A HIGH-LEVEL SIMULATION TESTBED

COOPERATIVE DISTRIBUTED PROBLEM SOLVING

Victor Lesser, Daniel Corkill, Jasmina Pavlin, Larry Lefkowitz,
Eva Hudlicka, Richard Brooks, and Scott Reed

Department of Computer

Information Science

University of Massachusetts
Amherst, Massachusetts, 1003

ABSTRACT

The testbed provides a research tool for
empirically evaluating alternative designs for
cooperative distributed problem solving systems.
The testbed simulates a network of nodes, each of
which is an architecturally-complete Hearsay-II-
like system, extended to include goal-directed
control. The nodes attempt to identify, locate,
and track patterns of vehicles moving in a two-
dimensional space.

Incorporated into the testbed are capabilities
for varying the accuracy of individual knowledge
sources. This is accomplished through the use of
an oracle which <can compare the developing
interpretations with the interpretation that would
be produced if the system had perfect knowledge.
These capabilities permit the study of how
different control and communication policies
perform under varying distributions of uncertainty
and error in the intermediate states of processing.
Additionally, both vehicle and sensor
characteristics can be varied, permitting control
of the spatial distribution of ambiguity and error
in the task input data. Node configurations and
communication channel characteristics can also be
independently varied in this simulated system.

I. INTRODUCTION

We have been exploring a new paradigm for
distributed problem solving systems in which the
distributed system is able to function effectively
even though processing nodes have inconsistent and
incomplete views of the data bases necessary for
their computations. This paradigm is appropriate
for distributed applications in which the data
necessary to achieve a solution cannot be
partitioned in such a way that a node can complete
a subtask without seeing the intermediate state of
precessing at other nrodes.

An example of this type of application is
distributed vehicle monitoring. Vehicle monitoring

This research was sponsored by the Natiomal
Science Foundation under Grant MCS-8006327 and
by the Defense Advanced Research Projects Agency
(DOD), monitored by the Office of Naval Research
under Contract NRO49-0U41.

CH1802-8/82/0000/0341$00.75 © 1982 IEEE

is the task of generating a dynamic, area-wide map
of vehicles moving through the monitored area. 1In
distributed vehicle monitoring, processing nodes
with their associated acoustic sensors (of limited
range and accuracy) are geographically distributed
over the area to be monitored [LACO78, SMIT80].
Each processsing node can communicate with other
nearby nodes over a packet radio communication
network [KAHN78]. Because acoustic sensors
characteristically produce a significant amount of
error, purely localized processing of sensory data
would result in "identification" of non-existent
vehicles, missed detection of actual vehicles, and
incorrect location and identification of actual
vehicles. In this application, the amount of
communication required to redistribute the raw
sensory data necessary for correct localized
processing would be sigrificant.

An alternative approach for resolving these
errors is for processing nodes to interact in a
highly cooperative way, exchanging tentative and
possibly incorrect partial results with one
another. For example, each node's tentative
vehicle identifications can be used to indicate to
other nodes the areas in which vehicles are more
likely to be found and the details (vehicle type,
rough location, speed, etc.) of probable vehicles.
In addition, consistencies between these tentative
identifications serve to reinforce confidence in
each node's identifications. Such cooperation is
not only appropriate for vehicle identification,
but also potentially useful in other stages of
processing (identification of raw signals, groups
of harmonically related. signals, patterns of
vehicles, etc.).

In order to perform this cooperative style of
distributed processing, each nocde must:

o have goals in common with other nodes;

o be able to work asynchronously with other
nodes, attempting to do the best it can
with available dataj;

o make its own control decisions based on its
view of the state of network problem
solving.

This leads to a view of the distributed system as a
society of cooperating, semi-autonomous nodes. We

call this style of distributed processing
functionally accurate, cooperative (FA/C) [LESS81a,
LESS80a].

In order to evaluate this new approach, we
have designed a parameterized simulation testbed.
This testbed permits the evaluation of different
control/communication strategies under different
distributions of problem solving expertise in the
system and a wide rage of task characteristics.
The testbed simulates a model of a distributed,
kncwledge-based, problem solving architecture
applied to an abstracted version of the distributed
vehicle menitoring task. We anticipate, the
parameterized task and architecture together will
provide a very powerful tool for investigating the
utility and limitations of the FA/C approach to the
design of distributed problem solving systems.

We next describe the issues we wish to explore
using the testbed and then present the simulated
vehicle monitoring task, followed by a detailed
discussion of the simulated vehicle monitoring
system. Later sections describe how we can
simulate and evaluate the performance of various
system components, overview tools that help an
experimenter define experiments and analyze their

output, review the current status of the testbed
implementation, and outline future research
directions.

