process structure must
also address the structure’s dynamic behavior.
When the process structure associated with a
subtask is constructed it can be used repeatedly
to perform the same function. Each use might
require only minor modifications or
re-initialization of the process structure. In

the ATC, the NEXT_ACTION processes never change.
If this is to be 1implemented effectively on a
computer network, it is important to specify that

the NEXT_ ACTION processes and their communication
links do not have to be completely disassembled
every time they complete an analysis.

By describing and manipulating a structure’s
evolution state, its dynamic behavior can be
controlled. An evolution state describes the
extent of instantiation of a component. A wide
range of dynamic behaviors can be described by
pre-specifying how the evolution state of a
component is related to the evolution state of its

enclosing structure. The description and
parameterization of the subcomponent structure
simplifies these minor modifications for each

repetition and permits the system to automatically
modify appropriate parts of the process structure
upon certain predefined events.

5.0 Integrating a PCL Into an Operating System

A PCL-based network operating system should
describe a process structure on three levels:

1. Process Network Template (PNT) ~ the
static description of the process
structure as defined by its PCL
description.

2. Dynamic Process Network (DPN) - the
current state of the executing process
structure as described by the activation
records of the processes that are
currently instantiated.

3. Process-Processor Binding (PPB) - the
current assignment of processes to
processors and memory segments  to
physical memory.

The use of the PCL description is intimately
intertwined with the system’s execution of a
user s process structure. The PNT is initialized
by the PCL interpreter based on the user’s
statically specified process structure. As part
of the initialization, the PCL interpreter
instantiates parts of the user process structure

@n the DPN and starts the execution of some of the
instantiated processes. During execution, PCL
commands generated by executing processes cause



es to occur to the DPN structure. This is
rvised by the PCL interpreter which refers to
- PNT and DPN when interpreting a PCL command.
~ PNT must be used because component activation
ds in the DPN may describe components not

instantiated. PCL commands which cause
structures to be fully instantiated must
back to the component’s PNT specification in
to complete the instantiation.

by

"lo capabilities, processes, or memory
ts can be added to the DPN unless their
ates are specified in the PNT. The PPB is

g and maintained by the scheduler, which may

“both the PNT and the DPN in making its
ions.
he DPN may contain multiple or shared
es of the process structure as long as
instances are created from the elements 1n
PNT. For example, the interpreter may
ntiate a process and memory segment as

ple copies of the process sharing a single
of the memory segment, a single copy of the
ss using multiple copies of the memory
sent, or even multiple copies of the process
multiple copies of memories. segments
cording to a specified communication discipline.
‘allowable instantiations are specified in the
statically (e.g., "six copies are to be
d at run-time") or through parameters (e.g.,
pies are to be created where n is determined
un-time").

=0

2
~ The Design and Basic Concepts of PCL

large,
with minimal

The PCL allows a user to describe a

plex process structure
pecification. Furthermore, it allows . the
scification to be non-procedural wherever

ible. In this way, PCL provides not only the

mework for an actual implementation of a

cess structure, what Riddle and Wileden (1978)

b to as an "implementation domain

escription”, but also a more abstract "problem
omain description®.

The PCL allows description of a process

tructure in terms of static or structural
12 teristics, evolutionary characteristics, and
eation characteristics. The structural
haracteristics describe individual components.
lutionary characteristics describe how a
cnent or group of components is represented in
system at any given time( e.g., described but
tantiated, using system memory, or on system
s and potentially executing). Creation
racteristics describe how components are shared
replicated. We will discuss each of these
rately. (*)

Structural Characteristics

Structural characteristics are described in
s of process network components as previously

A formal definition of the PCL is contained in
‘longer version of this paper, published as
hnical Report No. 78-12, Computer and
ormation Science Department, University of
 Massachusetts, Amherst, Mass.

321

CL1

mentioned.
and link

In addition to process, memory, port,

components in the PCL, there are
clusters. A cluster is a structure built from the
other basic components and other clusters.
Clustering of components allows a user to describe
a process structure hierarchcally.

