
Multiagent Meta-level Control for a Network of
Weather Radars

Shanjun Cheng, Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

{scheng6, anraja}@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

It is crucial for embedded systems to adapt to the dynamics of open environ-
ments. This adaptation process becomes especially challenging in the context
of multiagent systems. In this paper, we argue that multiagent meta-level
control is an effective way to determine when this adaptation process should
be done and how much effort should be invested in adaptation as opposed to
continuing with the current action plan. We develop a reinforcement learning
based mechanism for multiagent meta-level control that facilitates the meta-
level control component of each agent to learn policies in a decentralized
fashion that (a) it can efficiently support agent interactions with other agents
and (b) reorganize the underlying network when needed. We evaluate this
mechanism in the context of a multiagent tornado tracking application called
NetRads. Empirical results show that adaptive multiagent meta-level control
significantly improves the performance of the tornado tracking network for a
variety of weather scenarios.

1. Introduction

Embedded systems consisting of collaborating agents ca-
pable of interacting with their environment are becoming
ubiquitous. These agents operate in an iterative three-step
closed loop [9]: receiving sensory data from the environment,
performing internal computations on the data, and responding
by performing actions that affect the environment either using
effectors or via communication with other agents. Two levels
of control are associated with this loop: deliberative and meta-
level control [6]. The lower control level is deliberative control
(also called object level), which involves the agent making
decisions about what domain-level problem solving to perform
in the current context and how to coordinate with other agents
to complete tasks requiring joint effort. At the higher control
level is meta-level control, which involves the agent making
decisions about whether to deliberate, how many resources
to dedicate to this deliberation, and what specific deliberative
control to perform in the current context.

Meta-level control in complex agent-based settings was ex-
plored in previous work [8] where a sophisticated architecture
that could reason about alternative methods for computation
was developed. We build on this earlier work and open
a new vein of inquiry by addressing issues of scalability,
partial information, and complex interactions across agent
boundaries. Consider for instance a scenario where two agents
A1 and A2 are negotiating about when A1 can complete task
T1 that enables A2’s task T2. This negotiation involves an

iterative process of proposals and counter-proposals where
at each stage A2 generates a commitment request to A1,
A1 performs local optimization computations (scheduling) to
evaluate commitment requests; this process repeats until A1

and A2 arrive at a mutually acceptable commitment. The
multiagent meta-level control decision would be to ensure that
A1 completes its local optimization in an acceptable amount
of time so that A2 can choose alternate methods in case the
commitment is not possible. In setting up a negotiation, the
meta-level control should establish when negotiation results
will be available. This involves defining important parameters
of the negotiation including the negotiation context and the
earliest time the target method will be enabled. Meta-level
control will ensure that the negotiation phase of two agents
overlaps to guarantee efficiency. Multiagent meta-level control
(MMLC) facilitates agents to have a decentralized meta-level
multiagent policy, where the progression of what deliberations
the agents should do, and when, is choreographed carefully
and includes branches to account for what could happen as
deliberation plays out. Our hypothesis in this paper is that
MMLC leads to improved performance in the context of a
multiagent tornado tracking application.

NetRads [7] is a network of adaptive radars controlled
by a collection of Meteorological Command and Control
(MCC) agents that determine for the local radars where to
scan based on emerging weather conditions. The NetRads
radar is designed to quickly detect low-lying meteorological
phenomena such as tornadoes, and each radar belongs to
exactly one MCC. The MCC agent can manage multiple radars
simultaneously. The time allotted to the radar and its control
systems for data gathering and analysis of tasks is known as a
heartbeat. In [7], a system is implemented with three phases
containing only deliberative-level actions in a heartbeat. The
phases are: Data Processing, Local Optimization (LO) and
Negotiation (Neg). In Data Processing, each MCC analyzes
weather moment data from the radars collected during the
previous heartbeat. The results of this analysis lead to a set of
weather-scanning tasks of interest for the next radar scanning
cycle. In LO, the MCC determines the best set of scans for
the available radars that will maximize the sum of the utilities
associated with the chosen tasks according to a utility function
based on the end-user priorities. In Neg, the MCC negotiates



with its neighboring MCCs to adjust their local optimization so
as to accomplish joint tasks and to avoid redundant scanning
of the same area. The authors [7] applied this negotiation
protocol to an abstract simulation of NetRads radars to show
its usefulness.

