. AN INTRODUCTION TO THE D IRECT EMULAT ION OF
CONTROL STRUCTURES BY A PARALLEL MICRO-COMPUTER

BY
VICTOR. R. LESSER

STAN-CS-71-191
January, 1971

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

AN | NTRODUCTI ON TO THE DI RECT EMULATION OF CONTROL STRUCTURES
BY A PARALLEL M CRO(I]\/PUTER:)f/

Victor R Lesser
Comput er Sci ence Depart nent
Stanford University

Stanford, California

Decenber 1970

The research was carried on while the author was an NSF graduate fellow and partially
supported under AT(0O4-3)326, P.A 23.

¥ Presented as an informal paper at the 3rd Annual Wrkshop on M cro- Progranm ng,
Buffal o, New York. Cctober 12-13, 1970.

Abst ract

This paper is an investigation of the organization of a parallel micro-conputer designed to enulate a
wi de variety of sequential and parallel computers. This micro-conmputer allows tailoring of its control
structure so that it is appropriate for the particular conputer to be enulated. The control structure of
this mcro-conputer is dynamically nodified by changing the organization of its data structure for control.
The micro-conmputer contains six primtive operators which dynanically manipulate and generate a tree type
data structure for control. This data structure for control is used as a syntactic framework within which
particular inplenmentations of control concepts, such as iteration, recursion, co-routines, parallelism
interrupts, etc., can be easily expressed. The mmjor features of the control data structure and the prinitive
operators are: (1) once the fixed control and data |inkages anong processes have been defined, they need not
be rebuilt on subsequent executions of the control structure; (2) micro-prograns may be witten so that they
execute independently of the number of physical processors present and still take advantage of available
processors; (3) control structures for 1/0 processes, data-accessing processes, and conputational processes
are expressed in a single uniformframework. An enulator programmed on this micro-computer works as an
iterative two-step process simlar to the process of dynamic conpilation or run time macro-expansion. This
dynanmi ¢ conpilation approach to enulation differs considerably from the conventional approach to enulation,

and provides a unifying approach to the enulation of a wide variety of sequential and parallel conputers.

I'V.

Tabl e of Contents

A Traditional Mcro-Conputer Architecture 2
B. Variable Control Structure as the Basis of a Mcro-Conputer Architecture . . &
M CRO-COVHITHRARCHI TECTURE o o o o e e e e e e 5
M CRO PROCESSORSUBSYSTEM o o v v v e e e e e e e e e 8
STRUCTURE BUI LDINGLANGUAGE (SBL)« . o o oo oo 9
A SBL Macro Prototypes w2
B. Control Data Structure LT
C. Non-Sequential Control Structures 21

SUMMARY COMMENT AND FUTURE RESEARCH « o « « o ¢ ¢ o o o o o o o s o o F -

REFERENCES '« « « « « & « & I -

APPENDIX A . .« . v v e e e e s . e e e e e e e e e e e e e e e .26

| NTRODUCTI ON

In the past few years, there have been two trends in conputer architecture that have significant
inplications for the architecture of nicro-computers. The first trend is the devel opnent of conputers whose
machine |anguages are optinized for a particular higher level language. This trend is execmplified by the
| anguages of machines such as the B65001 for ALGOL, Abranis APL Machinee, Mel bourne and Pugmire's Fortran
Machi ne5, etc. These machine |anguages represent a broader class of |anguages than is conventionally consi-
dered a machine |anguage, e.g., a von Neumann nmchine |anguage. W shall refer to this broader class as
Internediate Machine Languages (IML's). The tailoring of an IM to a specific higher level |anguage is

acconplished by incorporating instructions in the IM. which "directly inplement (i.e., mirror)" the primtive
operations of the higher level |anguage (e.g., a procedure call in ALGOL is directly mirrored, including the

modi fication of the addressing environment, by the VALUE CALL instruction in the B6500). Thus, instead of

inplementing the semantics of higher level |anguage prinitive operations through an unnecessarily |ong and
conplicated sequence of instructions, the IM is designed so that there is a single or, at worst, a short
sequence of IM instructions that efficiently carry out the operation. Therefore, by tailoring of a machine

| anguage nore closely to a particular higher level |anguage, the mapping between the higher |evel |anguage and

machine |anguage is sinpler and results in nore compact and efficient generated codeh‘

The second trend in conmputer architecture is the developnent of conputers which are able to carry out
parallel activity at the functional unit level, instruction level, or process level. This second trend is
exenmplified by machines such as the CD066005, which permits asynchronous parallel operation of functional
units, the ILLIAC-IV6, which pernits coordinated execution of nultiple copies of a single instruction stream
and the dual processor CDC 6500, which pernits the execution of multiple asynchronous instruction streans.

These two trends in computer architecture are not disparate but rather are separate aspects of a nore
general trend towards the design of conplex problem oriented conputers whose architecture departs considerably
froma classical von Neunmann architecture. Both the B6500 and the ILLIAC-1V represent an integration of these
two trends in conputer architecture; the B6500 is a nulti-processor system which permts the allocation of
mul tiple processors to the execution of a single ALGOL program and the ILLIAG IV has a parallel organization
designed for problems involving an array structured data base.

In parallel with the devel opnent of problem oriented conputers, there has been an effort toward providing
a systematic and flexible approach to the hardware design of a specific conputer, This effort has led to the
devel opment of micro-conputers, e.g., the IBM 360/1+07, with read-only control mnenories containing mcro-progranms
which emulate a specific von Neumann type conputer. Recently, there has been an attenpt to conbine conplex
problemoriented coamputer design with nicro-conputer design, inplementing a specific architecture by nodifying
the read-wite control memory of the micro-conputer. It is hoped that the goal of enulating a w de range of
problemoriented conputers can be realized by nodifying dynamically the control menmory of a single mcro-
computer. This goal cannot be attained on micro-conputers whose architecture is essentially of the von Neumann
type. This paper offers an architecture for a micro-computer with a control data structure and prinitive
operations that permits a systematic approach to the emulation of a wide variety of sequential and parallel

intermedi ate machi ne | anguages.

A Traditional M cro-Conputer Architecture

Current micro-conputers enploy a sinple sequential control structure and an instruction semantics for
transferring data between registers. These features are quite adequate for enulating machine |anguages with si nple
control structures and instructions which operate on sinple data structures. However, Internmediate Machine
Languages (IM.'s) that are tailored for the execution of higher |evel |anguages are not this sinple since the
conplexity of the higher level |anguage operations is reflected in the semantics of the IML's instructions and
control structure. If the current trend in the development of higher |evel |anguages is maintained, these
problemoriented IM's will enploy increasingly nore sophisticated control structures such as recursion,
co-routines, parallelism etc., and instructions for accessing camplex data structures, such as lists, trees,
arrays, etc. As will be argued below, these IM's call for a nore sophisticated control structure in the
micro-computer.

The control structure of a language, L, consists of a set of control rules, CRL , and a data structure
for control, CDSL , commonly called state information, program environnent, etc., on which the control rules
operate. The control rules determne, at each meaningful unit of activity of the I|anguage, which statenent
or statements of the |anguage will next be executed. For exanple, the CDS of a sinplified conputer could
consi st of a programcounter and an interrupt, register; the CR of this sinplified computer could be the
following paradigm "if there are no interrupts pending, then execute the instruction at the |ocation
specified by the program counter, otherwise, store the program counter at a fixed location in the program
menmory, turn off the interrupt bit, place the address of the interrupt handling routine in the program counter,
and then execute the first instruction of the interrupt handling routine". This definition of a control
structure makes a clear distinction between the control structure of a |anguage and the execution of control
statenents of a language, e.g., conditional branch instructions, etc. The control statements of a |anguage
inplicitly, rather than explicitly, affect sequencing by modifying only one part of the control structure,
namely, the CDS; the actual sequencing of statements occurs only by the interpretation of the control data
structure by the control rules. For exanple, consider the results of executing the control statement "branch
to location X" in terms of the control structure of the sinplified conputer discussed previously; the branch
statenent, when executed, places the address X in the program counter; however, the next instruction to be
executed may not be at address X since during the tinme the branch instruction was executed, an interrupt
coul d have occurred.