Clustering can aid in scheduling by
indicating which components will interact often
and by supplying specific multi-component resource
requirements. The scheduler should attempt to
allocate clustered components so that
communication within the cluster can be as
efficient as possible.

Consider the example in figure 6.1.1. There
are five processes named A, B, C, D, and E. A and
B communicate extensively, as do C and D. A
sometimes communicates with C, D sometimes
communicates with B. A communicates with E
rarely. A reasonable clustering is indicated in
figure 6.1.2. Cluster CL# contains E and CLIl.
in turn contains CL2 and CL3. CL2 contains A
and B while CL3 contains C and D. Of course,
determining an appropriate clustering would be
more difficult in situations with 1less obviously
hierarchical communication relationships.

In the ATC, the cluster PLANE contains the
components that communicate closely (see figure
4.1). The cluster indicates that these components

should be allocated to hardware elements which can
interact efficiently with each other. The cluster
also indicates that the scheduler should attempt
to allocate and execute them as a group.

Structural characteristics of
remain constant independent of
sharing, or the evolutionary state of associated
components. This means that all structural
characteristics can be kept in the PNT and need
not be copied.

a component
replication,

In particular, the specification of the
communication protocols and structures,
represented by links, remains independent of the

dynamic characteristics of the process structure.
In order to accomplish this, we have defined a
variety of 1link types which specify different
communication protocols. More importantly, the
different types statically specify how the
communication structures will be modified as the
number of linked components dynamically vary.

are nine kinds of links. (The
properties of each 1link type are summarized in
Table 1.) Simple 1links connect two single
components. Broadcast 1links connect single
sender with many receivers. Every entering
message is sent to each receiver. Multigle—write
links connect many senders to one receiver. A
message from any sender goes to the receiver.
Multiple-read links connect one sender to many
receivers. A message from the sender goes only to
the first receiver who reads it. Concentration
links connect many senders to one receiver. The
receiver only receives a message when all senders
have written a message. The received message is 2
concatenation of the input messages.

There

a

The other four link types are combinations of
broadcast, multiple-write, multiple-read, and
concentration. MW-MR has the multiple-write
function on input and the multiple-read on output.
CB links concentrate inputs and broadcast outputs.
Similarly for MW-broadcast and concentration-MR.

Component structural information (possibly
parameterized) includes the number of copies,
specific component attributes (e.g., the size of a
memory segment), and initialization rules of a



TYPE REPRESENTATION COMMENTS
SIMPLE A: sender node
A [[m L B: receiver node
- One queue per couple (A, B)
BROADCAST 'II' A: sender node 3
A —‘{H]K: Biz receiver nodes
En - Each message pushed into the queue is read by all the B1
MULTIPLE-WRITE A Ai: sender nodes
;'>ﬂ]m__. B B: receiver node
I;' - Each message pushed into the queue by any A:l process is received by
a process ﬁ
MULTIPLE-READ B A: sender node
A .l Bj: receiver nodes
n' - To each message pushed into the queue is associated only one receiver
8 (the first one fo read it)
CONCENTRATION Aiz sender node
Al B: receiver node
,:HHI“—" b The message received by node B is the "concentration" of the n messages pushed
Au into the queue (if the link is of semaphore type: a signal is sent. If it is of data
type, the message received is the concatenation of the n input messages.).
©MA=-MR A B Ayt sender nodes
1. b | 3
-\, = B,: receiver nodes
A : - It is the multiple-write function in input and the multiple-read function
n
. m in output
cB Al: sender nodes
B,: receiver nodes
-"This is the concentration function in input and the broadcast function in output.
MULTIPLE- A B
WRITE- I. .1 |A;: sender node
BROADCAST ¥ " Bj: receiver node
AL B, |- This is the multiple-write function in input and the broadcast function in output
CONCENTRATION A4 By |a,: sender node
= MULTIPLE- . : |B,: receiver node
A- B - This is the concentration function in input and the multiple-read function in output
n B
TABLE TI.
Comments:
- the rectangles represent the queues
- the "-" represent access to the queue
- the Ai and Bj are processes
component. These are specified in a list of The description of a cluster’s components, for
keyword/value pairs appearing with the component example, are textually nested within that
being described. These  attributes may Dbe cluster ‘s description.
pge-spec1f1ed or generated during execution.
Without execution-time specification of The PCL also allows the specification of a
attributes, dynamic process structures would need

