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Abstract—The range of application areas to which distributed
processing has been applied effectively is limited. In order to extend
this range, new madels for organizing distributed systems must be
developed.

We present a new model in which the distributed system is able to
function effectively even though processing nodes have inconsistent
and incomplete views of the databases necessary for their computa-
tions. This medel differs from conventional approaches in its emphasis
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on dealing with distribution-caused uncertainty and errors in cantrol,
data, and algorithm as an integral part of the network problem-solving

process.

Wa will show. how this new model can be applied to the problem of
distributed interpretation. Experimental results with an actual inter-
pretation system support these ideas.

Index Terms—Cooperative problem solving, distributed artificial
intelligence, distributed interpretation, distributed pracessing,
knowledge-hased interpretation system.

1. INTRODUCTION

N interpretation system accepts a set of signals from some
environment and produces higher level descriptions of
objects and events in the environment. Speech and image un-
derstanding, medical diagnasis, determination of molecular
structure, and geological surveying are problems that have
been pursued with interpretation systems.'A distributed in-
terpretation system may be needed for applications in which
sensars for coliecting the enviranmental data are widely dis-
tributed, interpretation requires data from at least several of
the sensors, and communication of all sensory data to a cen-
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tralized site is undesirable. Sensor networks (composed of
low-power radar, acoustic, or optical detectors, seismometers,
hydrophones, ctc.), network {automative) traffic control, in-
ventory control (e.g., car rentals), power network grids, and
tasks using mobile robots are examples of potential applica-
tians for distributed interpretation. In these applications, an
architecture that locates processing capability at the sensoc
sites and requires only limited communication among the
processors is especially advantageous and is, perhaps, the only
way to meet the demands of real-time response, limited com-
munication bandwidth, and reliability.

Two major questions arise in the distributed interpretation
task: how to interpret the signal data and how to decompese
a given interpretation technique for distribution. Some inter-
pretation algorithms and control structures cannot be repli-
cated or partitioned on’ the basis of the distribution of the
sensory data without requiring unacceptably large amounts
of interprocessor communication to maintain completeness
and consistency amang the local databases. In such a case, it
is necessary to modify the algorithm and control structure to
operate on local databases thal are incomplete and possibly
inconsistent. For some interpretation techniques, such medi-
fications might be difficult or impossible.

Knawledge-based artificial inteiligence (AI} interpretation
systems developed recently for speech, image, and signal in-
terpretation applications have structures that seem to make
them suitable for decomposition in distributed environments
where local databases are incomplete and pessibly inconsistent.
Examples of these systems inciude Hearsay-11 (6], HARPY
[18], MSYS [1], SIAP [3], CRYSALIS [4], and VISIONS
[10]. These interpretation techniques use the problem-solving
paradigm of searching for an overall solution by the incre-
mental aggregation of partial solutions. In this paradigm,
errors and uncertainty from input data and incomplete or in-
correct knowledge are handled as an integral part of the in-
terpretation process. This is in contrast to more conventional
problem-solving techniques, in which errors are fatal or are
handled as exceptional conditions, requiring additional pro-
cessing outside the normal problem-solving strategy.

We hypothesize that these knowledge-based Al systems can
handle the additional uncertainty introduced by a distributed
decomposition without extensive modification.! Preliminary
work in testing this hypothesis with respect to synchronization
has been encouraging. Experiments with a multiprocessor
implementation of the Hearsay-II speech-understanding
system have shown that eliminating explicit synchronization
results in increased parallelism without a decrease in prob-
lem-solving accuracy (7]. Similarly, a class of iterative re-
finement methods (although not knowledge-based) for solving
partial differential equations has been decomposed for mul-
tipracessor implementation so as to avoid most explicit syn-

chronization, thus allowing for increased speed-up due to,

parallel processing [2]. This decomposition is accomplished
by allowing each point in the differential grid to be calculated

I A more detailed discussion of these points and the appropriateness of
knawledge-based Al as the basis for distributed problem-solving systems is
cantained in [17].
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[rom values of its neighboring points that are not necessarily
the most up-to-date.

While such Al systems provide a promising basis for dis-
tributed problem soiving, none has yet been built for a fully
distributed environment; centralized global knowledge or
global control has been used in existing interpretation systems
to coordinate various system modules. In this report, we de-
scribe 2n experiment in the complete decomposition of an cx-
isting knowledge-based interpretation model-—Hearsay-IT [5],
[15]. Although Hearsay-1I was developed in the context of
speech understanding [14], {6], its basic structure has been
applied to a range of interpretation tasks, including multisensor
signal interpretation [19], protein-crystallographic analysis
(4], and image understanding [10].

This report concentrates on applying the Hearsay-II ar-
chitecture to the distributed interpretation problem, where
each processor can be mabile, has a set of (possibly nonuri-
form) sensing devices, and interacts with ncarby processors
through 2 packet-radio communication network [13]. Pro-
cessors communicate among themselves to generate a consis-
tent interpretation of “what is happening™ in the environment
being sensed,

Section 1I presents a brief overview of the Hearsay-11 model
ol knowledge-based Al interpretation, followed by a descrip-
tion of the Hearsay-II architecture. This section presents
mechanisms for handling uncertainty as an integral part of the
problem-solving process. Section 11T outlines several possible
directions for designing a distributed Hearsay-11 architecture,
with Section IV presenting the particular organization we feel
most appropriate.

Section V describes the details of a distributed Hearsay-11
speech-understanding system based on this organization. Each
node is a functionaily complete Hearsay-II system with access
to one segment of the speech input data of the utterance. The
nodes cooperatively generate an interpretation of the entire
utterance by communicating partial, tentative interpretations
based on their local views. Section VI presents experimental
performance of this distributed speech-understanding system
and compares it to that of the centralized system. This includes
comparisons of several internode communication strategies,
as well as the effects of communication errors. We discuss here
and in Section VII how the Hearsay-II mechanisms are able
to resolve successfully with low-internode communication the
uncertainty introduced by the distribution of the system.

Qur goal is not to prove that one should design a distributed
speech-understanding system, but rather to'point out some of
the issues involved in designing a distributed interpretation
system dealing with incomplete and inconsistent local data as
an integral part of its processing. We are using the Hearsay-II
speech-understanding system because it has-a structure that
we feel is appropriate and because it is a large, knowledge-
based interpretation system to which we haveaccess. There
are serious problems with using this system for experimenta-
tion.

1) Because of several considerations discussed in Sections
V-B and VI-A, networks are limited to about three nodes.
2) Because of the costs of the netwark simulation, only a
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limited number of experimental runs could be done and with
relatively simple test data and communication policies.

3) There is probably no practical need for distributing a
single-speaker speech-understanding system,

We feel that these limitatjons are sufficiently outweighed
by the advantages of experimentation with a real system to
make the effort worthwhile and the results, while not conclu-
sive, indicative.

[I. OVERVIEW OF HEARSAY-II: A SYSTEM THAT
HANDLES UNCERTAINTY

A, The Model

We will take, as the competence goal of an interpretation
system, the construction of the most credible complete inter-
pretation of the input data.? In Hearsay-1I, an intcrpretation
is constructed by combining partial interpretations derived
from diverse knowledge. Each area of knowledge is represented
by an independent module called a “knowledge source” (KS').
In the application of Hearsay-11 to speech understanding, for
example, these KS’s cover such knowledge areas as acoustics,
phonetics, syntax, and semantics. The Hearsay-11 architecture
is designed to permit cooperative and competitive problem
solving among the KS’s in order to resolve the uncertainty
caused by noise and incompleteness in the input data and in-
accurate processing by the XS’s.

The interaction of KS’s is based on an iterative data-directed
farm of the hypothesize-and-test paradigm. Tn this paradigm,
an iteration involves the creation of an hypothesis, one possible
interpretation of some part of the solution, followed by test(s)
of its plausibility. When performing these actions, KS's use
a priori knowledge about the problem, as well as previously
generated hypotheses that form a context for applying the
knowledge. When a KS creates an hypothesis from previously
created hypotheses, Lhe KS ¢xtends the existing (partial) in-
terpretation with more information, thereby reducing the
uncertainty ol the interpretation. The processing is terminated
when a consistent hypothesis is generated that satisfies the
requirements of a complete solution.

A KS often generates incorrect hypotheses because its
knowledge or its input data, including previously generated
hypotheses, conlains errors or is incomplete. Thus, il K57s were
to generate only a single hypotbesis for each specific part of
the problem, the problem-solving process would often tecmi-
pate wilh an inaccurate interpretation or with a partial inter-
pretation that could not be extended because of its inconsis-
tency. In order to avoid this problem, KS''s, in general, create
several alrernative hypotheses for each part of the problem.
The KS associales with each hypothesis a credibility rating,
which is its estimate of the likelihood that the hypothesis is
correct. The lower the credibility of the aiternatives, the greater
the number that must be generated to produce the same like-
lihood that a correct one is included.

2 In general, some applications might nol contain a notion of a complete
or spanaing interpretation, but rather are interested in successive partial in-
terpretations. Nothing in the discussion that follows is actually speeific to
complete interpretations, but we adopt that nation because of our invelvement

with the spesch-understanding task and the interpretution of individuu! sin-
gle-senlence ulleriiaces.
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The set ol all possible partial interpretag
prablem-solving search space. The more alter,
generated, the larger the fraction of the 8
searched. Since each partial interpretation cupn c,? dctually
multiple extensions, the possibility of a <:0mbinu‘.o.-%;;\:::t fllsc. lo
exists. At each step in the search, a subset of (he t:xislinpp ml?n
interpretations is selected for extension; the resulting c—;iﬁﬂml
partial interpretations then compete for selection with :},,ded
previously generated. The selection of the subset of hvpu[h(::
Lo extend is called Lhe focus-of-controf (ar fOCUS-Of-z;ucmi on)
problem. An integral part of effective [ocus-of-conirg| iy the
problem-solving system’s ability to focus quickly on infor.
mation that constrains the search, in order to contain com-
binatoric explosions. This is called an opporiunistic ang
asynchronous style of prablem selving, It can be implemented
through the Hearsay-11 lormulation of the hypothesize-and.
test paradigm, in which promising tentative decisions are made
(despite incomplete information or knowledge), then resval-
uated later in the light ol new information. Focus-of-control
is discussed further below; it is alsa discussed more extensively
in[L1].