By exam ning the program structure of an Internediate Mchine Language enul ator, we can see the short-
comings of the typical current mcro-conputer architecture. The program structure is shown conceptually in
Figure 1. The “controlprocess" activates the "decoding process" with data that identifies the next instruction
of the enulated conputer to be executed; the "decoding process” then analyzes the instruction to be executed so
as to deternmine the semantic routine, together with its appropriate calling sequence, whose activation wll
perform the semantics of the enulated instruction. After the appropriate semantic routine has been executed,
the flow of control returns to the control process which, based on the results of executing the decoding
process and the semantic routine, selects the next instruction to be emulated. This basic cycle is conven-

tionally called the "Do Interpretive Loop" (DIL)S-

Control
Process
Decoding
Process
Semantic Semantic
Routine . Routine
1 N

Figure 1. Conceptual Program Structure of an Enul ator

In mcro-conputers designed to enulate a specific computer architecture or fanily of computers with
simlar architectures, the control and decoding processes of enmulators of these architectures are usually
inplemented in the hardware of the micro-conputer, and the semantic routines of the enulators are inplenmented
as mcro-prograns. \Wen such a micro-conputer is used to enulate an I M which was unanticipated by the designer
of the micro-computer, the hardware inplementation of the control and decoding processes cannot be used. The
m cro-1 anguage designed as a nmeans of coding the semantic routines nust then also be used to code the control
process and the decoding process. However, there are no features in the mcro-language designed to facilitate
the coding of control or decoding processes, nor can the instruction sequencing of the mcro-conputer be used
directly to control the flow of activity among the control process, decoding process and semantic routines of
the emulator. This lack of features in the micro-language for general purpose enulation is an especially
serious shortcoming when an IML with conplex sequential or parallel instruction sequencing is to be enul ated.
Addi tionally, existing mcro-conputer architectures do not contain multiple mcro-processors, and thus parallel
activity indicated by the IM can only be enulated by sequentializing the parallel activity.

This paper presents a way to enulate sophisticated IML's by (1) defining a micro-computer with a
powerful and general control structure, and (2) supplying features (totally nissing in current micro-computers)
to tailor the control structure of the micro-computer so that it corresponds to the one needed for the particular
IM. being emulated. This tailoring results in the control structure, instruction semantics, and primtive
dat a-accessing operations of an IM being nore directly inplemented (i.e., nmirrored) in the corresponding
control structure, instruction semantics, and primtive data-accessing operations of the nicro-conputer on
which the IML enulator is executed. For exanple, if the semantics of an IML instruction require a particular
formof iteration, then that formof iteration will appear in the tailored control structure and wll not
have to be programmed as a sequence of micro-instructions. An additional by-product of tailoring is that the

structure of the IML is directly observable in the program structure of its enulator.

B. Variable Control Structure as the Basis of a Mcro-Conputer Architecture

The control structure of this micro-computer is dynamically nodified by changing the organization (form
of its data structure for control. These nodifications to the CDS are specified by a control structure
definitional |anguage called the Structure Building Language (SBL). The SBL can manipulate and build up the
_organization of the CDS only in ways understandable to the control rules of the nmicro-processor; the CDS, in

a very general sense, can be considered a control structure definition program which, when interpreted by the

CR of the mcro-conmputer, defines a particular sequential or parallel control structure for sequencing of
mcro-instructions. Current micro-computers consider a mcro-program as a |inear sequence of instructions
with no explicit internal structure (topology). The CDS can be thought of as a variable structure tenplate
whi ch defines a particular internal structure for the micro-program nemory. An SBL programis quite
different from a sequence of control statements since the control structure definition program constructed
inthe CDS by the SBL programis separated from (external to) the nmicro-program This separation of the
control structure definition program from the mcro-program pernits the static part of the internal structure
of a micro-programto be generated only once for repeated executions of the mcro-program

An integral part of the technique used by the SBL to define a control structure is to explicitly represent
in the CDS the relationships between the execution of micro-instructions and the data environment in which
these instructions operate. In particular, the sequencing of micro-instructions involves specifying the
address of the micro-instruction to be executed and local and gl obal paranmeters which define the data context
for the execution of that mcro-instruction. Thus, a close relationship between control and data environment
allows the state of the enulated computer to be integrated directly into the CDS. Thereafter, SBL statenents
can be used to dynamically modify the CDS to reflect the state transitions occurring in the enulated conputer.
Additionally, the CDS can be used to define (1) control structures for sequencing mcro-instructions which
then carry out the semantics of the emulated instruction, (2) control structures for 1/Q and (3) control

structures for data-accessing operations.

Il. MICRO-COMPUTER ARCH TECTURE

The m cro-computer architecture pictured in Figure 2 can be characterized in terms of three basic hardware

subsystems. The first subsystemis an arbitrary set of functional units. Each of these units can be

i ndependently activated and can have an arbitrary nunber of inputs and outputs, where that nunber need not be

fixed, and may be data dependent. For exanple, ga functional unit could be a floating point multiplier, or,

more generally, an arbitrary input/output device. A functional unit can receive input data from three sources:

the memory subsystem another functional unit, or the M cro-processor subsystem A functional unit obtains

(and stores) data by requests to the micro-processor subsystem which has conplete responsibility for
determining the source (or sink) of the data which is requested and for generating the appropriate control

signals to acconplish the data transfer. |n this manner, the micro-processor subsystem acts as a generalized

/0 controller and separates the process of data-accessing from that of conputation.

FUNCTIONAL UNIT - MEMORY
SUBSYSTEM SUBSYSTEM
— !
|
| I iR |
: |
' |
! M cr o- Processor '
| Subsyst em |
N N e A
I ° Micro- ;
Pr ocessor !
— 1
! |
|
. |
|
| . |
) Process .) M cro- Program |
Space — Menory |
Memory] J
. |
| " |
| . l
| 1
| . ||
| M cro- N
L Processor fp — - — — — — — -1
L n
puny

(—— data bus)
(--- control bus)

FI GURE 2. M cro- Conput er Hardware Organization

The second subsystemis a nemory. This menory is bit-addressable and can be activated to store or
retrieve an arbitrary length string of bits. This menory holds the programto be enulated, and can serve as a
storage buffer for communication between the functional unit subsystem and the nicro-processor subsystem
O her types of nmemory organizations, such as word-oriented, bit-slice, associative, etc., can also be included
in the systems architecture by meking them functional units. The nemory subsystemis itself not just
another functional unit because the process of field (bit-string) extraction and manipulation is recognized as
an integral part of general purpose emulation; the language of the micro-processor contains instructions that
directly retrieve and store fields of the enulated conputer's program nmenory. Thus, there exists a direct
connection between the micro-processors and the menory subsystem because accessing the menory subsystemis a
primtive operation of the nicro-processors.

The third subsystem is conposed of an arbitrary nunber of identical nicro-processors and two additional
menories. The nicro-processor subsystem controls the dynanmic interactions anong functional units, between the
functional unit subsystem and the menory subsystem and among nicro-processors. The execution of the mcro-
processors is controlled through data stored in the mcro-program and process-space menories; these two
menories contain, respectively, the static and active parts of the control structure of the nicro-processor
subsystem The micro-program menory holds mcro-prograns and is not normally nodified during an enul ation;
the micro-program nenory is simlar to the control memory of a conventional micro-processor. The process-space
menory holds the control data structure constructed by the SBL and is frequently nodified during emulation.

The process space nenory stores the state of the emulator, the state of the emulated conputer, and the state
of mcro-processor subsystem The process space menory, in addition, contains a set of auxilliary working
registers which are dynamically allocated to micro-processors for tenporary storage.