In our work, we add a fourth phase, implemented as the
MMLC Module. Each heartbeat is now split up into four phases
containing both deliberative-level actions (Phase 1: Data Pro-
cessing , Phase 3: LO and Phase 4: Neg are exactly the same
as in [7]) and meta-level actions (Phase 2: MMLC Module)
that is the research proposed in this paper. MMLC Module
contains meta-level actions that handle the coordination of
MCC agents and guide the deliberative-level actions in LO
and Neg. We augment the MCC agents with meta-level control
capabilities (Phase 2) to address two problems in NetRads: 1)
How to adjust the system heartbeat so as to adapt to changing
weather conditions? 2) How to re-organize the sub-nets of
radars under each MCC?. We describe a multiagent meta-level
control approach that involves coordination of decentralized
Markov Decision Processes (DEC-MDPs) [3] using Weighted
Policy Learner (WPL) [2], a reinforcement learning (RL)
algorithm. WPL is used to learn the policies for the meta-level
DEC-MDPs belonging to individual agents. We empirically
show that distributed meta-level control gives a performance
advantage in NetRads for a number of scenarios.

The rest of the paper is structured as follows: We first
identify the meta-level research issues within the context of
NetRads, a real-world tornado-tracking application. We then
describe the formalization of MMLC based on coordinating
DEC-MDPs [3] using WPL algorithm followed by an empir-
ical evaluation of this approach on NetRads. We then present
the conclusions and future work directions.

2. Motivating Example

At the highest level, the question we plan to address in
NetRads is the following: How does the meta-level control
component of each agent learn policies so that it can efficiently
support agent interactions with other agents and reorganize the
underlying network when needed? Specifically in NetRads,
reorganizing the network involves addressing the following
questions:

1) What weather conditions trigger a radar to be handed
off to another MCC and how do we determine which
MCC to hand off the radar to?

2) How to assign different heartbeats to sub networks of
agents in order to adapt to changing weather conditions?

The intuition behind identifying these meta-level issues is
that it is preferable that radars with large data correlation
be allocated to the same MCC. Data Correlation occurs
when radars belonging to different MCCs have overlapping
sensing areas and there are weather phenomena in these
overlapping areas. MCCs cooperatively avoid redundant scans
of the same area by sharing data with each other. Allocating
such radars to the same MCC potentially reduces the amount

of communication and the time for negotiation among MCCs.
Moreover, adjusting the system heartbeat allows MCCs to
adapt to changing weather conditions. For example, if rapidly
changing weather phenomena occur in a certain region, meta-
control may decide to use a shorter heartbeat to allow the
system to respond more rapidly. In our work, a single heartbeat
of MCC is set to be 30 seconds (shorter) or 60 seconds
(longer). This decision would also involve reorganizing the
MCC neighborhoods so that there are clusters of MCCs with
each cluster having a different heartbeat depending on the type
and frequency of tasks that the cluster has to handle.

Fig 1 shows an example NetRads topology of 4 MCCs.
Each MCC controls 3 radars (A radar is connected with
its supervised MCC via a solid line in Fig 1, e.g., MCC2

supervises radars {R4, R5, R6}). Data correlation between two
radars is represented by dashed arrows. R3 has high data
correlation with R4 and R5, and reallocating it from MCC1

to MCC2 will improve performance. In Fig 1, suppose rapidly
changing weather phenomena occur in the common boundary
between MCC2 and MCC3, it is preferable for these two
MCCs to use a shorter heartbeat (30 seconds) so as to respond
rapidly to the changing environments. Also, suppose MCC1,
MCC2 and MCC3 execute the specific actions respectively:
“ Move R3 to MCC2”, “Move R5 to MCC3” and “Move
R9 to MCC4” . Fig 2 is the resulting NetRads topology. By
making such changes in heartbeat and radar associations, the
system reduces the time needed for negotiation among MCCs
as well as enhancing the average quality of radar scanning
tasks.

