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Abstract: Appropriate focus-of-control decisions require a system to relate predicted results
of future activities to each other and to existing results and to stimulate activities along promising
solution paths while inhibiting activities found to be redundant. The complex, multi-dimensional
search space representation used in blackboard based applications makes focus-of-control decisions
even more difficult. Mechanisms based on goal relationships and a new goal type, inhibiting-goal,
can achieve these capabilities and can be introduced into a blackboard based architecture as natural
extensions to a unified data-directed and goal-directed control framework. We provide examples
and performance results demonstrating how these additions improve the system’s ability to evaluate
ptential activities.

1  Introduction

Making appropriate focus-of-control decisions in a complex, multi-dimensional search
space is a difficult task. This difficulty arises because relationships among partial
results and potential activities are not readily observable. For example, in a black-
board architecture, the same partial results can be used in many contexts. Therefore,
producing a specific result may affect many alternative solutions. In addition, the
problem space is represented at multiple abstraction levels on the blackboard, and
multiple solution paths for the same result may be available. This provides the
problem solver with flexibility in choosing problem-solving activities, but also allows
results to be rederived using alternative paths without recognizing the redundancy
until the final step. Furthermore, the asynchronous, opportunistic style of problem
solving leads to situations where it is unclear whether a solution is missing due to a
lack of data, in which case the solution will never be generated, or due to a lack of
processing, in which case additional work will eventually produce the solution. Thus,
exploiting complex problem-solving capabilities while at the same time making intel-
ligent control decisions is a formidable task [8,10,9].

Several years ago, we presented extensions to the cooperating knowledge source
architecture of Hearsay-II [3] that unified data-dire~ted and goal-directed control [1].
This was a first step toward developing the needed interrelationships among actions
and results necessary for making intelligent control decisions. In the interim, we have
gained considerable experience with this control architecture. In particular, we have
identified the need for new types of goals and for additional relationships among
goals. These extensions allow us to more accurately relate the predicted results of
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Figure 1: Integrated Data and Goal-Directed Control

future activities to existing results in order to make more informed control decisions
[4,5].

In Section 2 we briefly review the unified data-directed and goal-directed control
architecture. Section 3 describes the new goal relationships from a general perspective
and presents specific examples from two domains. Section 4 outlines how these new
mechanisms work in a blackboard based problem solver and Section 5 is a brief
presentation and discussion of our experimental results.

2 A Review of Goal-based Control

Figure 1 presents a high-level schematic for the integrated data-directed and goal-
directed control architecture as implemented in the DVMT [6,7]. The basic Hearsay-
IT architecture is modified to include a goal blackboard and a goal processor. The
goal blackboard, which mirrors the data blackboard in dimensionality, contains goals
representing intentions to create particular results on the data blackboard. Goals
provide an abstraction over the potential actions for achieving a particular type
of result and allow the system to reason about its intentions independently of the
particular knowledge source (KS) actions at its disposal.

The two general classes of goals are data-directed and goal-directed. The black-
board monitor uses domain knowledge to create data-directed goals in -esponse to
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the addition or modification of partial results on the data blackboard. Each data-
directed goal specifies the range of potential solutions resulting from the use of the
triggering data.

Since the creation of a goal does not guarantee sufficient information on the data
blackboard to execute a KS to satisfy the goal, the goal processor runs a precondition
procedure for the applicable KSs to make a detailed examination. When results
indicate that a KS has sufficient information to satisfy the goal, the goal triggers a
KS instantiation (KSI). The scheduler assigns the KSI a priority rating and places
it on the scheduling queue. The scheduler assigns priority by first determining the
set of goals that may be satisfied by a KSI’s predicted output. It then computes the
KSI’s rating as a function of the ratings of the potentially satisfied goals and the
credibility of the predicted results. If sufficient information is not available to run a
KSI, the goal processor creates goal-directed goals (subgoals) to generate the needed
data, if possible!. Subgoal ratings are based on the rating of the KSI. Thus, if the
original KSI has a high rating, KSIs leading to the satisfaction of its preconditions
will have their ratings increased by the subgoals.

Goal-based control does not require that control decisions be made in a top-
down, goal-directed manner. We use goals to make both data-directed and goal-
directed control decisions, and the classical data-directed/goal-directed dichotomy is
represented in our approach by the relative ratings among goals. By adjusting its
KSI rating computations, the scheduler can bias the system towards goal-directed or
data-directed control. Goal-based control attempts to incorporate domain data to
build an appropriate control abstraction that will predict the type of results which
can possibly be generated. This permits the system to develop non-local focus-of-
control strategies that take into account the interactions of work on data in different
parts of the problem-solving space.