The micro-processors can be executing concurrently. The process space menory stores the control data
structure which coordinates the activity anmong virtual mcro-processors. |f there are not enough nicro-
processors to carry out the parallel activity specified by the CDS, the available nicro-processors are schedul ed
on a first-come first-served basis. The state of the mcro-processor subsystem maintains this mpping from
virtual activity to actual activity. This transformation fromvirtual processor activity to actual micro-
processor activity may lead to indeterminate results depending upon the nunber of nicro-processors available.
However, as will be described in Section IV.C, the SBL contains control prinitives that allow the micro-
programmer tO construct appropriate synchronization rules (e.g., Dijkstra's semaphore, Seltzer's wakeup-
waiting switch, |ock-step execution, etc.) which preserve the inherent parallelism among processes, while at
the same tinme guaranteeing that the scheduling of virtual parallel activity will always result in deterninate
conmputation, independent of the number of actual micro-processors.

The ability to manipulate the control data structure allows the tailoring of both the hardware and software
of this architecture to various IML's. The hardware tailoring involves the addition of specialized functional
units which carry out operations cammonly used in the problem class (e.g., floating-point nultiplier, matrix
multiply unit, etc.) or the addition of micro-processors. These hardware nodifications can be made without
nodi fying the |anguage of the micro-processor. The software tailoring involves building up an appropriate
control data structure in process space nemory which integrates the state of the enulated conputer with the
Btate of its enulator. Thereafter, changes in the state of the enulated camputer can be directly reflected

in changes in the state of its emulator.

In order to enmulate a computer using this system the programwhich is to be run on the. enulated conputer
is stored bit-wise in the nenory subsystemin the same order as it would be stored in the emulated conputer's
memory. The micro-processor nust then performthe following tasks: (1) fetch from the menory subsystem the
instruction(s) of the enulated computer which is (are) to be executed in the next step; (2) analyze this
instruction and generate the appropriate sequence of functional unit activations or calls to micro-progranms
which will perform the computations specified by the instruction. In addition, the sequence of functional
unit activations nust be coupled with accesses fromand stores to the menory subsystemto provide the input
and output data set for each unit. This sequence of functional activations may result either in concurrent

operation of functional units or a pipelining of data through a series of functional units.

I11. M CRO PROCESSI NG SUBSYSTEM

The main orientation in the design of this micro-conmputer is the incorporation of a facility for
defining a variable control structure in the hardware of its processor. This design enphasis has led to a
m cro-processor that contains two basic classes of instructions. One class, called the Integer Function
Language (IFL), is used to program address arithnetic functions while the other, called the Structure Building
Language (SBL), is used to construct dynamically the control structure of the nicro-processor subsystem

The Integer Function Language is a highly specialized mcro-code |anguage specifically designed for the
task of address arithmetic involved in computing the effective address of an operand, decoding an instruction,
etc. The IFL is also used to construct programs which sinulate the actions of functional units, e.g.,

a floating point nmultiplier, etc. The IFL departs from conventional mcro-languages in three ways: (1) the
result of executing an IFL programis to return an integer value to the calling routine; (2) each IFL program
has parameters passed to it; and (3) IFL instructions do not operate on a fixed set of registers, but rather
on the paraneters which are passed to an |FL program Each |FL program can be thought of as a definition of a
function which, when executed, may have side effects. -

The SBL, on the other hand, is used to define the control structure of a process. A process consists of
the execution of a sequence of statements which either activate an IFL program or activate a functional unit.
The control structure for sequencing these process statenents specifies not only the sequence of activations,
but also the appropriate input and output data sets for each activation. The generation of these input and
output data sets may itself be based on the results of activations of IFL programs or the activations of
functional units. The SBL sequences |FL programs both inplicitly and explicitly as will be seen nore clearly
in the next section. The explicit sequencing results fromthe control structure constructed by the SBL; the
inplicit sequencing occurs when an IFL programis invoked during the execution of an SBL statement. The SBL
statenments, in thenselves, have no ability to do arithnetic computations other than to add to or subtract from
a parameter a constant. Thus, whenever a nore sophisticated paraneter calculation is required by an SBL
statenent in order to modify or build up a Control Data Structure, an IFL routine is inplicitly invoked by
the SBL statement so as to performthe desired paraneter cal cul ation.

The SBL is not designed to define the sequencing of individual IFL instructions since the control
structure necessary for address arithmetic algorithns is sinpler and less variable than that required for
processes; the control structure for IFL instructions is build-in rather than dynanically constructed.

Address arithnetic functions can therefore be executed w thout invoking the overhead of a variable control
structure.

The rest of this paper will discuss the techniques enployed by the SBL to generate a variable control
structure. The IFL will not be discussed further in this paper. However, an exanple of an IFL programis
contained in Appendix A and a conplete discussion of the IFL is contained in a previous paper by the

a.uthorlo .

IV. STRUCTURE: BUILDING LANGUAGE

The basis of the syntax and semantics of the SBL is a fixed set of control structure definitional
prototypes (tenplates) that, when expanded, nodify the CDS so as to define a particular type of control
structure. An SBL statenment (mmcro) specifies one of the fixed set of prototypes together with a set of IFL
address arithnetic functions. Each prototype represents a paraneterized nodel of a basic control concept,

e.g., iteration, selection, hierarchy, synchronization, etc. The specification of particular values for the
parameters of the prototype defines a particular instance of a basic control concept. The programing of an
enul ation on this mcro-conputer is done by creating a dynam c mapping between the control structure and
instructions of the enmulated conputer, and the set of control structure definition prototypes. This dynamc
mapping is represented in the address arithnmetic algorithms specified in the SBL macro that are used to
calculate the parameters of the prototype. An emulator programed in this mcro-conputer works as an iterative
two-step process (i.e., it generates an instance and then executes the instance) simlar to the process of
dynanic compilation or run-time macro expansion. This dynanmic conpilation approach to enmulation differs
considerably from the conventional approach to enulation (i.e., calling subroutines of micro-instructionsg)
done on existing mcro-processors, and directly reflects (as will be seen in the next paragraphs) the
conceptual i zation of the structure of an emulator pictured in Figure 1.

The CDS is in the formof a tree whose non-terninal nodes are calling sequences to SBL macros or to |FL
programs, and whose term nal nodes are calling sequences to hardwired control rules (clocking processesll)
whi ch sequence the non-termnal nodes, control the activity of functional units, or control the accessing of
data fromthe menory subsystem Terminal nodes can be considered as instructions for a control structure
definition programahich, when interpreted by the control rules of the nicro-processor, defines a particular
control structure for the micro-processor subsystem An exanple of a CDS is pictured in Figure 3.

The execution of an SBL macro is factored into three separable phases: a binding, an expansion, and an
activation phase. The binding phase occurs when a macro calling sequence is generated in a non-terninal node
in the CDS by the expansion or activation phase of another SBL macro; in particular, the non-terninal node
contains the address of an SBL mmcro stored in the micro-program memory, and the paraneters to be associated
with expansion phase of the macro. For exanple, the binding phase analog in an ALGOL procedure is the

machi ne code that sets up the parameters for the procedure call.

Exanpl e 1A:f/ Consider the emulation of an instruction, FAD | 20, where FAD specifies a
floating add operation, | specifies indirect addressing, and the accunulator is the second
and result operand. The first step in the enulation of this instruction on this nicro-processor
is the following: An SBL macro generates a non-terminal node in the CDS which is a binding
between a parameter, IR (instruction register), whose value is the instruction to be emul ated,
and an SBL nmacro IEXEC. This binding phase step is the analog of the control process of an
emulator, and is pictured in Figure La.

The expansion phase, which is the second phase, occurs when SBL macro calling sequence stored in the non-
termnal nodes is executed, and results in the generation of sets of son nodes of the non-termnal node. The

nunber of son nodes generated and the particular calling sequence stored in each son node is defined by the

Y Examples |A 1B, 1, 2, 3, and L form an integrated sequence waich explains Figure 3.