II. IMPORTANT ISSUES FOR FA/C PROBLEM SOLVING

Strategies for high-level cooperation and
control are vitally important in an FA/C system
because of the potential for resource overloads,
imbalances and lack of coherence when there is no
glebal view or coatrol of the problem solving
system. For example, such problems arose in a
distributed version of the Hearsay-II speech
understanding system (a rudimentary FA/C system) in
which nodes interacted through the exchange of a
small number of hypotheses and each node determined
locally what work it should perform. In

.experiments with this system, we observed that this
data-directed and self-directed control regime can
potentially lead to redundant and unnecessary
processing [LESS80al. Situations occurred when a
node had obtained a good solution in its area of
interest and, having no way to redirect its
attention to new problems, simply produced
alternative but worse solutions. The problem of
enlarging or changing a node's area of interest is
nontrivial since it may become necessary later to
go back and reevaluate old activities using new
information. Another problem occurred when a node
had bad data and could not pessibly find a good
solution without help from other nodes. Similarly,
when nodes produce solutions at different rates,
nodes with bad solutions will distract other nodes
by communicating their results. Thus, it appears
that a data-directed and self-directed form of
control may not always provide sufficient global
coherence among the nodes. We believe that in
situations of dynamically changing task
characteristics and changing processing capacities,
additional control mechanisms will be necessary for
maintaining global coherence.

342

There are two approaches for obtaining
increased glcbal coherence. The - first- isto
provide each node with a better view of the state
of problem solving in the network so that its data-
directed and self-directed control decisions are
more informed and consistent. This. ‘can be
accomplished by having nodes exchange detailed
meta—information about the state of their local
problem solving and what they have learned about
the states of cther nodes. Another appreach, which
is compatible with the first, is to integrate goal-
directed and externally-directed forms of control
into network problem solving [SMIT81]. These types
of control can be used to institute more precise
and non-local control over the activities of
individual neodes.

We believe that both approaches for obtaining
improved global coherence are necessary for
effective problem solving in some FA/C distributed
systems. As will be discussed later, a node must
make more complex local control decisions in order
to support both approaches; it should be capable of
planning sequences of activities and adapting its
plan based on self-awareness of 1its previous
activities, its problem solving role in the
network, and the status and role of other nodes in
the network. It is through interaction of network
communication and control strategies with this more
complex local control that improved global
coherence can be achieved. This interaction will
provide the flexibility to handle control and data
uncertainty while still maintaining a sufficient
level of glcbal coherence to guarantee that
acceptable solutions will be generated within given
resource constraints.

Our initial approach to expleoring a more
sophisticated control regime has been to extend the
distributed Hearsay-II architecture by adding a
planning module to each node and permit
communication of goals [CORK81, CORK82al; this
planner can adapt local node activity to respond to
both externaly-directed requests by other nodes
(goals) and the self-directed processing needs of
the node based on the data it is receiving and the
results it has so far produced. Furthermore, the
planner can bias scheduling of these activities
based on the problem solving relationships of the
node with other nodes in the system. In such an
approach, the priority given to goals received from
other nodes versus local data-directed activity
determines the degree of externally-directed versus
self-directed control present in the system. Qur
approach is to permit both types of coordination
concurrently, and to develop adaptive mechanisms
for the system that dynamically determine an
appropriate balance.

One of the ways that this sophisticated and
self-aware local node control can be exploited is
to split the network-wide control problem into two
concurrent activities [CORK80, CORK82bl:

1. construction and maintenance of a network-
wide organizatiornal structure;

2. continuous 1local elaboration of

this.

o

structure into precise activites using the
local control capabilities of each node.

specifies the
and control
only a very

organizational structure

communication,
among the nodes in
general way. Included in the organizational
structure are control decisions that are not
quickly outdated and that pertain to a large number
of nodes. The organizational structure represents
general "ballpark" control decisions (i.e.,
strategic plan describing and delimiting general
responsibilities) which are dynamically tailored by
the local node control.

The
information,
relationships

The existence of an organizational structure
provides a control framework which reduces the
amount of control uncertainty present in a local
node (due to the lack of incomplete or errorful
local control information) and 1increases the
likelihood that the nodes will be coherent in their
behavior. The organizational structuring approach
to limiting control uncertainty still preserves a
certain level of control flexibility for a node to

adapt its local control to changing task and
environment conditions. As the nature of the
problem solving environment changes, the
distributed system may need ‘to change its
organizational structure to maintain its

effectiveness (this is called organizational self-
design) . In order to effect such a change, the
distributed system must:

o detect the decreased effectiveness of its
present organizational structure;
organizational

o propose alternative

structures;

o evaluate the cost of continuing with its

current organizational structure versus
reorganizing itself into a more appropriate
structure; ¢
o carry out the reorganization 5 ¢
appropriate.
One of the main uses of the testbed is as a

realistic enviromnment within which to implement and
empirically evaluate such approaches to network
coordirnation.