Fig. 1. An Example NetRads Topology

In the next section we describe the details of Phase 2:
MMLC Module which implements the coordination of meta-
level control parameters across agents. This includes dis-
cussing the RL based approach to learn meta-level policies and
how the MCC network handles the non-stationary environment
caused by changing patterns of weather-scanning tasks by



Fig. 2. Resulting NetRads Topology of Fig 1.

switching among policies.

3. Formalizing MMLC

Prior to describing our MMLC framework, we define several
key terms used in the rest of this paper:

Task: In NetRads application, each scanning task in the sys-
tem has a position, a velocity, a radius, a priority, a preferred
scanning mode, and a type [7]. Tasks may be one of a few
different types: storm, rotation, reflectivity or velocity. Each
of these types has its own distributions for the characteristics
described above. Tasks may be either pinpointing or non-
pinpointing.

Pinpointing and non-pinpointing Task: Pinpointing tasks
are those tasks that can not be completed effectively without
simultaneous scanning by multiple radars belonging to the
same or different MCCs [7]. The utility gained from scanning a
pinpointing task increases with the number of radars scanning
the task; whereas, the utility for a non-pinpointing task is the
maximum of the utilities from the individual radars.

Degree of Data Correlation: Degree of data correlation
reflects the interdependence of the tasks that MCCi has with
those of its neighbor(s). It is defined as 〈Q1, Q2, ..., Qj〉,
in which j is the total number of MCCi’s neighbors and
Qj ∈ {High, Low}. When radars belonging to different
MCCs share data (especially data about the pinpointing tasks
between them), the communication between these two MCCs
during negotiation would increase and thus there is more
interdependency . Tasks may be either pinpointing or non-
pinpointing. We assume the value to be High if the percentage
of pinpointing tasks between two MCCs is equal or more than
50%; otherwise it is set to Low.

Neighborhood Scenario: In NetRads application, two
MCCs are defined as neighbors if they share overlapping scan-
ning regions (In Fig 1, MCC2 has two neighbors {MCC1,
MCC3} while MCC1 has only MCC2 as its neighbor.). In

other words, if radars belonging to two MCCs are expected
to scan some part of the same physical space, then the MCCs
are neighbors. Each neighborhood scenario is a qualitative
abstraction that captures the characteristics of a class of real
scenarios that are similar in structure and policy. We define a
set of NSi which consists of the neighborhood scenarios of
MCCi might encounter based on the data correlation degrees
it has with its neighbors. NSi = {V0, V1, .., Vj}, where j
denotes the number of neighbors of MCCi. Vj(j 6= 0)
denotes the number of radars involved in the data correlation
between MCCi and its jth neighbor (V0 is the number of
radars of MCCi involved in the data correlation.). Vj ∈
{0, 1,many}. In Fig 1, from the view of MCC2, it is in
NS2= {many, 1,many}.

3.1. Meta-level Control flow

Fig 3 captures the control flow in the MMLC Module of
each MCC. The Scenario Library Module stores the MDPs
of the abstract meta-level scenarios and their policies which is
available to each MCC agent. We group sets of MCC scenarios
into abstract meta-level scenarios based on types of tasks and
neighborhood scenarios and learn the policies for each abstract
scenario offline which is the role of the Offline RL Module (We
will discuss this module later.). The Optimal Policy Generation
Module generates the optimal abstract policy from an abstract
MDP. The Specific Action Mapping Module maps the abstract
action policies to specific actions in NetRads domain which
includes radar/MCC reconfiguration and heartbeat adaptation.
At runtime, each MCC agent adopts the scenario-appropriate
policy, executes the appropriate actions and switches to a new
policy with changes in scenario in the next heartbeat.

Fig. 3. Control flow in MMLC Module of each MCC
involving 4 MCCs.

3.2. DEC-MDP formalization

A Markov Decision Process (MDP) is a probabilistic model
of a sequential decision problem, where states can be perceived



exactly, and the current state and action selected determine a
probability distribution on future states [10]. Specifically, the
outcome of applying an action to a state depends only on
the current action and state (and not on preceding actions or
states). We map the NetRads meta-level control problem to a
DEC-MDP model in the following way. The model is a tuple
〈S,A,P,R〉, where

• S is a finite set of world states, with a distinguished
initial state s0 which is scenario dependent. s0 of MCCi

is different in different environments. It depends on the
situation of MCCi, MCCi’s neighbors and the degree of
data correlation between them. In NetRads domain, the
state of each MCC agent is the meta-level state (defined
below).