'.. S—EgUI-‘I_I&)—j INTHANDLER()

S
SCP(IDECOLE, IFETCH, c, IR, PC) (IDEconE (IR)
¥
SEL(IEXEC, IFORMAT(IR),c,IR ZI:E)CECJ(IR)

_—7/

FCP(QPCODE(IR),2,cf,s GCCFETCHD(D GI_’FETCHD(IRD (ACCFETCHD()/

ma(f,Acc,J&)I MEM(f,0PADD(IR),£) | |MEM(f,Acc,?)

FIGURE 3. The Control Data Structure for an Enul ator
of a Conventional Conputer

*An oblong box is a non-terninal node; a rectangle is a terninal node; an
underline indicates an IFL calling sequence; a.”d a superscript on a macro
calling sequence, e.g., the D on OPFETCHD, indicates the control structure
prototype that the macro invoked.

parsmeterized prototype specified by the called SBL macro stored in the nicro-program nenory. The prototype
paraneters are either specified as imediate data or computed by either adding imediate data to one of the
SBL calling sequence parameters, or invoking an |FL program whose parameters are the SBL calling sequence
parameters. The set of son nodes generated by the parsneterized prototype consists of a termnal node (i.e.,
calling sequence to a hardwire control rule) and a possibly enpty set of non-terminal brother nodes which
define the immediate environnent on which the hardwired control rule operates. For exanple, the expansion
phase analog in an ALGOL procedure is the execution of nmachine code that performs procedure initiation

when a procedure is called, e.g., allocation of menory for a run-tinme stack, transferring the procedure

parsmeters to the run-time stack, etc.

10

4A; Binding Phase

(mxec® (m))

Il I2 Ol

FCP(OPCODE(TR), 2) GCCFETCHD()) (\OPFETCHD.(IRD (ACCFETCHD())

5:H Expansion Phase

(l‘EXECF(IR))

4C. Activation Phase ‘

01

L o I
FCP(1,2) QCCFETCHD()) Q)PFETCHD(IR) (ACCFETCHD())

MEM (Acc) | . MEM(OPADD(IR))| MEM(ACC)

FIGURE 4. The Three Phases of SBL Macro Execution

Exanple 1B: The second step in the enulation of the instruction FAD | 20 is the expansion of

the macro calling sequence IEXEC(FR). The SBL mmcro, |EXEC, specifies a control structure definitional
prototype which generates a CDS that controls a functional unit. The paraneters of this prototype specify
the functional unit to be activated, and the set of non-terminal nodes that will be used to generate
the input and output data set of the functional unit. These prototype paraneters, with the exception
of the name of the functional unit, do not vary from one execution to another execution of the macro

| EXEC, thus, these non-varying paraneters are specified in the body of macro IEXEC as inmmediate data.
-\hereas, the varying prototype paraneter is conputed by an IFL program called OFCODE; this |FL program,
called with paraneter IR extracts the op-code of the instruction and then determines the nane of the
appropriate functional unit. The expansion of the SBL macro calling sequence, IEXEC(IR), results in a
CDS pictured in Figure 4B; the terminal node in Figure 4B contains a calling sequence to an ¥P control
rule where the first parameter specifies the functional unit, e.g., floating pointer adder, to be
activated and the second paraneter specifies the nunber of non-terminal input nodes, e.g., the nodes
11 and 12. This expansion phase step is the analog of the decoding process of an enulator.

11

The activation phase, which is the third phase, results in the execution of a hardwired control rule
whose cal ling sequence is stored in the terminal node generated by the expansion phase. The execution of
the hardwired control rule, in turn, results in further execution of SBL statements, the activation of IFL
programs, or the activation of functional units. For exanple, the activation phase analog in an ALGOL
procedure is the execution of the machine code for the procedure.

Exanple 1C: The third step in the enulation of the instruction FAD | 20 is the execution of the

calling sequence FCP(1,2) stored in the ternminal node. The hardwired control rule FCP activates

functional unit 1 with two inputs, and then stores the output; the two inputs are generated by

I the expansion of these
nodes results in Figure 4 where the hardwire control rule MEM controls access to the nmemory subsystem

executing nodes I and I,, end the output stored by executing node 0

In this case of node I the expansion of the data-descriptor macro calling sequence, OPFEICH(IR),

requires the inplicit e?(ecution of an IFL program OPADD, this IFL program does the address arithnetic,
in this case indirect addressing, required to |ocate the operand of the instruction. The other two

nodes I and Ol generate a fixed data-descriptor which specifies the area in the menory subsystem
set aside as the accunulator. This activation phase step is the analog of the semantic routine of an

emul ator.

The exanples |IA 1B, and 1IC indicate the three phases involved in emulating IM instructions. However, it
shoul d be pointed out that for the enulation of additional IM instructions with the same basic format (e.g.,

op-code, indirect bit, address) the binding and expansion phases can be elininated. Thus, the overhead

involved in the binding and expansion phases need be incurred only once for each different instruction format
of the emulated conputer. Additionally, if there does not exist a functional unit to carry out the semantics
of the enulated instruction, then these semantics can be programmed in terms of the IFL; this IFL program

called a pseudo-functional unit, is then activated by the ¥CP control rule in the place of a functional unit.

A SBL Macro Prototypesﬂ

There are six possible SBL macro prototypes: data-descriptor (D) , function (F) , selection (8),
iteration (1) , hierarchical (H , and activation (C . An SBL macro whose prototype is either a data-
descriptor prototype or a function prototype is called a subsystem command macro, while a macro whose
prototype is one of the remaining four is called a structure building macro. The subsystem command macros
generate a CDS that controls the interaction between the menmory subsystem and the functional unit subsystem
The CDS of a nore complex process is constructed through the execution of a seqeunce of structure building
macros that use as their basic building block calling sequences to subsystem conmand macros. |f the basic
bui | ding bl ocks are just data-descriptor macro calling sequences, then the structure building macros define
the control structure of a data-accessing procedure. The SBL macros can also be used to define an I/0
control structure which, for exanple, duplicates the effect of an 1/0O channel. An |/0O control structure can
be considered the definition of a macro-instruction when the functional unit being controlled in an
arithmetic device. This later use of SBL macros was shown by Exanple 1. The idea of a generalized |/0O
control structure to control arithmetic units has been proposed in a previous paper by the author ll, and

by Lassl2 as a basis of the design of a high speed computer.

Y This section discusses the semantics and use of SBL macro prototype but does not discuss the internal
- machine language format for SBL macros. A discussion of internal machine |anguage format of the SBL
macro and also |FL instructions is contained in a previous paper by the author. X

12

The control data structures generated by expanding each of the six macro prototypes are pictured in

Figure 5. The non-terminal nodes pictured in Figure 5 contain SBL macro calls which have a fixed formt

consisting of an address q and a parameter p , e.g., q(p) . The address, q , specifies the location of

an SBL nacro in the micro-program nenory, and the paraneter p 1S used in the conputation of the paraneters

of the prototype. The terminal nodes contain calling sequences to one of five hardw red control rules:

MEM (Menmory Subsystem Command), FCP (Function O ocking Process), SEL (Selection Cocking Process), SCP

(Sequential O ocking process), and ASP (Activation and Synchronization C ocking Process). In order to

DATA DESCRIPIOR
PROTOTYPE

FUNCTI ON PROTOTYPE

/”'//'I.,

I'n
wor(su,inset,e)| (- qﬁpﬁj...f’ 33,(Py0) -)

SELECTI ON' PROTOTYPE (())
SEL(QO:INC;C,PO) ((qO+INC)(PO>)

| TERATI ON PROTOTYPE

SCP(M, V,c, Dy kO)

where M(p;5k;) =g

H ERARCH CAL PROTOTYPE ((o))

- - -

-
L_q’r_l)ipl_ (ql(pl)) -

(A)
ACTI VATI ON PROTOTYPE q (p)
lASP(n, 1, svt, syn)

FIGURE 5. CDS Resulting from Macro Prototype Expansion

13

distinguish for future discussions the parsmeters of SBL macro calling sequences from those of the hardwi red
control rule calling sequences, the SBL macro calling sequence paraneters will be called external paraneters
and the hardwi red control rules calling sequence parameters will be called internal paraneters. A nore
detailed discussion of the format and use of the external and internal paraneters stored in the CDS will be
del ayed to Section IV.B.