A HIGH-LEVEL TESTBED FOR INTERPRETATION
SYSTEMS

III.

high-level simulation testbed we have
developed is based on an abstracted distributed
vehicle monitoring task that, as well as being
realistic, will allow us to explore empirically a
much larger part of the design space than was
possible ‘with the distributed speech understanding

The

system experiments. Figure 1 shows a typical
layout of a ‘task environment, with sensors,
processing nodes, and vehicles. This task is a
representative example of distributed
interpretation problems, which we feel are

appropriate for an FA/C approach.

343

S ssntnaile o ~cceras sensor to node communication
\ 7 nrocessor —_— node to nede conmunication
C——t) veiele e vehicle track

Figure 1: Vehicle Monitoring Task

The vehicle monitoring task has been chosen
for several reasons. It is a natural task for a
distributed approach, since sensors are in
different geographical locations. Also, the task
can be easily varied in terms of signal complexity,
temporal and spatial constraints on possible
interpretations, and configurations of sensors and
nodes in the monitoring system. This variability
permits us to consider the effects on system
behavior of different types, spatial distributions,
and degrees of uncertainty in the task. The number
and size of the vehicle patterns can also be varied
in order to modify the strength of the spatial
interdependence of events. Additionally, the type
of processing required to accomplish the task leads
to a decomposition into disjoint levels of
abstraction, with independent processing possible
at each level.

In addition to abstracting the task, we have

also made simplifying assumptions about the
knowledge processing required to solve the problem.
We have chosen these abstractions and
simplifications because the actual task is highly
complex and thus requires much effort to
successfully engineer the required knowledge, and
excessive processing resources to simulate.

v.rameterization of the actual task is also much
more difficult. We have at the same time chosen
not to simulate a highly abstracted version of the

task. A more abstracted version of the task, while
flexible and efficient to simulate, would not
capture all -the knowledge- and task-related

behavior we want to study. The level of detail we
have chosen permits the system to produce actual
interpretations, and thus we can be more sure from

its results of the nature and interactions of

knowledge needed to solve an actual problem.

The next section of the paper describes a node
in the system. This 1includes the Dbasic
architecture of a nocde, the blackboard structure of
a node, the details of knowledge source and goal
processing in a ncde and a description of our
method of parameterizing and measuring problem
solving expertise in the system.

THE PARAMETERIZED DISTRIBUTED INTERPRETATION
SYSTEM

IV.

The testbed
solving nodes applied to the
task. Each node is structured acceording to a
generalized and extended Hearsay-II architecture
with task processing medules called knowledge
sources {KS8) global data structures for
intermodule interaction and control called
blackboards, a scheduler, and a planner (Figure 2).
Interprocessor communication can be naturally
included in the architecture by adding KSs on each

simulates a network of problem
vehicle monitoring

blackboard level to send and receive messages
(hypotheses and goals).
Resolver $
Consistency
rF,
‘ 5 3lackboard
Gowie), |
N
N
2 SO N L
Organization »
foals
: Coal Data I N —
Planncy “} Blackboard | Bl.ackboard i R
" !
1| Hﬁcsolvcr
Goal + |

KS Table

BB Monitor

tveac = |
Goal

Table

T

Architecture with resolver
and consistency blackboard.

Figure 2:

Our simulatiocn model permits arbitrary node-
node, node-sensor connectivity and arbitrary
distributions of task processing capability across
the nodes in the system. This architecture also
permits exploration of a wide range of different

processing decompositions (flat, hierarchical,
matrix, etc.) based on partially configured nodes
(those without all necessary KSs and with limited
areas of spatial/temporal interest) without
modifying the KS modules and local control
structures.

344

4.1 Blackboard Partitions in a Node

There are two parallel blackboard structures
in each node of our system: data, and goal.

The data blackboard corresponds to the
blackboard of an actual monitoring system. It
contains hypotheses each representing a plausible
interpretation for a portion of the node's data;
the likelihood of this interpretation is indicate&
by the belief value cof the hypothesis. The data
blackboard is the only blackboard from which KSs
input and is the site of all KS stimulus events,

The goal blackboard holds goals, each
representing a request to create a set of
hypotheses with specific attributes on the data

blackboard in the (corresponding) area covered by
the goal. For example, a simple goal would be a
request for the creation of a vehicle track
hypothesis abcve a given belief in a specified area
of the data blackbeard. The goal blackboard is
used by the scheduling and planning mechanisms to
decide which KSs should be instantiated.

