
Cooperative Learning over Composite Search S 
Experiences with a Multi-agent 

M V Nagendra Prasadl, Susan E. Lander2 and Victor 

lDepartmen t of Computer Science 
University of Massachusetts 
Amherst, MA 01003 
(nagendra,lesser)Qcs.umass.edu 

Abstract 

We suggest the use of two learning techniques - short 
term and long term - to enhance search efficiency 
in a multi-agent design system by letting the agents 
learn about non-local requirements on the local search 
process. The first technique allows an agent to ac- 
cumulate and apply constraining information about 
global problem solving, gathered as a result of agent 
communication, to further problem solving within the 
same problem instance. The second technique is used 
to classify problem instances and appropriately in- 
dex and retrieve constraining information to apply to 
new problem instances. These techniques will be pre- 
sented within the context of a multi-agent parametric- 
design application called STEAM. We show that learning 
conclusively improves solution quality and processing- 
time results. 

Introduction 
In this article, we study machine-learning techniques 
that can be applied within multi-agent systems (MAS) 
to improve solution quality and processing-time re- 
sults. A ubiquitous problem with multi-agent systems 
that use cooperative search techniques is the “local 
perspective” problem. Constraining information is dis- 
tributed across the agent set but each individual agent 
perceives a search space bounded only by its local con- 
straints rather than by the constraints of all agents in 
the system. This problem could be easily addressed if 
all expertise could be represented in the form of ex- 
plicit constraints: the constraints could be collected 
and processed by a centralized constraint-satisfaction 
algorithm. However, the most compelling reasons for 
building multi-agent systems make it unlikely that the 
agents are that simple. More commonly, agents are 
complex systems in their own right and their expertise 
is represented by a combination of declarative and pro- 
cedural knowledge that cannot be captured as a set of 

*This material is based upon work supported by the Na- 
tional Science Foundation under Grant Nos. IRI-9523419 
and EEC-9209623. The content of this paper does not nec- 
essarily reflect the position or the policy of the Government, 
and no official endorsement should be inferred. 

68 Agents 

2Blackboard Technology Croup, Inc. 
401 Main Street 
Amherst, MA 01002 
landerQbbtech.com 

explicit constraints. Therefore, each agent must oper- 
ate independently to solve some subproblem associated 
with an overall task and the individual solutions must 
be integrated into a globally consistent solution. An 
agent with only a local view of the search space can- 
not avoid producing subproblem solutions that conflict 
with other agents’ solutions and cannot always make 
intelligent decisions about managing conflicts that do 
occur. 

We suggest the use of two learning techniques - 
short term and long term - to address the local 
perspective problem. The first technique allows an 
agent to accumulate and apply constraining informa- 
tion about global problem solving, gathered as a re- 
sult of agent communication, to further problem solv- 
ing within the same problem instance. The second 
technique is used to classify problem instances and ap- 
propriately index and retrieve constraining information 
to apply to new problem instances. These techniques 
will be presented within the context of a multi-agent 
parametric-design application called STEAM. 

The remainder of this article is organized as follows: 
We first formalize our view of distributed search spaces 
for multi-agent systems and briefly present the STEAM 
prototype application (Lander 1994; Lander & Lesser 
1996). The subsequent section introduces two learning 
mechanisms used to enhance search efficiency. Next, 
we present experimental results that demonstrate the 
effectiveness of the learning mechanisms. In the last 
two sections, we discuss related work and present our 
conclusions. 

istributed Search Spaces 
Search has been one of the fundamental concerns of 
Artificial Intelligence. When the entire search space 
is confined to a single logical entity, the search is 
centralized. In contrast, distributed search involves 
a state space along with its associated search op- 
erators and control regime partitioned across mul- 
tiple agents. Lesser (Lesser 1990; 199 1) recognizes 
distributed search as a framework for understanding 
a variety of issues in Distributed Artificial Intelli- 
gence( DAI) and Multi-agent Systems (MAS). 



In distributed search, multiple agents are required 
to synergistically search for a solution that is mutually 
acceptable to all of them and satisfies the constraints 
on global solutions. However, the constraining infor- 
mation is distributed across the agent set and each in- 
dividual agent perceives a search space bounded only 
by its local constraints rather than by the constraints 
of all the agents in the system. Thus we need to distin- 
guish between a boccll search space and the composite 
search space. 