Three requirements must be met for the cffective operatian
of this general approach to problem solving.

1) Sufficiency of Knowiedge: The knowledge can generate
some sequence of partial interpretations that culminates in a
correct complete interpretation.

2) Sufficiency of Credibility Fvaluation: The credibility
function rates the correct complete interpretation higher thzn
any incorrect complete intepretation generated.

3y Sufficiency of Control Strategy: The focus-of-control
strategy can find 2 correct complete interpretation within the
bounds of computing resources aliocated Lo the task.

[ncreasing the constraint of knowledge, the discrimination
power of the credibility evaluation or the selectivity of the
control strategy beyond that which is minimally sufficient to
meet these criteria will, in general, decrease the amount of
compuling resources needed for the interpretation. Also, these
three aspects of the problem solving are not independent;
within limits, the same performance can be achieved by trading
ofl the uncertainty resolving power of one aspect for thal of
another.

1905 defines (he
native hypoth

B. The Architecture

Fig. 1 shows a simplilied schematic of the centralized
Hearsay-[[ architecture. The major data structures are the
shared global database {called the blackboard), focus-of-
control database, and scheduling queues.

The blackboard is partitioned into~distinct information
levels, each used to hold a dilferent kind of representation of
the problem space. The major units on the blackboard are the
hypotheses. Relationships among hypotheses at different levels
arc represented by a graph structure. The sequence of levels
on the blackboard forms a loose hierarchical structure in which
the elements at each level can be described approximately as
abstractions of elements at the next lower level. For example,
in speech understanding an ulterance can be represented as
a signal or as sequences of phones, syilables, words, phrases,
or concepts; in imape understanding, Lypical levels might in-
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clude picture points, line sepments, areas, surfaces, and objects;
levels in an aircraft-tracking radar system might include sig-
nals, signal groups, vehicles, area maps, and overall area maps
(see [21]). The set of possible hypotheses at a level forms a
problem space for KS's operating at that level. A partial in-
terpretation (i.e., a group ol hypotheses) at one level can be
used within the opportunistic strategy to constrain the search
at another level. Far example, a KS can create a phrase hy-
pothesis as an abstraction ol a sequence of word hypotheses.
Similarly, another KS can use the phrase hypothesis to predict
(i.c., constrain) the set of possible word hypotheses that might
follow the phrase.

In order to implement the data-directed activation of KS's,
each XS has two components: a pattern and an action.
Whenever the pattern is matched by some hypothesis structure
on the blackboard, an activation of the KS is created. If the KS
activation is selected eventually by the scheduler, its action is
executed in the context of the matched structure. For example,
the pattern of a KS might be the creation of a new syllable
hypothesis and its action might be to use that syliadle hy-
pothesis and, possibly, other adjacent syllable hypotheses to
create new word hypotheses.

XS activily and hence, the search process, is managed by
the scheduler using the focus-ol-control database and the
scheduling queucs. At any point, the scheduling queues con-
tain the pending KS activations. The scheduler calculates a
priority for each waiting activation and selects for execution
the one with the highest priority. The priority calculation at-
tempts to estimate the impact of the information to be gener-
ated by an activation on the current state of the problem
solving. From the problem-solving viewpoint, the impact of
some information is 2 measure of the degree to which it reduces
the uncertainty of the interpretation or, allernatively, the de-
gree to which it reduces the oumber of competing interpreta-
tions. This measure changes as the problem solving progresses;
thus, the timeliness of creation of the information affects its
impact. For example, if two pieces of information can lead to
the same hypothesis, the creation of the first of them may have
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high impact, but the creation of the second will have little,
other than adding confirmation to the hypothesis. Lesser ef af.
[16] describe a formal model for this kind of problem-solving
activity.

Several dimensions can be used 1o estimate the impact of
information, including the following:

1) The credibility of some information is a measure of the
system'’s confidence in the information; the more credible the
information, the higher its expected impact.

2) The scope of some information is a measure of the
amount ol the total problem solution that it describes. Scope
is related to the level of abstraction (e.g., in speech under-
standing, a word has larger scope than a syllable) and to the
size (e.g., a two-second phrase has larger scope than a one-
secand phrase). The larger the scope, the greater the impact
because a larger portion of the complete interpretation, and
hence, more constraint is specified.

3) The diagnosticity of some information is a measure of
how much competing information can be resolved by the in-
formation [12]. For examgle, il one part of the current partial
solution has high credibility while another part has anly low
credibility, a moderately credible piece of information in the
former area will have low diagnosticily, but a moderately
credible piece in the latter'area will have high diagnesticity
and, hence, greater impact.

The focus-of-controd database contains meta-information
about the state of the system’s problem-solving activity. The
meta-information is used to estimate the impact of informa-
tion, based on its credibility, scope, and diagnosticity. Meta-
information includes such things as the current best hypotheses
on the blackboard and how much time has clapsed since these
hypotheses were generated or combined with others. (This
latter kind of information allows the system to recognize a state
of stagnation in part of the problem solving, and then to cause
the reappraisal of the impact of the current best hypotheses.)
The focus-of-control database is updated by the blackboard
monitor based on the generation and modification of hypoth-
eses on the blackboard by KS’s.

The blackboard monitor is also used to implement the
data-directed activation of KS's. At system initialization, each
KS declares hypothesis characteristics relevant to it. When
an hypothesis is created or modified so as to match those
characteristics, the blackboard monitor creates an activation
record for the XS on thal hypothesis and places it in the
scheduling queues.

II1. ISSUES IN DISTRIBUTING HEARSAY-IT

Fig. 2 presents a number of dimensions of decomposition
of Hearsay-11 for a distributed environment and several options
for each dimension. From this.tablc and the overview above,
it can be seen that the characteristics of the Hearsay-11 orga-
nization appear to make it suitable for a distribution along
several dimensions.

1) Informatior might be distributed: The blackboard de-
tabase is: multidimensional (with the information levels
forming one dimension). Each KS activation generally accesses
only a small localized subspace within the blackboard.
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2) Processing might be distributed: Knowledge is encap-
sulated in KS modules that are largely independent, anany-
mous, and capable of asynchronous execution.

3) Control might be distribuled: KS activation is based on
the generation and modification of hypotheses on the black-
board (data-directed control). To the extent that these hy-
potheses can be distributed, ¢ontrol of XS activalion can also
be distributed. The data-directed form of the hypathesize-
and-test paradigm permits KS8's (o exchange partial results in
a cooperalive fashion.

Given these possibilities, it would appear that the Hearsay-11
organization could be decomposed easily lor a distributed
environment so as to emulate efficiently and exactly the pro-
cessing that occurs in the cenlralized version of the organiza-
tion. [n fact, a shared-memaory multiprocessor implementation,
using explicit synchronization technigues to maintain data
integrity and distributed along the processing and control di-
mensions, achieved significant parallelism—a speedup factor
of six [7]. However, the following characteristics of Hearsay-[[
intraduce a number of difficulties for such a straightforward
crmulation in a distributed environment:

1) the scheduler, which requires a global view of the
pending KS instantiations (scheduling queues) and the
facus-of-control database, is/centralized,

2) the blackboard monitor, which updates the focus-of-
control database and scheduling queues when a specific type
of blackboard change occurs, is centralized, and

3) the patterns of KIS access to the blackboard overlap,
prohibiting the construction of compartmentalized subspaces
of the blackboard accessed exclusively by small groups of
KS's.

Because there are many K5 executions, each accessing the
blackboard [requently, an extensive amount of interprocessor
communication would be required to emulate exactly a cen-
tralized view of the blackboard, scheduling queues, and
focus-of-control database. The dynamic information in these
data structures controls the degree and nature of K8 cooper-
ation and is essential to the effective implementation of the
hypothesize-and-test problem-solving strategy.

Given that the communication and synchronization costs
of emulating perfectly the centralized views are too high, one
is led to their approximation. The amount and range of inter-
node communication can be reduced, leading to inconsistency
and incompleteness of the local views and thus, unnecessary,
redundant, and incorrect processing. Experiments with the
shared-memory multiprocessor Hearsay-IT speech-under-
standing system described above demonstrated that the system
could operate in such an environment {7]. In these experi-
ments, the explicit synchronization was eliminated without
degrading accuracy as measured at the end of processing, with
an attendant increase in the speedup factor from 6-15 because
of the reduction in interprocess interference, ;

The explanation for this phenomenon is that the asynchro-
nous, data-directed control can apply knowledge to correct
certain types of internal errors. Consider the normal activity
sequence of a XS, which involves [irst examining the black-
board and then creating new hypotheses on the basis of the
examined hypatheses. If the sel of relevant hypotheses changes
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*¢ INFORMATICON *+
Distribution of the blackboard;

The blackboard is distributed across the nodes with no du
informaltion.

The blackbaard is distributed with possibie duplication of infyy
synchronization techniques are used 10 insuze cansistercy,

The blackboard is disteibuted with possible duplications apg inconsjs.
lencies,
Transmission of hypotreses:

Hyzotheses ars not transmitted beyond the nede in which they are
created. '

Hypothzses may be transmitted directly to a sutset of nodes,

Hypotheses may be transmitted directly to all nodes,

[n addition, the transmission and reception of hypotheses can be filtere
based an characteristics of the hypotheses, 2.g,, type of hypotkesis (informatign
level), credibility rating, and lecation of the “event” the hypothesis de.
scribes,

Plication of

mﬂ[ion:

“* PROCESSING ==
Distribution af KS's:

Each node has only one X8

Each nede has a sudset of X8's. The selection might depend on factors
such as the type of sensors at the node, the rode’s physical lecation, 2nd the
input/eutput characteristics of the K8s.

Each node has all XS,
Aceess 10 the Blackboard by KS's:

A KS activation can access only the blackboard in its local node.

A KS activation can access blackboerds in a subset of nodes.

A K8 uaclivation can access dlackboards in any nade in the network.

** CONTROL **
Distribution of KS activation:
A change 1o an hypothesis activites £5's only within the lecal node.
A change activates K8's in a subset of nodes.
A change activates KS's in any nede,
Distribution of scheduling and focus-cf-conrol:
Each node does its own scheduling, tased on lecal information.
Each subset of nodes has a scheduler,
A single, distributed database is used for scheduling.