The blackboards of a node can be thought of as
having four-dimensions, because hypotheses can be
addressed by their level of abstraction, the two
spatial (x,y) coordinates of the hypothesized
event, and the time of the event. Information
classes in the system, in order of 1increasing
abstraction, are sigral, group (harmonic set),
vehicle and spatial patterns of vehicles. For each
information class, there are two blackboard levels,
one representing hypotheses about the location of a
single event, and the other representing a track
made from events which are consecutive in time and
space (see Figure 3). Location blackboard levels
are: signal location (SL), group location (GL),
vehicle location (VL) and pattern location (PL).
Track blackboard levels are: signal track (sST),
group track (GT), vehicle track (VT) and pattern
track (PT). Tracks can be formed from various
combinations of locations and tracks of the same
information class, or from the tracks of the lower
abstraction information class. Locations can be
formed from the locations of the lower abstraction
information class.

4.2 Details of KS Processing in a Node

The patterns of KS processing arise from the
interaction of three distinct types of KSs:
synthesizers, mergers, and extenders.

A synthesizer KS creates higher-level
hypotheses by abstracting the information contained
in a group of lower level hypotheses. There are
three types of synthesizer KSs in our system which
work from location to location, location to track,
and track to track levels on the data blackboard.
An example of the first type, S:SL:GL KS, is
triggered by the creation or modification of 2

signal-location (SL) hypothesis, and generates
group-location (GL) hypotheses, combining the
signals belonging to the same harmonic set. “An
example of the second type, S:SL:ST KS, 1is

triggered by the creation or modification of 2
signal-location hypothesis, and generates signal-

[PaitERy

M:PT:PT
] TRACK ,_gi
| “.,
2 ¢ @ o ©
g ?
i | S:PL:PT
/ [E:ppipT /\ PR
H ‘/ LOCATION
% 9
/ s:vr:pT ¢
A /
VEHTCLE] 7
TRACK ’/i M:VT:VT S:VL:PL,
@ o 5 & o
A j
/ Jsivave,/
| E:¥T: VT \ VEHTCLE
! : /4 LOCATION
/ ° el Ou:d @
/ s:cr:vr)
i
GrouP /} M:CT:CT S:GL:VL/
TRACK / /(3" ;
See € 9 0 ¢« & e ¢ /
T R 4 /
/ smum/
E:CT:CT ! 71 e
[| LOCATLON
o Qe n GG ?
[S:ST:GT i
STGNAL 0t MEeTIST s
TRACK /4 S, :GL
des _— A & T
\/)’ /
1 / /S:sL:st !
i E:ST:ST ; fill SLGNAL
4 [LOCATION
o el Dol
Figure 3; Data blackboard showing

levels and KSs.

track (ST) hypotheses combining consecutive signal-
location hypotheses of similar frequencies. An
example of the third type, S:ST:GT KS,.is triggered
by the creation or modification of a signal-track
hypothesis, and generates group-track (GT)
hypotheses combining the tracks of signals in the
same harmonic set.

is different from synthesis KSs
because it does not produce a hypothesis at a
higher level of abstraction than its input but
rather at the same level. There is a merge KS for
each track level on the blackboard. The criteria
for merging two tracks of the same event class is
that the tracks overlap in time and location. The
resulting merged track is supported by the two
overlapping tracks. This type of KS is necessary
for integrating track hypotheses received from
other nodes into the blackboard of the receiving
" node. This KS is triggered by the creation or
modification of a track hypothesis.

A merge KS

An extender KS creates track hypotheses from
an existing track hypothesis and location
hypotheses on the same abstraction level by
extending the track forward or backward in time.
These KSs are triggered by the creation or
modification of a track hypothesis. There is an
extender KS for each level of abstraction.

4.3 Details of Goal Processing in a Node

In order to permit more sophisticated forms of
cooperation among nodes in the system, we have
integrated goal-directed control into the data-

345

‘goal

directed control structure of the basic Hearsay-II
architecture. This has been accomplished through
the addition of a planning module and a goal
blackboard. This integrated control framework
permits nodes to effect the processing of other
nodes not only through the transmission of
hypotheses but also through transmission of goals
which are requests for the creation of hypotheses
with certain attributes.

The integration of data-directed and goal-
directed control into a single framework is based
on the following observation:

The stimulation of a KS in the data-
directed Hearsay-II architecture not only
indicates that it may be possible to
execute the KS, but that it may be
desirable to do so in order to achieve
the goal implicit in the output generated
by the KS.