to be kept in some "fully-extended" form at all
times, even though much of the structure might be
only rarely used.

Global structural relationships are indicated
by nesting (scoping) of component descriptions.

322

component without implying where that component
will be used. These are called templates and are
analogous to "type" declarations in PASCAL (Jensen
and Wirth, 1974). This is both notationally
convenient and helpful in abstracting the
specification for a given variety of component.




hiah traffic

A<) OD

low
traffic

medium
medium traffic
traffic

c <O—>0

high traffic

e 6.1.1 - Structure with processes having dif-
ferent communication intensity.

cluster CLO
process E ...
cluster CL1
cluster CL2
process A
process B

end /* CL2 */
cluster CL3

process C
process D

end /* CL3 */
end /* CL1 */
end /* CLO */

6.1.2 - Clustering of the process structure
in Figure 6.1.1

s
6.2 Evolutionary Characteristics

dit

; il

. Evolutionary characteristics of a process
structure describe when and how components are
created, executed, and destroyed (deleted from the
DPN). A component can be in one of five different
~ states: uninstantiated, bound, expanded,

initialized, or executing. A component moves from
the earlier states to execution. When execution
ends, the component is destrcyed or moved to an
earlier state. (see figure 6.2.1).

1. An uninstantiated link, memory, or
process 1is known to the system, but
exists only as a static description in

the PNT.

2. A bound link, memory, or process exists

as an activation record in the DPN.

state, any needed
physical memory is allocated. This
includes two different kinds of memory.
A memory component has physical memory
allocated when it is expanded.
Similarly, the physical memory necessary
to implement the queues associated with
links is allocated when the links are

3. In the expanded

expanded.

4. A link in an initialized state is ready
to pass messages. Initialized memory
might be preloaded with some specified

values, but in
accessed. An

general 1is ready to be
initialized process is
ready to execute. Initialization of a
component can be done with values from
the (static) PCL description or with
values contained in the control message

which causes the component to move from
the expanded - state to the initialized
state.

process might

5. In the executing state, a
on a physical

not actually be running

processor, just as in a conventional
multiprogramming operating system a
process may be "blocked" or "ready"
instead of "running". Memory segments
and links which are in the executing

are "used" and must go through the
state before they can
re-enter the executing state. From the
executing state a component may be
destroyed, or go back tc any of the other
states.

state
initialization

A cluster has the same five states. The
evolution of a cluster can result in the evolution
of all its components up to the cluster’s current
state. The extent to which a component evolves
with its cluster is specified by an evolution
attribute of the component. Since a cluster can
have other clusters as components, an arbitrarily
complex process structure can be evolved whenever
a cluster is evolved. This mechanism allows the
user to specify non-procedurally which components
will exist together at each evolutionary state.

Consider the cluster in figure 6.2.2. It
consists of two processes, A and B, and a memory
segment M. A is to begin executing, using M. At
some point A will start B executing and stop its
own execution. B will also use M. When the
cluster begins executing, A and M will be
executing. This is specified as the default. B,
however, could be specified to be in some earlier
state. It can be forced into the executing state
by a control message passed by A. M remains in
the executing state at all times the cluster |is
executing.

In the ATC, CONTROLLER is the only process in
the outer cluster. When execution of the cluster
begins, CONTROLLER and IN AIR are executing and
the rest of the cluster PLANE is uninstantiated.
CONTROLLER determines the number of PLANE cluster



instantiations and initiates their execution.