Fig. 2. Dimensions of decomposition for Hearsay-[L.

after the KS looks at them and before it modifies the black-
hoard, the medification is inconsistent or incomplete with re-
spect to the current state of the blackboard; however, because
of the data-directed nature of K£S activation, the intervening
changes will trigger the same XS to recalculate its modifica-
tions and, perhaps, generate new alternative hypotheses that
are more consistent and for complete. [n addition, other types
of inconsistency can be resolved because a complete solution
is pieced together from mutually constraining informaltion;
thus, additional XS praocessing will usually produce lower
credibility ratings for an incarrect hypothesis and its exten-
sions, lessening the likelibood that these incorrect hypotheses
will be considered further. This process occurs whether the
incorrect hypothesis resulted from a synchronization error,
from a mistake in the knowledge used by the XS, or from er-
roneous data. Thus, this seif-correcting nature of information
flow among KS’s, created through the use of the incremental

_data-directed hypothesize-and-test paradigm, in many cascs

obviates the need for explicit use of synchronization.

The key issue is whether a distributed decomposition of a
Hearsay-II-like system can be designed that can deal with the
errors introduced by the approximate emulation well enough
to maintain satisfaction ol the sufficiency criteria of Section
[-A. In the distributed system, internode communication
becomes part of Lhe “computing resources™ thal must be
limited for effective system performance.
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V. A NETWORK OF HEARSAY-I] SYSTEMS

A primary goal of our decomposition design is to minimize
internode communication relative to intranode pracessing.
Because of this and the relatively fine granularity of XS ac-
tivity within a Hearsay-I[ system, a node must be able to
complete a number of KS ex¢cutions in 2 self-directed way,
i.e., without internade communication. Thus, each nede in the
network must contain XS’s, a scheduler and focus-of-control
database for selecting the next KS activation to execule at each
step, 2 blackboard for XS communication, 2nd a blackboard
monitor for K£S activation. Therefore, each node (s an archi-
tecturally complete Hearsay-I1 system.

_ There are dual points from which to view the distribution
of the dynamic information (i.e., partial interpretations and
meta-information) in the network:

1) A virtual global database represents all the system's
information; the local databases at each node contain the
node's partial view of the virtual global database, perhaps with
some inconsistencies (because of limited internode commu-
nication and synchronization).

2) Each node has its own databases; the union of these
across all the nodes, with any inconsistencies, represents the
total system interpretation.

The first viewpoint corresponds to the way most distributed
computing systems arc considered—a centralized system is
decomposed, with each piece (nodej in the decomposition
viewed as a part of the whole system. From the second view-
point, the distributed system is synehesized [rom systems op-
erating at each nade, The second approach shifts the view from
that of a system distributed oyer a network to that of a network
of cooperating systems, each aile to perfarm sigmificant, lacal,
self-directed processing. Another way of distinguishing these
viewpoints is that the first considers cach nede [rom the context
of the whole systermn, while the second considers the system
from the context of the individual node. When considering any
particular design chaice, one ur the ather of these viewpoints
might be more appropriate. From either viewpoint, the major
design decisions are the selection and facusing of knowledge
sources at each node and the choice of mechanisms and policies
for internode comemunication to permit effective cooperative
problem solving. We will now describe some possibilities for
each of these areas,

A. Intranode Considerations—Selection and Focusing of
KS’s

Intranode processing can be maximized relative to internode
communication if XS activity is such that the inputs needed
by KS actions are available on the node’s blackboard. Thus,
the selection of XS's for each node and the focusing of their

- actiyity on particular portions of the problem greatly affects
this goal. .

The blackboard in a Hearsay-11 system is described along
sevaral dimensions. One of these is information level; this di-
mension has discrete points, each corresponding to a dilferent
way of representing the situation being interpreted. A KS
typically works with a small number of information fevels by
noticing one or more hypotheses {called the “stimulus™) at one
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or two levels and by creating pew hypotheses or modifying
existing ones {the KS's “response™) at one or two levels. For
a collection of KS's 10 be connected across levels, then, it must
be that any leve| used by some XS as its stimulus is used hy
some KS as its response. There are also KS's that are trans-
ducers between the system (iLe., the blackboard) and the ex-
ternal world. Far the purposes of this discussion, we will think
of an input transducer as having no blackboard stimulus and
an output transducer as having no blackboard response. In a
network of Hearsay-11 systems, if a particular node has a XS
which is level-disconnected on its stimulus or response side, that
node is forced to communicate with other nodes to supply the
missing stimulus or to provide a use [or the “extra™ responze.
Since a primary goal is t0 maximize intranode processing
relative to internode communication, the selection of KS7s for
each noce should maximize the level connectivity. Likewise,
transducer KS's should be selected [or their appropriateness
to the particular types of sensors {and effectors) at the
node.

In addition to the information level, there is ar orthogonal
dimension (or set of dimensions) for locating hypotheses in the
blackboard—this is the Jocation of the event which the hy-
pothesis describes. For signal interpretation tasks this usually
represents a physical location, [n speech understanding, for
example, most hypotheses (phones, syllables, words, phrases,
cte.) can be located as segments on the dimension of time
within the utterance. For image understanding, cbjects (at any
of the levels) can be located in the two or three dimensions of
the image space. For radar tracking ol aircraft, signals and
objects can be located in the three-dimensional world. [n
general, hypotheses closer in the location dimension are more
likely to be relevant to each ather and to be needed jointly for
further XS activity. For example, a word hypothesis is likely
to be created from adjacent syllable hypotheses, an object from
sucfaces near each other, 2nd a signal group from signals de-
tected nearby. Thus, 2 nede should attempt te acquire for its
local blackboard ali of the hypotheses at a given fevel within
a contiguous segment in the location dimension(s).

All levels in the system laken together with Lhe full extent
of the location dimension(s) define a node’s largest possibie
scope. The term area-of-interest will be used to denate, for
each node, that portion of the maximum scope represeataile
within the node's local blackoard.

The levels in the area-of-interest are the union of the stim-
ulus and response levels of the KS's in the node——any other
levels would be useless to the node.? A node’s area-of-interest
at the information fevei(s) to wisich che sensory data is trams-
duced should cover in the location dimensions at least the area
cavered by the node's sensors; otherwise, some of the sensory
data would be jost, since the only direct action the transducer
KS can take is to create hypotheses on the Jocal blackboard
about the data.? At che ather levels, the location scgment

3 tn Section 1¥-D2), we will show one use for representing hypotheses which
cannet be provessed by lecal 8%, in particular, for allowing 2 node to 2ctas
a store-and-forward message handler,

+ Of course, the transducer could use the sensory information to madify
hypotheses about adjacent azeas, but this would represent Lhe sensory infor-
mation enly indirectly.
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should probably include at least the projection of the lecation
segment at the transduction- level, since it is reasonable to
create higher level hypotheses about the locations covered by
the node’s sensors. In addition, the location segment should
also likely be extended somewhat beyond the range of the local
sensors: this is to allow the node|to acquire information from
neighboring nodes (o use as context for XS processing. Finally,
this context extension should probably be larger at higher in-
formation levels because the size of hypotheses [i.e., their
length in the location dimension (s)] tend to be larger at the
higher levels; e.g., words are usually bigger than syllables,
objects are usually bigger than surfaces, and area maps larger
than aircraft.

As an aid to understanding the notion of area-of-interest,
jet us consider a simple example of bottom-up processing at
a single node of a network operating in a one-dimensional lo-
cation space. The node has three information levels, labeled
L1, L2, and £3 and two knowledge sources, KS'1 and KS2 (see
Fig. 3). Hypotheses on L1 are uniformly one unit long in the
location dimension and are conliguous and nonoverlapping.
The sensor associated with the node produces a single hy-
pothesis on L1, called /1, at location 50.° Knowledge source
KS1 in the node can take three contiguous hypotheses on
Ll-call them H2, H1, and H3-and produce 4 as an ab-
straction of them on L2. Likewise, knowledge source KS2
produces hypotheses on L3 from triples of hypotheses on
L2.

In order for KS'1 to operate, the node must receive hy-
potheses 42 and /{3 as messages [rom some other nodes be-
cause its local sensor can generate only A . Likewise, for K52
to operate, the 5 and f£6 hypotheses must be received on L2.
The scope required to be representable on £2 s larger than on
L1. If processing were to continue similarly above L3, L3's
scope would have to be larger still. Thus, the location dimen-
sion of the area-of-interest expands at higher levels. The lateral
communication (e.g., /2 and A3, and 5 and A6) forms a
context for processing and provides a conneclivity in the lo-
cation dimension (lateral connectivity), similar 1o the con-
nectivity in the information-level dimension.

The particular scope of the area-of-interest is dependent on
the information required by the KS’s. In this simple example,
KS2 is able to create hypotheses on L3 based solely on the
information on L2. If K52 required information about an L2
hypothesis that is not represented in the abstraction on L2, it
will want Lo fook at the L1 subslructure of the bypothesis. [f
the information needed is about A4, K52 can access it on the
nede’s blackboard directly, looking at hypotheses H2, A1, and

% [n general, multiple, alternative, competing hypotheses could be produced
throughout this example, but we will nat consider them here,
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£13. If, however, KS2 needs to look at the substructure of /5
or A6, there is a problem because the L1 representations of
those hypotheses are not on the node’s blackboard. One soiu-
tion is to have K52 do the best it can without the information,
thus requiring no additional internode communication, bul
introducing additional uncertainty in the problem solving.
Another solution to this problem is to extend the nede’s area-
of-interest on L1 in order Lo represent the needed information.
This extension can be handled in several ways.

1) A priori analysis of KS2 indicates that the L1 infor-
mation is likely to be needed. Thus, the scope of the ncde’s
arca-of-interest on L1 is permanently specified to be 46--54,
and the node gathers all L1 information that it receives. [f the
needed informaltion is less than the full scape, the expansion
of the area can be limited. For example, if information about
just boundaries of the L2 hypotheses is needed, the scope could
be specified as 48-52, rather than 46-34.

2) Each node that transmits £.2 hypotheses knows that same
of the corresponding L1 information is likely to be needed; it
therefore transmits the relevant £1 information whenever it
transmits an L2 hypothesis. Thus, the scope of the receiving
node’s area-of-interest on L1 dynamically expands in response
to the reception of L2 hypotheses.

