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Abstract

For complex perceptual tasks that are characterized by object occlusion
and non�stationarity� recognition systems with adaptive signal processing front�
ends have been developed� These systems rely on hand�crafted symbolic object
models� which constitutes a knowledge acquisition bottleneck� We propose an
approach to automate object model acquisition that relies on the detection of
signal processing discrepancies and their resolution� The approach is applied
to the task of acquiring acoustic�event models for the Sound Understanding
Testbed �SUT��

� Introduction

Complex perceptual tasks are characterized by varying signaltonoise ratio� unpre
dictable object activity and possible object occlusion� Successful object recognition
depends on the extraction of adequate disambiguating features� For these highly vari
able� nonstationary scenarios� such features are neither stationary nor easily identi�
able� To meet the challenge of recognition in such environments� Adaptive Perceptual
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Systems ��	� ��� 		� 	�� have emerged� These systems adapt their signal processing
frontend in response to variations in the incoming signal data�

Recognition in adaptive perceptual systems proceeds through the interaction of
two processes� feature extraction and interpretation�matching� Feature extraction
involves the application of selected signal processing algorithms �SPAs� with default
parameter settings� During interpretation�matching� the extracted features are com
pared against object models� Failure to account adequately for some or all data
indicates a need for SPA and�or parameter adaptation in order to extract addi
tional�alternate features� Symbolic object models are preferred since they are acces
sible for purposes of data interpretation� guiding feature extraction and predicting
evidence interaction� Typically the object models have been handcrafted� a tedious
and error prone activity that constitutes a knowledge acquisition bottleneck�

Automating model acquisition for adaptive perceptual systems has received rela
tively limited attention �	�� 	�� ���� Much of this e�ort relies on human intervention
such as suggesting alternate SPA parameterizations when feature inadequacies are
encountered� or in the initialization of critical parameters� In the case of vision ap
plications� the availability of adequately segmented images is assumed �	�� 	���

The learning task we seek to address is stated as follows� given a set of training
instances �signal�label pairs�� and a �nite set of parameterized SPAs� to seek for each
training instance SPA parameterizations that serve to extract features that enable
the induction of models that are collectively unambiguous and capture the intrinsic
characteristics of the objects� To meet this goal we systematically search the space of
SPAs and their parameters� To avoid an exhaustive search� we exploit both generic
object models and discrepancies that occur in the course of inducing the object models
to guide search� Knowledge about the SPAs� their parameters and the domain is used
to reason about the discrepancies and suggest alternate processing contexts�

The learning paradigm will be discussed in the context of the SUT �	��� an adaptive
perceptual systems for nonspeech sound recognition� The sounds� also known as
acousticevents� may occur together� Examples of acoustic events are� a foot step�
telephone ring� and a hair dryer coming on� See Figure � for the SUT model for a
hair dryer operating at high speed� Adaptivity in the SUT comes from viewing signal
processing as a bidirectional search in the SPA�parameter space� low level processing
is aimed at achieving signal processing results that are free of discrepancies while
high level processing is aimed at �nding valid signal interpretations and support for
expectations�

In Section � we describe the rami�cations of being able to vary SPA parameters� In
Section 	 we brie�y describe the Sound Understanding Testbed and give an example
of a sound model� In Section � we brie�y discuss learning e�ort in the area of model
acquisition� We discuss discrepancies and their diagnosis in Section � before discussing
in detail our learning approach in Section 
� We discuss model revision� stability� and
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the use of generic models in Section �� Finally� in Section �� we indicate the status
of the work and present our conclusions in Section ���

� Parameterized SPAs

Distinct parameterizations of an SPA extract the same class of features� but the
actual values extracted may be very di�erent� This is because in the mathematical
formulation of the SPAs� the parameters are used to capture assumptions about the
underlying signal� To emphasize the relationship between the features extracted and
the processing context� SPAs and their parameter settings� the features extracted are
called SPA�correlates� SPAcorrelates obtained under di�erent parameterizations of
an SPA are however comparable through the use of knowledge about the underlying
signal processing theory that is used as the basis for the SPA implementation �		�� An
SPA parameterization may expose some salient aspects of an object while obscuring
others�

For instance� consider the analysis of timeamplitude waveform data correspond
ing to an acousticevent composed of two constantfrequency components with an
intercomponent spacing of �� Hz� With a sampling frequency of �� KHz� a Fourier
Transform based algorithm for frequency analysis would be unable to expose the rel
evant frequency detail unless a data window that a�ords the minimum required fre
quency resolution is used� This is illustrated using the ShortTime Fourier Transform
�STFT� algorithm ���� for spectral analysis in Figure �� Note that the uncertainty in
frequency spread i�e�� �width� of each component reduces when the data is processed
with greater frequency resolution� The need to disambiguate among similar objects
in�uences the search in the SPA�parameter space in the direction of extracting greater
detail�

time

freq

(a)
time

freq

(b)

Figure �� Signal corresponding to two closely spaced steady frequency components� pro�

cessed with �a� shorter and �b� longer STFT window� Note the better frequency resolution

obtained in �b� due to the longer window�

Secondly� certain SPA parameterizations a�ord a view of the signal data that leads
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to a simple�physical explanation� For instance� consider the analysis of a nearlinear
rising chirp� sound sampled at a frequency of �KHz� If the signal data is processed
using the STFT algorithm ���� with a small window and narrow decimation ���� and

� data points respectively� before connecting peaks in consecutive spectra� we would
obtain results as shown in Figure �a� Keeping all other processing parameters con
stant� but using a much longer window ����� data points�� a broken curve as shown
in Figure �b would be obtained� While the former may be interpreted as a �chirp��
the latter could be interpreted either as a chirp not processed appropriately or the
presence of several sound sources� each of which emits a short burst of sinusoidal
activity that is separated by approximately �� Hz� Further� the latter interpreta
tion indicates that the activity is highly synchronized in the sense that as a lower
frequency source decays� the next higher one becomes active� Given the rarity of
�nding distinct physical events that are so highly synchronized� this interpretation
requires too many assumptions making it not simple� Simple interpretations map to
the notion of intrinsic characteristics of an object� originating in the physics of the
excitation production mechanism� We shall revisit this concept in Section ��	�

(a) (b)
time

freq

time

freq

Figure �� Semi�linear chirp processed with �a� shorter and �b� longer STFT window� Note

the broken contours of �b� due to insu�cient time resolution�

� SUT

Before we go further� we brie�y describe the Sound Understanding Testbed �SUT�
�	�� and the recognition task being addressed� The SUT seeks to identify acoustic
events given waveform data �a sequence of timeamplitude pairs�� The SUT is based
on the IPUS �Integrated Processing and Understanding of Signals� architecture �		�
which views the process of signal understanding as a bidirectional search in the space
of SPAs and their parameters� The bottomup search for SPAs and their parameters

�The principle also known as Occam�s Razor or the law of parsimony may be stated as follows�
entities must not be multiplied beyond what is necessary� that is an argument must be shaved down
to its absolutely essential and simplest terms

�A chirp is a rising�falling frequency modulated component






is aimed at achieving signal processing results that are free of common discrepancies�
which are detectable through the application of two or more SPAs� each with distinct
strengths� and comparing their signal processing results �discrepancy detection is
discussed further in Section ��� The topdown search is guided by the desire to �nd
valid signal interpretations based on expectations about the environment� Analysis
proceeds with the interaction of the di�erent special purpose knowledge sources �KSs��

Source

Stream 

Microstream 

Noisebed

Spectrum

Contour

Peak

Spectral Activity
Bands

Waveform

Impulse

Figure 	� Data Abstraction Levels used in the Sound Understanding Testbed

The abstraction levels used in the interpretation process are shown in Figure 	�
Windowed waveform data that is analyzed for its spectral content is represented
at the spectrum level� Peaks are localized regions of higher energy in a spectrum�
Criteria such as the absolute cuto� energy and the relative magnitude of a peak
with respect to its neighbors are critical factors in determining the peaks that are
selected from a spectrum� Contours are a sequence of peaks that move forward in
time and share the same energy or frequency or energyfrequency trend� Noisebeds
are regions of seemingly uncorrelated spectral activity� Contours that are consecutive
in time and bear certain frequency and energy relationships are grouped together to
form a microstream� Microstreams that are synchronized either in their onset times�
energy behavior with respect to time� or whose frequencies are harmonically related�
are grouped together to form streams� Groups of streams support a source level
hypothesis� Periodic sources would display a repeating pattern of stream support
units�

To date the SUT database consists of 	� models� The models were acquired by
manually analyzing several recordings of each sound� The tediousness of the task
provides the motivation for this work� For example� consider the sound produced by
a hair dryer� The acoustic signal is due to the working of a motor and the forcing
of air through a nozzle� The component frequencies of the sound are harmonically
related with a fundamental whose frequency is that of the power line� The relative
energies of the harmonics are dependent on the speed of operation and the hair dryer
construction �di�ering for di�erent manufacturer models�� Noisebeds� which are an
artifact of the air �ow through the nozzle of the hair dryer� surround the primary
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frequency components� The operation of a hair dryer exhibits two distinct phases�
the transition or chirp phase that corresponds to the hair dryer being turned on or o��
and a steady phase when it is operating at either high or low speed� The processing
parameters that best bring out the time frequency characteristics in the two phases
are in opposition �refer Section ���

source level stream level

hd-high

imp: nil
sub-units:
....
typical-unit

microstream level

category: tonal
duration :[1.5, ))
pattern: hd-high

hd-high-st
imp: 0.1
sub-units:
evi-com-table:..
behavior: steady
ideal-parameters:
(stft-window 512, 
stft-decim 256..)
rel-temp-posn [0.5,))
typical-unit:

duration: [1,30]
freq [145, 175]
energy [0.065, 0.15]
behavior: steady-freq

imp: 0.1
evidence-com-table:
    0.12
behavior:steady-freq
ideal-parameters: ..
rel-temp-posn:[0,0]
sub-units:nil
typical-unit: 

-high-1
imp: 0.3
evidence-com-table:
    0.35
behavior:steady-freq
ideal-parameters: ..
rel-temp-posn:[0,0]
sub-units:nil
typical-unit: 

-high-2

duration: [1,30]
freq [982, 1012]
energy [0.21, 0.4]
behavior: steady-freq

duration: [1,30]
freqs: ([145,175],
           [982, 1012], ..)
synchonies:(begin,end,
                  freq-slope ..)

. . .

Figure �� Acoustic Event Model for an Hair Dryer operating at a high speed�

The models are speci�ed at the source� stream and microstream levels of data
abstraction� In Figure �� we show portions of the SUT model for a hair dryer operating
at high speed� The source level unit is made of a single stream level unit� hdhighst�
which in turn is made of several microstream units� two of which ��high� and �
high�� are shown� Note that the microstream durations are approximately equal and
since their relative temporal o�sets with respect to the start time of the stream is zero�
their onset and end times are said to be in synchrony� A stream level representation
that captures the complete behavior of a sound source� in terms of its constituent
events� is possible� For example� the hair dryer sound may be speci�ed as�

HDon�HDhigh �HDlow��HDoff

where HDon� HDhigh� HDlow and HDo� denote the hair dryer comingon� operating
at high speed� operating at low speed and goingo� events� respectively� The above
representation indicates that the HDon and HDo� events are mandatory� and that the
HDon event precedes in time the HDo� event� In contrast� the HDhigh and HDlow
events may each occur zero or more times �denoted by the ��� and in any order �de
noted by the ��� Our goal is to �rst acquire models for each of the constituent events
of a sound source� Eventually we plan to extend the work to building representations
that capture such complex temporal patterns�
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� Learning in Perceptual Systems

Perceptual systems that exploit learning techniques have either acquired object mod
els or assumed the existence of such models and learned object recognition strategies�
Systems that acquire object models �	�� 	�� 	
� have predominantly employed �xed
signal processing frontends� Systems that learn recognition strategies ���� 	�� 	���
have instead employed adaptive signal processing frontends� This latter class of sys
tems dynamically select SPAs with preset parameters from a large but �nite set in
order to meet the needs of the recognition task at hand�

We shall examine both classes of learning systems� Apart from highlighting the
gap which we propose to �ll� the goal of this section is to detail the techniques used
and assumptions made by the learning component in the �xed frontend systems and
indicate why they are inadmissible for learning in adaptive frontend systems� In
our discussion of the systems that learn recognition strategies� it shall become clear
that they capture several capabilities that are desirable in the automation of model
acquisition�

��� Learning Object Models

It is tedious to identify manually a set of features suitable for disambiguation pur
poses in situations where either the object class is large or the data are contaminated
with noise� This provides one of the motivations for automating object model ac
quisition� With respect to speech recognition� the object class is swelled by the size
of the vocabulary and variations in pronunciation by di�erent speakers �in speaker
independent recognition tasks�� Yet another illustration of the problem is found in
the domain of vision where �pose� varies with the observation perspective� Radar
and Sonar data are typically contaminated with noise� Subsymbolic approaches� such
as arti�cial neural nets �ANNs� ����� hidden Markov models �HMMs� ���� and hy
brids thereof ���� have successfully been used for object modeling in systems with
�xed frontends for feature extraction� These approaches have yielded performance
improvements over handcrafted versions� In comparison� little work has been done
with object model acquisition for systems with adaptive frontends�

Subsymbolic models have been shown to yield accurate lowlevel model matching�
However� they are relatively inaccessible for purposes of interpretation and prediction�
For tasks where multiple objects may cooccur� their representational �opaqueness�
causes training data requirements to grow combinatorially� both in the number of
objects that may cooccur and in the spatiotemporal relationships the objects may
exhibit� Consequently� such systems are not well suited to recognition tasks for com
plex scenarios� Where ANN techniques have been used for recognition in scenarios
where objects may cooccur� the operating assumption is that the individual signal
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contributions and�or features of each object are separately available� For instance� in
vision this amounts to requiring that segmented data be provided to the ANN clas
si�er� In contrast� adaptive perceptual systems seek to adapt their signal processing
frontend to facilitate data segregation and ensure reliable object identi�cation�

����� Subsymbolic Approaches HMMs and ANNs

In this section we describe several successful subsymbolic approaches for object mod
eling� These approaches are distinguished in their use of �xed frontends for feature
extraction� use of vector quantization��VQ� ��	� techniques for data compression and
the large number of object classes that they model� In particular� we discuss subsym
bolic object model acquisition systems that use HMM and ANN techniques�

HMMs in Speech Recognition Hidden Markov Models �	�� ��� ��� have been
predominantly used in speech recognition� They are a generalization of dynamic pro
gramming and provide a rigorous approach to developing robust statistical models�
In HMMs� the view of measuring acoustic similarity as a template matching problem
is generalized to a problem of �nding an optimal path �using the Viterbi algorithm�
through a recognition model �	��� The probability of the speech data given a recogni
tion model is computed� The major advantage in HMMs� from a time normalization
perspective� is that a local constraint function can be reestimated� or optimized� by
an iterative training procedure� Reestimation allows the assimilation of the statisti
cal characteristics of the training data� in turn optimizing performance on the training
set� We present below a brief description of several HMM based recognition systems
and indicate their common features�

Tangora �	�� designed for speakerindependent isolated word recognition� handles
vocabulary sizes of ����� to ������ words� It uses a VQ frontend� operating with a
single codebook of ��� elements and uses word units for training� The SPHINX �	��
system for speakerindependent connected speech recognition handles ��� words� It
uses VQ� maintaining three codebooks of ��
 prototype vectors each �for cepstral coef
�cients� di�erenced cepstral coe�cients and power with di�erenced power�� SPHINX
uses generalized triphones � for the basic training units and exploits grammar con