In order to make these imglicit goals explicit, we
split the event -> KSs mapping into two steps:
event -> goals and goals -> KSs. The blackbeoard
monitor watches for the occurrence of a data
blackboard event, but instead of placing KS
instantiations on the scheduling queue (if the KS
preconditions are satisfied), it uses the event ->
goals mapping to determine the appropriate goals to
generate from the event and inserts them onto the
blackbeard. These goals represent the
implicit goals contained in the event -> KSs
mapping used by the original blackboard monitor.

A new control component, the planner, is also
added to the architecture. The planner responds to
the insertion of goals on the goal blackboard by
developing plans for their achievement. The goal
-> KSs mapping 1is wused by the planner to
instantiate one or more KSs which can potentially
satisfy the goals. The scheduler then uses the
relationships between the KS instantiations and the
goals on the goal blackboard as a basis for its
scheduling decisions.

also has the responsibility of
received goals into the
node's current goal structure. This integration is
accomplished by 1linking together external and
internal goals through goal-subgoal relationships.
Local node activity can ‘then be biased so as to

The planner
integrating externally

satisfy external goals by rating higher those
internal goals that help achieve the external
goals. The higher the rating attached to these
internal goals, the more explicit the control.
relationship among nodes can be made.

The planner also bases 1its goal rating

decisions on 1) its view of the current state of
processing in the node, 2) the organizational roles
it is currently adhering to, and 3) the importance
attached to the goal by the sender. These
organizational roles are .stored on anm additional
blackboard called the organizational blackboard.
In our current implementation, the following
factors are used to define the organizatioral roles
of a node:

o the organizational importance of having the
node generate hypothesés at particular
levels, times, areas, and event-classes;

o the organizational importance of having the
node send to and accept hypotheses and
goals at particular levels, times, areas,
and event-classes from particular nodes.

The more importance the planner gives to
organizational roles the more globally coordinated

the system can be made. A more comprehensive
description of goal processing and the role of
organizational design in FA/C systems is given in
CORK80, CORK81, CORK82a, and CORK82b.

We have currently implemented a simple version
of the goal send and goal receive KSs based on the
following algorithm. A goal becomes a candidate
for transmission if its characteristics match those
specified by the node's organizational role. The
priority of sending this candidate goal is then
determined by the following factors:

o the local rating associated with the goal;

o the importance that is attached to sending
this type of goal as specified by the
node's organizational role;

o whether the goal can be satisfied locally
(i.e., there are KSs that could be run
which can potentially satisfy this goal);

o whether the goal is linked to any subgoals
which could be potentially satisfied as a
result of further node processing.

Also associated with a node's organizational role

is a minimal threshold for transmission; if the
goal is below this threshold, it is not
transmitted. Otherwise, the goal 1is placed on a
priority rated queue and is transmitted when all
more highly rated goals have been transmitted. A
similar scheme is used to rate hypotheses for
transmission, and hypotheses that are candidates

for transmission are placed on the same priority
rated queue as is used for goals. This use of a

single queue for transmission -permits the easy
specification of mixed initiative transmission
policies.

In the case of a receiving node, if an

externally received goal is satisfied as a result
of local processing, the node can respond in one of

the following ways based on the external goal's
attributes:
o it can do nothing;

o it can transmit an acknowledgement to the

sender of the goal that the goal 1is
satisfied;

1. Global coordination is not a positive
characteristic if the organizational structure
is ipappropriate to the problem solving
situation.

346

o it can transmit the satisfying hypotheses
and possibly the acknowledgement ¢¢
satisfaction to the sender of the goal.

As nddit:snal options, all the nodes that have seen
tuis goal can be notified, or just a selected set
of nodes (e.g., the original node that generated
the goal) .

In the situation in which a node cannot
satisfy an externally received goal the node may
use the model of other nodes processing contained
in its organizaticnal roles, to pass on this goal
to other nodes 1in the network for possible
satisfaction. In this way a store-and-forward goal
processing network can be built-up. If appropriate
organizational roles are set-up, this network can
be made to simulate the hierarchical flow of goals
in the contract-net approach. However, currently
there is no bidding protocol, like that in the
contract-net apprecach [SMIT801, for dynamically
choosing which nodes should receive a goal. As we
increase the sophistication of the send/receive
goal KSs and transmit organizational roles among
nodes, we hope to be able to simulate more
sophisticated ccordination and communication
policies including the use of negotiation.

V. MODIFYING THE POWER OF KNOWLEDGE SOURCES

An important aspect of our empirical
evaluation of alternative FA/C system organizations

is the measurement of how their effectiveness
changes as the distribution of problem solving
expertise is varied. For example, we conjecture

that in a system with very reliable KSs and with
input data that has low error, organizing the
system hierarchically and using an explicit control
and communication strategy 1is more effective.
Likewise, it is conjectured that in systems with
less reliable KSs and with more errorful input
data, more cooperative and implicit control/
communication strategies are desirable. We would
also like to examine the effects in per formance
caused by the trade-off between reliability of KSs
versus processing time; 1i.e., fast but less
reliable KSs versus highly reliable but slower KSs.