The MEM control rule defines an access path to the menory subsystem the MEM control rule is activated
with three internal parameters: £ , the format of the data-item e.g., floating-point format, etc.;
a , the beginning bit address of the data-itemin the nenory subsystem and, £, the bit length of the
data-item \When executed, the MEM control rule activates the menory subsystemto fetch (or store into) a
bit string bounded by addresses a and (a+f-1) , and then sends this data together with the format field, f ,
to the requesting functional unit or IFL program The MEM control rule calling sequence neither specifies
the particular functional unit or IFL program that receives or generates the data-item nor whether the
operation is a store or fetch. These specifications of functional unit and operation are defined by the FCP
control rule which activates the data-descriptor macro calling sequence. Thus, the same data-descriptor
macro can be used with many functional units and may be used either for a store or fetch operation. The use
of a format field, f , in the specification of both input and output allows the functional unit to be very
sophisticated in being able to perform if desired, arithmetic operations involving operands and results of
different types and |engths.

The ¥CP control rule activates a functional unit and then controls the generation of the input and
output data set of the functional unit; the FCP control rule is activated with four internal paraneters:
fu , the neme of a functional unit or IFL program in , the nunber of input set generator nodes (the
nunber of output set generators are the remaining brother nodes); ef , control information sent to the
functional unit upon its activation; and 5, an address in the nenory subsystem where the status of the
functional unit at the termination of its operation is stored. Wen executed, the FCP control rule
activates the functional unit fu with control information, cf , and then waits for a request by the
functional unit for input or output data. If input data is requested, then the calling sequence g(p,) is
activated to generate a single input value. Upon further requests for input ql(Pl) is executed again until
it produces no nore data (e.g., it is terninated) and then qg(pz) is activated. The same process is then
repeated with q2(p2). If an output is requested, qin+1(Pin+l) is activated to store a value. Upon
further requests for output, an anal ogous process to the input case just described is carried out.
A functional unit can also operate in the node where it requests all its input data sinultaneously, in which
case all the input generators I,...I

1 in
of operation of the functional unit, the status of the unit is stored starting at address, s, in the nenory

are sinultaneously activated to generate inputs. At the ternination

subsystem The function macro prototype generates a CDS that clearly divorces data-accessing from the
computational algorithm This separation facilitates the definition of control structures which (1) directly
enulate different types of IML instruction formats, e.g., one address, two address, etc.; (2) specify

*
interconnection patterns among functional units, -/Ae.g., a pipeline of functional units, a tree of functional

Y The method of generating a CDS for these alternative functional unit control structures is discussed
~more fully in a previous paper by the authorlO.

1h

units, etc.; and (3) allow the incorporation of functional units into the functional unit. subsystem that
have complex input and output requirements, e.g., a matrix nultiply unit.

The SEL control rule proveides a nmechanism for the conditional expansion of the CDS, and serves a
purpose in the SBL anal ogous to the CASE statenent in ALGOL, or the Conputed Go To statement in FORTRAN. The
SEL control rule is activated with four internal paraneters: 4y » an address in the micro-program nemory of
the base of an array of SBL macros; [INC, an index into the array of SBL macros; ¢ , control information
which specifies the node of execution of the generated macro calling sequence; and By the external
paraneter of the generated macro calling sequence. When executed, the selection clocking process (SCP) stores
inits brother node the SBL macro calling sequence (qo+INC)(pO) , and then expands and activates this calling

sequence based on the control information ¢ . The possible nodes of executing a macro-calling sequence will

be discussed in the next section.

Exanmple 2: Consider a machine |anguage which has several instruction formats. The emulation of
instructions of this machine |anguage could be programmed, e.g., have a separate function macro,
TEXEC]
process that selects the appropriate function macro given a paranmeter, |R whose value is the enulated
instruction:

for each format, J . A selection macro IDECODES , could be used to inplement a decoding

IDEC opE® (IR)

SEC (TEXEC, TFORMAT(TR) , ¢, IR) (IEXEC?(IR))

where IFORMAT is an |FL program that selects the appropriate index into the array of function macros
based on the format, J , of the enulated instruction.

The SCP control rule is used to define the control structure of a sequential process, and serves a
purpose in the SBL analogous to the FOR-LOOP in ALGOL, the DO-LOOP in FORTRAN, or the MARCAR function in LISP.
Wien executed, the SCP control rule sequentially generates and executes as its brother nodes a list of macro
calling sequences:

aq(07)s 0052 (Ry) 5 Qg (Pyy1)s000q (@) -
The sequential clocking process (SCP) defines only a sequential control structure since each macro calling
sequence qi(pi) is completely executed before the next calling sequence qi+l(Pi+1) is generated. The SCP
control rule is activated with five internal paraneters: the first two paraneters, M and V , are the
addresses of |FL progranms; the third parameter, ¢, specifies the node of executing a list of macro calling
sequences; and the remaining parameters, Py and kO , are used to construct the initially macro calling
sequence in the list; the Mprogramcalled with parameters (Pi:ki) computes 547 2 the address of a macro.
", - is constant, then M can be the address of a; rather than the address of an |FL program that
conputes gq, . The V program, also called with paraneters (pi'ki) conputes (Pi+1’ki+1) . The generation

of calling sequences continues until kn+1 =0.

15

Exanple 3: The iteration macro can be used to construct a control structure that inplenents the
instruction fetch cycle of an enulated conputer. Consider the iteration macro calling sequence,
ISEQl(m) , which generates an SCP control rule with following internal parameters: M= mmopEs
(in this case Mis an address of SBL macro rather than an IFL program, V = IFEI‘CH,pO = IR,
and ko = PC where the IR parsmeter contains the enulated instruction just executed, and the E
paraneter the address of the next instruction to be emulated. The IFL program IFEICH(IR,EC) extracts
the instruction of the emulated computer specified by B, stores this instruction as the new value of
IR, and updates PC by one. The SCP control rule, with the above paranmeters, generates a sequence of
calls to the selection macro IDECODE® with a paraneter whose value is the next instruction to be
emulated:

SCP(IDECODE, IFETCH, ¢, IR, EC) IDECODE” (IR)

'

There are two nodes of activating an SCP control rule; these two nodes are indicated through the control

i nformation, c, used to activate the iteration macro calling -sequence that generated the SCP control rule.
In the normal node, the SCP generates and executes macro calling sequences until kn+1 = 0 while in the other
nmode, called single cycle, the SCP suspends its activity after the execution of each macro calling sequence,
qi(pi) i =1,n ; upon the reactivation of the suspended SCP, depending upon whether qi(pi) is itself
term nat ed or‘suspended, either the next calling sequence q1+1(p1+l) will be generated and executed or else
the suspended qi(pi) will be reactivated. This latter node of activating an SCP allows the concept of
“time grain" to be introduced into the SBL definition of a process's control structure. The time grain of a
process refers to the smallest unit of a process's activity that can be controlled; the boundaries of a tine
grain are the only discrete points in the activity of a process where the process's state may be considered.
The two nodes of activating an SCP control rule allows the tinme grain boundaries of a sequential process to
be defined as either the termination of the process or the suspension or termnation of each process

statenent.

Example 3A: Consider the iteration macro calling sequence A(p) which, when activﬁted, generates
and executes the following list of macro calling sequences BT (/l)...B (2) Likewise, consider the
iteration macro calling sequences B (2.) which, in turn, generates and executes the following list
of macro calling sequences i i(J':L) "'Ci(Jm) If the macro AI is activated for a single cycle, and
the internal parameter, c¢ , of the SCP node of A specifies execution for &ll cycles, then the time
grain boundary of A is the completion of each macro calling sequence BI(ti) . However, if the c
parameter associated with the SCP node of A is set for a single cycle, which inplies that SCP node
of B(ti) is activated for a single cycle, then the time grain of the Ais the tinme grain of the
Ci(J) . This successive functional deconposition of a sequential process through a hierarchy of
iteration macros can be continued until the desired time grain of the process is achieved.