A local search space is private to an agent and is 
defined by the domain values of the parameters used 
to constrain the local search. A set of local constraints 
along with the problem specification, define the local 
solution space as a subset of the local search space. 
More formally, for each agent 4 the following can be 
defined: 

The parameter set Pi = ( pijr 1 < j < xi ) with 
respective domains I)ij, 1 5 j 5 ZLfrom which the 
parameters take their values. Vi, x /Di, x . . . x Di,. 
defines the local search space for agent A. A doma& 
can be a set of discrete values, real values, labels or 
intervals . 
A parameter is a shared parameter if it belongs to pa- 
rameter sets of more than one agent. More formally, 
let AS(p) represent the set of agents that have pa- 
rameter p as a part of their parameter set. 

WP) = (4 IPE(P;jtl<j<Xi)) 

“p” is a shared parameter iff 1 AS(p) 1 > 1. 

Hard constraints ‘?K’~ = ~~C~j, 1 < j < yi) that 
represent the solution requirements that have to be 
satisfied for any local solution that agent JLi pro- 
duces at time t. 

Soft constraints SC: = (SC~j, 1 5 j 5 2;) that rep- 
resent the solution preferences of agent .& at time t. 
Soft constraints can be violated or modified without 
affecting the ability of the agents to produce globally 
acceptable designs. 

The set of hard and soft constraints, Ci = XC: U 

SC:, defines a local solution space Sit C_ Di, x Dt, x 

. . . x v&* 

Si” = Space(C~ ) 

In constraint-optimization problems, not all con- 
straints need to be satisfied. Hard constraints are nec- 
essarily satisfied and soft constraints are satisfied to 
the extent possible. Soft constraints may have a vary- 
ing degree of flexibility with some being softer than the 
others. Some of them may be relaxed when an agent 
is not able satisfy all of them together. When Sj = 
4 the problem is over-constrained with respect to ,c2;. 
In this situation, domain-specific strategies are used to 
relax one of the soft constraints cik. 

Si’ = i$XZCe(c~ - Cik) 

How soft constraints are relaxed can strongly effect 
the system performance. Lander (Lander 1994) dis- 
cusses some studies related to this issue. We will not 
attempt to further discuss this in the present paper. 

A local solution sk E Si for agent J&, consists of 
an assignment Of values vij E Vij t0 parameters Pii, 
1 < j < Xi. Each of the local solutions may have 
u&y measures attached to it to facilitate selection of 
a preferred solution from Si. Agent .& prefers solution 
sm E Sit over solution s,, E Si if the utility of sn is 
more than the utility of s,. 

We also define the notion of projection that will be 
used in the later sections to formalize the description 
of the learning algorithms. For each local solution si = 
(PiI= ‘Vii, pia = vi2, . . . pi=; = Viz;) E 27: and a set of 
parameters X, we can define a projection (si 4 X) as 
follows: 

(Si -l-X) = (Pij = vi j 1 Pij E x) 

For a solution space Sit, projection (Si 4 X) is de- 
fined as 

(si’ 3- X) = ((Si j- X)1 Si E Si} 

Constraints can be explicitly represented as in, for 
example, (run-speed 5 3600) or they may be implicit 
as in procedural representation. An example of a pro- 
cedurally embedded constraint may look as follows: 

if (run-speed <= 3000) then 
water-f low-rate 

= max (50 water-f low-rate) 
end if 

In this constraint, the run-speed parameter implic- 
itly constrains the water-flow-rate. In complex sys- 
tems like STEAM, it is often the case that such implicit 
constraints are not easily discernible and, even when 
they are, it may not be possible to represent them in a 
declarative form that is suitable for sharing with other 
agents. 

Soft constraints in STEAM are associated with four 
levels of flexibility - 1 to 4 - with constraints at level 
4 representing the highest preference. An agent tries 
to satisfy as many of the constraints at highest level 
as possible. Solutions are evaluated based on the con- 
straint level, the number of constraints satisfied at that 
level, and, finally, on the cost of the design. Solutions 
satisfying more constraints at a higher level are pre- 
ferred. If there are multiple design components sat- 
isfying the same number of constraints at the highest 
level, a component with least cost is chosen. 

The composite search space CS is a shared search 
space derived from the composition of the local search 
spaces of the agents. The desired solution space for 
the multi-agent system is a subset of the composite 
search space. Parameters of the composite search space 
consist of: 

i=n j=z; 

PGk c IJ-IJ Pij 
i=l j=l 

Multiagent Learning 69 



where 1 5 k 5 g. 
The parameter set for the composite space repre- 

sents the features of the overall design that are con- 
strained by the composite search space. The domain 
for a parameter in this set is derived as the intersection 
of all the domains of the corresponding parameters in 
the agents that have this parameter as a shared pa- 
rameter. 