We can simulate KSs of any desired power in
the testbed through the use of an oracle which
knows how to judge the closeness of a hypothesized
interpretation te a consistent interpretation.
Each node in the system has access to a hidden data
structure called the consistency blackboard, which
is precomputed from the simulation input data.
This blackboard holds what the interpretation would
be at each information level if the system worked
with perfect knowledge. This blackboard is not
part of the basic problem solving architecture of a
node, but rather it is used by the testbed oracle
to regulate the power of KSs and the scheduler, and
to dynamically measure the problem solving
performance of the simulated system with respect to
the simulation data.

A KS is simulated in two stages: candidate
generator and resolver. " The candidate generator
stage produces plausible’ hypotheses for KS output

assigns initial belief values. It can be
implemented either by using a real KS whose
per formance needs to be upgraded or by constructing
simplified KS 1incorporating relatively simple
domain knowledge. In many cases, it is relatively
easy to design a KS which provides moderate
accuracy. Most of the effort in knowledge

engineering is spent in increasing this accuracy to
gain superior performance.
resolver,
to minimally alter the initial belief values of the
hypotheses output by the candidate generator
achieve,
power .
simulate the detection of more sophisticated forms
of 1local
candidate generator.
simulate,
version of a
candidate generator)
testbed,
knowledge) ,
performance
[LESS80b,
used to introduce a parameterized
the testbed.

The next stage, the
uses information provided by the oracle

to
a desired KS resolving
process, we can

on the average,
With this alteration

consistency than 1is provided by the
This technique allows us to
system, either an upgraded
KS (where the old KS is used as
or, as we have done in the
a totally new KS (with partially developed
in order to understand the system
implications of a proposed change
LESS81b]. A similar approach has been
scheduler into

in a real

VI. FACILITIES FOR EXPERIMENTATION

The testbed kernel is surrounded by a number

of other subsystems to facilitate experimentation
by making

it easy to vary the parameters of an

experiment and to analyze the results of an
experiment (Figure 4).

The Frontend subsystem is responsible for
initializing the testbed with a particular

configuration of nodes and sensors and a particular

\ : : <—*’ Environment Cenerator

node/sensar
configuration
color graphics 7

[¥ront-End —I

node
configuration

vehicle movements

siznal hypotheses

Mulci-Node Simulation

disk
or tare

Data BB Operators roll in

Goal BA Operators roll out
KSIs / schedulire
Measures

Kernel with Help System
cormands +

s
intormation

—T_'l—’l

: 4

—~_Y
L‘ﬁj
J
intecactive
execution

trace
files

summAary

Evenc n
statistics

Behavior
Descriptions 3

Menitor

JehLvtor L Outpuc
Abstractions—————z| Jisplay Routines I--—-rDr:J

color gr1lhl€w

Diagram of testbed
Structure and facilities

Figure 4:

347

scenario of patterns and vehicles moving in the
environment. This initialization process involves
reading an input file to set up local and global
data structures, creating the consistency
blackbeard, and placing at appropriate times the
raw signal data on the data Dblackboards of
appropriate nodes. Each configuration-scenario

combination is stored compactly in an input file.
This includes the information contained in the node
and sensor definitions as well as communication
(node-node and sensor-node) and environmental data.

By varying the grammar specification to the

Frontend, the number of legal patterns of
hypotheses can be varied. The most constrained
grammar would be one that only allowed the

particular scenario for the experiment in question
to be recognized. Thus, the nature and the scope
of consistency constraints used by KSs to resolve
errors can be altered. This abilify to modify the
grammar combined with the ability to vary the local
resolving power of KS provides a powerful tool for
varying the knowledge expertise in the simulated
system. The Frontend, in the generation of sensor
data, can introduce controlled error (noise) to
model imperfect sensing. Noise is added to the
location and signal class of each true and/or
consistent-—false signal according to the sensor
class and the distance of the signal from the
sensor. Frontend processing is alsc parametized so
that either these signals can be introduced into
the nodes all at once or at the time they are
sensed. The former provision allows exploration of
systems in which there are burst receptions of
sensor data.

in the analysis of the
a number of tools have
trace facilibty i a

In crder to help
results of an experiment,
been developed: a selective
summary statistics facility, and an interactive,
menu-driven debugging facility. In addition to
these three fairly common analysis tools, we feel
that there is need for tools that permit a more
dynamic and high-level view of the distributed and
asynchronious activity of the simulated nodes. An
event monitoring facility, which has not yet been
fully implemented, will permit a user to define and
gather statistics on such user-defined events as
the average time it takes for a node to receive a
message and incorporate the received information
into a message to be transmitted to another node.
A description of this facility is contained in
BATES81. Another facility which is currently
operaticnal in a limited form is a color-graphics
output facility. The current output display
provides dynamic visual representations of the
distribution of hypotheses in the x-y space of the
nodes in the network during a simulation.