The concept of time grain can be enployed to represent concisely such control concepts as interrupts,
monitoring, etc. |n particular, the control structure of a sequential process that is being nonitored for

a specified condition can be constructed so that the process is suspended after the smallest unit of work
whi ch can effect the condition being nonitored is performed. Thus, before reactivating the suspended process

the condition being nonitored can be checked, and if necessary, an appropriate interrupt process activated.

16

The ASP control rule, unlike the other three built-in control rules ¥P, SEL and SCP, does not inplenent
a predefined pattern of sequencing non-terminal nodes, but rather is a building block upon which arbitrary,
possi bly non-sequential, clocking processes can be defined. The activation of the ASP control rule results
in the nodification of the "state" of a single non-ternminal node where the location of the non-term nal node
is not fixed but rather specified by paraneters of an ASP calling sequence. The ASP control rule is used in
conjunction with a hierarchical macro prototype to define a clocking process which sequences the son nodes
of the hierarchical macro. A hierarchical macro calling sequence, qH(P) , Wwhen expanded, generates a |ist
of macro calling sequencequlgpl)..hqn(pn)l and expands the macro calling sequence (q+1)(p) . The dotted
box in Figure 5is used to indicate that results of expanding (qg+)(p) is placed in the CDS instead of a
non-terminal node containing the calling sequence (aqtl)(p) . For exanple, if (q+tl) is an iteration macro,

then the expansion of qH(p) results in the following CDS:

,_
|

The activation of qH(p) then results in the activation of the terminal node which is generated by the
expansion of (g+)(p) , e.g., in the above case, the SCP control rule would be activated. The CDS generated
by the expand macro {(q+l) defines the control structure of the clocking process which initially sequences
the sone nodes of the hierarchical macro; the basic statements of this clocking process are calling sequences
to activation macros. The execution of these activation macro calling sequences results in the activation of
ASP control rules; these ASP control rules, in turn, control the expansion and activation of the son nodes

of the hierarchical macro.

Exanple 4: Consider the emulation of a conventional computer with an interrupt structure. The
control structure of the emulator for this conputer can be constructed by conbining together the
control structures discussed in Exanples 1, 2 and 3, and then adding as a superstructure a macro,
COMPUTER , which specifies an interrupt control structure. Figure 3 represents this combined
control structure, where SEQUNIT is a clocking process that activates the node ISEQ,I(pc) for one
cycle at a time (which neans the grain boundary of ISEQ is the enmulation of a single instruction),
and then checks whether an interrupt requires servicing; if it does, then the node | NTHANDLER is
executed, else the node ISEQI is reactivated and the basic sequencing cycle is repeated.

A nore detailed explanation of the hierarchical macro prototype and the ASP control rule is contained in

Section IV.C.

B. Control Data Structure

The CDS is in the formof a tree due to the ease of specifying such control concepts as hierarchical
structure (functional deconposition), parallelism co-routines, and recursion. Representation of hierarchical
structure and recursion is possible because additional levels (e.g. son nodes) may be dynamically built in the

tree by expansion of non-terninal nodes (macro calling sequences). Representation of parallel and co-routine

7

control structures is possible because brother nodes in the tree may be treated as distinct, independent
processes each with its own state information. A tree data structure is also a convenient syntax framework
(using father, brother, etc., relationships between nodes) for defining distributed control systems. The
control structure of a complex system can sonetinmes be conveniently represented through hierarchical structure
where in each sibling set (or structural level) of the tree there is enbedded a sinple control rule (via a

cl ocki ng processlh) that initiates the sequencing of its brother nodes. If additional clocking processes

are contained in the sibling set, control may pass to these processes after initialization. Thus, instead of
one conplex control rule for the entire system the control can be distributed throughout the system In
addition, since the control rules can be coded such that their addressing structure is not based on their
absolute locations in the tree, but only on their relative position in the tree, one copy of a single clocking
process can be used at different points in the tree. The sinmultaneous execution of many calling sequences to
the same macro body is permitted because information local to each macro expansion and its subsequent
activation is stored in the CDS.

Atree is the formof a CDS generated by SBL macros but does not necessarily reflect the dynamic
sequencing of nodes. This separation between generation and sequencing is possible because the execution of
an SBL macro is factored into three separable phases: the generation of a CDS, caused by the binding and
expansi on phases, can thus be separated from the execution of a CDS, caused by the activation phase. The only
built-in sequencing associated with the tree is that a father node nust be expanded before any of its sons.
The CDS is just a convenient framework within which sequencing rules can be expressed. Thus, control
structures whose CDS's are not normally represented as tree structures can also be programmed in the SBL since
the tree is the form for generation of the control data structure but not necessarily the form for the passing

of control during execution.

Example 6: Consider the parallel control structure defined by a fork-join instruc‘ciohb. The
fork-join control structure is normally represented in terns of the directed graph in Figure 5a.
However, if the correct clocking processes are attached to a tree of processes, then the fork-join
control structure can be represented in terns of a tree, as viewed in Figure 5b: the clocking process

Control -1 sequentially executes the process specified by macros "PARL AB" and C. Control-2 clocking
process executes processes A and B in parallel, and is not terminated until both processes A and B are
term nat ed.
Sa 5b
H
Fork A,B Fork™ A,B
| il - =
A B v+ Control-1 .
b4
r-—-—-"
Join A,B + Control-2 PA A B
e —— - -
C

FIGURE 5. Fork-join Instruction

18

The separability of the three phases of macro executions also avoids the unnecessary rebuilding of the CDS
when the form of the control data structure (e.g., the nunber of sone nodes at a particular level in the tree)

does not vary from execution to execution. The SBL is defined so that only the dynam c parts of the CDS

must be rebuilt; the static parts of the CDS once defined need not be regenerated. For exanmple, the only parts
of the CDS pictured in Figure 3 that need to be rebuilt for the enulation of each instruction are the values

of the internal paranmeters calculated by IFL programs. As well, the separation between the binding phase, and
the expansion and activation phase allows the external parsnmeters used in executing and rebuilding parts of
the CDS to be different fromthose used to initially generate the CDS.

Each non-ternminal node in the CDS can be considered the state vector of a process, where the process is
defined by the control structure generated by the expansion of the macro calling sequence stored at the node.
The built-in control rule that is used to activate a non-termnal node will be called the external clocking
process (ECP) of the node, while the built-in control rule that is activated as a consequence of the node being
activated will be called the internal clocking process (ICP) of the node. For example, in Figure 3, the ECP
of non-terninal node IDECODE(IR) is the SCP control rule contained in its brother node, while the ICP of
this node is the SEL control rule contained in its first son node. The process state vector in
each non-termnal node has six componenets (q,p,s,c,r,d) where q(p) is a macro calling sequence,

s is the current state of the process, ¢ is control information associated with the activation of the
process, and r and d are pointers to nodes that, respectively, define the immediate gl obal control and
data environment of the process. The current state, s , of the process refers to the state of the ICP
associated with the node, and has seven possible values: (1) ICP is unexpanded; (2) ICP is being
expanded; (3) ICP is expanded; (4) ICP is being executed; (5) ICP is being suspendedﬂ;(@ ICP is
suspended; and (7) ICP is ternminated. The control information, ¢ , specifies (1) the time grain of the
process, (2) the conditions under which the process will signal its external clocking process, and

(3) the conditions under which the process's control structure is rebuilt. The time grain of a process can
be either the activation of a single process statement or the duration of the process. The internal clocking
process will either return control to the external clocking process after each activation or it will retain
control until the process is terninated. The inmediate global control pointer, «r , (conventionally called
a return link) specifies the address of the external clocking process that will be reactivated. The ¢ conponent
al so specifies whether a process' control structure will be partially rebuilt after each execution of the
process, or either partially or conpletely rebuilt after the process is ternminated. The immediate data
environment pointer, d ., is used by the tree address nmechanismto |ocate nodes in the process space nenory.
The values of r and d when a node is initially generated are the addresses of, respectively, its father
node's internal clocking process and its father node. However, these are default options for r and d

They can be overridden by the activation macro in order to create a control data structure to pass control in
a manner different fromthat of a tree structure.