• A is a finite set of actions. In NetRads domain, The
actions for the MCC agents are the combinations of the
abstract actions (defined below) or the changing of the
heartbeat.

• P is a transition function. P(s′ | s, ai) is the probability
of the outcome state s′ when the action ai is taken in state
s. In NetRads domain, the transition function is based
on the time/quality distribution for the actions MCCi

chooses to execute.
• R is a reward function.R(s, ai, s

′) is the reward obtained
from taking action ai in state s and transitioning to
state s′. In NetRads domain, the reward is only received
in a terminal state, and it represents the average of
qualities of all tasks collected by MCCi in Phase 1 (Data
Processing) from last heartbeat. The quality of a task
from a single radar is the priority of the task multiplied
by a factor meant to represent the quality of the data that
would result from the scan (specified by experts in the
field e.g. meteorologists) [7].

The real state of the agent has the detailed information
related to the agent’s decision making and execution [8]. It
accounts for every task which has to be reasoned about by
the agent, the execution characteristics of each of these tasks,
and information about the environment such as types of tasks
(storm, rotation, velocity or reflectivity in NetRads application)
arriving at the agent and frequency of arrival of tasks. The real
state is continuous and complex. This leads to a combinatorial
explosion in the real state space for meta-level control even for
simple scenarios. The complexity of the real state is handled by
defining an abstract representation of the state which captures
the important qualitative state information relevant to the meta-
level control decision making process. We call this the meta-
level state of the agent.

We define three features of the meta-level state F0, F1 and
F2 as follows:

Feature F0 contains Information about Self. Specifically it
consists of the MCC’s own heartbeat (Vhb) and the number of
MCC’s own radars (Vradar) involved in the data correlation
with its neighboring MCCs. It is defined as (Vhb, Vradar),
in which Vhb ∈ {30seconds, 60seconds} and Vradar ∈
{0, 1,many}. many means there are more than one radar

involved in the data correlation. We use the qualitative value
many to simplify the description of MCC’s relation with its
neighbors so as to reduce the number of different feature sets.
As discussed later, this helps determine abstractions of the
states and actions of MDPs. In Fig 1, suppose MCC2 has
a 30 seconds heartbeat and it has two radars (R4 and R5)
involved in the data correlation with its neighboring MCCs.
MCC2 has the feature F0 = (30seconds, many) in its meta-
level state.

Feature F1 contains Information about Neighbor(s). This
feature is expressed as a tuple 〈f1, f2, ..., fi〉, in which i
is the total number of neighbors of the MCC, fi denotes
the ith neighbor’s information and is as defined in F0.
In Fig 1, suppose MCC1 has a 30 seconds heartbeat and
MCC3 has a 60 seconds heartbeat. MCC2 has the feature
F1 = 〈(30seconds, 1), (60seconds, many)〉 in its meta-level
state.

Feature F2 has the same definition as Degree of Data
Correlation defined before.

In Fig 1, MCC2 has the initial state: s0,
in which F0 = (30seconds, many), F1 =
〈(30seconds, 1), (60seconds, many)〉 and F2 =
〈High,High〉.

We abstract the actions in the MDP in two qualitative
modes. The two modes are: Heavy Move and Light Move.
Suppose MCCi has high data correlation with its neighbors,
Heavy Move of MCCi , is defined as “Move more than 70% of
MCCi’s radars to its neighbors until data correlation degree
between MCCi and its neighbors changes to Low” ; Light
Move of MCCi is defined as “Move less than 20% radars of
MCCi’s radars to its neighbors until data correlation degree
between MCCi and its neighbors changes to Low” . Abstract
action is defined as: Mode(MCCi to MCCj), which means
“move radars from MCCi to MCCj using the qualitative
mode Mode. In Fig 1, one action for MCC2 could be
“LightMove(MCC1 to MCC2) & LightMove (MCC3

to MCC2)”. Using abstract actions substantially reduces the
number of explored states in the MDP. For example, suppose
MCCi supervises x radars and has y neighbors. Without
defining abstract actions, each radar of MCCi has y + 1
possible handoff choices (to be handed off to one of MCCi’s
neighbors or stay under MCCi). The total number of possible
action sets for the x radars is (y+1)x which leads to (y+1)x

exploring states in the MDP tree. Using abstract actions, for
each neighbor of MCCi, MCCi has 3 possible choices {φ,
Heavy Move, Light Move}. The total number of possible action
sets in this case is 3y . In NetRads domain, the number of radars
each MCC supervises can be large. 3y is substantially smaller
than (y + 1)x in most cases, especially in the case that x is
huge.