STEAM: A Multi-agent Design System 
STEAM is a parametric design system that produces 
steam condensers where a motor powers a pump that 
injects water into a heat-exchanger chamber. High 
temperature steam input into this chamber is out- 
put as condensed steam. STEAM consists of seven 
agents for designing the components of such steam 
condensers: pump-agent, heat-exchanger-agent, 
motor-agent , platform-agent , vbelt-agent , 
shaft-agent, system-frequency-critic 

Each agent takes the responsibility to either design a 
component of a steam condenser for which it possesses 
expertise or critique an evolving partial design. STEAM 
is a globally cooperative system which implies that any 
local performance measures may be sacrificed in the 
pursuit of better global performance. Thus an agent 
is willing to produce a component that is poorly rated 
locally but may participate in a design of high overall 
quality. 

STEAM is a distributed search system. Each agent 
performs local search based upon the implicit and ex- 
plicit constraints known within its local context. It 
has its own local state information, a local database 
with static and dynamic constraints on its design com- 
ponents and a local agenda of potential actions. The 
search in STEAM is performed over a space of partial de- 
signs. A partial design represents a partial solution in 
the composite search space. It is initiated by placing a 
problem specification in a centralized shared memory 
that also acts as a repository for the emerging com- 
posite solutions (i.e. partial solutions) and is visible to 
all the agents. Any design component produced by an 
agent is placed in the centralized repository. Some of 
the agents initiate base proposals based on the prob- 
lem specifications and their own internal constraints 
and local state. Other agents in turn extend or critique 
these proposals to form complete designs. The evolu- 
tion of a composite solution in STEAM can be viewed 
as a series of state transitions. For a composite so- 
lution in a given state, an agent can play a role like 
initiate-design, extend-design or critique-design. An 
agent can be working on several composite solutions 
concurrently. 

Learning Efficient Search 
Problem solving in STEAM starts with agents possess- 
ing only local views of the search and solution spaces. 

Given such a limited perspective of the search space, 
an agent cannot avoid producing components that con- 
flict with other agents’ components. This section intro- 
duces two machine learning techniques to exploit the 
situations that lead to conflicts so as to avoid similar 
conflicts in future. 

Conflict Driven Learning (CDL) 

CDL has been presented as negotiated search in Lan- 
der (Lander 1994). Below, we reinterpret this process 
as a form of learning and provide a formal basis for the 
learning mechanisms. As discussed previously, purely 
local views that agents start out with are unlikely to 
lead to composite solutions that are mutually accept- 
able to all of them. When an agent attempts to ex- 
tend or critique a partial design, it may detect that 
the design violates some of its local constraints. Let 
the set of parameters shared by agents & and .A.j be 
Xii. Then agent Jzi trying to extend or critique a so- 
lution ST E Sit detects a conflict iff 

The violated constraints can be either explicit or 
implicit. Explicit constraints can be shared and an 
agent detecting violations of explicit constraints gen- 
erates feedback to the agents that proposed the partial 
design involved in the conflict. In STEAM, explicit con- 
straints are limited to simple boundary constraints of 
the form (z < n), (Z < n), (Z > n), or (Z 2 n) that 
specify maximum or mynimum values for a parameter. 
If z is a shared parameter, then an explicit constraint 
on x can be shared with other agents. Such a conflict- 
driven exchange of feedback on non-local requirements 
allows each agent to develop an approximation of the 
composite (global) search space that includes both its 
local perspective and explicit constraining information 
that it assimilates from other agents. This type of 
“negotiated search” can be viewed as learning by be- 
ing told and is short-term in nature-the exchanged 
information is applied only to the current problem in- 
stance. The following lemma shows that each exchange 
in CDL progressively improves an agent’s view of the 
composite search space. 

Let the set of constraints communicated as feedback 
by agent J& to .& at time t upon detecting a conflict 
be 3Cj. 
Lemma: (CS 4 P;) & (Sf= Space(Ci U 3Cj)) C Sit 

The lemma says that A’s view of the composite 
search space with the new conflict information assimi- 
lated is a refinement over the previous one with respect 
to the relevant portion of the actual composite search 
space. 

The design leading to a conflict is abandoned and 
the agents pursue other designs but with an enhanced 
knowledge of composite solution requirements from 
there on. 