The p camponent of a process state vector, which is the paraneter of the macro calling sequence
(e.g., the external parameter), contains either an imediate integer value or a pointer; there are three

types of pointers: (1) a pointer to the p component of the process state vector of another node;

¥ The fifth state indicates the node is currently executing but will be suspended at the end of its current
time grain.

19

(2) a pointer to a field in the menory subsystem and (3} a pointer to a block of auxilliary registers.

The first type of pointer allows the representation of the static data relationships among external paraneters
contained in the CDS. In particular, the first type of pointer facilitates the definition of broadcast type
control structures and control structures for parameter passage. It allows nodification of external paraneters
at one level in the tree to be directly reflected in other levels of the tree without explicitly modifying
those paraneters at other levels. The second type of pointer allows the state of emulator to be directly
mapped on to the state of the enulated conputer. This mapping is acconplished by storing part of the state of
enulator in the menory subsystem instead of entirely in the process space menory. Thus, SBL operations on
external parameters can be directly reflected back into changes in the contents of the menory subsystem In
particular, this second type of pointer capability is very valuable in the programmng of an enmulator for a

conputer whose state vector is in its nemory (e.g., the PDP-11 16

conmput er whose program counter is stored
as register 7in its nmenory); this can be done by having the CDS contain a pointer to the field in the menory
subsystem whi ch contains the program counter, rather than storing the value of the program ...in the CDS
itself. Thus, the enmulator does not have to process in a special way instructions of the enulated conputer
that can possibly nmodify the field in the nemory subsystem that contains the program counter. Further, the
second type of pointer capability allows the state vector of an enulated conmputer to be stored in a single
field in the nmenory subsystem and references to it by external parameters to be distributed throughout the
control data structure. Thus, by nodifying a single field in the nenory subsystem the control data structure
can be nmodified to reflect a new state vector for the enulated computer. The third type of pointer allows a
macro calling sequence to contain nultiple parameters rather than just a single parameter. An |FL program
which is called with this third type of pointer as a parameter can then directly store and retrieve data
froma block of auxilliary registers.

The expansion of a SBL macro q , using parameter p , generates the form of a control structure and
the internal paraneters of the control structure definition that are not nodified (constant) from one
execution to another. After the expansion of the macro q , the value of the expansion paraneter p can be
changed by an activation macro to p J and used as execution parameters of the process defined by the expanded
macro. The internal paraneters, which vary from execution to execution, are not calculated at macro
expansion tine, but instead, are recalculated based on the execution parameter D, upon each new execution
of the process defined by the control structure. The progranmmer can define which of the internal parametrs
vary by setting appropriate fields in the macro body. Varying internal paraneters are distinguished from
constant internal parameters in the control data structure by storing, respectively, the name of an IFL
program in the parameter field of the terminal node instead of an external parameter. Thus, only dynanic
parts of a-control structure need be rebuilt on each execution, and only paraneters with varying val ues need

be recal cul at ed.

20

C Nonsequential Control Structures

The hierarchical macro provides a mechanism for defining control structures that contain nore than

one clocking process (path of c:ontrol),17 especially control structures that distribute control through a
hierarchy of control levels. A distributed control structure, constructed by a sequence of hierarchical macros,
can be used to define, depending upon the nunber of clocking processes that are sinultaneously executed,
either quasi-parallel 18 or parallel control structures. |In addition, many sequential control structures can
also be easily defined in terms of a distributed (quasi-parallel) control structure, e.g., a subroutine call
mechani sm the execution of the subroutine call suspends the clocking process of the caller, and activates
the clocking process of the subroutine; the return from the subroutine then termnates the clocking process
of the subroutine and reactivates the clocking process of the caller. The block structure and procedure calls
of ALGOL and co-routines are other exanples of sequential distributed control structures. In essence, the
hierarchical macro allows the structure of a conplex process to be functionally deconposed into a set of
executions of less conplex processes. The hierarchical macro, in order to represent this functional deconposition,
must define (1) the set of less conplex processes, and (2) the sequencing algorithm (clocking process) for
this set of processes. A clocking process is constructed out of calls to the ASP control rule. The ASP control
rule conbines the control functions of process activation including parameter passage and process synchronization.
The ASP control rule performs these control functions through operations on the process state vector stored at
a node.

The ASP control rule pictured in Figure 5 is called with four internal parameters. The first two
parameters, n and 1 , specify the relative address of a node in the CDS, the third paraneter, svt ,
is atenplate for a process state vector where for each of the components of the vector there is stored in
the tenplate either a value or null synbol; the fourth parameter, syn, is used to synchronize the activity
of the ASP control rule with the activity of the process located at (n,1) . The relative addressing schem
used to locate a node in the CDS is the following: brother' .father" 'base-node , where the base node is the
node containing the activation macro calling sequence; the d conponent of the process space vector is used
to locate the father node. This relative addressing capability can be used very advantageously in the
definition of recursive distributed control structures since a clocking process does not have to know the
exact level of the tree it is controlling.

The activation of the built-in clocking process ASP results in the nodification of the state vector of
the process located at relative address {(n,1) in the process space menory. This process’ state vector is
nodi fied by replacing the value of each of its conponents by the corresponding svt conponent whenever this
corresponding svt conponent is not null. Thus, the only conponents of the state vector of the activated
process which vary from execution to execution of the process need be recal cul ated. The static conponents
of a process state vector (the fixed control and data |inkages of a process) are defined either by default
options when the process' state vector is initially generated or by the activation macro which initially
expands the macro calling sequence that defines control structure of the process. Thereafter, the
activation macro that activates the process has a tenplate state vector whose conponents are null

whenever the corresponding conponents of the process' state vector are static. At the

21

sane tine as the nodification of the process' state vector is conpleted, the s component of the state
vector of the ASP clocking process is nodified, depending upon the syn parameter, to be either the
suspended or the terminated state. Through this mechani sm of sinultaneous nodifying of two state vectors,

the activity of one process can be synchronized with the activity of another process.

Exanple 7: Consider two processes A and B, where process A calls process B as a subroutine call by
executing and then waiting for termnation of an ASP clocking process. In turn, the ASP clocking

process activates the process B and nodifies B's state vector so that process B will signal a return
when it is terninated, and this return will be to the ASP clocking process. At the seme time, the

syn parameter of ASP is set up so that after process B's state vector is nodified the ASP clocking
process is suspended. Wen process B is terminated, ASP will then be re-awakened and will go to the

termnated state. This action in turn will allow process A to continue processing since process A

has been waiting on the canpletion of the ASP clocking process. |f process A was not synchronized with
the activity of process B then syn parameter of ASP would be set up so that after process B is
activated the ASP process is ternminated. Thus, process A after process B is activated will imediately
continue processing. Process A while waiting for ASP process to terminate is not suspended because the
action of suspending process A may be significant to A's external clocing process since the suspending
of A means that process A has canpleted a time grain. Thus, this inplenentation of subroutine call
permits A's external clocking process to view A as executing while process B is executing, but at the
same time A's internal clocking process is waiting on B's canpletion.

The ASP clocking process can only activate a process for execution (e.g., change the s conponent of
the process' state vector to executing) when the process' current state is unexpanded, expanded, suspended
or termnated. In the case that ASP clocking process attenpts to execute an already executing process, the
ASP clocking process either is suspended or goes into a busy wait until the process to be executed is no
longer executing. The tine grain of the node that generates the ASP determines which one of these options
is taken: if the time grainis a single cycle the ASP is suspended, otherwise it busy waits. Thus, if two
processes simltaneously issue ASP's which activate the same node (shared process), only one ASP will be
allowed to execute the shared process. The other ASP will then either wait till the shared process is
conpleted, or possibly at some later time try to execute the shared process. This paradigm for sequentializing
the execution of a shared process can then be used as a basis for constructing synchronizing primtives for

cooperating processes.