3.3. Applying WPL to Learn Policy

Multiagent Reinforcement Learning (MARL) is a common
approach for solving multiagent decision making problems.



It allows agents to dynamically adapt to changes in the
environment, while requiring minimum domain knowledge.

We will use WPL [1], which is a variant of the WoLF [5]
algorithm, for learning off-line each agent’s meta-level control
policy. WPL achieves convergence using an intuitive idea:
slow down learning when moving away from a stable policy
and speed up learning when moving towards the stable policy.
The main idea in Algorithm 1 is to compute an approximate
gradient of Qi, defined as ∆(a), and use it to update πi,
with small step η. We determine the computation of ∆(a)
by comparing the value of total average reward r̂ to the value
of Qi(s, a). A learner is doing better than expected, if

Σa∈Aπi(s, a)Qi(s, a) > Qi(s, a) (1)

When it is doing better, we update πi using ∆(a) calculated
in line 9, Algorithm 1, otherwise using ∆(a) calculated in line
10, Algorithm 1.

In Algorithm 1, Qi(s, a) stores the reward MCCi expects
if it executes action a at state s. πi(s, a) stores the probability
that MCCi will execute action a at state s. The actions here
are abstracted actions and the states are meta-level states as
defined in Section 3.2. As in WPL, Q and π together capture
what a MCC has learned so far. The reward value in our RL
algorithm is the average quality of scanning tasks executed by
MCCi in Data Processing phase. In the (i + 1)th heartbeat
period, the radars of MCCj would do the scanning tasks
based on the optimization of ith heartbeat period. At the
beginning of the (i+2)th heartbeat period, the Average Quality
is collected by MCCj which reflects the effect of the meta-
level control policies of MCCj in the ith heartbeat period.
The horizon of the MMLC policies for the NetRads application
is two heartbeat periods. We defined this horizon manually
after examining the behavior of the NetRads domain in various
scenarios. If the horizon of the MMLC policies is too short,
it triggers meta-level control too frequently which increases
the cost of decision making and affects performance. On the
other hand, a long horizon makes the meta-level control policy
obsolete due to the dynamic nature of the environment.

Since a heartbeat period consists of four phases, it is impor-
tant that the MMLC Module phase takes negligible amount of
time so that there is enough time for the complex operations
of LO and Neg phases. The NetRads system is designed to
quickly detect low-lying meteorological phenomena, so time
is a critical concern. Online learning on a very large MDP that
captures all possible weather scenarios (learning Qi(s, a) and
πi(s, a) for each possible specific weather scenario) during
the MMLC Module phase can be very time expensive. To
overcome this challenge, we construct a library of small
MDPs (the Scenario Library Module) for different types of
neighborhood scenarios at the meta-level where there is no
requirement for the transfer of learned knowledge between
agents. Each neighborhood scenario is a qualitative abstraction
that captures the characteristics of a class of real scenarios that
are similar in structure and policy. We perform the learning
offline and constrain the runtime costs by limiting Phase 2
activity to just looking up the scenario-appropriate policy

to determine the best action (the Optimal Policy Generation
Module).

The Specific Action Mapping Module maps the abstract
action policies to specific actions in NetRads domain which
includes radar/MCC reconfiguration and heartbeat adaptation.

Algorithm 1 Abdallah & Lesser’s WPL (state s, action a)
1: begin
2: r ← Average Quality
3: update Qi(s′, a′) using r
4: s′ ← s
5: a′ ← a
6: r̂ ← total average reward = Σa∈Aπi(s, a)Qi(s, a).
7: foreach action a ∈ A do
8: ∆(a)← Qi(s, a)− r̂
9: if ∆(a) > 0 then ∆(a)← ∆(a)(1− πi(a))

10: else ∆(a)← ∆(a)(πi(a))
11: end
12: πi ← πi + η∆
13: end

In the next section, we will evaluate the role of MMLC in
NetRads performance. We first generate meta-level heuristics
manually to show meta-level control is useful and then show
that our learning algorithm allows the NetRads network to
dynamically adjust to changing weather phenomena.