70 Agents 



Exchange of explicit constraints does not guarantee 
that the agents will find a mutually acceptable solution 
because of the presence of implicit constraints that can- 
not be shared. Thus, even ifall the explicit constraints 
that lead to conflicts are exchanged by time tf , the re- 
sulting view of agent 4 of the composite search space 
is still an approximation of the true composite search 
space: 

(CS J. Pi) - sit’ 

However, to the extent that an agent’s local view 
approaches the global view, an agent is likely to be 
more effective at proposing conflict-free proposals. 

Case-Based Learning (CBL) 
Agents can also learn to predict composite solution re- 
quirements based on their past problem-solving experi- 
ence. We endow agents with capabilities for Case-based 
learning (CBL) to accumulate local views of the com- 
posite search space requirements across many design 
runs. This can be viewed as long-term learning-the 
learned information is available for retrieval with fu- 
ture problem instances. 

During the learning phase, the agents perform their 
search with conflict-driven learning as discussed above. 
However, at the end of each search, an agent stores the 
problem specification and the non-local constraints it 
received as feedback from the other agents as an ap- 
proximation of the non-local requirements on the com- 
posite solution space for that problem specification. 
After the agents learn over a sufficiently large train- 
ing set, they can replace the process of assimilating 
feedback with learned knowledge. When a new prob- 
lem instance is presented to the agent set, it retrieves 
the set of non-local constraints that are stored under a 
past problem specification that is similar to the present 
problem specification and adds them to the set of local 
requirements at the start of the search. Thus agents 
can avoid communication to achieve approximations of 
the composite search space. 

(CS 4 Pi) - s;=o 

where Sit=’ is defined by the local domain constraints 
and the constraints of the similar past case from the 
case base 

cpo 
a = Space(Cf + FC~NN) 

We use the l-Nearest-Neighbor (1NN) algorithm 
based on the Euclidean metric to obtain the most sim- 
ilar past case. 

Experimental Results 
In this section, we will empirically demonstrate the 
merits of learning composite search-space require- 
ments, both short-term and long-term. In order to 
demonstrate the merits of our learning methods, we 
experimented with 3 search strategies as described be- 
low: 

e Blind Search (BS): No learning is applied. When 
an agent detects a conflict in a particular design, it 
chooses another design to pursue. Agents do not 
communicate any information. 

Conflict-Driven Learning (CDL): An agent that de- 
tects a conflict generates a feedback that is assim- 
ilated by the recipient agents. The recipients use 
the conflict information to constrain future searches 
within a single design run: for example, when 
proposing or extending alternative designs. 

e Case-Based Learning (CBL): The agents use pre- 
viously accumulated cases to start their problem- 
solving with an awareness of the non-local con- 
straints. Agents do not communicate during 
problem-solving. Each agent uses a l-NN algorithm 
to find the case most similar to the present problem 
solving instance and initializes its non-local require- 
ments with the constraints in the case. We ran the 
algorithm at different case base sizes: 50, 100 150, 
200. 

As described previously, the STEAM system used 
Four in these experiments had seven agents. 

of them - pump-agent, heat-exchanger-agent, 
motor-agent, and vbelt-agent - can either ini- 
tiate a design or extend an existing partial design. 
Platform-agent and shaft-agent can only extend 
a design and frequency-critic always critiques a 
partial design. Each agent in turn, gets a chance 
to perform a role during a cycle. The number 
of cycles represents a good approximation to the 
amount of search performed by the entire system. 
Problem specification consisted of three parameters 
- required-capacity, platform-side-length, and 
maximum-platform-deflection. Problemsolvingter- 
minates when the agents produce a single mutually ac- 
ceptable design. We trained the CBL system with ran- 
domly chosen instances and then tested all the three 
search strategies on the same set of 100 instances dif- 
ferent from the training instances. 

Table 1 shows the average cost of designs produced 
by each of the algorithms. Table 2 shows the average 
number of cycles per design. 

Wilcoxon matched-pair signed-ranks test revealed 
that the costs of designs produced by STEAM with CBL 
and CDL were lower than those produced by STEAM 
with blind search at significance level 0.05. The same 
test however, revealed no significant difference between 
the costs of designs produced by STEAM with CDL and 
those produced by STEAM with CBL. 