VII. PRELIMINARY EXPERIMENTS

We are currently running a set of experiments
in the testbed on a simple scenario comparing the
performance of a centralized version, a laterally
organized, 4-node system with broadcast
communication among nodes at the vehicle track
level, and a hierarchical, S5-node system which is
similar to the 4-node system except that instead of

transmitting vehicle track hypotheses to the other
nodes, a fifth node without sensors 1is inserted
which receives all the communications and generates
the answer.

By varying the organizational roles of nodes
through parameters on their organizational
blackboard, a number of different communication/
control strategies can be evaluated for each of
these different architectures. The communication
strategies we have Dbeen examining in these
preliminary experiments are whether information
should be transmitted among nodes on a voluntary,
self-directed basis (a node transmits what it
thinks from its local perspective is an important
piece of information) or as a result of an external
request (a node transmits only information that is
requested by another node as a result of a goal
transmission) . We also have been exploring
strategies in which a node engages in both self-
directed and externally-directed communication. In
these mixed initiative strategies, the choice of
information to send is based on balancing the
importance attached to the information locally
(hypothesis belief), the importance of satisfying
the requests of the other node (organization
authority relationships among the nodes), and the
importance the node requesting the information
attaches to the request (priority attached to the
received geoal). These different communication
strategies are defined by setting in the
organizational blackboard of a node which types of
hypotheses and goals (blackboard level, interest
area, belief threshholds) should be sent and teo
whom, and how a node should evaluate hypotheses and
goals received from other nodes.

we have been explering
different control relationships among nodes. For
example, a node can use information (hypotheses)
received from another node only to makeup for
information not available from its local sensors,
or can also use received information (both
hypotheses and goals) to direct its local
processing. As with communication strategies,
mixed initiative control strategies can be set up
which balances self-directed control and externally
directed control by varying the importance and
credibility a node attaches to information received
for use in focusing its activities.

In a similar manner,

it

Table 1 shows the performance results of
different architectures and control/communication
strategies for a simple scenario containing one

vehicle track and a "ghost" track that parallels
it. The stopping criteria for these experiments is
the generation of the correct answer. These
results are very preliminary and are for only a
single scenario, but they do show the capabilities
of the testbed as an experimental tool. We plan to
use these capabilities to understand, through an
extensive set of test cases, the relationship among
organizational architectures, control/communication
strategies, and environmental scenarios.

348

VIIT. SUMMARY
]
We have described a high-level simulation
testbed for evaluating alternative cooperative

problem solving strategies applied to a flexibly
parameterized task domain. The task is monitoring
of moving vehicles being sensed by a set of
acoustic sensors with overlapping ranges. Both
vehicle and senscr characteristics are variable to
permit control of the spatial distribution of
ambiguity and error in the task input data. We
have developed a parameterized, distributed
interpretation system based on an extended
Hearsay-II architecture that includes mechanisms
for goal-directed control. Node configurations and
communication channel characteristics can be
independently varied in this simulated system. The
monitoring task knowledge sources and knowledge
source scheduler used in the nodes of the testbed
system have resclution capabilities which can be
varied independently. This permit: control of the
distribution of problem solving expertise across
all the nodes in the system at a detailed level.

The testbed provides a means for exploring the
importance and interrelationships of the following
factors in cooperative distributed problem solving:

o node-nocde and node-sensor configurations;

6 mixes of data- and goal-directed control in
the system;

o distributions of uncertainty and error in

the input data;

o distributions of problem solving capability
in the system;

o types of communication policies used;
o communication channel characteristics.

The testbed is used by specifying each of these
factors, independently, for each of a set of test
cases and comparing the results of testbed
simulation of each case. The multiple dimensions
of independent control and the detailed level of
simulation in the testbed provide what we feel is a
very useful vehicle for exploring high-level issues
in cooperative distributed problem solving.

ACKNOWLEDGEMENTS

We would like to acknowledge contributions to
the constructicn of the testbed by Ram Mukunda,
Peter Bates, Robert Markey, and Sheryl Franklin.