The semantics of link evolution are slightly
different than for other components. Links stay
in their initially specified evolution state until

they are needed. When information is sent out a
port connected to a non-executing link, the 1link
is automatically evolved up to execution. If
either of the components connected by the link
goes to some state other then execution, the link
goes back to the initially specified evolution
state.

uninstantiated

D
-~

initialized

exoecuting

Figure 6.2.1 - Component evolutionary states and
state transitions.

Consider the example in figure 6.2.3%
Process A often talks to processes B and C. B
occasionally communicates with C. The link

between B and C is specified to be bound. If B
and C are executing and B sends a message to C,
the 1link between them is evolved to execution.
wWhen either B or C go to some non-executing state,
the 1link goes back to being bound. If the link
had been specified as executing, it would remain
in the executing state even if B and C were not
executing.

With the five different states possible for
each component, a user has fine grain control of
the process structure evolution. This allows
memory segment allocation, initialization, and
scheduling to be performed at the appropriate
time. In particular, the occurrence of a
data-dependent or predefined event <an cause a
component to evolve through its different phases.

Fine grain evolutionary control allows the
user to give the system information allowing a
more efficient use of the multiprocessor network.
Whenever possible, repeated executions can avoid
the costly rebuilding of process structure

324

cluster C (phase = execute,...)
master process A (phase = B85 40)
internal port PAl, PA2

end /* A */
process B (phase = bind,...)
internal port PBl

end /* B */
memory M (phase = execute,...)
link (connections = A.PAl:B, carry = control,...)
link (connections = A.PA2:M, carry = data,...)
link (connections = B.PBl:M, carry = data, phase = bind,...)
end /*C */

Figure 6.2.2 - Process structure with components
in different evolutionary states.

components if they are not modified on repeated
execution. For any given state of the process
structure the wuser can indicate which components

should be bound, which will be bound in the next
state, and how presently-bound components will be
reused. If a component exists multiply

instantiated, and is then evolved to a higher
state with a different number of instantiations,
the system will add or destroy copies as needed.
This occurs with, for example, the PLANE clusters
in the ATC. If the user avoids specification of
the fine grain evolutionary structure by putting
all components in the executing state, the system

will proceed using internal scheduling
heuristics. (*) E

(*) It is important to remember that we intend the
PCL to be a working process-oriented job control
language. Because of this, we have integrated
specification of evolutionary characteristics and
certain link attributes (e.g. "capacity" and
"traffic") to minimize operating system overhead
and communication costs. When used, these
specifications add complexity to a PCLE
description. Perhaps intelligent  scheduling,
based on a simpler PCL description, would allow a
user to avoid this complexity without sacrificing
performance.




master process A (phase = execute,...)
internal port PAl, PA2

end /* A */
process B (phase = execute,...)
internal port PBl

end /* B */
process C (phase = execute,...)

end /* c */
link (connections = A.PAl:B)
link (connections = A.PA2:C)
link (connections = B.PBl:C, phase = bind)

.

e 6.2.3 - Process structure illustrating
link evolution semantics.

Fine grain evolutionary control can also be
sed to build multiple copies of a structure with
ach copy having a different replication pattern
in its substructure. This is accomplished by
evolving the multiple copies as a unit to the
latest state in which the structures are
- identical. Further evolution can be controlled
- separately for each component. Figure 6.3.5

(discussed in detail later) is an example of this.

In the example process structure of figure
6.2.2, fine grain evolutionary control could be
important in two different situations. If the
cluster was seldom executed and system resources
were limited, resource usage could be reduced by
keeping B bound (as opposed to executing) as long
as possible. On the other hand, if the cluster
was executed often, the overhead of continually
rebuilding A and B could be eliminated by keeping
them expanded or initialized whenever they were
not executing.