4. Empirical Evaluation

We use the simulator of the NetRads radar system [7] to
evaluate our algorithm. In this simulator, radars are clustered
based on location, and each cluster of radars has a single MCC.
Each MCC has a feature repository where it stores information
regarding tasks in its spatial region, where each task represents
a weather event. The simulator additionally contains a function
that abstractly simulates the mapping from physical events and
scans of the radars to what the MCC eventually sees as the
result of those scans. MCCs discover and track the movement
of the weather events through this process.

Tasks are created at a MCC based on radar moment data
that has been just received. Tasks may be either pinpointing
or non-pinpointing.

4.1. Experiment Setup

For the experiments reported here, we use the simulation
setup where there are 3, 12 and 30 MCCs (agents). This is the
setup used by Krainin et. al [7]. Fig 4 is the snapshot of the
radar simulator for a particular real-time scenario. In Fig 4,
each hollow circle represents a radar and each filled circle
represents a task (we are only concerned about rotation and
storm tasks in the evaluation.). The Radar Information Panel
(Fig 4) provides information about a particular radar including
its name, its MCC supervisor, its physical location in the plane
coordinate system, the angle range it sweeps, the target task



it scans and the belief value of the negotiation algorithm in
Phase 4: Neg. We test the results for three different types
of weather scenarios. They are defined as: High Rotation
Low Storm (HRLS), Low Rotation High Storm (LRHS), and
Medium Rotation Medium Storm (MRMS). HRLS denotes the
scenario in which the number of rotations overwhelms the
number of storms in a series of heartbeats (e.g. Lots of rotation
phenomena move in followed by a few storm phenomena, and
then followed by lots of rotation phenomena.). LRHS stands
for the scenario in which the number of storms overwhelms the
number of rotations in a series of heartbeats. MRMS denotes
the scenario in which the number of storms approximately
equals that of rotations. Suppose there are 80 total tasks, HRLS
contained 60 rotation tasks, 20 storm tasks as well as each
of the other two types; LRHS contained 60 storm tasks, 20
rotation tasks as well as each of the other two types; MRMS
contained 40 storm tasks, 40 rotation tasks as well as each of
the other two types.

Fig. 4. Snapshot of Radar Simulator.

We generate the training/test cases by varying such pa-
rameters as number of MCCs, number and types of tasks,
initial heartbeat for each MCC, percentPinpointing and etc.
percentPinpointing is defined as the percentage of pinpointing
tasks to all tasks in a specific training/test case. We vary
percentPinpointing to evaluate the performance on different
numbers of pinpointing tasks. We also scale up the number of
tasks in training/test cases. Average Quality (defined in Data
Processing phase of a heartbeat) and Negotiation Time are the
parameters to compare the scanning performance. Negotiation
Time denotes the total time (seconds) MCCs spend in Neg
(Phase 4).

We compare the results of three methods: No-MLC, Adap-
tive Heuristic Heartbeat (AHH) and MMLC-WPL. No-MLC
is the method that without meta-level control module (It
has all the phases except MMLC Module in a heartbeat).
AHH is the method where we incorporate simple heuristics
in meta-level control to adaptively change the heartbeat of
each MCC. The heuristics are simple: For each MCCi, at the
end of Data Processing (Phase 1), if there are more rotation
phenomena in the region of MCCi, MCCi sets the longer

heartbeat for its next heartbeat period, otherwise, MCCi sets
the shorter heartbeat for its next heartbeat period (longer
heartbeat is better for rotations due to the need for more
scanned elevations, and shorter heartbeat is better for storms).
The heuristics also help to address the radar handoff issues.
Assigning the same heartbeat to the neighboring MCCs with
overlapping region results in better communication/negotiation
in the Neg phase so as to help reducing the amount of data
correlation in the next heartbeat period which has some of
the same effect as handing off radars. MMLC-WPL augments
MCCs with meta-level control based on offline RL (WPL) to
adjust the system heartbeat and re-organize the sub-nets of
radars so as to adapt to changing weather conditions. For the
MMLC Module phase, we used 50 training cases and each
has a long sequence of training data (500 heartbeat periods)
to learn the policies for all the abstract scenarios offline. The
learning rate (η in Algorithm 1) is set to 0.01. Using each
method mentioned above, we ran 30 test cases for each of
three weather scenarios.