3 Goal Relationships

More effective control can be achieved by representing interrelationships among goals.
Since goals represent an abstraction over a set of possible results, they capture desired
results independently of the specific actions available to the system for achieving these
results. Goal relationships resulting from the initial data and subsequent processing
can be used to dynamically construct a partial topology of the solution space based
on what appear to be feasible solutions. This structure can be used to make control
decisions that significantly reduce the amount of search required to solve a problem
in a complex domain. Specifically, three important questions necessary for effective
control can be answered by relating goals to each other:

e Can the same results be obtained by working on different goals?
e Will working on two distinct goals generate equivalent partial solutions?

e Will work on a goal differentiate between mutually exclusive solutions?

!Goal-directed goals can also be directly generated by the goal processor.



In order to formally define the goal relationships necessary to answer thcse ques-
tions, we first need to define the following concepts: the potential solution set of a
goal and the component set of a potential solution.

Solution Set for a goal g: S(g) = {z | = is a potential solution of g}.

Component Set of a potential solution z: the set of partial results that can be
combined to form z, C,(z) = {y | Vg,y € S(9) = = € S(g) Az # y}.

The goal relationships can now be defined as follows.

subsumption: Goal gl subsumes a second goal, g2, if the specifications of g2 are
completely encompassed by the specifications of gl. Formally, g, subsumes g,
if Vy,y € S(g2) = Jw s.t. y € Cy(w) Aw € S(g1)-

assistance: One goal, gl, is said to assist another goal, g2, if satisfaction of gl im-
plies satisfaction of g2. The assistance relationship identifies those goals which
represent alternative approaches to generating a particular solution. Thus, ¢,
assists g, if Yw,w € S(g1) = Jy s.t. y € Cy(w) Ay € S(g2).

competition: Two goals, gl and g2, are competing if there is no possible hypothesis
that will satisfy both goals. By checking if two goals are competing, the system
can determine if the knowledge sources they have triggered will generate distinct
results. Goals ¢g; and g, are competing if YwVy,w € S(g1) ANy € S(g2) =
—~(3g,3W3IY st. {W, Y} C S(gs),{WV,Y} can be simultaneously acceptable
solutions and w € C,(IW) Ay € C,(Y)).

cooperation: Two goals are completely cooperating if it is possible for the goals
to produce information that may be incorporated into a single result at some
point in the future. Goals g; and g, are cooperating if VwVy,w € S(g:) Ay €
S(g2) = g3z s.t. = € S(gs) A {w,y} C C,(z).

independence: Two goals are independent if they are not competing and if it is
not possible for them to be incorporated into a single solution at some point in
the future. Goals g, and g, are independent if they are not competing and if
VwVy,w € S(g1) Ay € S(g2) = ~(3g53z, s.t. = € S(gs) A {w,y} C C,(z)).

subsumption-inhibition: We have added a new type of goal, called an inhibiting-
goal, to identify redundant work that can be eliminated. Goal gl inhibits a
second goal, g2, if gl is an inhibiting goal and gl subsumes g2.

assistance-inhibition: Goal gl partially inhibits goal g2 if gl is an inhibiting-goal
and gl assists g2. The assistance-inhibition relation limits work to those areas
of g2 not encompassed by gl.

Additional relationships not discussed here include precise data-directed goal, ap-
prozimate data-directed goal, approzimate subgoal, subsumed subgoal, proper subgoal,
partially cooperating, asymmetric cooperating and overlapping goals[11].



(a) Sample Grammar: (b) Assistance:

S — NP aux VP g1 : form an NP using {w, ..., w;}

NP — noun | det noun g2 : form a PP using {“to”, w;, ..., w;}
VP — verb | verb PP | verb NP Every VP contains an NP, so g, assists g;.
PP — preposition NP But an NP does not have to be used in a

VP, so g; is not subsumed by g».

(c) Competition: (d) Subsumption:
g1 : form a PP using {“by”, wi, ..., w;} g1 : form a PP using {w;, ..., w;}
g2 : form a PP using {“to”, wi, ..., w;} g2 : form a VP using {wp, ..., w;}
g1 and g, are competing since there is no g2 subsumes g; since any PP satisfying
goal with a solution  where z includes g1 will be included in a VP satisfying g2

solutions to g; and g as components.

(e) Cooperation: (f) Independence:
g1 : form an AUX using {ws, ..., w;} gy : form an S using {wi, ..., w;}
gz : form a VP using {wg, ..., wi} g2 : form an S using {Win, ..., Wn}
Goal, “gy : form an S”, has solution X where g1 and g; are not competing and their
solutions to g, and g, are components of individual solutions can not be combined
X, so gy and g, are cooperating. to satisfy another goal.

