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ABSTRACT

The beginnings
quantifying the

of a methodology for
performance of knowledge-sources
(KSs) and schedulers in a knowledge-based
interpretation system are presented. As part of
this methodology, measures for the "reliability" of
an intermediate state of system processing and the
effectiveness of KSs and schedulers are developed.
Based on the measures, techniques for simulating
KSs and schedulers of arbitrary effectiveness are
described.

I INTRODUCTION

The development and performance-tuning of a
knowledge-based interpretation system 1like the
Hearsay-II speech understanding system [1] is still
an art. There currently does not exist sufficient
formal methodology for relating the performance
characteristics of such a system to the performance
characteristics of its components; 1.e.,
knowledge-sources (KSs) and schedulers*¥, For that
matter, there does not even exist an adequate
framework for quantifying the performance of the
system and its components in an uniform and
integrated way. Thus, when the initial operational
configuration, C1, of the Hearsay-I1 speech
understanding system had poor performance, there
existed no methodology for detailing in a
quantifiable way what types of performance
improvements in specific components would be needed
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L Fox [2] has made some efforts in this

direction, but we feel that his model of these
systems is too abstract to capture adequately
many of the important issues. (A detailed
discussion can be found in [4].)
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belief-value (which ranges from 0 to 1)

to improve significantly the overall system
performance. Therefore, the development of the
completely reorganized C2 configuration, which
turned out to have much superior performance, was
based on "seat of the pants" intuitions. These
intuitions were testable only when the new set of
KSs were integrated together into a working system.

In the following sections we present the
beginnings of a methodology for quantifying the
performance of KSs and schedulers. We then show

how this methodology can be used to simulate the
performance of an upgraded component in a working
system, so that more accurate estimates can be made
of the overall performance improvement that would

be realized if the component were actually
upgraded.

IT A MODEL FOR A HEARSAY-LIKE
KNOWLEDGE-BASED SYSTEM

We will take as the competence goal of an

interpretation system the construction of the most

credible complete interpretation of the sensory

data. The input hypotheses (preprocessed sensory

data) are assumed to be errorful and/or incomplete,
and are viewed as a collection of competitor sets.
A competitor set contains alternative hypotheses
describing  possible interpretations for
mutually-exclusive aspects*¥** of the sensory data.
Associated with each input hypothesis is a
indicating
the system's initial belief in the correctness of
the event the hypothesis represents. The initial
belief-values are generated by preprocessing the
sensory data. This view of input hypotheses is
similar to that taken in a relaxation process [6],
but subsequent processing in Hearsay-II-like
systems is different.

In our model for a knowledge-based system,
similar to the Hearsay-II model [1], a complete and
consistent interpretation is incrementally
constructed by aggregating lower-level hypotheses

%% The specific nature of these aspects depends

on the particular interpretation problem to be

solved. For example, in the speech
understanding task, each acoustic-phonetic
segment of the speech signal could be an
aspect of the sensory data; the associated
competitor sets contain hypotheres that

represent possible phonemes.



into more abstract and encompassing higher-level
hypotheses (partial interpretations). The
lower-level hypotheses are said to support the
higher-level hypotheses. This aggregation process,
accomplished by synthesis KSs, involves the
detection of 1local consistency (or inconsistency)
relationships among hypotheses*. 1In KS processing,
the belief-values of supporting hypotheses are not
changed as a result of detection of local
consistency, as would be the case in a relaxation
process. The construction of a higher-level
hypothesis and its associated belief-value is an
explicit encoding of the npature, and degree of
consistency found among its supporting hypotheses.
The hope 1is that this incremental aggregation
process resolves the uncertainty among competing
interpretations and, simultaneously, distinguishes
between correct and incorrect interpretations.

We have not discussed KSs as solely reducing
the uncertainty in the system, because uncertainty
is a measure of the distribution of belief-values
and does not reflect the accuracy of hypotheses.
We feel that KS processing causes changes in both
certainty and accuracy in a system's database and
we have developed a measure, called "reliability",
that combines the two. A good KS will produce
higher-level hypotheses which are more reliable
than the lower-level hypotheses supporting them.