CBL was able to produce slightly better designs than 
CDL because CDL performs blind search initially un- 
til it runs into conflicts and gains a better view of the 
composite search space through the exchange of feed- 
back on these conflicts. CBL on the other hand, starts 
the problem solving with a good approximation of the 
global solution space requirements and hence manages 
to do better than CDL. Even though CDL gains a more 

Multiagent Learning 71 



Blind CDL CBL-50 CBL-100 CBL-150 CBL-200 
7227.2 6598.0 6572.96 6571.54 6526.03 6514.76 

Table 1: Average Cost of a Design 

Blind CDL CBL-50 CBL-100 CBL-150 CBL-200 
15.54 12.98 13.26 13.36 13.03 12.94 

Table 2: Average number of cycles per design 

accurate view of the non-local requirements after all 
the exchange is done, the fact that the past cases are 
only an approximation of the present requirements in 
CBL seems to be offset by the more informed search 
done in the initial stages. 

Our results conclusively demonstrate that conflict- 
driven learning (CDL) and Case-based Learning (CBL) 
improve both solution quality and processing time 
compared to blind search. In addition, once the learn- 
ing is completed, CBL requires no run-time communi- 
cation. Note however that CDL is required during the 
learning phase. 

Related Work 
We classify the work relevant to the topic on hand into 
three categories: Distributed Search, Conflict Manage- 
ment and Multi-agent Learning. 

Distributed Search has been the explicit focus of re- 
search amongst a small group of DA1 researchers for 
the past few years. Yokoo et al. (Yokoo, Durfee, & 
Ishida 1992), Conry et al. (Conry et al. 1991), and 
Sycara et al. (Sycara et al. 1991) have investigated 
various issues in Distributed Search. However, im- 
plicit in all of these pieces of work are the assumptions 
that the agents have homogeneous local knowledge 
and representations and tightly integrated system-wide 
problem-solving strategies across all agents. 

Conflict management approaches are very similar 
to the Conflict Driven Learning mechanism presented 
here. Klein (Klein 199 1) develops a theory of compu- 
tational model of resolution of conflicts among groups 
of expert agents. Associated with each possible con- 
flict is an advice for resolving the conflict. An advice is 
chosen from the set of conflict resolution advice of the 
active conflict classes to deal with the encountered con- 
flict. We believe that Klein’s work provides a general 
foundation for handling conflicts in design application 
systems. However, it falls short of embedding such 
conflict resolution mechanisms into the larger problem 
solving context that can involve studying issues like 
solution evaluation, information exchange and learn- 
ing. Khedro and Genesereth (Khedro & Genesereth 
1993) present a strategy called Progressive Negotia- 
tion for resolving conflicts among multi-agent systems. 
Using this strategy, the agents can provably converge 

72 Agents 

to a mutually acceptable solution if one exists. How- 
ever, the guarantee of convergence relies crucially on 
explicit declarative representation and exchange of all 
constraining information. More commonly, STEAM- 
like systems are aggregations of complex agents whose 
expertise is represented by a combination of declarative 
and procedural knowledge that cannot be captured as 
a set of explicit constraints. 

Previous work related to learning in multi-agent sys- 
tems is limited. Tan (Tan 1993), and Sen and Sekaran 
(Sen & Sekaran 1994) represent work in multi-agent re- 
inforcement learning systems. While these works high- 
light interesting aspects of multi-agent learning sys- 
tems, they are primarily centered around toy prob- 
lems on a grid world. STEAM is one of the few com- 
plex multi-agent systems demonstrating the viability 
of such methods for interesting learning tasks in the do- 
main of problem solving control, which is a notion that 
is not explicit in the above systems. Nagendra Prasad 
et al. (NagendraPrasad, Lesser, & Lander 1995) dis- 
cuss organization role learning in STEAM for organiz- 
ing the control of distributed search process among 
the agents. This work uses reinforcement learning to 
let the agents organize themselves to play appropriate 
roles in distributed search. Shoham and Tennenholtz 
(Shoham & Tennenholtz 1992) discuss co-learning and 
the emergence of conventions in multi-agent systems 
with simple interactions. Shaw and Whinston (Shaw & 
Whinston 1989) discuss a classifier system based multi- 
agent learning system for resource and task allocation 
in Flexible Manufacturing Systems. However, genetic 
algorithms and classifier systems have specific repre- 
sentational requirements to achieve learning. In many 
complex real-world expert systems, it may be difficult 
to achieve such requirements. A related work presented 
in Weiss (Weiss 1994) uses classifier systems for learn- 
ing an aspect of multi-agent systems that is different 
from that presented here. Multiple agents use a variant 
of Holland’s (Holland 1985) bucket brigade algorithm 
to learn appropriate instantiations of hierarchical orga- 
nizations for efficiently solving blocks-world problems. 

