Focus of Control Through Goal Relationships
Victor R. Lesser, Daniel D. Corkill,
Robert C. Whitehair and Joseph A. Hernandez
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Area/subarea: B/B4
Keywords: Blackboard Architecture, Control, Focus-of-attention

Abstract: Appropriate focus-of-control decisions require a system to relate predicted results of future activities to each other and to existing results and to stimulate activities along promising solution paths while inhibiting activities found to be redundant. The complex, multi-dimensional search space representation used in blackboard based applications makes focus-of-control decisions even more difficult. Mechanisms based on goal relationships and a new goal type, inhibiting-goal, can achieve these capabilities and can be introduced into a blackboard based architecture as natural extensions to a unified data-directed and goal-directed control framework. We provide examples and performance results demonstrating how these additions improve the system’s ability to evaluate potential activities.

1 Introduction

Making appropriate focus-of-control decisions in a complex, multi-dimensional search space is a difficult task. This difficulty arises because relationships among partial results and potential activities are not readily observable. For example, in a blackboard architecture, the same partial results can be used in many contexts. Therefore, producing a specific result may affect many alternative solutions. In addition, the problem space is represented at multiple abstraction levels on the blackboard, and multiple solution paths for the same result may be available. This provides the problem solver with flexibility in choosing problem-solving activities, but also allows results to be rederived using alternative paths without recognizing the redundancy until the final step. Furthermore, the asynchronous, opportunistic style of problem solving leads to situations where it is unclear whether a solution is missing due to a lack of data, in which case the solution will never be generated, or due to a lack of processing, in which case additional work will eventually produce the solution. Thus, exploiting complex problem-solving capabilities while at the same time making intelligent control decisions is a formidable task [8,10,9].

Several years ago, we presented extensions to the cooperating knowledge source architecture of Hearsay-II [3] that unified data-directed and goal-directed control [1]. This was a first step toward developing the needed interrelationships among actions and results necessary for making intelligent control decisions. In the interim, we have gained considerable experience with this control architecture. In particular, we have identified the need for new types of goals and for additional relationships among goals. These extensions allow us to more accurately relate the predicted results of

This research was sponsored, in part, by the National Science Foundation under CER Grant DCR-8500332, and by the Office of Naval Research under University Research Initiative Grant Contract N00014-86-K-0764, and under Contract N00014-79-C-0439.
future activities to existing results in order to make more informed control decisions [4,5].

In Section 2 we briefly review the unified data-directed and goal-directed control architecture. Section 3 describes the new goal relationships from a general perspective and presents specific examples from two domains. Section 4 outlines how these new mechanisms work in a blackboard based problem solver and Section 5 is a brief presentation and discussion of our experimental results.

2 A Review of Goal-based Control

Figure 1 presents a high-level schematic for the integrated data-directed and goal-directed control architecture as implemented in the DVMT [6,7]. The basic Hearsay-II architecture is modified to include a goal blackboard and a goal processor. The goal blackboard, which mirrors the data blackboard in dimensionality, contains goals representing intentions to create particular results on the data blackboard. Goals provide an abstraction over the potential actions for achieving a particular type of result and allow the system to reason about its intentions independently of the particular knowledge source (KS) actions at its disposal.

The two general classes of goals are data-directed and goal-directed. The blackboard monitor uses domain knowledge to create data-directed goals in response to
the addition or modification of partial results on the data blackboard. Each data-
directed goal specifies the range of potential solutions resulting from the use of the
triggering data.

Since the creation of a goal does not guarantee sufficient information on the data
blackboard to execute a KS to satisfy the goal, the goal processor runs a precondition
procedure for the applicable KSs to make a detailed examination. When results
indicate that a KS has sufficient information to satisfy the goal, the goal triggers a
KS instantiation (KSI). The scheduler assigns the KSI a priority rating and places it
on the scheduling queue. The scheduler assigns priority by first determining the
set of goals that may be satisfied by a KSI’s predicted output. It then computes the
KSI’s rating as a function of the ratings of the potentially satisfied goals and the
credibility of the predicted results. If sufficient information is not available to run a
KSI, the goal processor creates goal-directed goals (subgoals) to generate the needed
data, if possible. Subgoal ratings are based on the rating of the KSI. Thus, if the
original KSI has a high rating, KSIs leading to the satisfaction of its preconditions
will have their ratings increased by the subgoals.