3) When KS2 discovers the need for the L1 information,
it expands the scape of the node’s arca-of-interest so that it is
capable of répresenting the needed infaormation if it is received.
KS2 then processes as best it can without the information,
pechaps creating no L3 hypothesis. If the needed L1 infor-
mation is subsequently received, K§2 can be retriggered to
reevaluate the earlier action and pecform corrective madifi-
cation if needed.®

The suggestions here for defining the arca-of-interest of a
node are only one possible set of guidelines; others could be
used. The area can also be adjusted dynamically to adapt to
changing conditions, such as movements of the nade or its
sensors or changes in demands on the node’s processing or
memory capacity. Whal is important is that each node has an
area-of-interest that defines its blackboard and thereby puts
bounds on the area in which local processing can occur and an
what information is important for it to receive. As suggested
by the example in this section, the particular sections ol the
arca-of-interest from which information needs to be trans-
mitced and received are lask-specific, depending upon the
specific requirements of the KS's and their selection and fo-
cusing in the network.

B. Network Configurations

Within the guidelines developed so far, a variety of orga-
nizational structures can be implemented in the network, de-
pending on the selection and focusing of XS's in each node. For
example, if all nodes contain the same set of K5'sand levels,

& There ace o variety of approaches for acquiring the needed information
which involve more explicit communicaticn amang nodes. For example, at-
tached o each transmitted hiypothesis is the name of the sender so thal fater
point-to-paint communication might be established. Even though the basic
approich to internode communication developed here is based on 2 '_"°:
implicit communication appreach (similar o the way KS's communica
through the blackboard), we briefly discuss seme of these mase explicit 8p-
proaches in Section [V-D2).
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the network structure is “flat” and information flow is essen-
tially lateral. This is the simple structure of the system used
for the experiments deseribed in the rest of the report. Fig, 4(a)
represents such a flat configuration.

More complex processing organizations occur where there
is a nonuniform distribution of KS's and levels across the
nodes. Fig. 4(b) shows an overlapping hierarchical structure.
Fig. 4(c) shows the implementation of what is called a *ma-
trix”” configuration in organizational structuring (see, for ex-
ample, [9]). In this configuration, each of a set of gencrai-
purpose nodes (at the higher Jevels) makes use of information
Irom lower level specialists.

Fig. 4 shows simplified schematics of the configurations
indicating the levels in each node's area-ol-interest, its ap-
proximate position in p one-dimensional location scheme, and
the internode communication paths. This figure does not in-
dicate the intensity of communication from what sections in
an area-of-interest information is being transmitted, whether
the paths are bidirectional, or the actual shape of the arca-
of-interest—varying these parameters leads to greater varieties
of network configurations. °

The empbasis throughout this report is an the flow of in-
formation among nodes, with cach node cooperating but
having contrel autonomy. Within this paradigm, various
control relationships can be synthesized implicitly by =stab-
lishing particular information flow paths, resulting in appro-
priate data-directed activily of nodes. A more explicit imple-
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mentation ol control relationships can be integrated with in-
formation ffow through the use of a mechanism in Hearsay-{{
called a processing poal [135]. This is an information structure
a KS creates on the blackboard as an active request for in-
formation of a particular type. KS's that can praduce such
information may then respond to the goal in the same way thay
would to the creation of a relevant hypothesis. When a goal is
transinitted between nodes, as with any other hypothesis, the
same kind of request-response activity ¢an occur. A mare
extended version of this notion, involving a two.way dialogue,
{5 the central idea in the contract pet formalism for resource
allocation in a distributed environment [21], [22].

C. Interncde Communication—Mechanism

In a Hearsay-I1 system, all inter-XS communication is
handled indirectly via the creativn, modification, and inspec-
tion of hypotheses on the blackboard. This same mechanism
may be used for internode communication. Consider 2 Hear-
say-TI system operating al one node in a network, with its
area-of-interest delining the scope of its blackboard and henge
the possible areas of attention of its KS"s. Now consider adding
to that nede a transducer XS with access 10 a communication
medium (e.g., packet radio) for receiving messages from other
nodes describing their hypotheses; if this RECEIVE KS
modifies its nade’s blackboard ta reflect those messages, other
KS’s in the node can use this information., Likewise, a
TRANSMIT KS can select hypotheses on the blackboard and
transmit them [or reception by other nodes. Fig. 5 shows a
network of such systems.

The decision to use the blackboard as the sole means of K5
interaction in Hearsay-11 was made 1o provide uniformity and
to keep KS’s relatively independent of each gther. The same
advantages accrue by using the blackboard for internode
communpication. A XS is triggered by and uses information on
the blackboard independent of what other KIS created it; thus,
information placed on the blackboard by the RECEIVE KS
is automatically usable by the other KS’s, indistinguishably
from locally generated information, Likewise, each KS posts
its resufts on the blackboard without concern for what atlter
KS’s might use it; thus, the information to be transmitted by
the TRANSMIT KS is already availabie on the black-
board.

A node could transmit, in addition to hypotheses, waiting
KS activation records from its scheduling queges, in order for
them to be exccuted at another node. 1f a node receiving such
an activation recard has both the KS and blackboard data
needed for executing the activation, the data-dirccted nature
af XS activation would have already created an equivalent
activation locally. If either the XS or data are not present, the
activation could not be exccuted by the receiving node. Thus,
it is redundant or useless to share the scheduling queuves.”

KS's in Hearsay-IT interact asynchronously, That is, a KS

 We are assuming here that she environment for K3 execution (i.e., the
KS itsell and the relevant biackbonrd data) is not transmitted. One could
consicder (ransmitting such information with XS activations far internode load
talancing. One could also consider trapsmitting nclivalions'and l'h_e nede’s
priarity evaluation of them in order 20 jnfluence the scheduling decisions of
other nodes.
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Fig. 5. Schematic of a network of Hearsay-I[ systems.

triggers whenever an event occurs of interest to it and, when
exccuted, makes use of whalever relevant information is
available on the blackboard to make the best statement it can
about the situation. Such asynchronous intrancde operation
naturally allows KS’s to handle asynchronous internode
communication without medificatian,

D. Internode Communication—Policies

The ability to run asynchronously ¢liminates the need for
communication costs of synchronization and simplifies the
interaction mechanisms. There is still a need to reduce the
amount of internode communication while praviding each nede
with the information needed [rom other nodes (i.e., guaran-
leeing level and lateral connectivity of XS processing). In-
ternode communication can be reduced by limiting the amount
of information transmitted, the set of nodes to which any
particular message is transmitted, and the distance the message
is transmitted.
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A centralized Hearsay-11 system must limit the number of
hypotheses created on its blackboard, in order to avoid a
combinatorial explosion of XS aclivity in reaction to these
hypotheses. The primary mechanism for limiting the number
of hypotheses is the structuring of 2 XS as a generalor function,
One activation of 2 XS can create a [ew most credible hy-
potheses. Stagnation of progress of those hypotheses can
trigger new activations to create alternative, less credible hy-
potheses. Asynchronous KS interaction, as described abave,
permits the additional hypotheses Lo be exploited in the same
manner as the ariginal hypotheses. Similarly, in a distributed
system a node need not transmit ali its information; rather it
can select its “best™ and subsequently respond to the need for
additional information by transmitting more.

The transmission of a picce of information is worthwhile
only if it is received by a node that finds it relevant. At one
extreme, ¢ach transmission could go to 21l nodes and each nede
would be responsible for selecting relevant information from
its received communications-—this global broadcast scheme
would require relatively high bandwidth. Alternatively, the
transmitting node could know which other nodes might be
interested in the information and, thereby, direct the com-
munication explicitly. The cost of maintaining such a complete
distributed knowledge of what is relevant.ta each node would
be high, especially since the information changes as the
problem solving progresses. The scheme we consider here is
a local transmission based on local knowledge of relevance.
Each message is transmilted to a few neighboring nodes. When
a node receives information relevant to it, it incorporates the
information into its problem-solving state. This action may,
in turn, trigger the node to retransmit the information (perhaps
meodified by its knowledge) on the basis of its local knowledge
of relevance.

The transmission of 2 limited subset of a node’s information
to a limited subset of other nodes leads to an incremental
transmission of information with probiem-salving processing
at each step, similar to the relaxation paradigm [20). This
transmission scheme results in what can be thought of as a
“spreading excitation™ of important news through the network.
As in relaxation, the propagation of a piece of information dies
out as it reaches nodes that find it irrelevant or unimpor-
tant. :

Local knowledge-based pracessing at each step of the
transmission can serve Lo correct errors in the information,
including errors introduced by the communication process
itself, Since communication is incremental, this error correc-
tion capability can serve to limit the propagation of errors, as
opposed to a global broadcast scheme, which propagates them
widely. One drawback of the incremental transmission strategy
is the increasc in the time needed to communicate important
information across the net, because cach local step adds some
delay. However, a node’s information is generally most dicectly
relevant to nodes nearby, and the information contained in
these neighboring nodes is generally more constraining (i.e.,
crror-correcting) than that of nodes farther away. Another
drawback is the possibility that the transmission of important
information will die out because the local measures of impor-
tance may be incorrect. This danger is reduced because of the
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correlation between the proximity of nodes and their measures
of relevance. It can be reduced further by increasing the
richness of connectivity of the internode communication paths,
at the cost of additional communication,

In order for one nade to have information relevant to an-
other, their areas-of-interest must overlap, since each node’s
area-of-interest defines what is of interest to it. Thus, the se-
lection of areas-of-interest also constrains the potential in-
ternode communication patterns. The criteria for selecting the
area-of-interest given in Section IV-A led us to place the center
of the node’s area at the location of the node’s sensors. Thus,
geographically proximate ncdes—i.e., those with sensors
proximale in the location dimension—have more averlap in
their arcas than nodes that are further apart, and therefore
have more to communicate,

The incremental communication strategy is also more
cconomical, since communication between nodes is generally
less costly the closer they are. This is certainly true if the
communication medium is hard-wired lines. It is also true for
radio: in fact, as the distance that messages need Lravei is re-
duced, the power requirement is reduced (and with it the cost
of hardware). Also, the same broadcast channel can be used
simultaneously in different parts of the network with less in-
terference.