4.2. Discussion

We ran test cases for each weather scenario with the
number of MCCs to be 3, 12 and 30 (percentPinpointing
is set to 60%, the number of tasks is 80.). Fig 5 shows the
performance of No-MLC, AHH and MMLC-WPL on Average
Quality for a variety of scenarios. In HRLS scenarios, all the
MCCs have to handle HRLS scenarios simultaneously. AHH
performs significantly (p < 0.05) better than No-MLC on
Average Quality in all comparisons (Fig 5(a)). This shows
the effectiveness of adding meta-level control in the system
in HRLS scenarios. According to the simple rules in AHH,
the three MCCs would all set their heartbeat to 60 seconds
for HRLS. The three MCCs would then have more time to
spend on LO and Neg phases so that the final configurations
of scanning tasks for the next heartbeat period would be more
optimized. This results in larger Average Quality. In HRLS
scenarios, MMLC-WPL performs significantly (p values from
t-tests are 0.0032, 0.024 and 0.0076 respectively) better than
No-MLC and a little better than AHH. The minor discrepancy
of performance between MMLC-WPL and AHH on HRLS
scenarios leads to the speculation that the 60 seconds heartbeat
is critical for rotations due to the need for more scanned
elevations. Rotations need more time for scanning as they must
be scanned at the lowest six elevations. Storms, on the other
hand, must be scanned at the lowest four elevations to obtain
useful information.

In both LRHS and MRMS scenarios (Fig 5(b) and Fig 5(c)),
AHH performs a little better than No-MLC. MMLC-WPL
performs significantly better than No-MLC (In LRHS sce-
narios, p values are 0.0085, 0.0048 and 0.015 respectively;
In MRMS scenarios, p values are 0.027, 0.0094 and 0.032
respectively) and AHH (In LRHS scenarios, p values are 0.014,
0.0051 and 0.00074 respectively; In MRMS scenarios, p values
are 0.0062, 0.039 and 0.04 respectively). We can see that
the 30 seconds heartbeat is not a profound factor in LRHS



(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Fig. 5. Average Quality of No-MLC, AHH and MMLC-
WPL in different weather scenarios for number of MCCs
to be 3, 12 and 30.

scenarios (AHH increases small amount of Average Quality.).
In MMLC-WPL, each MCC adopts the policy appropriate to
its neighborhood scenario. Allocating radars with large data
correlation to the same MCC reduces the time for negotiation
between MCCs which would increase the time for LO. In
certain situations (e.g., there are many internal tasks compared
to boundary tasks) it is better to do a good job in local
optimization and allocate fewer cycles to negotiation while
in other situations more cycles for negotiation would be
better (e.g., many pinpointing tasks exist in boundary regions

between MCCs). MMLC-WPL performs significantly better on
learning policies so as to control when and which radars should
be moved.

Fig. 6. Negotiation Time of No-MLC, AHH and MMLC-
WPL with 3 MCCs in different weather scenarios.

Fig. 7. Average Quality of No-MLC, AHH and MMLC-
WPL with 3 MCCs, for percentPinpointing to be 20%, 60%
and 90%.

In Fig 6, MMLC-WPL performs significantly better than
No-MLC on Negotiation Time (p values are 0.041, 0.029 and
0.0071 respectively) for each weather scenario. MMLC-WPL
uses least time on Neg phase and achieves highest Average
Quality in each weather scenario. This shows that adaptive
meta-level control allows for effective use of the heartbeat i.e.
by ensuring that meta-level control parameters are coordinated
so that negotiations converge quickly, more time can be spent
on data processing. AHH does not perform better than No-
MLC on all weather scenarios (It spends more Negotiation
Time than No-MLC in LRHS scenarios) since AHH is not as
adaptive as MMLC-WPL in dynamic conditions.