Goal-based control does not require that control decisions be made in a top-
down, goal-directed manner. We use goals to make both data-directed and goal-
directed control decisions, and the classical data-directed/goal-directed dichotomy is
represented in our approach by the relative ratings among goals. By adjusting its
KSI rating computations, the scheduler can bias the system towards goal-directed or
data-directed control. Goal-based control attempts to incorporate domain data to
build an appropriate control abstraction that will predict the type of results which
can possibly be generated. This permits the system to develop non-local focus-of-
control strategies that take into account the interactions of work on data in different
parts of the problem-solving space.

3 Goal Relationships

More effective control can be achieved by representing interrelationships among goals.
Since goals represent an abstraction over a set of possible results, they capture desired
results independently of the specific actions available to the system for achieving these
results. Goal relationships resulting from the initial data and subsequent processing
can be used to dynamically construct a partial topology of the solution space based
on what appear to be feasible solutions. This structure can be used to make control
decisions that significantly reduce the amount of search required to solve a problem
in a complex domain. Specifically, three important questions necessary for effective
control can be answered by relating goals to each other:

- Can the same results be obtained by working on different goals?
- Will working on two distinct goals generate equivalent partial solutions?
- Will work on a goal differentiate between mutually exclusive solutions?

1Goal-directed goals can also be directly generated by the goal processor.
In order to formally define the goal relationships necessary to answer these questions, we first need to define the following concepts: the potential solution set of a goal and the component set of a potential solution.

**Solution Set** for a goal $g$: $S(g) = \{x \mid x$ is a potential solution of $g\}$. 

**Component Set** of a potential solution $x$: the set of partial results that can be combined to form $x$, $C_s(x) = \{y \mid \forall g, y \in S(g) \Rightarrow x \in S(g) \land x \neq y\}$. 

The goal relationships can now be defined as follows.

**subsumption:** Goal $g_1$ subsumes a second goal, $g_2$, if the specifications of $g_2$ are completely encompassed by the specifications of $g_1$. Formally, $g_1$ subsumes $g_2$ if $\forall y, y \in S(g_2) \Rightarrow \exists w$ s.t. $y \in C_s(w) \land w \in S(g_1)$.

**assistance:** One goal, $g_1$, is said to assist another goal, $g_2$, if satisfaction of $g_1$ implies satisfaction of $g_2$. The assistance relationship identifies those goals which represent alternative approaches to generating a particular solution. Thus, $g_1$ assists $g_2$ if $\forall w, w \in S(g_1) \Rightarrow \exists y$ s.t. $y \in C_s(w) \land y \in S(g_2)$.

**competition:** Two goals, $g_1$ and $g_2$, are competing if there is no possible hypothesis that will satisfy both goals. By checking if two goals are competing, the system can determine if the knowledge sources they have triggered will generate distinct results. Goals $g_1$ and $g_2$ are competing if $\forall w \forall y, w \in S(g_1) \land y \in S(g_2) \Rightarrow \neg(\exists g_f \exists W \forall Y$ s.t. $\{W,Y\} \subset S(g_f), \{W,Y\}$ can be simultaneously acceptable solutions and $w \in C_s(W) \land y \in C_s(Y)$).

**cooperation:** Two goals are completely cooperating if it is possible for the goals to produce information that may be incorporated into a single result at some point in the future. Goals $g_1$ and $g_2$ are cooperating if $\forall w \forall y, w \in S(g_1) \land y \in S(g_2) \Rightarrow \exists g_f \exists x$ s.t. $x \in S(g_f) \land \{w, y\} \subset C_s(x)$.