In arder to implement such an incremental communication
system, three policies must be specified:

1) the RECEIVE KS’s inlegration of received information
onto the blackboard,

2) the TRANSMIT KS's sclection of information to
transmit, and

3) the determination of which nodes will communicate.

Al the heart of these differcnt policies are measures of the
relevance (i.e., expected impact) of information for the pro-
cessing at individual nodes. As described in Section 1I-B, es-
timating impact is an important part of the focus-of-control
issue for the centralized problem-solving system and meta-
information (called the “focus-of-control database™) plays a
key role in this estimation. Because this meta-information
attempts to measure the current state of progress in the
problem-solving system, it requires a global view of the prob-
lem-solving database (the blackboard). In attempting to de-
velop mechanisms to distripute the meta-information among
the nodes, there is s tradeofl between the accuracy and scope
of this information on one hand and the cost of acquiring it on
the other. The more accurate and globally representative this
meta-information, the better the estimate of the relevance of
local processing to other nodes. Better estimation leads to lower
transmission bandwidth requirements, less redundant pro-
cessing, and more responsiveness of the system to new, im-
portant information. However, the cost of acquiring the more
accurate meta-information has its own attendant bandwidth
and processing costs that can possibly outweigh the advantages
of better local estimates. This teadeoff is classic to all re-
source-allocation problems, i.c., the cost of doing the allocation
{in terms of processing and information acquisition necessary
to support it) versus the resources saved by doing it.

1) The Basic Policy: The basic policy for communication
1o be considered is for 2 node
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a) to accept any received information that is represen-
table within its area-of-interest and to integrate that infor-
mation onto its blackboard as if it were generated by local KS’s
(and, hence, update its meta-information accordingly),

b) toselect for transmission those hypotheses whose es-
timated impact is highest and that have not been transmitted
previously, and

¢) to broadcast them to all nodes that can receive the
communication directly.

This policy is simple in that communication is not directed
to specific receiving nodes, no distinction is made between
locally generated and externally received hypotheses, and the
mechanism already used to control local activity is also used
to select hypotheses to be transmitted.

This policy leads to the same kind of generater behavior that
is produced in the local KS activity: high-impact hypotheses
(locally decided) are transmitted initially. If, after a time, no
higher impact hypotheses arrive on the node’s blackboard
{either generated locally or received from some other node)
that subsume or compete with these transmitced hypotheses,
the stagnation mechanism will cause other, previously lower
rated hypotheses now to be rated high impact and, hence,
transmitted,

Since a node’s meta-information is strongly dependent on
those hypotheses judged high impact, and since it is those
hypotheses that are transmitted, a receiving node, by incor-
porating those hypotheses and maodifying its meta-information
accordingly, will implicitly incorporate a large part of the
sender's relevant meta-information. Thus, the meta-infor-
maztion will also be “relaxed™ across the network.

We will now discuss some variants of this basic policy. These
respond to particular characteristics of the problem-salving
task and the communication channels.

2) Variants: If the reliability of the problem-solving pro-
cessing is such that most hypotheses of small scope are incor-
rect and if most of the small-scope hypotheses can be refuted
by additional processing within the creating node, then it may
be better to transmit only hypotheses [or which the node has
exhausted all of its possible local processing and which come
through that processing with a high-impact measure. This
strategy, called focally complete, can 1) reduce the commu-
nication bandwidth needed, since fewer hypatheses need to be
sent (just those that survive unrefuted), 2) reduce the pro-
cessing requirements of the receiving nades, since they will
have fewer hypotheses to incorporate and judge, 3) avoid re-
dundant communication in the case thal two nodes have a large
area-of-interest overlap, and 4) increase the relevance of
transmitted hypotheses because their scopes are larger (due
to the additional processing) and are, thus, more likely to
overlap areas-of-interest of other nodes, The potential disad-
vantage is a loss of timeliness— the earlier transmission might
provide significant constraint for the receiving node.

A technique we call murmuring can be used to improve the
reliability of communication. In this technique, a node re-
transmits high-impact hypotheses. A simple approach is to
murmur periodically, independent of other communication.
A more efficient approach is to murmur high-impact hy-
polheses unless the node receives or generates higher impact
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hypotheses. The stagnation measures (see Section 11-B) can
be used to implement this strategy. Murmuring is 2 knowl-
edge-based technique which can be used to correct for lost
communications due to intermittent channel or nede failures
and to bring up-to-date new ar moving nodes, thereby gaining
some measure of dynamic -network configuration. This
mechanism has the advantage of preserving anonymity of
communication and requires no explicit handshaking or ac-
knowledgment.

The mechanisms described so far involve the acquisition by
cach node ol a model of the processing state of other nodes
implicitly through the problem-solving information received
by the node. Such implicit mechanisms are simple, but may
not be efficient enough for some cases. For example, the as-
sumption that nodes thal can communicale directly have
overlapping areas-of-interest is needed to guarantee that rel-
evant and needed information is propagated chroughout the
network; if, however, there are discontinuities or insufficient
redundancy in these averlaps, a mare explicit mechanism is
needed to guarantee a rich enough connectivity to handle the
problem-solving,.

One way to handle such problems is for a node to transmit
a description of its area-of-interest, explictly indicating what
kinds of informatian it needs and what kinds it can produce,
i.e., its inputfoutput (I/O) characteristics. Each node receiving
.this message responds with a reply containing its 1/0 char-
acteristics. If the initiating node is unsatisfied with the richness
of the neighborhood connectivily implied by the responses, it
can transmit another message, indicating which of its [/O
requirements are not sufficiently satisfied and requesting its
neighbors to ask their neighbors, in turn, to fullill them. The
initiating node can continue expanding the area of its request
until all of its requirements are met or until it decides to give
up. Subsequently, the intermediate neighbors will act as
store-and-forward message processors supporting the desired
connectivity, This provides a mechanism lor generating explicit
communication paths between nodes that have no direct
communication capabilities. This may be necessary for some
of the more complex network configurations, ¢.g., as in Fig,
4(c), in which overlapping arcas-of-interest do not necessarily
imply the geographic proximity of the nodes.

This process can be viewed as the dynamic increase of the
area-of-interest of each intermediate nade so that it can accept
the kind of information it is requested to forward. Even though
the intermediate node might do no local problem-solving
processing on this information, once it has accepted it, the
normal criteria for transmission will handle the forwarding
function. :

Madification of a node’s area-ol-interest in response to ex-
plicit meta-information can also be used for resource alloca-
tion. Far example, if a node has completed all possible pro-
cessing within its area-of-interest and does not expect any new
tasks to appear within that arca-of-interest for some time, it
may be worthwhile for it to advertise for new work, using a
mechanism similar to that used for insuring connectivity.
Conversely, if 2 node finds the demands on its local processing
power too great, it might shrink its area-ol-interest, thereby
reducing the domain of its activity. [f there is sufficient overlap
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of areas-of-interest, this action results in just a reduction of
redundancy:; if the overlap is not sufficient, a rencgotiation,
using the [/O characteristics, is needed to assure coverage of
the whole problem.

[t may be useful to transmit other meta-information wity
hypotheses: for example, the name and location of the sending
node, the time the hypothesis was generated, the amount of
computing effort expended on the hypothesis, and the number
of nodes that previously processed the hypothesis, The re.
ceiving node can augment its meta-information with this jn.
formation.

Fig. 6 summarizes the design decisions we have made along
each of the dimensions of Fig. 2.

VY. THE EXPERIMENT

An experiment was performed to determine how the prob-
lem-solving behavior of such a netwark of Hearsay-I1 systems
compares to a centralized system. The aspects of behavior
studied include the accuracy of the interpretation, time re-
quired, amount of internode communication, and robustness
in the face of communication errors, This experiment was a
simulation only in part, since it used an actual interpretation
system analyzing real data, i.c., the Hearsay-I[ speech-un-
derstanding system [8].

A. Simulating a Network

The simulation aspects of the experiment involved emulating
a distributed network of nodes with a broadcast communica-
tion structure. This was accomplished by developing a multijob
coordination facility for the Decsystem TOPS-10 operating
system. This facility coordinates communication and con-
currency ameng a collection of independent jobs, each running
a Hearsay-I[ speech-understanding system. The network
communication structure is simulated by a shared file that
holds 4 record of each transmissian in the netwerk and addi-
tional information, such as when and by which node it was
generated and which nodes have read it. All jobs can access
this file theough an internode communication handler added
to the basic Hearsay-II system. The simulation of concurrency
among the jobs is accomplished &y keeping the jobs® clock-
times in step; each time a job makes a request to transmit or
receive internode communication, it is suspended if its local
processor time is no longer the smallest. In this way, the sim-
ulation of concurrency is event-driven rather than sampled;
this permits accurate measurement and comparison of con-
current events across simulated nodes,

B. Selection of KS's and Areas-of-Interest

A major design dccision in the decomposition of a system
is the selection and focusing of XS processing at each node. In
the case of the distributed Hearsay-II speech-understanding
system, the decision was to allocate all the KS's to each node.
The area-of-interest for ach node has all the infarmation
levels, but is restricted to a statically assigned segment of the
location dimension, i.c., to a segment of the speech signal. Two
aspects of the particular blackboard structurc and KS con-
figuration of the Hearsay-I1 system used in this experimenl
motivate this design.
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Fig. 6. Design decisions [oz a network of Hearsay-1[ systems.

The first aspect concerns how hypotheses are located on the
blackboard. The information levels of the Hearsay-[[
specch-understandiog system are shown in Fig. 7. The position
of an hypothesis on the lacation dimension is defined by its time
segment within the spoken utterance, For example, a hy-
pothesis might be that the word “teday™ occurred at the word
level from ms 100 to ms 600 in the utterance. One can think
of cach node as having a microphone sensor which acquires its
input from a scgment of the ulterance. As discussed in Section
IV-A, it is natural to define 2 nede's arca-of-interest as being
centered, in the location dimension, over its sensor's area. Thus
we are led to a one-dimensional retwork with each node Iis-
tening to some portion of the utterance and with the portions
overlapping.