In the ATC, we wish to avoid continually
rebuilding the DISTILL and NEXT ACTION processes
since they will be repeatedly used for each
segment of a given input stream. They are to
remain initialized whenever the outer cluster is
executing.

Sub-components will often evolve in lock~step
with their enclosing component. This 1is the
default indicated in the PCL by lexical nesting of
.component descriptions. Sometimes, however, it is

necessary that a component evolve independently of
those components with which it is structurally
connected. A syntactic escape is providead in the
PCL to allow the specification of usage patterns
separate from evolution patterns.

As an example, consider figure 6.2.4. The

process A begins executing and loads memory
segment M. A then starts process B and destroys
itself (returns to the uninstantiated state). B

uses M heavily for a relatively long period of
time. For structural reasons, B and M are in the
same cluster. M, however, must evolve with A so
it can be loaded initially.

In the ATC, the memory segment IN AIR belongs
structurally to the cluster PLANE because of its
heavy use by the DISTILL processes. Because it
must be initialized before PLANE is created, its
evolution is tied to the outer cluster.

6.3 Creation Characteristics

Creation characteristics specify to what
extent the copies are shared by other components
in the process structure. A component is either
own, meaning it (all of its copies) is shared,
Iocal, meaning each time the enclosing structure
1s replicated the component (all of its copies) is
replicated, or dynamic, meaning that replication
will be specified at run-time. Since the
specification of the number of copies of a
component can be done at run-time, there is a
subtle interaction between the copies attribute
and the creation characteristics. This
interaction is best described by a series of
examples.

Consider the static process structure
description in figure 6.3.1. There are two
processes, A and B, both of which have 1links to
memory segment M.

In figure 6.3.2, all subcomponents of CP are
local and have one copy specified. When C8 is
evolved with three copies, three copies of C6 and
all its subcomponents are created.

In figure 6.3.3, all subcomponents of C@8(J)
are again 1local, but this time Cl itself has two

copies. When C@ is evolved with two copies, two
copies are made of all subcomponents. Thus, two
copies of Cl are created for each copy of C@ In

all, there are four copies of Cl.

In figure 6.3.4, we have specified 2 copies
of Cl and A. We have also specified B to be own.
For each copy of Cl there will be two copies of A
and one copy of M. Both Cl°s will share B,
however.

Finally, figure 6.3.5 illustrates the use of
the dynamic creation attribute. There are three
copies of C@, Cl1 is dynamic, and the other
components are left out of this example. Since Cl
is dynamic, each of the three copies of C@ could
have a different number of Cl’s. 1In this case
each Cl will be separately evolved with a
different number of copies. The number of copies
is passed by the process which initiates the
evolution.



process A (phase = execute,...)
internal port PAl, PA2

end /* A */
o B c cluster C
internal port PCl, PC2

.

master process B (phase = bind,...)

= internal port PBl
v external port PCl

pcl ]

Bl

end /* B */
memory M (evolves with A,...)
link (connections = B.PBl:M, carry = data,...)
link (connections = C.PC2:M, carry = data,...)
end /* C */
link (connections = A.PAl:C.PCl, carry = control,...)
link (connections = A.PA2:C.PC2, carry = data,...)

Figure 6.2.4 - M is structurally associated with B because it is heavily

used by B.. M is evolutionarily associated with A since
it is initially loaded by A .

cluster CO

cluster Cl

process A
internal port PA

process B
internal port PB

memory M(...)
link (connections = A:M, carry = data,...)
link (connections = B:M, carry = data,...)

end /* c1 %/

end / * CO */

Figure 6.3.1 - Static description of a process structure which will
be used to illustrate creation attributes.

cluster CO (copies = 3)

cluster Cl

process A

prot.:ess N Figure 6.3.2 - Evolution of process structure of Figure 6.3.1 with the
. following specification: N .
memory M)...) copies creation
link (connections = A:M, carry = data,...) co 3 B
link (connections = B:M, carry = data,...)