Figure 2: Goal Relationship Diagrams, Example 1

A simple grammar and example goal relationships for a natural language parsing
system that works asynchronously and opportunistically from any point in the input
are shown in figure 2. Preprocessed signal data input is represented as {wy, w3, ..., wn)-

Figure 3 shows similar goal relationships for a distributed vehicle monitoring sys-
tem that functions in a spatial domain where a goal can be represented as a two di-
mensional parallelogram, [((zu, yu), (Zus Yut)) (Tirs Yir ), (Turs Yur))]. A potential so-
lution of a goal is a consecutive sequence of points tes o) (R iaemy i) L@ stin. ~ea}))
where z, and z. lie on the left and right sides, respectively, and all points lie within
the parallelogram.

4 Experiments in Processing Goal Relationships

The following two examples demonstrate the usefulness of goal relationships. The
first helps prevent redundant processing through the use of inhibiting goals, and the

second enables a knowledge source to be rated more accurately based on its local
context.

4.1 Inhibiting Goals

A new goal type, an inhibiting-goal, has been added to control redundant processing.
Without inhibiting goals, the only way to minimize redundant activity was to decrease
the ratings of the goal and subgoals that led to a strongly believed result. This method
prevented additional work only on the original solution path used to derive the high-
level result. It did not limit activity on any of the alternative paths that might lead
to the same result. In order to effectively control redundant processing, a separate
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Figure 3: Goal Relationship Diagrams, Example 2

mechanism was needed to eliminate derivation of any intermediate result that would
eventually produce the high-level result. Thus, when a satisfactory, high-level result
is produced, this new mechanism allows the system to work only on data it determines
to be independent, competing, or cooperating in relation to the high-level result.

An inhibiting-goal and its associated inhibiting subgoals are generated when the
system determines that sufficient work has been done on refining a high-level re-
sult. All KSs are then inhibited from producing results that are subsumed by the
inhibiting-goal or inhibiting-subgoals. The specification of the inhibiting-goal is taken
from the characteristics of the high-level result. By specifying a tolerance around the
inhibiting-goal, its characteristics can be generalized to extend the range of inhi-
bition. This can eliminate solutions that are similar, though not identical. This
is appropriate in environments where answers that have characteristics close to the

correct answer are acceptable. The algorithm is:

FOR each newly created hypothesis, h
IF (h.level > *inhibiting-goal-creation-level*) AND
(h.rating > *inhibiting-goal-creation-threshold*)
THEN
Create inhibiting-goal and associated inhibiting-subgoals
For each stimulating-goal, g, subsumed by the inhibiting-goal
Terminate efforts to satisfy g

For each stimulating-goal assisting the inhibiting-goal
Restrict processing in areas encompassed by the inhibiting-goal

4.2 Local Context

Along with inhibiting activity based on high-level results, there is also a need to
inhibit activity based on a more local context. For example, if any of the goals that
triggered a KS is satisfied before the KS runs, and if the KS can not improve on
the results that satisfied the goal, the KS should have its rating decreased. Thus,
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which KS satisfies a goal is an important issue. 1f the scheduler gave priority to
the KSI with the most comprehensive triggering goal, its results might satisfy other
goals and eliminate the need to execute their triggered KSI's. The following situation
demonstrates this point.

Consider the pending activities K.SI; and KSI,, generated from work on two
different derivation paths. If executed, KSI, would produce result R, which would
subsume R,, the result of executing K SI,. Thus, executing K SI; first would make
K SI,’s results redundant, so the scheduler should give K SI; priority. However, from
a local, data-directed perspective, K SI, might be given higher priority, even though
K SI, is the more promising of the two. This can occur if the scheduler incorporates
an average of input data credibility in its KSI rating function, and if K SI, uses lower
rated data in addition to highly rated data used by K SI,. For example, KSI;, may
generate R, by extending highly credible data into areas of weak data, and KSI;
may use only the highly credible data to produce the highest rated component of R;.

Our earlier approach to rating KSIs tried to balance the quality of the predicted
result with its scope. However, we found that the right balance seemed to be situation
dependent. Too much priority to scope had the undesirable consequence of making
the search too depth-first, while too much priority to quality led to redundant activity
as illustrated in the above example. Instead, we found that, to choose among the
pending KSIs, we need to explicitly take into account the relationships among their
predicted outputs.

Using the goal relationships specified in the previous section, the system can form
a local understanding of why a KSI is scheduled to be invoked and may instead invoke
a different KSI which produces the same results more efliciently. In general, before
executing a KSI, the Local Context mechanism examines the KSI’s triggering goals
and searches for a more comprehensive KSI which would also satisfy these goals. If
this more comprehensive KSI produces an actual result that is as good in the sub-
suming area as that expected from the less comprehensive KSI, the subsumed results
are removed from the output set of the less comprehensive KSI. This is implemented
as a combination of the following two mechanisms:

FOR every goal, g, in a KSI’s triggering-goal hst
For each hypothesis, h, satisfying ¢
IF h subsumes any element of the KSI’s predicted outputs
AND the predicted output can not improve h in any way THEN
Remove the subsumed item from the KSI’s set of predicted outputs
Recalculate the KSI’s rating

Prior to invoking the highest rated KSI
IF the KSI's assisting goal list is non-nil THEN

Invoke the KSI triggered by the most comprehensive assisting-goal
ELSE

Invoke the original KSI

=3



Table 1: Experiment Summary.