IIT MEASURING THE SYSTEM STATE

Basic to our view of
knowledge-based systems 1is the concept of system
state. The system state at any point in time is
the current set of hypotheses and their
relationships to the input data. It is through
measures of the system state that we can talk in a
uniform manner about the performance of KSs and
schedulers.,

processing in

For purposes of measuring reliability, we
associate a hidden attribute with each hypothesis
which we call its truth-value. This attribute
measures the closeness of the hypothesized event to
the correct event. For task domains in which a
solution is either totally correct or incorrect, we
quantify truth-value as either 1 (true) or 0
(false), while in domains in which there are
solutions of varying degrees of acceptability,
truth-values range between 1 and 0.

One way of evaluating an intermediate state of
processing is by measuring the reliability of the
set of all possible complete interpretations (final
answers) that are supported (at least in part) by
hypotheses in the current state. We feel that a
direct measure of this sort is not feasible because
it is very difficult in general to relate the set
of partial interpretations to the very large set of
complete interpretations they can support.

We take an alternative approach, called

*® To simplify this presentation, we focus here
on synthesis KSs only, though prediction,
verification, and extrapolation KSs also have
a place in our model.

reflecting-back, which is based on two

premises,
First, the creation of a high-level hypothesis is a
result of detecting the constitency among its
supporting hypotheses. This creation process is an
alternative to actually changing the belief-values

of the supporting hypotheses, as occurs in the
relaxation paradigm. Thus, the creation of a
high-level hypothesis implicitly changes the

reliability of its supporting hypotheses. This
change can be traced down to the input hypotheses
whose reliability is implicitly improved to the
extent that they are aggregated into reliable
high-level hypotheses. Second, we assume that
processing which implicitly improves the
reliability of the input hypotheses also improves
the reliability of the complete interpretations
supported by these hypotheses.

In the reflecting-back approach, we associate
with each input hypothesis the highest belief
hypothesis it supports. The truth- and
belief-values of this highest belief hypothesis are
reflected-back to the input hypothesis. The
process is illustrated in Figure 1.

It should be stressed that the hypotheses'
truth-values and reflected-back values are used
only for measuring the system state; they are not
available to KSs during processing.

Our measure for the reliability of an
intermediate system state is based on a measure of
the reliability of input competitor sets computed
from the reflected-back belief- and truth-values,

Intuitively, a measure of reliability for a
competitor set should have the followirg
properties, based on both the belief- and

truth-values of its hypotheses:

1. With respect to accuracy, reliability
should be high 1if a true hypothesis has
high belief-value or if a false hypothesis
has a low belief-value, while reliability
should be low if a true hypothesis has low
belief-value or a false hypothesis has
high belief-value;

2. With respect to uncertainty, reliability
should be high if one hypothesis in a
competitor set has a high belief-value and
the rest have low belief-values, while
reliability should be 1low if all the
hypotheses have similar belief-values.

A measure for the reliability, RC(S), of . a
competitor set, S, that captures and adequately
combines both of these properties is:

RC(S) = 1 - avg
h in S

ITV(h)-BV(h) |

which 1is equivalent, in the case of  binary
truth-values, to the correllation of truth- and
belief-values:

RC(s) = avg [BV(h)¥TV(h) + (1-BV(h))*(1-TV(h))]
h in S

where BV(h) is the belief-value of hypothesis h and



TV(h) is the truth-value of hypothesis h.  Other
measures may also be applicable, but of those we
considered this one best captures our intuitive
notion of reliability.

Based on this measure of competitor set
reliability, we can construct, for instance, a
measure of processing effectiveness associated with
the current intermediate system state. This
measure is the average over the input competitor
sets of the difference between the initial
reliability and the reliability of the intermediate
state. The initial reliability is, the average
reliability of the competitor sets formed from
input hypotheses, using the initial belief- and
truth-values. The reliability of the intermediate
state 1is the average reliability of the competitor
sets formed from the input hypotheses, where the
reflected-back truth- and belief-values of
hypotheses are used in place of the original ones.
In Figure 1, if the three competitor sets were the
only ones on the input level and each one contained
just the two hypotheses shown, thep the initial
reliability, RI, is .517, the reliability of the

intermediate state, RS, is
effectiveness, PE, is .058:

and

575, processing

RI = 1/730(.7+.6)/2 + (.5+.8)/2 + (.7+.2)/2] = .517
RS = 1/3[(.6+.5)/2 + (.7+.5)/2 + (.45+.7)/2]) = .575
PE = RS - RI = .058

A positive PE value, as in this example, indicates
that some uncertainty and error has been resolved.
The larger the value, the more resolution, the more
effective is the processing.