�In Vector Quantization �VQ�� clustering techniques are used on the data to identify a �nite
number of representative elements that reduce some error measure These are then saved in a
codebook for future use where actual data elements are replaced by the most similar element in the
codebook Data compression results from the fact that a �nite number of vectors or elements has
fewer representational requirements

�A triphone is a sequence of three phones� and captures signi�cant co�articulation e�ects With
�� phones in the English language� the set of possible triphones is very large However� the high
degree of similarity among them enabled the use of clustering techniques to achieve data compression
to yield a smaller set of generalized triphones
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straints from the limited application domain to aid in the recognition task�
The AT�T digit recognition system ���� and the Texas Instruments system ���� are

wordbased� speakerindependent digit recognition systems� In the digit recognition
task� grammar constraints are minimal� any digit may appear after any other� This
places a greater need for good acoustic matching to achieve high performance� In the
Texas Instruments system� a discrimination transformation was designed to maximize
discrimination between the correctly recognized data and the confusion class for each
state in the HMM word model�

ANNs in Perceptual Systems ANNs ���� have been extensively exploited
in recognition tasks chie�y because they are capable of representing a variety of
statistical properties of data distributions in an automatic manner� They are good
at generalization and in the retrieval of stored patterns that most closely resemble an
input pattern�

The hidden nodes in ANNs often become feature detectors and di�erentiate be
tween important classes� That is� they capture higher order features that are combi
nations of the primitive features� Though this aspect frees the user from a need to
construct optimal features� it still requires that quality primitive features be provided�

Speech recognition in particular is complex due to several factors� high degree of
variability and overlap of information in the acoustic signal� need for high computation
rates� multiplicity of analyses that must be performed �phonetic� phonemic� syntactic�
semantic� and pragmatic�� and a lack of any comprehensive speech theory� ANNs have
resulted in improved performance on subtasks of the speech recognition task and on
the overall task� Lippman �	�� provides a good review of the state of the art in using
ANNs for speech recognition� ANNs have also demonstrated good performance for
Sonar ��� 	
� and Radar ��
� domains�

The ANN approaches accept as input a �xed set of features and use one of several
training techniques ���� for inducing a classi�er� Several net architectural parameters
such as the number of input and output nodes� training method� number of hidden
layers� number of nodes within them� and learning rate require careful selection�
Classi�cation performance is sensitive to these parameters� Several approaches for
automatically selecting them for a given classi�cation task are currently available
��� ���� The methods chie�y di�er in whether they converge from a larger number of
nodes and layers to a smaller set or work the other way round�

�A speech recognition system is termed word�based when the basic training units are words

��



����� Symbolic Object Models

In this section we discuss symbolic approaches to acquiring object models� which
compared to the amount of work on subsymbolic approaches is limited� Murase and
Nayar �	�� acquire object models that do not use multiple levels of data abstraction
for visual object recognition� Vadala ���� developed a semiautomatic approach for
acquiring sound source models requiring multiple levels of data abstraction�

Adaptive Front�End Vadala�s ���� semiautomatic approach for sound source
model acquisition is based on the principles of the SUT �	�� 		�� It requires user
guidance based on �viewing� and �listening� to the acoustic signal to estimate the
key SPA parameters such as the STFT window length and number of peaks to select
from the spectra� To ensure that su�cient frequency resolution is obtained� peaks
were identi�ed based on the depth of interpeak valleys as a percentage of the peak
height� The peaks were grouped into time frequency energy patterns or contours
using a least squares line �t�� Sound source models were built on the lines of those
used in the SUT �refer Section 	��

Several interesting experiments were carried out to show how the ideal evidence
gathering procedure varied with the type of noise added to the signal� For example�
with the addition of white noise� the window length had to be longer than when the
signal was not contaminated to enable the extraction of salient time frequency energy
information� When objects may cooccur� the presence of one could potentially a�ect
the processing of another� A possible extension to an automated model acquisition
system could be categorizing objects on the basis of their e�ects on the processing of
others�

Vadala applied his technique to �ringing� sounds� in particular to four di�erent
telephones� a bicycle bell and a burglar alarm� Vadala also derived a general telephone
model by combining the individual telephone models� Our intention is to extend his
work to more objects� and fully automate the model acquisition process�

Fixed front�end We shall next discuss two successful systems �	�� 	�� for object
model acquisition in the visual domain based on �xed signal processing frontends�
The frontends are characterized as �xed because the image segmentation is �xed and
the set of features available for model representation is �xed�

Visual Appearance Murase and Nayar �	�� address the problem of learning
object models from images for object recognition and pose estimation� They formulate

�Our experiments in the SUT indicate that the least squares �t contouring criterion is very
sensitive to outliers� ie� a few points that do not conform to the majority behavior
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the problem as one of matching visual appearance rather than shape� For each object�
a large set of images is obtained by automatically varying pose and illumination� which
is then compacted using principalcomponent techniques ����� The resulting lower
dimensional representational subspace� called eigenspace� is parameterized by pose
and illumination� Each object is represented as a hypersurface in this space�

Given an unknown input image� the recognition system projects the image onto the
eigenspace� Object identity is established by the hypersurface the projection meets�
Object pose is determined by the location of the projection on the hypersurface� Such
a representational approach is especially useful when the objects of interest do not
conform to CAD wireframe models� often the case with most naturally occurring
objects�

This work assumes that the recognition system does not have to handle image
segmentation� Partial object occlusion is not addressed� Consequently� a �xed signal
processing frontend is su�cient and the learning subsystem concerns itself only with
variations in object illumination and pose in the construction of robust models�

Symbolic Descriptions Ming and Bhanu in TRIPLE �	�� combine structured
conceptual clustering �SCC� and explanation based learning �EBL� techniques to
acquire and re�ne object models for aircraft recognition� New object models are
acquired as and when the objects are encountered and models revised when better
training data becomes available�

The modeling process in TRIPLE begins with segmenting the images using a �xed
segmentation procedure� Target related regions are next identi�ed and region labeling
performed� Simultaneously� a hypothesize and test approach is used to determine
target orientation� A �xed set of symbolic features� such as� fuselage length� wing
span� and wing sweep angle are next extracted� using sets of production rules� from
the region borders� Object models are de�ned in terms of these features whose values
may be ranges� A classi�cation tree is built from the models using SCC� which is
used by both the recognition and learning routines� During tree traversal� if a leaf
node is reached� recognition is said to succeed� The opposite� indicates that a new�
or very distorted object has been encountered and requires further investigation�
The EBL component exploits knowledge about valid feature relationships to decide
whether the features extracted indeed represent a new target or whether the data is
too distorted or the knowledge base incomplete to make a valid conclusions� The EBL
component examines new features that are detected in an object model for relevance�
The classi�cation tree is modi�ed to include the newly detected relevant features�
Model revision is gradual  feature values are moved in unit increments along the
direction of the newly acquired target features� TRIPLE has successfully automated
construction of a model database of aircrafts using noisedistorted technical drawings
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of the same�
One of TRIPLE�s limitations is that it does not handle scale� that is� it assumes

that all images are of objects at the same scale� TRIPLE also does not address
the issue of images that may require di�erent segmentation procedures to adequately
extract target regions and boundaries� The constrained domain of aircrafts allows
the use of knowledge regarding feature interactions to ascertain whether an image of
a target and the features extracted therefrom indicate the presence of a new object
or the loss of signi�cant detail or inadequacies in the knowledge base� This may be
an over simpli�cation for less constrained domains�

��� Learning Recognition Strategies

Systems that attempt to build e�cient recognition strategies adapt the feature extrac
tion process to the recognition goal� The strategies so generated are computationally
e�cient as a result of extracting and examining only features that are deemed neces
sary� The generated recognition strategies� i�e� sequences of features to be extracted
along with their expected associated values� are compiled for speed�

These systems di�er in whether they assume the existence of explicit or implicit
object models for matching purposes� An explicit object model is a localized hand
crafted description of the object of interest� Implicit models constitute object descrip
tions that are distributed in declarations� rules and�or procedures� Common to both
kinds of object models is that they are accessible for interpretation and prediction
purposes� i�e� transparent� The advantage of transparent representations is that they
can be used to direct feature extraction for meeting the recognition goal�

����� Algorithm Generation Approaches

Predominantly for the visual domain� algorithm generation approaches ��� ��� ��� 	��
have been explored� Their objective is to acquire recognition strategies given a high
level task description such as to assert the presence or absence of an object in an
image or determine its pose� Such strategies are referred to as algorithms�programs
since they specify not only the exact features to use� but also the order in which they
are extracted� These systems adapt feature extraction to the recognition task in the
sense that they appropriately select a subset from a large but �xed set of features�

The recognition strategies in many of these systems are basically search trees�
constructed by applying a set of rules that determine relevant features of the unknown
image in order to establish object identity� The SLS ���� uses decision trees ��
� to
represent recognition strategies� Common to all the systems is that they address issues
of feature selection and ordering� In addition� they determine criteria for hypothesis
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pruning �terminating feature matching at some branch of the search tree�� which
corresponds to rejecting or accepting an object hypothesis represented by a branch�

For active recognition tasks where the user speci�es a highlevel goal� recognition
strategies provide an e�cient computational approach� Passive recognition tasks
are de�ned as requiring to identify objects as and when they occur� Examples of
passive recognition tasks are� identifying sound sources as they become active in
an environment� and identifying all the objects in an image� In contrast to active
recognition� for passive recognition� the ability to reason with the object models would
be more advantageous� For instance� it would enable sharing the e�ort involved in
con�rming and eliminating various candidate hypotheses�

����� Recognition as a Planning Task

Mori et al �	�� address the task of identifying speaking modes or styles within short
time intervals� Information about speaking modes can be used to achieve better per
formance in connected speech recognition� They test their approach on a particularly
di�cult subset of the spoken alphabet� namely the E� set� �B� C� D� E� G� K� P� T�
V� 	�� Knowledge about speaking modes provides clues about the sound class for dif
ferent speakers� For example� in one speaking mode� formant transitions may provide
high discrimination power for a class of sounds� whereas in another� broad energy
transitions might provide better discriminating power for the same class of sounds�
Di�erent speakers tend to use di�erent speaking modes based on their education�
anatomy and mood�

Rules along with preconditions are learned to achieve the recognition task� Also
learned is a table that captures statistical information about which sequence of feature
extraction algorithms provides the best discrimination under various circumstances�
Knowledge about speech recognition is distributed in procedures conceived as per
ceptual plans� Recognition strategies could use invariant properties� when known to
be reliable� obtained using statistical and�or speaker normalization techniques� Plan
actions may either result in the creation of object hypotheses or the extraction of
additional features�

The model acquisition process consists of �rst extracting some default acous
tic properties and generating a description� which is a sequence of sets of acoustic
properties� Based on initial experimentation the description is generalized� Further
experimentation is carried out to gather statistics about the classi�cation ambiguities
due to the generalization� Plans to extract alternate�additional acoustic properties
�features� are proposed based on speech recognition knowledge� so as to re�ne the de
scription� Descriptions that do not meet certain acceptability criteria are discarded�
The above process is repeated until the induced description performs satisfactorily
on a large population of speakers and several speaking modes�
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As with all incremental learning systems� a description may be rendered inade
quate with the arrival of new instances� Mori et al �	�� address this issue by �rst
attempting to specialize the description and if that fails to meet classi�cation needs�
then extract additional features from the speech signal� The implementation relies on
signi�cant user interaction� requiring user guidance about features to extract when
the disambiguation goal is not met� Mori et al collect statistics during training to
build a table of classi�cation ambiguities and their disambiguating features to realize
greater recognition e�ciency� The acquired object models are implicit in the sense
that they are distributed in disambiguation plans�

����� Recognition as an Interpretation Task

PREMIO ��� maintains explicit models of the objects and the world� The sensors
�characterized in terms of position and resolution� and light sources are modeled as
part of the world� In addition� PREMIO maintains models of physical processes that
could cause errors in feature matching� An object model in PREMIO consists of a
CAD wireframe model along with information about surface characteristics �color�
re�ectance� for each face� Further� a hierarchy of six data abstraction levels is used
in object representation� Relational information for the subparts of an abstraction
unit are also maintained� World and object models are used in conjunction to predict
object appearance under di�erent viewing contexts� Acquiring a recognition strategy
involves predicting and comparing object appearance against the input image�

Especially interesting is that PREMIO addresses reasoning about models �of ob
jects and the world� to make predictions� This is very useful while addressing recogni
tion for complex scenarios where multiple objects may cooccur� Signal understanding
is addressed in a similar fashion in the SUT �		� framework�

��� Limitations of Existing Approaches

The existing systems fall broadly into two categories� those that learn object models
and those that learn recognition strategies� However� for the purpose of discussing
their limitations� we categorize them based on whether they deal with symbolic or
subsymbolic object models� The main limitation of the recognition strategy learning
approaches is that they assume symbolic object models are available� The approaches
that seek to acquire symbolic object models for adaptive frontend recognition systems
rely heavily on human guidance� The subsymbolic approaches have several limita
tions� �xed signal processing frontend� need for handselected features� high training
data requirements� lack of representational accessibility for purposes of reasoning by
the recognition engine� and the VQ frontend�
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����� Limitations of Subsymbolic Approaches

In this section we discuss the limitations arising of the �xed signal processing frontend
in systems that use ANNs� HMMs or hybrids thereof� to induce classi�ers for object
recognition� In particular� we shall take a more detailed look at the limiting factors
of handselecting features� need for large amounts of training data� a subsymbolic
representation and the VQ frontend�

Fixed Front�end and Feature Selection Systems that learn object classi�ers
for �xed frontend recognition systems are constrained to use a �xed set of features�
that is a �xed set of SPAs with preset parameters� The learning algorithms partition
the feature space into distinct regions corresponding to di�erent classes of objects�
Classi�cation success is directly dependent on whether the selected features are suf
�cient to distinguish among the classes� Consequently� a lot of care goes into the
selection of these features� For instance� Luse et al �	
� investigated a whole class of
signal processing algorithms� Gabor Wavelets� Generalized Time FrequencyRepresen
tation�GTFR�� ChoiWilliams distribution� Fourier Power Spectra� HigherOrdered
Spectra� and the WignerVille distribution� before concluding that the GTFR best
suited their classi�cation task� Though all the SPAs take the same input signal and
measure the same physical quantities� their results vary due to their distinct mathe
matical formulations and parameter settings�

The issue of selecting adequate features is further complicated while monitoring
environments with time varying characteristics� either due to unpredictable extrin
sic or intrinsic object activity� This is because the unpredictable nature of activity
provides little guidance in selecting SPAs�parameters� Consider two or more sound
sources that are simultaneously active� Even if they display no inherent temporal
variations� they may require very di�erent SPAs and�or processing parameters to
capture adequately their characteristics� which complicates signal processing� A sim
ple example to illustrate this would be the superposition of two sound sources� one
of which was sharply increasing in frequency with respect to time and the other was
composed of closely spaced frequency components� Simultaneous good frequency and
time resolution would be required� which is not a�orded by using any single set of
parameters for any of the available SPAs� To generate reliable object hypotheses
it may be necessary to selectively combine� through the use of domain knowledge�
SPAcorrelates with distinct precisions for quantum mechanically related dimensions�
This is being explored in the SUT �		��

Intrinsic unpredictability arises in objects that display time variant behavior �the
ring of the telephone� sound of a vacuum cleaner in use�� To increase the likelihood of
obtaining a distinguishing set of features� some systems use a large set of SPAs and
parameters� The drawbacks of such an approach are� a need for greater computational
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resources �to compute the additional features�� redundant� possibly confusing features
for the learning element and a need for more training examples to cover the expanded
feature space� Others instead restrict their domains of applicability to tasks for which
the handselected features are known to be su�cient�

To conclude� the �xed signal processing frontend assumption that forms the basis
of subsymbolic object model acquisition systems does not meet the needs of recog
nition for complex environments� It su�ers from a need for carefully handselected
features�

Classi�er based Training Data Requirements The subsymbolic learning al
gorithms tend to have several degrees of freedom� In the case of ANNs the parameters
that may be varied are� number of input� output and hidden nodes� number of hidden
layers� pattern of node interconnections� learning rate� weight training algorithm� and
the initial thresholds and connection strengths� Likewise� HMMs are also character
ized by several degrees of freedom� which include the training unit� the probability
density functions for the output symbols along the transition arcs� the transition
probabilities and their initial estimates�

The higher the degree of freedom� the greater the need for training data to establish
them adequately �	�� ��� ��� When labeled training data is relatively sparse� symbolic
approaches may be more appropriate�

Training Unit based Training Data Requirements Where the basic training
unit may be shared among the di�erent object classes� training data requirements are
reduced� For instance� in large vocabulary speech tasks that use words as the basic
unit� several instances of each word have to be presented� placing greater demands
on computational and storage requirements� The problem is further magni�ed by
variations in pronunciation in speakerindependent speech recognition tasks� To cir
cumvent these large training data requirements� the SPHINX system uses generalized
triphones for the basic training unit� Identifying such a basic unit for training requires
deep domain knowledge in addition to being a trialanderror process� For complex
scenarios that call for adaptive feature extraction� the task is even harder�

Lack of Transparency When addressing recognition for complex scenarios� it is
highly likely that only partial clues are available to indicate the presence of some
objects� Support evidence for the object hypothesis may be masked by the other ac
tive�present objects or rendered indistinguishable due to inappropriate SPA�parameter
settings� Further processing may be necessary using alternate SPAs and parameters
to extract additional information� For instance� to identify the characteristic rise�fall
frequency region of �chirp� type sounds� the STFT algorithm may be used provided
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its window length and decimation parameters are kept small� Often data may need
to be selectively reprocessed to establish the presence or absence of speci�c pieces of
support evidence� Symbolically represented objects allow access to information that
may be used to guide this manner of reprocessing� In particular� when objects may
cooccur� they are useful in predicting evidence interaction�

In contrast� subsymbolic object models are relatively inaccessible to such inter
pretation and prediction tasks� Gallant ���� extracts rules from a connectionistbased
expert system� Compared to the reasoning power that must be captured to address
recognition for complex perceptual scenarios� the expert system is simple� Further ad
vances are de�nitely required before the knowledge captured in subsymbolic classi�ers
can be exploited to guide interpretation�

Vector Quantized Data Data intensive recognition systems commonly apply vec
tor quantization�VQ� to achieve data compression� VQ is applied either directly to
the signal or to the output of one or more SPAs The vector quantized data then forms
the input to other stages of the recognition system� Such systems assume that the
signal information being quantized originates from a single object of interest� When
two or more objects may cooccur the signal data must �rst be partitioned into their
respective contributions� which is a nontrivial in itself and constitutes a large part
of the recognition e�ort� VQ techniques if applied directly to the combined signal�
would entail in training data requirements that are combinatorial in the number of
objects that may cooccur and in the possible spatiotemporal relationships they may
display�

The issue of partitioning data into groups or regions is an important �rst step of
any recognition system� It is known as the segmentation problem by vision researchers�
speaker segregation by speech researchers and component grouping in the SUT �		��
Parson ��	� uses harmonic selection to separate speech from the interfering speech of
a second talker before applying VQ based speech recognition techniques� Weintraub
��	� uses a computational model for separating speech based on the following� pitch�
periodicity� possible rate of change within a frequency channel and over consecutive
channels� Ming and Bhanu �	�� present an adaptive approach to image segmentation�
In the SUT� psychoacoustic criteria �
� are used in grouping frequency components�
The adaptive frontend seeks to expose and separate adequately the various compo
nents�

Where multiple objects may cooccur� a large portion of the recognition e�ort� in
particular that involved in separating the signal components based on their source
of origin� must �rst be completed before VQ techniques are applicable� Recognition
systems with adaptive frontends dynamically adapt their signal processing to meet
the needs of the scenario� The feature vector descriptors that are variable both
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in their length and in the actual features themselves� do not �t the VQ paradigm�
One possible way to work around this constraint would be to agree upon a maximum
length feature vector and pad it as necessary for di�erent objects� This would however
dilute the representational power of the VQ technique and the bene�ts thereof� A
second approach would be to use VQ techniques at higher levels of data abstraction�
that is after some level of data interpretation has been attempted� If the interpreted
data is chie�y nonnumeric� a loss in the bene�ts could result� This is because the
technique has demonstrated its power mainly for numeric data� VQ based models at
higher levels of data abstraction would be bene�cial only if they could also meet the
interpretation and prediction needs of recognition systems for complex scenarios�

����� Limitations of Symbolic Approaches

Learning Recognition Strategies � Existence of Object Models Systems
that acquire recognition strategies assume the availability of either implicit or ex
plicit object models� The subsymbolic object models that are currently acquirable do
not lend themselves to interpretation and prediction� a prerequisite for recognition
strategy learning approaches� Consequently� such systems have relied on handcrafted
symbolic object models� and as a result they have only partially addressed the knowl
edge acquisition bottleneck�

Adaptive front�ends and Human Guidance Vadala�s ���� system for acquiring
sound source models� as an initial �rst step in the modeling of each sound� seeks sig
ni�cant human guidance to adapt some key SPA parameters� In addition� a priori the
number of distinct object classes have to be speci�ed� The system built by Mori et al
�	�� for disambiguating elements of the �E� set� in the event of failure to disambiguate
among possible object classes seeks human guidance in the form of further features to
explore� These are then extracted and the process of acquiring recognition strategies
continues� Adaptive frontends are characterized by their potentially large feature
space �a feature is identi�ed not only by the physical quantity measured but also by
the SPA and its parameters settings� and human guidance is sought to constrain the
search� These systems essentially require a means to automate this search�

����� Brief Summary

Learning systems developed for perceptual tasks fall basically into two categories�
those that learn object models and those that learn object recognition strategies�

The majority of the systems that learn object models use a �xed set of features
in classi�er induction� Such an approach is inadequate for complex scenarios that are
characterized by varying signaltonoise ratio� possible object masking�occlusion and
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unpredictable object activity� Such scenarios require the power of adaptive feature
extraction to give improved recognition performance�

Exceptions to the above are the systems of Mori et al �	�� and Vadala ����� which
cope with adaptive feature extraction� learning recognition strategies and object mod
els respectively� Both systems however require user interaction� the former requiring
assistance when a classi�cation ambiguity is detected and the latter requiring assis
tance in the initial selection of the SPAs and some of their parameters�

The systems that learn recognition strategies assume the availability of either
implicit or explicit object models� Consequently� they only partially address the
knowledge acquisition bottleneck� However� they adapt feature extraction to the dis
ambiguation task �as speci�ed by the object models�� a desirable feature for addressing
object recognition in complex scenarios�

From the above discussion� it is clear that we need a paradigm that incorporates
the power of adaptive feature extraction into an object model acquisition system to
cope with complex perceptual recognition tasks� We need a mechanism to automate
the identi�cation of features which facilitates the object modeling task�

� Discrepancies and Diagnosis

We brie�y discuss discrepancy detection and diagnosis �		�� which form the backbone
of our learning approach� Discrepancies fall into three categories� data�data� data�
expectation� and violation� The key is to use these di�erent discrepancies to control
search in the SPA�parameter space to induce more e�ciently appropriate symbolic
descriptions of the objects�

When the signal processing results obtained from the application of two or more
distinct SPAs from a family of functionallysimilar SPAs are contradictory� we have
a data�data discrepancy� It indicates a need for SPA�parameter adaptation� For
instance� Bitar et al ��� describe the use of the PseudoWigner Distribution�PWD� ����
in conjunction with the STFT ���� to detect time resolution inadequacies�

A data�expectation discrepancy is encountered when the signal processing
results do not support our expectations� It indicates that either the expectations
are invalid� or that the data processing �SPAs and�or parameters� is inappropriate�
Expectations in the context of learning could be invalid either because the selected
generic model �refer Section ��	� used was inappropriate or the data was inappropri
ately processed� While the latter is correctable through data reprocessing� the former
occurs when either the generic model database does not contain a single model or
combination of models that �ts the data� For instance� consider a database that
contains a hair dryer generic model that gets retrieved based on certain clues present
in the initial data processing� However� let us assume that the signal data being
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analyzed originates from a fan� Obviously expectations for noise components as a
result of air being forced through a nozzle will not be detected in the fan data� giving
rise to dataexpectation discrepancies� Where the generic models are less speci�c� the
actual data analysis may indicate pockets of data that do not �t the model but are
nonetheless part of the signal� Generic models are not expected to account for all the
data� just capture certain intrinsic characteristics of the data�

During learning� when additional instances of an object are encountered� expec
tations generated based on the currently available model may be invalid or imprecise�
a consequence of inadequate training� The model earlier acquired may be from an
instance that was incompletely processed or signi�cantly di�erent from the current
instance� In such cases� however� the models improve with additional training�

Violation discrepancies by virtue of our interpretation can be of two types�
During the learning phase� if a newly created object model encompasses one or more
other models in the database� a violation discrepancy is said to occur� It indicates
that one or more object models require re�nement�specialization through data repro
cessing� During the recognition phase� if despite the removal of all other detectable
discrepancies� there exists pockets of data that do not support any known object
model in the database� a violation discrepancy is declared� It �ags the presence of a
new object that has not been encountered earlier� an object that requires modeling�
The mechanism in e�ect supports unsupervised learning� Alternately� a violation
discrepancy could indicate that the datadata discrepancy detection mechanism is
�incomplete�� providing feedback regarding aspects of the domain knowledge that
require strengthening�

Diagnosis involves seeking the cause of a discrepancy in order to propose an alter
nate� more appropriate processing context� A more goal directed version of diagnosis
is di
erential diagnosis in which competing object models are examined to deter
mine pieces of support evidence that must be sought in order to state categorically
whether one or more of them are present�

� Model Acquisition Algorithm

The model acquisition algorithm is presented in Figure �� Each training instance con
sists of the object label and the signal �le that contains the timeamplitude waveform
data� The �rst step involves the initialization of the processing context using past
experience where available when the learning is supervised�

The main modeling loop seeks to resolve processing and interpretation discrep
ancies at successively higher levels of data abstraction �most perceptual systems
���� ��� 		� maintain data at multiple levels of abstraction�� This involves process
ing the data� checking for discrepancies� diagnosing the same and reprocessing the
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For each training instance:

1. initialization:
  a.  Set initial processing context using either
       default settings, past experience (generic
       models or earlier encountered instance models)
  b. Any expectations? Set them up.

2.    loop:
  a.  Progressively remove processing and
       interpretation discrepancies at higher
       and higher levels of data abstraction.
  b.  attempt model integration into database
        ambiguity -> seek new processing context
                               goto step 2a.

3.   next instance

 

Figure �� Algorithm for acquiring Acoustic�Event models for the SUT�

data after adapting the SPAs and their parameters accordingly� Resolving a discrep
ancy at a given level in the data abstraction could entail data reprocessing at one or
more lower levels of data abstraction� Further� discrepancies involving quantum me
chanically related dimensions cannot be simultaneously removed ����� e�g�� time and
frequency� Under such circumstances it becomes necessary to resolve each individu
ally and combine the information� through the use of domain knowledge� to generate
a composite model that meets our interpretation needs� Processing assumptions are
explicitly maintained in order to reason about the uncertainties they introduce�

When a discrepancy at the highest level of data abstraction occurs� it indicates
that the object model generated either subsumes or is subsumed by one or more of
the other models into the database� When no such discrepancies are detected� it
implies that the new model may be included in the model database� Once this is
accomplished the next training instance is addressed�

The algorithm is incremental in two respects� �rstly object classes may be trained
for as and when they are encountered and secondly� the system incrementally re�nes
the object models when either additional training instances of an object class become
available or instances of similar but distinct object classes are encountered� Before
we discuss issues of search e�ort we present an example�

� Example

The following example describes the sequence of events that would ensue when mod
eling two very similar acousticevents that have identical representations with respect
to the default processing context� The acousticevents are modeled as a synchronized
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�
� set of frequency components ����� We shall discuss repercussions on search e�ort
and model database consistency based on the availability of previously encountered
training instances for purposes of reuse� However� through our choice of example�
we avoid discussion of composite model generation�

��� Learning� Acquiring Object Models

Input Two synthetically generated sounds� SimpleSteady� and SimpleSteady��
each composed of a single frequency component� at ���� and ���� Hz respectively�
Data sampled at a frequency of �� KHz� See Figure 
�
Default Processing Context STFT algorithm for spectral analysis with a window
length of ��� data points� Given that the data is sampled at �� KHz� a frequency
resolution of �� Hz is obtained�
Assumption The model database is initially empty�

time

freq

time

freq

Simple-Steady-2

Simple-Steady-1Simple-Steady-1

Simple-Steady-2

Figure 
� Model Acquisition through iterative signal reprocessing�

When the signal data for SimpleSteady� is analyzed using the default processing
context� the object model generated indicates a single frequency component whose
frequency lies in the range ������ ����� Hz� As is to be expected� no con�icts are en
countered while integrating this model into the initially empty model database� When
the training instance for SimpleSteady� is encountered� the initial model generated
indicates a single frequency component in the range ������ ����� Hz� While inte
grating this second model into the database� a violation discrepancy is detected� the
two models being virtually indistinguishable in the range ������ ����� Hz� Note that
energy is normalized within a model in order to generalize with respect to �volume��
only the relative energies of the frequency components are preserved�

Based on the available domain knowledge� the discrepancy could be diagnosed
either as� insu�cient frequency resolution with consequent loss in frequency detail� or
too high an energy threshold that resulted in undetected weak frequency components�
or insu�cient time resolution that lead to obscuring of distinguishing time behavior�
or combinations of the same� Increased time or frequency resolution may be coupled
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with increased energy sensitivity �by reducing the energy threshold�� Let us say that
the control mechanism elects to pursue increased frequency and energy resolution for
which the diagnosis mechanism recommends increasing the STFT window by a factor
of two �to ���� data points�� and a lowering the energy threshold by ����

If training data is available for reuse� it is possible to reprocess the signal data
corresponding to both SimpleSteady� and SimpleSteady� using the new process
ing context� In this case� however� the new frequency resolution obtained� �� Hz� is
insu�cient for the given disambiguation task� Only on the second iteration� when the
data is reprocessed with an STFT window of ���� data points� is su�cient frequency
resolution obtained� The models so obtained for SimpleSteady� ������ ���	� and
SimpleSteady� ����
� ����� are unambiguous and may be included in the model
database� Had there been a reprocessing limit such as not to exceed an STFT win
dow length of ���� data points� modeling failure would have occurred� If instead
computational resources had been expended on obtaining increasingly better time
resolution� the time frequency trajectory would have increased in width resulting in
modeling failure�

If training instances were not available for reuse� the model disambiguation cri
terion used in guiding the search process would have been weaker� In particular�
only SimpleSteady� would have been available for reprocessing� The reprocessing
e�ort would have terminated once predetermined resource bounds were exhausted�
The database would have remained inconsistent until such time as another instance
of SimpleSteady� was encountered� To avoid the space requirements of saving all
training instances and yet balance the time required to generate a consistent model
database� a �xed number of �representative� instances of each object class could be
maintained for purposes of reuse�

��� Another Scenario

From the above example one may wonder whether modeling would have been a one
shot process if instead the best possible frequency resolution had been used� In this
section we illustrate a situation to show otherwise�

Input Two synthetically generated sounds� SimpleSteady� and SimpleChirp as
in Figure �a�
Default Processing Context as before�
Assumption The model database is initially empty�
The only di�erence with respect to the previous example is in the second training
instance� in this case SimpleChirp as opposed to SimpleSteady�� The processing
and as a result the model generated for SimpleSteady� would be just as indicated in
the �rst example� However� the model generated for SimpleChirp using the default
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processing parameters would mimic that of Figure �b� Though this model introduces
no ambiguities in the database� such as on the lines of the initial models for Simple
Steady� and SimpleSteady� in the �rst example� the model for SimpleChirp does
not meet our Simplicity criterion� The discrepancies are resolvable only through
reprocessing the signal data for SimpleChirp with higher time resolution �obtained
by lowering frequency resolution��

��� Recognition� Use of Object Models

Input Waveform data comprising both SimpleSteady� and SimpleSteady� start
ing and ending at the same time�
Default Processing Context same as before�
Assumption Model database contains only the models for SimpleSteady� and
SimpleSteady��

We examine the sequence of events that would ensue during a SUT recogni
tion run operating in Con�guration II �		�� which is very similar to that illustrated
in Figure �� The spectral data obtained on STFT analysis is grouped over time
into spectralactivity bands� which are used to index into the model database� For
the given scenario� spectral activity is restricted to a single band that indexes both
SimpleSteady� and SimpleSteady�� To disambiguate among the alternatives� the
di�erentialdiagnosis component �refer to Section ��� based on an examination of the
respective object models suggests data reprocessing using an STFT window of ����
data points �to obtain the necessary frequency resolution�� When the data is so repro
cessed� the respective frequency components of SimpleSteady� and SimpleSteady�
are identi�ed� conclusively establishing the presence of each�

Alternately� if the object model for SimpleSteady� had not been revised due to
a lack of availability of signal data� after accounting for the frequency component
characteristic of SimpleSteady� there would still be data that was unexplained�
However� the model for SimpleSteady� can be revised only when additional training
instances of the same are encountered�

	 Modeling E
ort

The space of possible SPA settings may be large even for small sets of SPAs where each
is governed only by a few parameters� This is especially true when the parameters
may take on a range of values �integral or real�� Each point in the parameter space
of an SPA constitutes a signal processing strategy� giving rise to a �view� of the
signal� henceforth also called an SPAcorrelate� As discussed earlier� object modeling
involves the search for SPA parameterizations� which yield views of the signal that
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capture its intrinsic properties�
In this section we discuss the uncertainty associated with a model� search strate

gies that generate �stable� models� and the use of generic models to reduce search
e�ort� We brie�y take a look at model revision and the implications of providing less
supervision to the learning element�

	�� Model Uncertainty

Each SPA parameterization when used to process a signal� gives rise to a �view� of
the signal at the corresponding data abstraction level� With any limited search of
the space of SPAs and their parameterizations� only a �nite number of views become
available� As a result� an object model constructed on the basis of the views obtained
is uncertain to the extent that all salient views may not have been exposed� Whereas
it is impossible to explore the whole search space� it is however possible to annotate
the models with sources of uncertainty �SOUs�� each indicating a region of the search
space unexplored�

For instance� consider the frequency resolution example of Figure �� Let us assume
that spectral analysis of the signal is carried out using the STFT SPA with a short
analysis window� The resulting view would indicate a single frequency component
with a rather wide frequency spread� The object model constructed solely on the
basis of this view would be annotated with an SOU indicating that there may be
insu�cient frequency resolution at the spectrum level� Indeed� in the example of
Figure �� when the signal is processed using a larger STFT analysis window� two
frequency components that are closely spaced are exposed�

Modeling e�ort� in the absence of other guidance such as discrepancies and�or
generic models� would concentrate on the removal of SOUs in the evolving model� The
SOUs would be used to direct search e�ort into unexplored regions� In addition� when
new instances of a previously encountered object arrive� the initial model obtained
could be used to suggest a starting point for the search e�ort and the SOUs used to
guide further e�ort� This would enable better utilization of modeling resources�

By explicitly maintaining information regarding the uncertainty within a model�
it is possible to reason about the models� predict possible model ambiguities and as
described earlier� direct data reprocessing e�ort�

	�� Stable Models

Our model search e�ort must not only seek out the intrinsic characteristics of the
objects� but also generate robust models that do not require frequent revisions� By
sampling the search space at distant points� a more complete view of the object is
obtained� However� to acquire robust models� we must systematically explore the
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search space till the views obtained at neighboring points do not vary signi�cantly or
are stable� For instance� while selecting peaks from a spectrum based on an energy
criterion� it is more likely that the energy threshold used is valid if on decreasing it
by some factor� say two� no new peaks �lter through� What constitutes a neighboring
point� that is� what are acceptable step sizes for each parameter of an SPA Signal
processing domain theory and empirically gained knowledge will be used to determine
these for use in the modeling e�ort�

	�� Generic Models

For complex objects that exhibit many distinct high level features� the search e�ort
involved may be signi�cant� For example� a motor sound is characterized by harmon
ics which are tricky to identify without the use of a specialized SPA� Such SPAs are
however not routinely used due to their associated cost� If the class of an object could
be established using some preliminary analysis� the relevant specialized SPAs could
be invoked to extract additional features� Such an approach would reduce search
e�ort� and towards this� we de�ne generic models�

What we seek to capture in a generic model is a unique feature or a set of features
that frequently cooccur and are representative of a class of sounds� For example�
motor sounds and ring�buzzer sounds� In fact� a hierarchy of such models may
be de�ned� Leaf level models could include classes such as� tonal� complex tonal�
impulsive� quasiperiodic impulsive� ringing and noise�

How do we represent these models Given that we seek models to represent a
class of sounds� a representation as speci�c �absolute ranges for frequency� energy
and duration� as that in Figure � would be inappropriate� The model must capture
only the intrinsic and not the incidental characteristics of the sound� To make this
point clear� a motor sound should be recognized as such regardless of its intensity�
the harmonics that may have been attenuated �a virtue of the physical casing of the
motor�� or the frequency of its fundamental �dependent on the powerline frequency��
Likewise a �chirp�� or linearly modulated sinusoid� is a chirp regardless of its duration
or its shrillness� Our approach is to associate with each generic model a unique set of
properties� whose existence is established through the use of specialized SPAs and�or
speci�c SPA parameterizations� With a hierarchy of generic models� the properties
of the leaf models would have to be satis�ed in addition to properties that capture
their interrelationships�

To make this discussion more concrete� let us reexamine the physical nature of the
sound originating from a hair dryer �refer Section 	 and Figure ��� The sound from a
hair dryer is a result of the working of a motor and the forcing of air through a nozzle�
A generic model� say blower de�ned in terms motor and noise� would cover both
hair dryers and fans� The blower model would be de�ned as the time synchronized
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occurrence of motor and noise characteristics Motors generate a set of harmonically
related time frequency trajectories �fundamental equal to the powerline frequency��
which are synchronized in time� Analysis towards establishing the presence of a motor
sound would be focused on determining the existence of harmonics using a specialized
SPA for harmonic detection and enhancement� The detection of noise rests on �nding
broad regions of spectral activity with no apparent correlation� When indeed a blower
is active� the noise and motor harmonics are present and synchronized in time�

It is true that generic models need to be de�ned� but� having a hierarchy enables
the reuse of primitive models� We believe that the savings in search e�ort that will
be realized justify their construction and the time spent to identify the applicable
generic models during training� As a �rst step� we will experiment with models for
ringing� motor �complex tonals� and impulsive sounds�

	���� Indexing

The knowledge encapsulated in the generic models may be readily used if class in
formation is provided along with the input signal� This� however� would be a step
backward in the direction of automation� Instead� we favor using low level processing
with default SPAs and parameters to drive the data up to the stream level of data ab
straction� Then� we ascertain whether any of the generic models known to the system
match the data� If yes� generic model hypotheses are created� annotated with SOUs
to capture our belief or lack thereof as a result of missing pieces of support evidence�
In particular� the initial data analysis is not targeted to detecting �ner features that
may involve the use of special purpose� more compute intensive analysis� The SOUs�
based on their importance� form the seed for further processing of the signal� With a
hierarchy of generic models� when leaf models are established as present� a recursive
test for parent models is carried out�

Returning to our hair dryer example� let the default processing �high energy
threshold with high frequency resolution for spectral analysis� of the acoustic signal
result in the detection of three of its highest energy frequency components that are
approximately harmonic� This would index into the generic motor sound� but such a
hypothesis would be accompanied with uncertainty� no evidence for noise� harmonics
not accurately detected� missing fundamental frequency� and time synchrony not
clearly established� These are a direct result of the search space that was not explored�
that is� the use of a high energy threshold that excludes the capture of weak frequency
components� STFT analysis with only a long analysis window which would provide
insu�cient time resolution for the detection of rapid temporal variations and hence
the presence or absence of time synchronization� Reprocessing to resolve�reduce the
uncertainty in the motor hypothesis would entail the use of SPAs and parameters
known to handle the above distortions� Signal reprocessing always reduces uncertainty
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in a model� When the expected characteristics are not found on signal reprocessing�
our belief in the initial hypothesis� that the sound belonged to the generic model class
being tested is reduced� Alternately� if the features are detected� the more complete
model would have been acquired with considerably less search e�ort�

	���� Expectations and Search

Generic models identi�ed to be present provide expectations regarding the signal
content and its future behavior� In the context of these expectations� the signal data
is analyzed in a more focused manner� Continuing with the hair dryer example� this
would translate to using the specialized SPA for the detection of harmonics �which in
the course of blind search would not have been used due to its associated cost�� In the
SUT �		�� Con�guration II� the approximate knowledge available in the spectral bands
is used to generate sound source hypotheses� These in turn generate expectations for
speci�c support units which are tested for using specialized SPAs as necessary� In the
model acquisition system� we will exploit generic models in a similar fashion� Towards
this� the SUT blackboard database will be extended to include a space for generic
models�

	�� Model Revision

Model revision occurs either through model generalization or specialization� Gener�
alization becomes necessary only when the model for a new instance of an object�
new�model is not encompassed by the earlier acquired model� old�model� If the new
model subsumes the oldmodel and does not introduce con�icts in the database� it
is used to replace the oldmodel after updating statistics used in belief calculation�
When the old and new models are not related by the subsumes relation� generaliza
tions that cover the old and new models are generated� gen�models� If there exists one
such model that does not introduce con�icts into the database it is retained� If no such
model exists and newmodel is consistent with the database� a �disjunctive� model
may be generated and incorporated in the database� We will adopt this approach
before seeking to generalize object models to establish whether indeed the majority
of the objects are similar and which are exceptions� Such a situation is likely to occur
when the di�erent instances semantically belong to the same class but are physically
very distinct� In all other cases� the nature of con�ict may be examined and the ob
ject model specialized through data reprocessing to extract additional or more re�ned
characteristics� As indicated earlier in the example of Section �� reprocessing e�ort
directed at model specialization is more focused and has a better de�ned termination
criterion when the training data are available for reuse�
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	�
 Supervised versus Unsupervised Learning

Learning is considered supervised when the object label is provided along with the
signal data� In the algorithm presented in Section 
� the object label serves four
purposes� �rstly� it associates with the object model constructed a label that is mean
ingful to the world� Secondly� when additional training instances of an object are
encountered� the system compares the newly constructed object model to that previ
ously acquired and seeks to build a model that is consistent� it seeks to generalize its
description of the object� The degree of generality is however governed by the �su
pervisor� who labels the objects� The object models could become overly general and
meaningless if very di�erent instances of an object are labeled similarly� For example�
consider grouping together all hair dryers sounds together �regardless of the physical
structure of the sound producing appliance or the powerline frequency of operation�
as opposed to only sounds originating from hair dryers of a single brand� One would
expect the former to perform poorly for recognition purposes unless the modeling
process could extract the intrinsic high level features �this will be explored to some
extent in the course of this work�� Thirdly� the purpose in providing labels is to trig
ger search in the SPA parameter space in order to capture views that disambiguate
the signals and hence their models� Fourthly� if an instance of an object has been
encountered and modeled earlier� expectations about its characteristics enable the
selection of SPAs and their parameters� Labels provide more informed expectations
about the signal being processed �akin to the use of class labels for generic models�
and thus reduce search e�ort�

In the absence of class information� the modeling process would mainly be guided
by the stability criterion and the use of generic models� When a newly generated
model closely resembles an earlier acquired model  based on similarity metrics used
in the recognition engine� the models could be combined to yield a more general model�
In principal� the learning algorithm would perform satisfactorily without supervision�

� Evaluation

For evaluation purposes in the domain of speech recognition� a rich variety of commer
cial and research systems are available� recognition performance and training e�ort
are comparable� For the acoustic� nonspeech signal domain� no such systems are
readily available for comparison purposes� Consequently� our evaluation e�ort of the
model acquisition system will be with respect to itself� studying the e�ects of termi
nation criteria� training data reusability� and generic models on modeling e�ort and
recognition performance�

In particular the following comparisons will be made�
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� Comparison of handcrafted and learned models with regard to SUT recognition
performance�

� The training e�ort entailed when the object class label is provided will be com
pared to that resulting when it is not� In addition� the actual models acquired
will be compared� to study the degree of generalization achieved through the
use of object class labels as opposed to using the similarity metric in the recog
nition engine� It is expected that the latter will give rise to a lower level of
generalization when the recognition engine is more conservative�

� Modeling e�ort as a function of the search termination criterion will be studied�
We seek to answer whether requiring stable models as opposed to just unam
biguous models results in reduced modeling e�ort over a training sequence 

� Study the e�ect of di�erent search heuristics on model acquisition e�ciency�

� Study database consistency as a function of the number of training instances
that will be maintained for reuse�

�� Status

Currently the system is capable of modeling synthetic sounds that exhibit steady fre
quency behavior such as those presented in the example of Section �� Our immediate
next step is to handle synthetic acoustic events that exhibit transient behavior� chirps
and impulsive sounds� We will then proceed with the learning of real world sounds
using generic models�

�� Conclusion

To address recognition for complex tasks that are characterized by a high degree of
variability and nonstationarity� recognition systems that adapt their signal process
ing frontends have merged� To meet the parallel needs of interpretation and object
disambiguation� such systems employ symbolic object models that typically have been
handcrafted� We propose a supervised knowledgebased learning approach to auto
mate object model acquisition for such systems that relies on the detection of signal
processing discrepancies and their resolution� Success� determined by the acquisition
of models that meet our recognition needs� would demonstrate one solution to the
knowledge acquisition bottleneck of such systems�
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