The second aspect concerns the propagation of information
across levels of the blackboard. XS processing in this version
of the Hearsay-11 speech system {sce Figs. 7 and 8) is bottom-
up and pipelined (without feedback) until the word level is
reached; i.e., all segments tee created, then all syllables, then
a sclection of words. Additionally, the ¢ontext of hypotheses
required for KS’s operating at these levels is highly localized
in terms of position within/the utterance-—i.e., in the location
dimension. Thus, by choosing the areas-of-interest to have
sufficient size and overlap in the location dimension, it is
possible to guarantes that all bottom-up processing to the word
level can be accomplished with no internode communica-
tion—i.e., there is no need for communication 10 maintain
lateral connectivity for this processing—al the cost of possible
redundant processing. The “sufficient™ size and overlap criteria
must be such that all possible valid hypothescs at these levels
can be hypothesized beciuse their time regions lic totally
within at icast onc node.

Above the word level, the mere incremental, data-directed
form of processing occurs, in which the context of hypotheses
required for KS processing cannot be localized in the time
dimension. [n particular, phrase hypotheses must be tcans-
mitted among nodes. | )

Additionally, KS processing at the phrase level often re-
quires the detailed charpcteristics of the underlying word
support for the phrase abstractions. As discussed in the ex-
ample in Section [V-D.1, there are 2 number of possible ap-
proaches to providing the appropriate information to a node.
The approach taken here is to transmit explicitly with each
phrase hypothesis the name, rating, and time region charac-
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Fig.7. Levels and knowledge sources of the speech-understanding system,
Each KS is indicated by one or two vertical arcs, with the circled end indi-
cating the levei of its input 2ad the pointed end indicating the Jevel of its
cutput,

teristics of cach word contained in its underlying word support.
However, there is still a limitation on the scope of a node’s
area-of-interest at the phrase level, since local XS processing
at that level can merge disjoint phrase hypotheses into an en-
larged phrase hypothesis only il their juncture at the segment
leve! is contained in the area-of-interest of the node. This re-
quirement must be met in order for the KS's to ascertain that
particuiar acoustic phenomcena occur at the juncture. This
implies that a received phrase hypothesis should be discarded
if it does not overlap the node's area-of-interest at the segment
level.

C. Communication Strategy

The previous section defines the lype of information to
transmit (phrase hypotheses and their underlying word sup-
port) as well as the policy for its reception (i.e., ignore all re-
ceived hypotheses that do not overlap the area-of-interest).
What remain to be described of the communications strategy
are the mechanisms for determining which phrase hypotheses
should be transferred and to which nodes they should be sent.
Three policies were explored for selecting hypotheses to
transmit. ;

The first policy, called “full transmission,"” is to have no
seiection criteria and to transmit each phrase hypothesis as
soon as it is created. This policy provides a benchmark for the
other policies and simulates 2 nonsynchronized, centralized
blackboard at the phrasc level.

The second policy, called “dynamic thresholding,” corre-
sponds to the basic palicy presented in Section IV-D.1 and uses
the local focus-of-control database as a basis for evaluating
the importance of a locally generated phrase hypothesis. The
focus-of-control dalabase keeps track of the best phrase hy-
pothesis created (or received) for each time area of the utter-
ance. The criterion for “best™ hypothesis is constantly re-
evaluated on the basis of whether a hypothesis has been suc-
cessfully extended into an enlarged hypothesis—il not, its
rating is decreased, possibly resulting in the choice of another
hypothesis to replace it as the best in the area, The criterion
for transmission using this policy is straightforward: transmit
a hypothesis when it becomes the best in its area.
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Signal Acquisition, Parameter Exiraction, Segmentation, and Labeling:

SEG: Digitizes the signal, measures parameters, and produces a loheled
segmentation.

Waord Spotting:

POM: Creates syllable-class hypatheses from segments.

MOW: Creates word hypotheses from syllable classes.

WORD-CTL: Contrals the number of word hypotheses that MOW
creates.

Phrase-island Generation:

WORD-SEQ: Creates word-sequence hypotheses that represznt patential
pheases, from werd hypothieses and weak grammatical knowledge,

WORD-SEQ-CTL: Contrai the number of hypetheses that WORD-SEQ
creates.

PARSE: Attzmpts to parse a word-sequence aad, if suceassful, creates
a phrase hypothesis from it.

Phrase Extending:

PREDICT: Predicts all pessible words that might syntactically precede
or follow a given phrase.

VERIFY: Rates the consistency between segment hypotheses and a
contiguous word-ghrase pair,

CONCAT: Creates a phrase Hyzothesis from a verified, conliguous
word-phrise pair.

Rating, Halting, and Interpretation:

RPOL: Rates the credibility of $2ch new or modified hypothesis, using
infarmation placed on the hypothesis by other £S's,

STOP: Decides ta hale processing {detects a camplele sentence with a
sufficiently high rating, or notes the system has exhausted its available re-
sources), and selects the best phrase hypothesis (or a set of complementary
parase hypotheses) as the output.

SEMANT: Generates an unam®diguous interpretation for the informa-
tion-retrieval system which the user has queried,

Fig. 8. The speechrunderstanding KS's,

The third policy investigated, called “locally complete,” is

to transmit an hypothesis if there is no more local £S5 pro-.

cessing that can be performed an the hypothesis. This condition
is recognized when the acoustic regien of an hypothesis “al-
most” covers the node’s acoustic arsa-of-interest. This policy
implements a simplified version of the locally complete strategy
presented in Section 1V-D.1. This version is simplificd since
the impact of 2 locally complete hypothesis is never explicitly
evaluated. Rather, the successful extension of a phrase hy-
pothesis to the boundaries of the node’s arca-of-interest is taken
as an implicit indication chat the hypothesis is important and
should be transmitted. Additignally, in order to minimize the
number of hypotheses transmitted, none of the intermediate
* phrase hypotheses used in the construction of 2 locally com-
plete hypothesis are transmittad.

Due to the stalic allocation of the areas-of-interest and the
smail number of nodes (a maximum of three), a fully con-
nected communication configuration was chosen. Thus, we arc
not able to test more complicated and selective communication
strategies in which a limited subset of nodes receives each
transmission. In this broadcast strategy, all nodes receive the
message, the seander does nat receive a pasitive acknowledg-
ment that the message has been received correctly, and the
receiver does not know the identity of the sender.

YL R_ESULTS

There are two main purposas for gathering experimental
data on the performance of a network of Hearsay-[1 systems.
The [irst is to provide empirical evidence for the assertion that
the additional uncertainty introduced by distribution can be
handled within the basic, uncertainty-resolving mechanisms
of the Hearsay-11 architecture. The sccond is ta see if there are
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dynamic interaction phenomena among the nodes that we had
not anticipated from our static analysis, particularly phe-
nomena dealing with communication bandwidth and overal]
performance.

A. Network versus Centralized

The most important experimental results come from com-
paring the performance of a threc-node Hearsay-1T system
with that of the centralized version. Given the requiraments
described in Section V-B and the lengths of the utterances in
the test data, three nodes is about the maximum that can be
used. Both systems were configured with the same task lan-
guage (called “S3"), which has a 250-word vocabulary and
a very simple grammar.® We chose for test data a set of ten
utterances that had been understood carrectly by the cen-
tralized system. :

The nodes in the network were configured with extensive
overlap between their areas-of-interest {see Section V-B). Fig.
9 shows the ten sentences and the areas-of-interest for each of
them. The locally complete strategy (see Section V-C) was
used for internode communication.

The network system correctly understood all ten of the ut-
terances. Thus, the uncertainty introduced by this distribution
of the problem solving was handled by the basic Hearsay-11
architecture without the need for additional mechanisms. This
basic result has been substantiated by consistently correct
interpretations in several additional experiments with, in ture,
1} decreased area-of-interest overlaps, 2) less-constraining
grammar, 3) alternative communication policies (Section
VI-B), and 4) two-nade configuration,

Fig. 10 is a summary of the execution costs for running these
len utterances on the netwack gystem relative to the cests on
the centralized system, The summary is along two dimensions:
the precessing time and the number of phrase hypotheses
gencrated and transmitted. As described in Section V-B, the
selection of areas-of-interest for these experiments has led to
a configuration in which all bottom-up processing through the
word level can be accomplished with no internaode communi-
cation. Since the purpose of these experiments is to investigate
internode cooperation, as opposed to task-specific paralielism,
the times reported are of the processing after that bottom-up
phase has completed. Note that the results of the bottom-up
phase are used throughout the subsequent precessing—in
particular, the segment and word hypotheses within a node are
constantly used by the node while investigaling the extension
of phrase hypotheses. The cationale of the distributed design
is to avoid the transmission of the word and segment hypoth-
eses to a central site. When reporting processing time in the
network case, the time given is the maximum time over the .
three nodes, which is an cstimate of the clock time of the
simulated netwark. ;

For the network system, threc counts of phrase hypotheses
are used. First, is the number of phrase hypotheses generated
locally by each node, summed over the three nodes. This
measures the amount af search marce directly thao daes pro-

% The Hearsay-1l speech-understanding system is configurable with 2
varying cange of task languages, The use here of o simple language reduced
the aimount of computing rescurces required for the experimental runs.
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Fig. 9. The test utierances and areas-of-interest.

cessing time. Next, is the number of these hypotheses that werce
selected by the locally complete strategy for transmission. This
is 2 measure of the channel ¢osts for communication. Finally,
there is the total number of phrase hypotheses that occurred;
this is the sum over the three podes of the number of hypotheses
created locally by the node and the number of received hy-
potheses accepted by the node and placed on its blackboard.?
For ezch of these three measures, Fig. 10 gives the ratio of that
number to the number of hypotheses created in the centralized
system.

The major conclusions that ¢an be drawn from the semmary
statistics in Fig. 10 are as [oilows:

1) Effective cooperation was achieved among the nodes
even though only 44 percent of the locally gencrated hypoth-
eses were transmitted. This represents 77 percent of the
number of hypotheses crealed in the centralized runs.

2} There was a slight speedup ol 10 percentin performing
the interpretation above the word level with three nodes. Thus,
the interpretation took 2.7 (=3 X 0.9) times as much pro-
cessing as compared to the centralized version. (Recall that
the times reported are of the high-level, highly cooperative
processing only. [f the bottom-up processing is included, which
accounts for about half the time in the centralized system,
there is an overall speedup of about 60 percent for the three-
node configuration over the centralized version).