**independence:** Two goals are independent if they are not competing and if it is not possible for them to be incorporated into a single solution at some point in the future. Goals $g_1$ and $g_2$ are independent if they are not competing and if $\forall w \forall y, w \in S(g_1) \land y \in S(g_2) \Rightarrow \neg(\exists g_f \exists x$, s.t. $x \in S(g_f) \land \{w, y\} \subset C_s(x))$.

**subsumption-inhibition:** We have added a new type of goal, called an inhibiting-goal, to identify redundant work that can be eliminated. Goal $g_1$ inhibits a second goal, $g_2$, if $g_1$ is an inhibiting goal and $g_1$ subsumes $g_2$.

**assistance-inhibition:** Goal $g_1$ partially inhibits goal $g_2$ if $g_1$ is an inhibiting-goal and $g_1$ assists $g_2$. The assistance-inhibition relation limits work to those areas of $g_2$ not encompassed by $g_1$.

Additional relationships not discussed here include precise data-directed goal, approximate data-directed goal, approximate subgoal, subsumed subgoal, proper subgoal, partially cooperating, asymmetric cooperating and overlapping goals[11].
A simple grammar and example goal relationships for a natural language parsing system that works asynchronously and opportunistically from any point in the input are shown in figure 2. Preprocessed signal data input is represented as \( \{w_1, w_2, ..., w_n\} \).

Figure 3 shows similar goal relationships for a distributed vehicle monitoring system that functions in a spatial domain where a goal can be represented as a two-dimensional parallelogram, \([((x_{ll}, y_{ll}), (x_{ul}, y_{ul})) \ (x_{lr}, y_{lr}), (x_{ur}, y_{ur}))\]. A potential solution of a goal is a consecutive sequence of points \( (x_{a}, y_{0}) \ldots (x_{(a+k)}, y_{k}) \ldots (x_{c}, y_{(c-x_{a})}) \) where \( x_{a} \) and \( x_{c} \) lie on the left and right sides, respectively, and all points lie within the parallelogram.

4 Experiments in Processing Goal Relationships

The following two examples demonstrate the usefulness of goal relationships. The first helps prevent redundant processing through the use of inhibiting goals, and the second enables a knowledge source to be rated more accurately based on its local context.

4.1 Inhibiting Goals

A new goal type, an inhibiting-goal, has been added to control redundant processing. Without inhibiting goals, the only way to minimize redundant activity was to decrease the ratings of the goal and subgoals that led to a strongly believed result. This method prevented additional work only on the original solution path used to derive the high-level result. It did not limit activity on any of the alternative paths that might lead to the same result. In order to effectively control redundant processing, a separate
Figure 3: Goal Relationship Diagrams, Example 2

mechanism was needed to eliminate derivation of any intermediate result that would eventually produce the high-level result. Thus, when a satisfactory, high-level result is produced, this new mechanism allows the system to work only on data it determines to be independent, competing, or cooperating in relation to the high-level result.

An inhibiting-goal and its associated inhibiting subgoals are generated when the system determines that sufficient work has been done on refining a high-level result. All KSs are then inhibited from producing results that are subsumed by the inhibiting-goal or inhibiting-subgoals. The specification of the inhibiting-goal is taken from the characteristics of the high-level result. By specifying a tolerance around the inhibiting-goal, its characteristics can be generalized to extend the range of inhibition. This can eliminate solutions that are similar, though not identical. This is appropriate in environments where answers that have characteristics close to the correct answer are acceptable. The algorithm is:

FOR each newly created hypothesis, h

IF \((h.\text{level} \geq *\text{inhibiting-goal-creation-level}^*)\) AND \((h.\text{rating} \geq *\text{inhibiting-goal-creation-threshold}^*)\)

THEN

Create inhibiting-goal and associated inhibiting-subgoals
For each stimulating-goal, \(g\), subsumed by the inhibiting-goal
Terminate efforts to satisfy \(g\)
For each stimulating-goal assisting the inhibiting-goal
Restrict processing in areas encompassed by the inhibiting-goal

4.2 Local Context

Along with inhibiting activity based on high-level results, there is also a need to inhibit activity based on a more local context. For example, if any of the goals that triggered a KS is satisfied before the KS runs, and if the KS can not improve on the results that satisfied the goal, the KS should have its rating decreased. Thus,
which KS satisfies a goal is an important issue. If the scheduler gave priority to the KSI with the most comprehensive triggering goal, its results might satisfy other goals and eliminate the need to execute their triggered KSI’s. The following situation demonstrates this point.