Exp Env Mech? KS ex Hyps Goals

El 1 no 184 246 488
E2 1 yes 64 157 443
E3 2 no 207 335 661
E4 2 yes 130 297 712
E5 3 no 806 938 1894
E6 3 yes 437 728 1714
Abbreviations
Exp: Experiment
Env: The problem solving environment;

1) single vehicle track, no noise
2) single vehicle track, random noise
3) crossing vehicle tracks, random noise
Mech?: Whether the Inhibiting-goal and Local Context
mechanisms are used.
KS ex: The number of knowledge source executions required
to find the solution(s)
Hyps: Number or hyps generated during problem solving.
Goals:  Number of goals generated during problem solving.

5 Experimental Results

The goal relationship algorithms were implemented in the Distributed Vehicle Mon-
itoring Testbed (DVMT). The DVMT simulates a network of vehicle monitoring
nodes, where each node applies simplified signal processing knowledge to acousti-
cally sensed data in an attempt to identify, locate and track patterns of vehicles
moving through a two-dimensional space. A node is responsible for a specific area
and attempts to recognize and eliminate errorful sensor data as it integrates the
correct data into an answer map. Each node has a blackboard architecture with
knowledge sources and blackboard levels of abstraction apprepriate for vehicle mon-
itoring. Knowledge sources perform the basic problem solving tasks of extending
and refining hypotheses (partial solutions). As described earlier, data-directed and
goal-directed goals are used to control problem solving activities.

Experimental results are summarized in Table 1. Three environments were used
for testing; a simple environment with a single vehicle track and no sensor noise, an
environment with the same vehicle track but with random noise added, and a com-
plex environment with two crossing vehicle tracks and a significant amount of noise.
Features used for comparison were the number of knowledge source executions re-
quired to produce the solution(s), the number of hypotheses created, and the number
of goals created. The system performed more efficiently with the new mechanisms.
For the environment with a single track, 36% fewer hypotheses and 9% fewer goals



were produced and the system required 65% fewer KS executions to =~ :te the
answer. In the second environment, 11% fewer hypotheses and 8% more zoals were
produced and the solution was found with 37% fewer KS executions. Finally, in the
complex environment, 22% fewer hypotheses and 10% fewer goals were produced and
the solutions were found with 46% fewer KS executions.

In each of the environments, the new mechanisms were effective in preventing
redundant processing in areas where strongly believed, high-level results were found.
This enabled the system to allocate resources for work in noisy areas and areas where
the sensed signals were weak. Although the new mechanisms caused the system to
generate additional goals, most noticeably in environment 2, the resulting improve-
ment in focusing capabilities resulted in a considerable reduction in the number of
knowledge sources executed. Finally, the cost of processing goal relationships was
significantly less than the cost of processing KSs. The savings were sufficient to
result in dramatic decreases in execution time required when the system used goal
relationship mechanisms.

6 Conclusion

In this paper, we have presented a taxonomy of goal relationships including inhibiting-
goals. In addition, we have shown that mechanisms for accurately controlling the
flexibility provided by the multi-level, cooperative knowledge source model of problem
solving can be built as natural extensions to the integrated data-directed and goal-
directed architecture.

Goal relationships provide needed information for making intelligent control deci-
sions, and they are a useful tool for representing the current state of problem solving
in a complex search space. Their use is applicable to tasks in which combined data-
directed and goal-directed control is appropriate. In order to exploit goal relationship
mechanisms, it is necessary that the quality and characteristics of a KSI's output be
roughly predictable, and that data-directed goals be constructed so as to contain all
the possible outputs that a KS can produce based on the stimulating data. Addi-
tionally, the computation of goal relationships, data-directed goals and KS output
set approximations must be inexpensive compared to the cost of executing a KS.
Finally, it is also important that a data-directed goal’s solution set not include a
large number of potential solutions that can’t be generated by a KS working on the
triggering data. Otherwise, many goal relationships will be overlooked.

Our future research plans include incorporating these concepts into mechanisms
for real time control and investigating the use of cooperating, independent, and com-
peting goal relationships for use in complex focusing heuristics and in problem solving
termination. We are also examining the potential benefits of adding additional goal
attributes indicating expected amount of resources needed to satisfy a goal, amount
of work already invested in satisfying a goal, expected number of solutions to a goal,
and the likelihood of satisfying a goal. Finally, we intend to expand the notion of



cooperation and attempt to reproduce the results of Durfee and Lesser [2] through
the use of goal relationships.
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