Conclusion 
Our paper investigates the role of learning in improv- 
ing the efficiency of cooperative, distributed search 



among a set of heterogeneous agents for parametric 
design. Our experiments suggest that conflict-driven 
short-term learning can drastically improve the search 
results. However, even more interestingly, these ex- 
periments also show that the agents can rely on their 
past problem solving experience across many problem 
instances to be able to predict the kinds of conflicts 
that will be encountered and thus avoid the need for 
communicating feedback on conflicts as in the case of 
short-term learning (communication is still needed dur- 
ing the learning phase). 

The methods presented here address the acute 
need for well-tailored learning mechanisms in open, 
reusable-agent systems like STEAM. A reusable agent 
system is an open system assembled by minimal cus- 
tomized integration of a dynamically selected subset 
from a catalogue of existing agents. Reusable agents 
may be involved in systems and situations that may 
not have been explicitly anticipated at the time of their 
design. Learning can alleviate the huge knowledge- 
engineering effort involved in understanding the agent 
mechanisms and making them work together. 

References 
Conry, S. E.; Kuwabara, K.; Lesser, V. R.; and Meyer, 
R. A. 1991. Multistage negotiation for distributed 
constraint satisfaction. IEEE Transactions on Sys- 
tems, Man, and Cybernetics 21(g). 
Holland, J. H. 1985. Properties of bucket brigade 
algorithm. In First International Conference on Ge- 
netic Algorithms and their Applications, 1-7. 

Khedro, T., and Genesereth, M. 1993. Progressive 
negotiation: A strategy for resolving conflicts in coop- 
erative distributed multi-disciplinary design. In Pro- 
ceedings of the Conflict Resolution Workshop, IJCA I- 
93. 

Klein, M. 1991. Supporting conflict resolution in 
cooperative design systems. IEEE Transactions on 
Systems, Man, and Cybernetics 21(6):1379-1390. 
Lander, S. E., and Lesser, V. R. 1996. Sharing 
meta-information to guide cooperative search among 
heterogeneous reusable agents. To appear in IEEE 
Transactions on Knowledge and Data Engineering. 

Lander, S. E. 1994. Distributed Search in Hetero- 
geneous and Reusable Multi-Agent Systems. Ph.D. 
Dissertation, University of Massachusetts. 

Lesser, V. R. 1990. An overview of DAI: Distributed 
AI as distributed search. Journal of the Japanese So- 
ciety for Artificial Intelligence 5(4):392-400. 

Lesser, V. R. 1991. A retrospective view of FA/C 
distributed problem solving. IEEE Transactions on 
Systems, Man, and Cybernetics 21(6):1347-1362. 

Nagendra Prasad, M. V.; Lesser, V. R.; and Lander, 
S. E. 1995. Learning organizational roles in a hetero- 
geneous multi-agent system. Computer Science Tech- 
nical Report 95-35, University of Massachusetts. 

Sen, S., and Sekaran, M. 1994. Learning to coordi- 
nate without sharing information. In Proceedings of 
the Twelfth National Conference on Artificial Intelli- 
gence, 426-431. Seattle, WA: AAAI. 
Shaw, M. J., and Whinston, A. B. 1989. Learning and 
adaptation in DA1 systems. In Gasser, L., and Huhns, 
M., eds., Distributed Artificial Intelligence, volume 2, 
413-429. Pittman Publishing/Morgan Kauffmann 
Pub. 
Shoham, Y., and Tennenholtz, M. 1992. Emergent . . - 
conventions in multi-agent systems: Initial experi- 
mental results and observations. In Proceedings of 
KR-92. 
Sycara, K.; Roth, S.; Sadeh, N.; and Fox, M. 
1991. Distributed constrained heuristic search. IEEE 
Bansactions on Systems, Man, and Cybernetics 
21(6):1446-1461. 
Tan, M. 1993. Multi-agent reinforcement learning: 
Independent vs. cooperative agents. In Proceedings 
of the Tenth International Conference on Machine 
Learning, 330-337. 

Weiss, G. 1994. Some studies in distributed machine 
learning and organizational design. Technical Report 
FKI-189-94, Institut fiir Informatik, TU Mcnchen. 

Yokoo, M.; Durfee, E. H.; and Ishida, T. 1992. Dis- 
tributed cosntraint satisfaction for formalizing dis- 
tributed problem solving. In Proceedings of the 
Twelfth Conference on Distributed Computing Sys- 
tems. 

Multiagent Learning 73 