We classify the increase in the-tolal amount of high-level
processing inlo three areas: communication, incompiete in-
formation for knowledge application, and incomplete meta-
information for focusing.

Communication costs include deciding which hypolhcscs
to transmit and accept as well as the physical act of message
passing. Also, the receiving node must merge accepted hy-
potheses into its blackboard structure, These sending and re-
ceiving functions account [or about six percent of the pro-
cessing time. To reduce the size of cach message, the gram-
matical structure of the phrase hypothesis is not transmitted;
rather, the receiving nede recomputes that structure when

? This third aumber muy be more or less than the sum of the other two be-
cause a transmiited hypothesis is accepled by u receiving node only if it
overlaps the node's arca-of-interest, Thus, an hypothesis transmitted in a2
thres-node network might be actepted by zero, one, 07 Lwo nodes

T —

[

Rarle: Diunitated/ Consvalizad
»
P —

]
|
»

e
— ' ]

| |
L]
Wiewnte | 7 3 ‘ s . 7 [} v

liwe x.‘ ] 20 14 “ a9 - [} 1L L] “ o

Contralized
ne. " [} " 22 3 10 L} L] M 148
brp ot e
R iy g I Tt
e Sty v
 e— N /7 ///7. =

Fig, 10. Pesformance of the ceatralized system versus the network
system using the locally-complete tzansmission strategy.

needed, thus trading off additional processing’ for reduced
communication bandwidth. None of these processing costs
occurs in the centralized system,

Incomplete information makes it more costly 1o procsss
hypotheses. For example, in the centralized sysiem the
PREDICT KS uses the heuristic of attempting to extend first
in the direction with the fewer number of predicted words (i.e.,
either at the beginning or end of Lthe phrase). [n the distributed
system, this heuristic often cannot be exploited because the
preferred direction would carry the prediction outside the
node's area-of-interest. The inability Lo predict in the direction
of greater constraint leads to more word verification process-
ing. A more subtle cilect of a node’s limited area-of-interest
is a shift in the distribution of the length of phrase hypatheses
towards hypotheses having fewer words, [n general, shorter
phrase hypotheses have less grammatical constraint on the
number of words they predice, leading to additional word
verification. These effects showed up as a doubling of the
number of words predicted per phrase hypothesis.

Incomplete meta-information can lead o redundant search
and unnecessary search (i.e., with a low likclihood ol a correct
solution}, which reduce the potential speed-up benclits of a
parallel search. Redundant search occurs because there is no
centralized scheduler to coordinate the search of nodes with
overlapping arcas-of-interest. Unnecessary search cccurs
because the search paradigm is opporlunistic across the length
of the utterance, i.c., working out from a few islands of reli-
ability discovered in the data. These islands are not, in general,
distributed uniformly among the nodes in the nctwork. This
leads to cases in which a particular node can do little effective
pracessing until it reccives constraining information, i.e., a
reliable island, from another node. Likewise, after a node has
fully explored ail of its reliable islands, it may have little cf-
fective processing to do. The processing occurring before the
node receives a reliable island and the processing after it has
fully exploited all of its reliable isiands is, from 2 global view,
unnecessary, Thus, the opportunistic scheduling pactially se-
quentializes the search: The elfect this has on the parallel

speed-up in a network system depends on the distribution of
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jslznds across the nodes—the more uniform the distribution,
the zreater the speed-up. Fig. 11 illustrates this by showing
how one of the test utterances was recognized in the centralized
«nd distributed systems.

Because of the uncertainty in knowledge and data in speech
understanding, such unnecessary search may produce hy-
potheses with sufficient credibility and scope to be transmitted.
This internode communication is itself unnecessary and may
distract nodes doing productive work, thus causing even more
unnecessary search. This distraction occurs because the esti-
mate of impact ol an hypothesis is based in part on its scope
(length). Thus, a long, moderately rated hypothesis may be
considered to have more impact than a short, highly rated one.
If 4 node lacking a reliable island does not soon receive con-
straining hypotheses, it is often able to develop hypotheses of
moderate credibility and large scope which it then transmits.
If such an hypothesis is received by a node with a highly reli-
uble island before it has been able to develop that island fully,
the node may switch its attention to the longer, received hy-
pothesis, thus delaying, perhaps indefinitely, the useful pro-
cessing of the shorter, highly credible island. The recognition
trace of the utterance shown in Fig. 12 shows the results of such
distraction.

This method of estimating impact for focusing decisions is
reasonable in a centralized system in which all the input data
are received together. In such a system, the development of
hypotheses is implicitly mare synchronized—the higher rated
island would have been extended before the lower rated hy-
pathesis would have been developed. A possible solution to this
problem in the network system is to normalize the estimate of
impact of received hypotheses according to the scope of the
Jargest locally generated ones.?

Five utterances were also run using a more complex (i.e.,
less constraining) gramemar, called “S15.7 Again, all five were
recognized by both the centralized and three-node configu-
rations, adding credence to our hypothesis that the accuracy
of the problem solving can be maintained within the distributed
configuration. [n these runs, the overall speedup increased to
30 pereent from the 10 percent of the simpler grammar, indi-
cating more parallelism in the larger search space. The fraction
of hypotheses transmitted remained similar to the fraction in
the simpler grammar runs.

B. Transmission Policies

The network data in the previous section were generated
using the locally complete transmission policy. Fig. 13 presents
experimental comparisons of that policy with those of dynamic
thresholding and full transmission. (See Section V-C for de-

scriptions of these policies.) The utterances used were the first -

five of the ten used in the previous section; the same areas-
of-interest were used. All five utterances were correctly un-
derstood under all three transmissian policies.

On the basis of both processing time and number of hy-
potheses transmitted, locally complete is more efficient than
the dynamic thresholding, which in turn is better than the full

10 [ might be desirable to expand such differential treatment of received
hyputheses, ¢.g., to use meta-infarmation atout the transmitting node for
eviluuting the received hypothesis.
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Fig. 11. Recagnition precess for these partial interpretations of utterance
735 that led to the correct overall intespretation. Joined lines indicate in-
tranode hypothesis creation. Arrows show internade communication of an
hypathesis. Numbers in parentheses indicate nelworlk processing time in
seconds when the hypothesis was ereated (C) or received as a message (R).
[n the multinede case, a second aumber indicates the node number {e.g..
#+2 for nade twa). (a) In the centrulized system, (b) In the three-pode
configuration,

transmission. It thus appears that the timeliness advantage of
the dynamic threshoiding policy is dominated by the reductions
in redundant processing and distracting communication of the
locally complete. In some experiments with a more complex
grammar, the differential between the two sclective policies
was reduced —our conjecture is that the extra timeliness of the

dynamic thresholding policy becomes more impartant as the

complexity of the search increases.

C. Communication with Errors

In order to assess the robustness of the network system with
respect to communication errors, experiments were run in
which messages received by a node are randomly discarded
with a specilied probability. This serves to mede] communi-
cation systems with good error detection but poor correction
capabilities, e.g., packet radio. Selection at the receiving end
allows for cases in which a broadcast message is received
successfully by some nodes but not others.

Two characteristics of the network system should make it
rooust in the face of communication errors. First, thers are
redundancies that can recreate the information in lost mes-
sages; and second, the system can exploit the recreated infor-
mation even though it arrives later than would have the orig-
inal, lost communication. There are several ways of recreating
the lost information. '

1) The overlapping of areas-of-interest leads to the possi-
bility of creating redundant information directly.

2) The transmission policy can introduce redundant com-
munications. For example, the dynamic threshold policy (and
the full transmission policy) can produce a sequence of mes-
sages representing the stages of development of a partial so-
lution. Each message in the sequence subsumes the information
in the previous messages. This redundancy does not exist in the
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Fig. 12. Recognition process for those puctizl interpretations of utterance

%6 that led to the correct overall interpretation. {2) In the centralized
system. {9) [a the three-node conliguration.

locally complete policy, which transmits only the [inal message
in thal sequence; it is for this reason that dynamic threshold
was used for this experiment. Other mechanisms, such as
muermuring (Section 1V-D), can be used for additional explicit
redundant communication—we have not explored them in
these experiments,

3) The broadcasting of messages makes it possible that
messages might be lost to one node, but re cived by another.
The node that correctly receives the information might operate
on it and subsequently broadcast 2 message based on infor-
mation in the original message. The rebroadcast may be re-
ceived by the node that lost the original version. This propa-
gation of information among the nedes thus implicitly creates
redundant communication paths.

4) The method of building an interpretation by incremental
aggregation of partial interpretations makes il possitle to
derive a correct inlerpretation in multiple ways. This kind of
vehavior has been observed in the centralized version of the
Hearsay-1[ speech-understanding system—~for cxample, cases
have oceurred in which a complete interpretation could not be
constructed from one correct island of reliability because of
KS errars, but could be derived from another. Because a par-
ticular message may not be crucial for all ways of deriving a
correct interpretation, its loss does not preclude a correct in-
terpretation.

These cxperiments used the same data as those in Section
VI-B. The dynamic threshold transmission policy was used,
to provide more redundancy in communication than the lecally
complete. Fig. 14 shows the performance with 0, 25, 33, and
50 percent of the messages discarded. One utterance of the five
was not correctly recognized (i.c., no complete interpretation
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Fig. 14, Performance with communication losses {using the dynumic
threshold transmission policy).

was constructed in the maximum allocated processing time)
in the 25 and 33 percent cases, and three were missed in the
50 percent case. There are several interesting paints about the
statistics. For example, the exceution times [or some runs was
decreased because of the errarful communication channel.
This occurred when messages, discarded due to the simulated
communication failures, happened to be either incorrect or
redundant. Other runs, as expected, required additional pro-
cessing time and communication 1o recreate the nonredundant
information lost due to communication [ailure. !
Several runs were not correctly recognized because a mes-
sage was lost which contained the first or last word in the ut-
erance.’! Information about these extreme areas is contained
in only a single node and is, thus, especially difficult to recreate

1 Because of the randemness of message lossage, this happened Lo cecur
in ulterance # 2 in the 25 percent error case but not in the 35 percent <use,
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in another node. The loss of this information is not always fatal.
Fig. 1 5(b) shows an example where [irst-word information was
lost on two separate transmissions ([+HAVE+ANY from
node | to 2 and [‘FHAVE+ANY+NEW+PAPERS+BY
from node 1 to 3). The system, however, was resilient enough
to recreate the information through a roundabout path. Fig,
1 5(a) is a trace of the system recognizing the utterance when
this information was not lost.