IV MEASURING THE RESOLVING POWER OF A KS

We define the instantaneous resolving power of
a KS as a change ip reliability due to a single KS
execution. This change is measured on competitor
sets constructed from the KS input hypotheses.
Thus, instead of calculating the reflected-back
reliability of the entire system state, the
procedure is localized only to the subset of the
state directly affected by the KS execution. We
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Figure 1: an example of the reflecting back process. The system state contains three
competitor sets (represented by boxes) on the input level, and a number of higher level
hypotheses. The hypotheses are represented as circles with belief-values on the 1left and
truth-values (T=1 and F=0) on the right. The initial values are in the bottom of the circle,

the reflected-back values are in the top half.

The thick lines show the support link to

the

highest belief-value hypothesis supported by each input hypothesis and indicate the source of
the reflected-back values. Hypotheses which intervene between the inputs and their
highest-belief supported hypotheses are not shown.
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measure the change in reliablilty as a result of KS
execution by measuring before KS processing the
reliability of the KS input competitor sets, then
measuring after KS processing the reliability of
these sets based on values reflected-back from the
KS output hypotheses, and finally taking the
difference between the results obtained.

The resolving power of a KS can now be defined
as its average instantanegﬁs—rsgblving power over a
series of system executions. This view of KS
resolving power does not take into account the
global impact of KS execution on the entire system
state and on future processing. Rather, it is a
local, instantaneous measure of the effects of KS
execution, The global effects occur through KS
interactions, which we believe should be separated
from our measure of the resolving power of a single
KS.

V SIMULATING A KS

Given a formal measure of KS resolving power,
we can simulate KSs of any desired power. This is
accomplished by introducing an "oracle" which knows

how to judge the closeness of a hypothesized
interpretation to the correct interpretation (this
is the source of the truth-values). OQur

reliability measures can thus be calculated during
processing rather than in retrospect, after the
system has completed processing. Therefore, a
system does not have to complete execution in order
to be evaluated.

A KS is simulated in two stages: candidate
generator and resolver. The candidate generator
produces plausible hypotheses for KS output. It

can be implemented either by using a real KS whose
performance needs to be upgraded or by constructing

a simplified KS incoporating relatively simple
domain knowledge*. The next stage, the resolver,

uses information provided by the oracle to alter
the belief-values of the hypotheses output by the
candidate generator (with minimal disturbance of
their belief-values) to achieve, on the average, a
desired KS resolving power. With this alteration
process, we can simulate the detection of more
sophisticated forms of 1local consistency than is
provided by the candidate generator. This
technique allows us to simulate, in a real system,
either an upgraded version of a KS (where the old
KS is used as candidate generator) or a totally new
KS (with partially developed knowledge), in order
to understand the system performance implications
of a proposed change.

We believe that our approach to simulating KSs
of different resolving power, which makes heavy use
of an oracle, will prove useful in designing and
debugging knowledge-based systems¥*¥* However,
there are some limitations:

In many cases, it is relatively easy to design
a KS which provides moderate accuracy. Most
of the effort in knowledge engineering is
spent in increasing this accuracy to gain
superior performance.
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Our simulation of KS resolving power is
based on a combination of simple knowledge
about local consistency and reference to
an oracle, while real KSs infer truth from
local consistency alone (and falsehood
from local inconsistency).

The behavior of different
sharing similar

simulated KSs
errors in knowledge will

not be correlated due to our statistical
approach to KS simulation.
Given these 1limitations, we do not expect a

simulated KS to behave exactly the same as a real
KS. We hope, however, the essential behavior of a
KS has been captured so that system phenomena are
adequately modelled.