Consider the pending activities $KSI_1$ and $KSI_2$, generated from work on two different derivation paths. If executed, $KSI_1$ would produce result $R_1$ which would subsume $R_2$, the result of executing $KSI_2$. Thus, executing $KSI_1$ first would make $KSI_2$’s results redundant, so the scheduler should give $KSI_1$ priority. However, from a local, data-directed perspective, $KSI_2$ might be given higher priority, even though $KSI_1$ is the more promising of the two. This can occur if the scheduler incorporates an average of input data credibility in its KSI rating function, and if $KSI_1$ uses lower rated data in addition to highly rated data used by $KSI_2$. For example, $KSI_1$ may generate $R_1$ by extending highly credible data into areas of weak data, and $KSI_2$ may use only the highly credible data to produce the highest rated component of $R_1$.

Our earlier approach to rating KSIs tried to balance the quality of the predicted result with its scope. However, we found that the right balance seemed to be situation dependent. Too much priority to scope had the undesirable consequence of making the search too depth-first, while too much priority to quality led to redundant activity as illustrated in the above example. Instead, we found that, to choose among the pending KSIs, we need to explicitly take into account the relationships among their predicted outputs.

Using the goal relationships specified in the previous section, the system can form a local understanding of why a KSI is scheduled to be invoked and may instead invoke a different KSI which produces the same results more efficiently. In general, before executing a KSI, the Local Context mechanism examines the KSI's triggering goals and searches for a more comprehensive KSI which would also satisfy these goals. If this more comprehensive KSI produces an actual result that is as good in the subsuming area as that expected from the less comprehensive KSI, the subsumed results are removed from the output set of the less comprehensive KSI. This is implemented as a combination of the following two mechanisms:

FOR every goal, $g$, in a KSI’s triggering-goal list
   For each hypothesis, $h$, satisfying $g$
      IF $h$ subsumes any element of the KSI’s predicted outputs
         AND the predicted output can not improve $h$ in any way THEN
            Remove the subsumed item from the KSI’s set of predicted outputs
            Recalculate the KSI’s rating
      END IF
   END FOR

Prior to invoking the highest rated KSI
   IF the KSI’s assisting goal list is non-nil THEN
      Invoke the KSI triggered by the most comprehensive assisting-goal
   ELSE
      Invoke the original KSI
   END IF
Table 1: Experiment Summary.

<table>
<thead>
<tr>
<th>Exp</th>
<th>Env</th>
<th>Mech?</th>
<th>KS ex</th>
<th>Hyps</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1</td>
<td>no</td>
<td>184</td>
<td>246</td>
<td>488</td>
</tr>
<tr>
<td>E2</td>
<td>1</td>
<td>yes</td>
<td>64</td>
<td>157</td>
<td>443</td>
</tr>
<tr>
<td>E3</td>
<td>2</td>
<td>no</td>
<td>207</td>
<td>335</td>
<td>661</td>
</tr>
<tr>
<td>E4</td>
<td>2</td>
<td>yes</td>
<td>130</td>
<td>297</td>
<td>712</td>
</tr>
<tr>
<td>E5</td>
<td>3</td>
<td>no</td>
<td>806</td>
<td>938</td>
<td>1894</td>
</tr>
<tr>
<td>E6</td>
<td>3</td>
<td>yes</td>
<td>437</td>
<td>728</td>
<td>1714</td>
</tr>
</tbody>
</table>

Abbreviations

Exp: Experiment
Env: The problem solving environment;
    1) single vehicle track, no noise
    2) single vehicle track, random noise
    3) crossing vehicle tracks, random noise
Mech?: Whether the Inhibiting-goal and Local Context mechanisms are used.
KS ex: The number of knowledge source executions required to find the solution(s)
Hyps: Number or hyps generated during problem solving.
Goals: Number of goals generated during problem solving.