Example 8: Consider the inplenmentation of Dykstra*s P and V semaphores in terms of the

ASP clocking process. Let PV be a shared process where the p conponent of its state vector

specifies the nane of a semaphore variable to be operated on and whether a P or V operation is

to be performed, and the r conponent is the address of the process that activated PV .

A process L perforns a P or V semaphore operation by activating an ASP clocking process

whose tine grain is termnation, syn parameter in the case of P operation specifies suspended

while for a V operation specifies termnated, (n,1) parsneters specify the relative address

of the PV process, and the svt contains the correct calling sequence for either a P or V

operation. The PV process when activated by ASP for a P operation checks whether the semaphore

variable specified in the calling sequence can be decrenented, if it can, then the operation is conpleted

and th PV process is suspended. This suspension of PV results in termnation of ASP which then

permts process L, to continue. In the case that the semmphore cannot be decrenented, the PV

process modifies its own state vector component so that it does not return to ASP when it is suspended.
- It then extracts the address of the ASP process fromits state vector, places this address in queue

22

associated with the semaphore name, and suspends itself. Thus, the ASP clocking process still
remains in the suspended state, and therefore process Li cannot continue. The PV process when
executed for V operation increments the semaphore variable, and then checks whether there is a
queued ASP process on that semaphore variable that can now be executed. If there is, this ASP
node address is stored in the r component of PV state vector, and PV process then suspends
itself which results in the queued ASP process being re-awakened. The ASP clocking process that
executed the PV process for a V operation terninates inmmediately after the PV process
state vector has been nmodified, and thus L, can continue processing while a V operation is
being done. If the PV process is busy, when ASP attenpts to execute it, then ASP goes into a
busy wait. However, this busy wait is not on a semaphore variable but only on the process which
updat es the semaphore.

The ASP can also be used to create a new copy of a process (node) instead of calling a shared process. This
creation of a new node occurs when the (n,1) paranmeters are (0,0) . The new node is the root node of a
separate tree, and only the ASP clocking process can access this tree. |t may also be advisable, for
efficiency reasons in inplementing |ock-step (broadcast) control structures, that an ASP cl ocking process be
able to simultaneously activate all the sibling nodes at a level in the tree, and then be able to wait for

all of themto signal a return.

23

SUMMARY COMMENT AND FUTURE RESEARCH

This paper is an investigation of the idea of a micro-computer whose control structure is nodifiable.
This investigation attenpts to indicate the advantages of a variable control structure nicro-conputer
architecture over conventional micro-computer architectures: (1) a wide variety of conplex sequential and
parallel IMLs can be emulated on a single mcro-conputer; (2) the programming of enulator is sinple and
uniform such that the program structure of the enmulator reflects the architecture of the conmputer it
emul ates; and (3) a variety of hardware arithmetic units, 1/0 devices and varying numbers of micro-
processors can be easily incorporated into the organization of the micro-conputer.

Future research on this nicro-canputer organization will attenpt to devel op nore rigorous argunments
for the nerits of this proposed method for emulation. In particular, a simulator for this
m cro-conputer organization and enulators for conplex sequential and parallel IMLs will be programed. In
addition, it is planned to investigate the possibility of adding to the SBL prinitive operators which control
access to nodes in the CDS, fields in the menory subsystem and functional units in the functional unit
subsystem Thus, it is proposed to integrate the concept of protection (capabilities, access path, etc.)
into the definition of the control structure of a process which is where the definition of protection
naturally belongs. In the prelimnary investigation of this idea, it appears that the concepts of protection
di scussed by Dennis and Van Hornl7, La.mpsonl9, etc. can be easily specified, with the addition of two or
three primtives to SBL, in the framework of the proposed data structure for control. Thus, emulators for

operating systems IMLs will be nore easily inplenented, and it will be possible to protect a nicro-code

frominterference by other nicro-prograns.

24

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

Ref erences

Hauck, E. A and Dent, B. A [1968]. "Burroughs B6500/B7500 Stack Mechanism" AFIPS Conf. Proc.
Vol . 32.

Abrans, P. S. [1970]. "An APL Machine". Report No. SLAC-114, Stanford Linear Accelerator Center,
Stanford University, Stanford, California.

Mel bourne, A J. and Pugmire, J. M [1965]. "A Small Conputer for the Direct Processing of FORTRAN

Statements.” The Conputer Journal, Vol. 8 (April).

McKeeman, W [1967]. "Language Directed Conputer Design." AFIPS Conference Proceedings (FJCCET).
Control Data Corporation. [1966]. "6400/6600 Conputer Systems Reference Manual."

Illiac-IV System Study Final Report [1966]. Burrough Corporation, University of Illinois, No. 09852-B.
"System/360 Mbdel %0, 2040 processing unit." [1966]. |BM Field Engineering Diagrams Manual, Document
No. 0223-28k2.

Tucker, S. G [1965]. "Rnulation of Large Systems." CACM, Vol.8, No. 12.

Cook, R W and Flynn, M J. [1970]. "System Design-of a Dynamic M cro-processor." |EEE Transactions
on Conputers, Vol. C-19, No. 3.

Lesser, V. R [1970]. "Direct Emulation of Control Structures by a Parallel Mcro-Conputer." SLAC
report No. 127, Stanford University, Stanford, California.

Lesser, V. R [1968]. "A Milti-Level Conputer Organization Designed to Separate Data-Accessing from
the Conputation.” Technical Report CS 90, Conputer Science Departnent, Stanford University.

Lass, S. [1968]. "A Fourth Generation Computer Organization." AFIPS Conference Proceedings, Vol. 32.

Dennis, J. B.and Van Horn, E C [1966]. "Programming Semantics for Milti-progranmed Conputation.”
Comm ACM Vol. 8, No. 3.

Horning, J. J. and Randell, B. [1969]. "Structuring Conplex Processes." Report RC-2459, | BM \Wtson
Research Center, Yorktown Heights, New York.

Conway, M E [1963]. "A Miltiprocessor System Design." Proc. FJCC 24, 139-146.

Digital Equipnent Corporation. [1969]. "PDP-11 Reference Manual."

Bingham, H W and Reigel, E W [1969]. "Parallelism Exposure and Exploitation in Digital Conputing
Systems." Final technical report, Burroughs Corp, Paoli, Pa.

Dahl, O, and Yngaard, K. [1966]. "SIMULA - An Algol-Based Sinulation Language." Comm ACM Vol. 9.

Lampson, B. W [1969]. "Dynamic Protection Structures." AFIPS Conference Proceedings (FJCC 69).

25

APPENDI XA

Consider the addressing structure of the pop-6. Each por-6 word is 36 bits long and is divided into
three fields for addressing, an indirect field, | , (Bit 13), an index field, B, (Bits 1%17), and an
address field, A, (Bits 18-35). The index registers in the ror-6 are the first 16 words in nenory.
por-6 allows indirect addressing with indexing at each level of an arbitrarily long indirect chain. The
36-bit wide nmemory can be represented in the menmory subsystem starting at bit 0 so that work K of the
PDP-6 begins at bit address M[K*56] and ends at M(X'36+35] . The following IFL program finds the address

of the last word in anindirect chain given the address of the first word of the chain as its p paraneter

and 1 as its k paraneter.

Conmment s
PD6ADD: if k = 0 then p else p := p*36, go to Converts virtual address to physical address
[k] (CHAIN, EXTRACT-A); and then gets value associated w th physical
address.
CHATN:p := [EXTRACT-A]+ [EXTRACT-B], Basic sequencing of indirect addressing.
k := [EXTRACT-1], go to PD6ADD;
EXTRACT-A:M(p+18, 18); Extracts address field.
EXTRACT-B: p := M(ptlh, 4), k := 2, Extracts index field and then calls procedure
go to PDAADD; to get value of index.
EXTRACT-1: M(p+l3, 1); Extracts indirect field.

26