[n summary, the system's performance with a faulty com-
munication channel lends credence to our belief that the ar-
chitecture is resilient and permits a tradeoff between the
amount of processing and reliability of communication. We
further believe that the introduction of a knowledge-based

murmuring scheme would correct most of the incorrect runs

without increasing communication costs significantly.

VIT. CONCLUSIONS

Let us review our madel for distributed interpretation sys-
tems.!'2

1)} There is a network of systems (nodes}, each of which
is able to perform significant local processing in a self-directed
way. For example, il a node does not receive a particular piece
of infarmation in 2 given amount of time, it is able to continue
processing using whatever information is currently available
to it.

2) The parts of the prablem a node is responsible for
working on is called its area-gf-interest and is defined by the
information it needs and produces. In general, areas-of-interest
of the nades overlap. The local database of a node (i.e., what
information it actually has) may be incomplete or inconsistent
with respect to the databases ol the other nodes. Nades resolve
the uncertainty in their information through an iterative,
asynchronous exchange of partial, tentative results at various
levels of abstraction,

3) Control of cooperatiop amang the nedes is decen-
tralized and implicit in the autonomous behaviors of the in-
dividual nodes. Each node uses its local estimate of the state
of problem solving in the netwerk to control its processing (i.c.,
what new inlormation to generate) 2nd transmissions to other
nodes.

This model differs [rom conventional approaches to dis-
tributed system design in its emphasis on dealing with uncer-
tainty and error in control, data, and algorithms caused by the
distribution as an intcgral part of the network prablem-solving
process. An atlractive structure for accomplishing this is an
opportunistic problem-solving structurc and, in particular, one
which has implicit (data-directed) information flow and
control flow. 4l

The conventional approach to the design of distributed
systems is to overlay some basic, centralized problem-solving
strategy with new mechanisms to handle the uncertainty and
errors introduced by the distribution. Il is our hypothesis that
this conventional approach limits both the type of systems that
can be distributed effectively and the covironments in which

"2 Smith and Devis [23] campare this mode! with the contract net medel.
Fox [8] discusses distributed problem-golving models from the viewpaint of
organizational theary.
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Fig. 15. Trace ol ulterance g2 processing with and without messages dis-
carded, showing those partial interpretations that led to the correct overall
interpretation. {2) With no messages discazded. {b) With 3§ percent of the
messages discarded,

they can operate. We feel the key to the design of distributed
systems is to incorporate mechanisms for dealing with uncer-
tainty and error as an integral part of the problem-solving
appreach,

The Hearsay-I1 architecture appears to be a good one for
such an integrated approach. The processing can be partitioned
or replicated naturally among network nodes because it is al-
ready decomposed into independent, self-directed modules
(i.e., the KS"s), which interact anonymously and are limited
in the scope of the data they need and praduce. Issues invelved
in the distribution of the control and data structures of Hear-
say-1T can be dealt with effectively because of the mcchaniSFns
already in the system for resolving uncertainty caused by in-
complete or incorrect data and K§ processing. [et us rcvigw
these mechanisms and their impact on the ease of system dis-
tribution,'3 :

Mechanism 1: Opportunistic nature of information gath-
ering—Problem-solving is viewed as an incremental, 0p OF=
tunistic, and asynchronous process in which decisions, if:tho¥
look promising, can be made with incomplete information'a
later reevaluated in the light of new information.

Impact 1: Reduced need for .<:ym:hroniz:ntion.-—Bet:al-lS°
of this style of problem solving, a node does not have an a prt
arder for processing information and can exploit incomplete

1) Not all these mechanisms were exploiled in the distributed Hearsay-1],

. .cribed in the previ tion, [n
speech-understanding system desceribed in the pr c\flous.!ltc
the possibility for exploiting a particular mechanism 18 dependent 0a the
specifics of the preblem-solving application being distributed.
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local information. Thus, the processing order within nodes and
the transmission ol information among nodes does not need
to be synchronized.

Mechanism 2: Use of abstract information—Because the
problem-solving database is structured as 2 loose hierarchy of
increasingly more abstract problem representations, an ab-
‘stract representation of one agpect of the solution can be used
to constrain analysis of other aspects of the prablem.

Impact 2: Reduced internode communication band-
width—The ability to use abstract information permits nades
ta cooperate by using messages with high information content;
thus, the communication bandwidth necded for effective co-
operation is reduced.

Mechanism 3: Incremental aggregation—A solution is
constructed through the incremental piecing together of mu-
tually contraining and consistent informaltion; incorrect partial
solutions naturally die out as a result of this process.

[mpact 3: Automatic error detection—This methed of
probiem solving allows a distributed system to detect and re-
duce the impact of incorrect decisions caused by incomplete
and inconsistent local databases and communication Josses.

Mechanism 4: Problem solving as a search process—Be-
cause of uncertainty in data and KS processing, many alter-
native partial solutions need to be examined in the process of
constructing a complete and consistent solution; in this search
process, the miore uncertainly there exists, the larger the
aumber of alternatives that, in general, have to be explored.

Impact 4: Internode parallelism—The requirement that
many alternative partial solutions need Lo be examined gen-
erates the possibility that this search can be carricd out in
paralle! by different nodes. The asynchronous nature of in-
formation gathering introduces the possibility for additional
parallelism, since different aspects of the problem and different
information levels can be warked on independently. Further,

the introduction of additional uncertainty through incomplete.

and inconsistent local databases can be traded off against more
search—to the dégree that this extra search can be done in
parallel and daes not itself generate proportionally more in-
ternode communication, internede bandwidth can be lowered
without significant degradation in system responsc time.
Mechanism 5: Functionally-accurate definition of solu-

tion—Due to the opporlunistic nature of processing and the.

existence of diverse and overlapping KS's, the correct solution
may be derivabie in different ways, i.e., using different ordering
sequences for incrementally constructing the solution com-
ponents or using different solution componcents. Because a
solution is based on a set of mutually constraining pieces of
information, it is also possible for a correct solution to incor-
porate information that is correct but not considered very
likely, or tousc incorrect information that is considered very
likely. )
Impact 5: Self-correcting—Because there are multiple
paths from which a solution can be derived, it is possible to
correct for what would be considered Ffatal ercors in a con-
ventional distributed problem-solving system. Additionally,
system reliability can be varied without modifying the basic
problem-solving structure, through the appropriale selection
and focusing of local node precessing. For example, it is pos-

" cessing in other nodes,
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sible to improve reliability by enlarging the overlap among
nodes' areas-of-interest, thus increasing the likelthood of
generating redundant information. This increases the number
of alternative ways that a solution can be derived.

Within the basic distributed problem-solving structure de-
fined by these mechanisins, several other mechanisms have
been incarporated or proposed to handle issucs specific to a
distributed environment.

1) To limit internede communication, an incremental
transmission mechanism {with processing at each step) has
been developed in which only a limited subset of 2 node’s in-
formation is transmitted and to only a limited subset of nodes.
A node acts as a generator, which transmits only 2 few most
credible picces of information and which can subsequently
respond to stagnation ol progress by producing alternative
information. As part of this approach, two policies (“dynamic
thresholding™ and “lecally complete™) have been developed
for controlling the gencrator function.

2) To increase network reliability, a knowledge-based
mechanism called “murmuring”™ has been proposed. Here, 2
node retransmits high-impact information if during a specified
time interval it neither receives nor generates higher impact
information. Murmuring can be used to correct for lost com-
munications due to intermittent channel or node failures and
to bring new or moving nodes up-to-date.

3) To guarantee the appropriate communication connec-
tivity among nodes, 2 decentralized mechanism for con-.
structing a communication netwark has been developed. Using
this mechanism, which relies an descriptions of the 10
characteristics of each node, nodes act as store-and-forward
message processors to provide needed connectivity. A similar
mechanism can be used for dynamic allocation of processing
tasks among nodes.

4) To provide more sensitive implicit internade control
while still retaining decentralization, each node may transmit
explicitly its local control information (*meta-information™).
Nodes can, thus, determine more directly the state of pro-

The experiments described here explore these mechanisms
in only a limited way. A number of issues need to be resolved
in order to gain an understanding of the more general appli-
cability of this approach.

Distributed Focus of Control:

1) How to coordinate in a decentralized and implicit way
the activity of nodes that have overlapping (i.e., redundant)
information, 5o as to contral redundant computation, and

2) How to decide locally that a node is performing un-
necessary computation and how to select the aspects of the
problem on which it should instead focus its attention. This is
the problem of dynamic allocation of information and pro-
cessing capabilities of the network.™*

Self-correcting Computational Structure:

1) What and how much uncertainty (errors) can be

14 This issue is zelated to the classical allocation problem in netwarks: how
(o decide if the cost of actessing a distant database is too expensive and
whether, inslead, the processing sheuld te maved closer to the data or the datla
moved closer to Lhe pracessor.
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handled using these types of computational structures, and
what is the cost in processing and communication to resolve
the various types of errors.

Task Characteristics and the Selection of an Appropriate
Netwark Configuration:

1) What characteristics of a task can be used to select
a network conliguration appropriate for it? When can implicit
control and information flow structures be used? Similarly,
when should flat, hierarchical, or matrix configurations, or
mixtures of them, be used? Candidate characteristics include
the patterns of K§' interaction, the type, spatial distribution,
and degree of uncertainty in information, interdependencies
of partial interpretations, size of the search space, desired re-
liability, accuracy, responsiveness and throughput, and
available computing resources.

The Hearsay-II speech-understanding system, with only
minor changes, performs well as a cooperating network, even
though each node has 2 limited view of the input data. In the
cxperiment with communication losses, system performance
degrades gracefully with as much as 50 percent of the messapes
lost; this experiment also indicates that the system can often
compensate automatically for the lost messages by performing
additional computation. These results support our general
madel of distributed systems design. They also indicate that
the Hearsay-[I architecture is a good cne to use as a basis for
this approach.
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