We varied percentPinpointing (setting it to 20%, 60% and
90%) and ran test cases with 3 MCCs on all the three weather
scenarios. In Fig 7, we see that Average Quality increases
with the increase of the percentage of pinpointing tasks to all
tasks for No-MLC, AHH and MMLC-WPL. More pinpointing



Fig. 8. Average Quality of No-MLC, AHH and MMLC-
WPL with 3 MCCs, for number of tasks to be 80, 160 and
200.

tasks occurring in the boundary regions between MCCs would
increase the utilities for scanning pinpointing tasks so as
to increase Average Quality of all the scanning tasks. In
all percentPinpointing settings (20%, 60% and 90%), AHH
performs better than No-MLC and MMLC-WPL achieves the
best performance.

In Fig 8, we scaled up the number of total tasks to 160 and
200 in the 3-MCC setup and compared the performance with
that of 80 tasks (percentPinpointing is fixed at 60%). Average
Quality increases substantially with the increase of number of
tasks for all three methods. MMLC-WPL performs significantly
better than No-MLC (p values are 0.038, 0.014 and 0.00043
respectively) and AHH (p values are 0.029, 0.0033 and 0.005
respectively) on Average Quality.

5. Conclusion and Future Work

In this paper, we describe a Multiagent meta-level control
(MMLC) module that coordinates DEC-MDPs at the meta-
level and implements a RL-based algorithm to learn the
policies of the individual MDPs. Previous work in the NetRads
domain [7] showed that a decentralized technique at the
deliberation-level with a low number of required optimizations
improved tasked allocation in the time-constrained domain.
Our hypothesis in this paper is that MMLC that reasons about
the deliberative-level approach and coordinates the delibera-
tion across agents leads to improvement in performance.

MMLC equips each agent to carefully choreograph the
progression of what deliberations agents should do and when.
It also makes agents account for what could happen as
deliberation plays out. In our approach, policies for abstract
meta-level scenarios are learned offline and each agent adopts
the policy appropriate to its scenario at runtime. Empirical
evaluation shows that multiagent meta-level control is an
efficient way as the problem scales (up to 30 agents) to

allocate resources and reorganize the network with the goal of
improving performance in the context of a multiagent tornado
tracking application. Our model can be applied to other do-
mains such as meeting scheduling and sensor networks where
two agents with different views of policies for negotiation need
to be reconciled.

Conflicting agent meta-actions can arise based on our use
of our learned DEC-MDP policies. We plan on extending our
current approach to introduce a dynamic coordination of agent
meta-actions to reduce the occurrence of conflicting meta-
action choices.

6. Acknowledgements

This work is supported partially by the Engineering Re-
search Centers Program of the National Science Foundation
under NSF Co-operative Agreement No.EEC-0313747. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect those of the National Science Foundation.

References

[1] S. Abdallah and V. Lesser. Learning the Task Allocation Game. In
Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 850–857, Hakodate, Japan, 2006.
ACM Press.

[2] S. Abdallah and V. Lesser. Multiagent Reinforcement Learning and
Self-Organization in a Network of Agents. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 172–179, Honolulu, May 2007. IFAAMAS.

[3] D. Bernstein, S. Zilberstein, and N. Immerman. The complexity of
decentralized control of markov decision processes. In Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence(UAI),
pages 32–37, 2000.

[4] M. Bowling and M. Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215–250, 2002.

[5] M. Bowling and M. Veloso. Scalable Learning in Stochastic Games. In
Proceedings of AAAI 2002 Workshop on Game Theoretic and Decision
Theoretic Agents, July 2002.

[6] M. Cox and A. Raja. Metareasoning: A Manifesto. In Proceedings
of AAAI 2008 Workshop on Metareasoning: Thinking about Thinking,
pages 1–4, Chicago,IL, July 2008.

[7] M. Krainin, B. An, and V. Lesser. An Application of Automated
Negotiation to Distributed Task Allocation. In 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2007),
pages 138–145, Fremont, California, November 2007. IEEE Computer
Society Press.

[8] A. Raja and V. Lesser. A Framework for Meta-level Control in
Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems,
15(2):147–196, October 2007.

[9] S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach.
Pearson Education, 2006.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press,
1998.