s Ccl 1 local
end./' c1 */ S local

E B 1 local
epd /* €O */ 1 local

326



criy’

n crm”

sluster CO (copies = 2)
: Figure 6.3.3 - Evolution of process structure of Figure 6.3.1 with the
- cluster C1 (copies = 2) following specifications:

process A copies creation
E co 2 -
process B Ccl 2 local
3 1 local
E%c:m(\é;t.:ions = A:M, carry = data,...) B 1 local
link (connections = B:M, carry = data,...) 1 ioeal

end /* C1 %/

end /% c0 */

‘Cluster CO

.

cluster ' Cl (copies = 2)

process A

process B (creation = own)

memory M (...)
link (connections = A:M, carry = data,...)
link (connections = B:M. carry = data,...)

end /* 1y

~—

end /* o4/

copies creation

Figure 6.3.4 - Evolution of process structure of Figure 6.3.1 with the co 3 -
following specification: c1 2 local
A 2 local
B 1 own
M 1 local

327




cluster CO (copies = 3)

cluster Cl (creation = dynamic)

process A

process B

memory M (...)
link (connections = A:M, carry = data,...)

link (connections = B:M, carry = data,...)

end /* Cl */

end /* CO */

Figure 6.3.5 - Possible evolution of process structure of
Figure 6.3.1 with the following specificiations:

7.8 Run-time Communication With the PCL

Processes can execute certain PCL commands at
run-time. Specifically, a process must be able to
access memory segments to which it has links, find
its instantiation number when there are multiple
copies, change the evolutionary states of
components (including itself), send data, and
receive data. Examples of the different
facilities are in the ATC code presented in figure
3e2+2°%

A memory segment is accessed as if it were an
array of words local to a process. If there are
multiple copies of a memory segment, the first
"subscript" specifies the copy and the second the
word in that copy.

The system function COPY NUMBER can be used
to uniquely identify a process which has multiple
cories. When created, each copy of the process is
assigned a  COPY_NUMBER. COPY_NUMBER’s  are
assigned in the order of creation. This is used,
for example, by NEXT_ACTION and DISTILL in the
ATC.

A process can call system provided routines
which generate control messages for interaction
with PCL at run-time. A process can change the
evolutionary state of another process using the
BIND, EXPAND, INITIALIZE, EXECUTE, and DESTROY
calls. The SLEEP and WAKEUP calls are used in the
standard way to suspend and restart an executing
process. All but the SLEEP call have as their
first parameter the port through which the control
message 1is sent. Other parameters for BIND,
EXPAND, INITIALIZE, and EXECUTE specify values for
instantiation parameters of the destination
component.

When CONTROLLER moves the PLANE cluster to
execution, for example, the number of copies of
PLANE must be bound. Control messages can be sent
only through ports which have associated control
links. The one exception to this rule is that a
process may send itself a control message.

Data is sent using the SEND call. SEND has
three parameters: the port through which the data
is to be sent, the address of the first word to be
sent, and a count of the words to be sent. These
words must be in the memory segment available to
the sender. Data is received by a symmetrical
RECEIVE call. Its parameters specify a port in

co(1)

‘the system with information that can aid in

c0(2) co(3)

(no copies of C1)

copies atio
co 3 -
‘c1 dynamic

Other components left
out for clarity.

which to receive, a memory cell in which to place
the first word, and a count of words to be
received.

When something is sent down a 1link whose
queue 1is full, the sending process is suspended
until the gueue has room for the new data.
similarly, a process trying to receive from a
empty queue is suspended until there are enough
data to receive. The routines 1S EMPTY and
IS_FULL applied to a port name allow a process to
avoid the automatic guspension if that is desired.