REFERENCES
BATES81 Peter C. Bates, Jack C. Wileden, and
Victor R. Lesser.
A language to support . debugging in
distributed systems.
Technical Report 81-7, Department of
Computer and Information Science,
University of Massachusetts, Amherst,

Massachusetts, 01003, February 1981.

CORK80

CORK81

CORK82a

CORK82b

ERMA80

FOX79

KAHNT78

Daniel D. Corkill.

An organizational approach to planning in
distributed problem solving systems.
COINS Technical Report 80-13, Department
of Computer and Information Science,
University of Massachusetts, Amherst,

Massachusetts, 01003, May 1980.

Daniel D. Corkill and Victor R. Lesser.
A goal-directed Hearsay-II architecture:

Unifying data-directed and
goal-directed control.
COINS Technical Report 81-15, Department

of Computer and Information Science,
University of Massachusetts, Amherst,
Massachusetts, 01003, June 1981.
Daniel D. Corkill, Victor R. Lesser, and
Eva Hudlicka.
Unifying data-directed and goal-directed

control: An example and experiments,.

To appear in Proceedings of the Second
National Conference on Artificial
Intelligence, August 1982.

Daniel D. Corkill.

A Framework for Organizational
Self-Design in Distributed Problem
Solving Networks.

PhD Thesis, Computer and Information
Science, University of Massachusetts,
Amherst, Massachusetts, September
1982.

Lee D. Erman, Frederick Hayes-Roth,
Victor R. Lesser, and D. Raj Reddy.

The Hearsay-IT speech understanding
system: Integrating knowledge to
resolve uncertainty.

Computing Surveys 12(2):213-253, June

1980.

Mark S. Fox.

Organization structuring:
complex software.

Technical report

Designing large

CMU-CS-79-155,

Department of Computer Science,
Carnegie-Mellon University,
Pittsburgh, Pennsylvania, December
1979.

R. E. Kahn, S. A. Gronemeyer,

J. Burchfiel, and R. C. Kunzelman.
Advances in packet radio technology.
Proceedings of the IEEE 66(11):1468-1496,

November 1978.

LACOT78

LESS80a

LESS80b

LESS81a

LESS81b

SMIT80

SMIT81

349

R. Lacoss and R. Walton.

Strawman design of a DSN to detect and
track low flying aircraft.

In Proceedings of the Distributed Sensor

Nets Workshop, pages 41-52, December
1978.

Victor R. Lesser and Lee D. Erman.

An experiment in distributed
interpretation.

IEEE Transactions on Computers

C-29(12):1144-1163, December 1980.

Victor R. Lesser, and
Scott Reed.

Quantifying and simulating the behavior

Jasmina Pavlin,

of knowledge-based interpretation
systems.

In Proceedings of the First Annual
National Conference on Artificial
Intelligence, pages 111-115, August
1980.

Victor R. Lesser and Daniel D. Corkill.
Functionally accurate, cooperative
distributed systems.

IEEE Transactions on Systems, Man, and
Cybernetics SMC-11(1):81-96, January
1981.

Victor Lesser, Daniel Corkill, Jasmina

Pavlin, Larry Lefkowitz, Eva Hudlicka,
Richard Brooks, and Scott Reed.

A high-level simulation ‘testbed for
cooperative distributed problem
solving.

Technical Report 81-16, Department of
Computer and Information Science,
University of Massachusetts, Amherst ,

Massachusetts, 01003, June 1981.

Reid G. Smith.

The contract net protocol: High-level
communication and control in a
distributed problem solver.

IEEE Transactions on Computers

C-29(12):1104-1113, December 1980.

Reid G. Smith and Randall Davis.
Frameworks for cooperation in distributed
problem solving.

JEEE Transactions on Systems, Man, and
Cybernetics SMC-11(1):61-70, January

1981.

SYSTEM COMMUNICATION: CONTROL: CYCLES TO HYPS GOALS

CONFIGURATION VOLUNTARY/ SELF/ CORRECT SENT SENT
EXTERNAL EXTERNAL ANSWER

1-node 61 - -

4-node v S 49 43 -

\ E 55 27 -

v S E 40 32 -

E E 50 17 -

5-node v S 36 20 -

v E S E 38 22 20

vV E E u9 36 30

V E S 34 18 16

TABLE 1: Experimental Results on a Simple Scenario

In the 4- and 5-ncde system configurations, one of the nodes
only senses part of the false ghost track. This node
quickly generates a high-level interpretation of moderate
belief for this false data and transmits it. 1In the
control regimes that emphasize externally-directed control,
this early transmission of a high-level false hypothesis
distracts the receiving nodes from working on their own
low-level data which contains a mixture of both correct and
false data. This delays the generation of the correct
interpretation.

These preliminary results show the need for a balance
between self-directed and externally-directed control.

350