5 Experimental Results

The goal relationship algorithms were implemented in the Distributed Vehicle Monitoring Testbed (DVMT). The DVMT simulates a network of vehicle monitoring nodes, where each node applies simplified signal processing knowledge to acoustically sensed data in an attempt to identify, locate and track patterns of vehicles moving through a two-dimensional space. A node is responsible for a specific area and attempts to recognize and eliminate errorful sensor data as it integrates the correct data into an answer map. Each node has a blackboard architecture with knowledge sources and blackboard levels of abstraction appropriate for vehicle monitoring. Knowledge sources perform the basic problem solving tasks of extending and refining hypotheses (partial solutions). As described earlier, data-directed and goal-directed goals are used to control problem solving activities.

Experimental results are summarized in Table 1. Three environments were used for testing; a simple environment with a single vehicle track and no sensor noise, an environment with the same vehicle track but with random noise added, and a complex environment with two crossing vehicle tracks and a significant amount of noise. Features used for comparison were the number of knowledge source executions required to produce the solution(s), the number of hypotheses created, and the number of goals created. The system performed more efficiently with the new mechanisms. For the environment with a single track, 36% fewer hypotheses and 9% fewer goals
were produced and the system required 65% fewer KS executions to compute the answer. In the second environment, 11% fewer hypotheses and 8% more goals were produced and the solution was found with 37% fewer KS executions. Finally, in the complex environment, 22% fewer hypotheses and 10% fewer goals were produced and the solutions were found with 46% fewer KS executions.

In each of the environments, the new mechanisms were effective in preventing redundant processing in areas where strongly believed, high-level results were found. This enabled the system to allocate resources for work in noisy areas and areas where the sensed signals were weak. Although the new mechanisms caused the system to generate additional goals, most noticeably in environment 2, the resulting improvement in focusing capabilities resulted in a considerable reduction in the number of knowledge sources executed. Finally, the cost of processing goal relationships was significantly less than the cost of processing KSs. The savings were sufficient to result in dramatic decreases in execution time required when the system used goal relationship mechanisms.

6 Conclusion

In this paper, we have presented a taxonomy of goal relationships including inhibiting-goals. In addition, we have shown that mechanisms for accurately controlling the flexibility provided by the multi-level, cooperative knowledge source model of problem solving can be built as natural extensions to the integrated data-directed and goal-directed architecture.

Goal relationships provide needed information for making intelligent control decisions, and they are a useful tool for representing the current state of problem solving in a complex search space. Their use is applicable to tasks in which combined data-directed and goal-directed control is appropriate. In order to exploit goal relationship mechanisms, it is necessary that the quality and characteristics of a KSI’s output be roughly predictable, and that data-directed goals be constructed so as to contain all the possible outputs that a KS can produce based on the stimulating data. Additionally, the computation of goal relationships, data-directed goals and KS output set approximations must be inexpensive compared to the cost of executing a KS. Finally, it is also important that a data-directed goal’s solution set not include a large number of potential solutions that can’t be generated by a KS working on the triggering data. Otherwise, many goal relationships will be overlooked.

Our future research plans include incorporating these concepts into mechanisms for real time control and investigating the use of cooperating, independent, and competing goal relationships for use in complex focusing heuristics and in problem solving termination. We are also examining the potential benefits of adding additional goal attributes indicating expected amount of resources needed to satisfy a goal, amount of work already invested in satisfying a goal, expected number of solutions to a goal, and the likelihood of satisfying a goal. Finally, we intend to expand the notion of
cooperation and attempt to reproduce the results of Durfee and Lesser [2] through the use of goal relationships.

References