In order to validate our models of KS power,
we plan to analyze the behavior of KSs in some
existing knowledge-based systems. A measures of KS
power will be taken for an existing KS and then the
KS will be replaced by a simulated KS of the same
power, and the overall system behavior compared in
the two cases. The results of these experiments
should give us some understanding of the extent to
which data derived from our simulation studies can
be used to predict the behavior of real systems.

VI SIMULATION OF ACCURACY IN THE SCHEDULER

Reliability measures can also be used in the
simulation of a scheduler of a specific accuracy,
The task of a scheduler is choosing a KS
instantiation for execution. A KS instantiation is
a KS-stimulus pair, where the stimulus is the set
of hypotheses which caused the KS to be considered
for scheduling. The schedul er evaluates
alternative instantialtions according Lo its
knowledge of the characteristics of the KSs, the
stimuli, and the current state of processing. The
effects of future processing are not factored into
this model of scheduling; we take an instantaneous
view of scheduling decisions. Because of this, we

are unable to model scheduling algorithms such as
the "shortfall density scoring method" [7] which
use information about future processing. We hope

to develop a formulation that includes this type of
information.

A good scheduler chooses for execution the KS
instantiation that will most improve the
reliability of the current system state, The
accuracy of a single scheduling decision is defined
relative to the performance of an optimum
scheduler, which uses accurate information about
the resolving power of the KSs and the reliability
of the KS stimuli and system state. The accuracy
of a scheduler is the average of the accuracy of

many scheduling decisions.

We view the optimum scheduling process in two

steps:

®*  The work of Paxton [5] comes the closest to

our approach, but was much more limited.



For each KS instantiation on the scheduling
queue, make accurate predictions concerning
its instantaneous resolving power. These
predictions involve determining the
truth-value of the stimulus hypotheses (using
the oracle) and knowledge of the resolving
power of the KS.

Make accurate predictions as to the global
system state which would result from
scheduling each instantiation given the
predictions of step 1. These predictions will
determine optimum ratings , for the
instantiations and result in an optimum
schedule,

Our approach to modelling the scheduler is to
obtain statistically accurate ratings for the
instantiations, based on the optimum schedule, and
then choose for  execution an instantiation from
‘within the ordering which results. The position in
-the ordering of the chosen instantiation depends on
the desired accuracy of the scheduler being
modelled; the closer to the top of the order, the
:more accurate the scheduler,

We feel it would be an error to model
scheduling only as a function of the truth-value of
stimulus hypotheses. Real schedulers do not have
#ocess to the truth-values of hypotheses, but only
infer truth from belief-values and processing
] The point is that two instantiations of
,» whose stimulus hypotheses have
: characteristics (same belief-value,
level of abstraction, database region, processing
etc.) except for their truth-values would
rated the same by even the best scheduler.
Mditionally, in order to determine the rating of a
kS {instantiation, real schedulers [3] consider
ther factors, besides the characteristics of the
‘stimulus hypotheses. For example, schedulers take
“into account such factors as the balance between
depth-first vs. breadth-first processing or
“between executing KSs that work in areas with rich
processing history vs. executing KSs that work
where little processing has been done. These
‘additional considerations are, in fact, heuristics
~which attempt to capture the concept of improvement
in the reliability of the system state. Thus, in
our view, a scheduler should be characterized in
‘terms of its ability to estimate the improvement in
_system state reliability, rather than its ability
to detect the truthfulness of the instantiation's
-stimulus hypotheses.

We could have modelled the scheduler just as
we modelled KSs, with a candidate evaluator and a
scheduling resolver. The candidate evaluator would
take the generated KS instantiations and give them
ratings based on simple scheduling knowledge. The
scheduling resolver would minimally alter these
ratings (with statistical perturbation) to produce
an ordering for the instantiations which
- corresponds to a desired scheduler accuracy. For
- dseveral reasons, too complicated to discuss in this
. short paper, we have not used such an approach for
modelling schedulers. Further details of this
- issue and a more detailed formulation of scheduling

measures are discussed in an extended version of
this paper [4].

VII SUMMARY

This work represents the beginnings of a
methodology for understanding in quantitative terms
the relationship between performance of a
knowledge-based system and the characteristics of
its components. This quantification may also allow
us to develop simulations of these systems which
can accurately predict the performance of
alternative designs.
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