8.0 Future Research and Conclusions

By introducing a high-level view of process
structure in a network operating system, the PCL
simplifies the specification of a complex process
structure. The PCL provides a syntactic framework
for describing both static and dynamic
characteristics of a process structure. In order
to describe the dynamic characteristics of a
process structure, techniques for describing
replication, sharing, and re-use of components are
developed. These techniques allow the user to
non-procedurally specify the most common
techniques for constructing a process structure.,
In addition, a set of communication disciplines
have been developed in which most common control
relationships among processes can be .described.
Most importantly, a PCL description allows each
process to operate with a 1local view yet still
have global effects. :

We feel that there are other
benefits to the PCL. The central description of a
process structure is a natural place to provide

scheduling and implementation of the structure.
It also provides a database which facilitates the
development of high-level debugging and analysis.
tools. Finally, ‘the PCL constructs provide
information which could substantially reduce
dynamic capability checking because the legal
communication paths among components is
prespecified in a PCL specification. j

There are a number of research issues which
need to be dealt with if a PCL-based network
operating system is to be realized. An effective
implementation of PCL will require that the
interpreter, PNT, DPN, and PPB be appropriately



in the processor network. It is not
ar how this will be done. We must also
if PCL as described here is too

For does some form of
ility passing need to be introduced into PCL?
ally, the scheduling and resource allocation
orithms and debugging and analysis tools that
effectively use information in a PCL
cription remain to be developed.

Even though this paper leaves many research
es unsolved, we feel that the concept of a
based network operating system is a new and

luable approach.

Acknowledgements

We would like to thank Jeff Barnett, Dan
ill, Lee Erman, Peter Hibbard, Anita Jones,
se Levitan, Bill Riddle, paul Rovner, and Jack

leden for their thoughtful criticisms of this
References
K., 1975, "The Dragon System - An
erview”. IEEE Transactions on Acoustics,
eech, and Signal Processing, Vol. ASSP-23, PP-

(February) .

=

':nett, Jeffrey A., 1975. n"Module Linkage and
mmunication in Large Systems". in Speech
; ecognition, ed. Raj Reddy. Academic Press.

7 3 3"
Computer

11, Gorden and Allen Newell, 1971.
McGraw-Hill

~ structures: Readings and Examples.
iaiputer Science Series.

~ Farber, D.J., 1975. "A Ring Network".
DATAMATION, February, PP- 44-46.
~ Fennel, R.D. and V.R. Lesser, 1977.
"Parallelism in AI problem solving: a case study
of Hearsay-II". IEEE Transactions on Computers,
C-26, pp. 98-111 (February).
Jensen, Kathleen and Niklaus wWirth, 1974. PASCAL
User 's Manual and Report, second edition.

Springer-Verlag, New York.

Jones, A.K. et al, 1977. ngoftware management of
cM* - A distributed multiprocessor”. AF1PS
Conference Proceedings, Vol. 46, pP- 657-663.

Kahn, R.E. and W.R. Crowther, 1971. "Flow
Control in a Resource-Sharing Computer Network".

Proceedings of the ACM/IEEE Second Symposium on
roblems in Optimization = of Data Communication

Systems. pp. 108-116.

Control
Ph.d

*Dynamic

Lesser, Victor R., 1972.
in Emulation".

Structures and Their Use
thesis Stanford University.

and Jack C. Wileden, 1978.

Representing Software
Software Engineering
7-11.

Riddle, William E.

"Languages for
Specifications and Designs".
Notes, 3, 4. (October, 1978), ppP.

Simon, H.A., 1962. "The Architecture of

Complexity”. Proceedings of Awmerican

Philosophical Society, 106, pPP. 467-482.

Swanf R.J. et al, 1977. "CM* - A modular

multi-microprocessor”. AF1PS Conference

Proceedings, Vol. 46, pp-. 637-634.

Wulf, William, 1974. "HYDRA: The Kernal of a

Multiprocessor Operating System". Communications

of the ACM , Vol. 17, No. 6. June.

Wulf, William and C.G. Bell, 1972. "C.MMP - A

Multi-Mini-Processor"”. AFIPS Conference
41, part 11, FJCC, PP.

Proceedings, Vol.
765-771.

4



