
Department of Computer Science
University of Massachusetts

Amherst, MA 01003
Email: DECKER@CS.UMASS.EDU

Abstract

This paper presents a simple, fast coordination algo-
rithm for the dynamic reorganization of agents in a
distributed sensor network. Dynamic reorganization is
a technique for adapting to the current local problem-
solving situation that can both increase expected sys-
tem performance and decrease the variance in perfor-
mance. We compare our dynamic organization algo-
rithm to a static algorithm with lower overhead. ‘One-
shot’ refers to the fact that the algorithm only uses one
meta-level communication action.
The other theme of this paper is our methodology
for analyzing complex control and coordination issues
without resorting to a handful of single-instance exam-
ples. Using a general model that we have developed of
distributed sensor network environments [Decker and
Lesser, 1993a], we present probabilistic performance
bounds for our algorithm given any number of agents
in any environment that fits our assumptions. This
model also allows us to predict exactly in what situ-
ations and environments the performance benefits of
dynamic reorganization outweigh the overhead.

Introduction
The distributed sensor network (DSN) domain has been
a fertile source of examples for the study of coopera-
tive distributed problem solving [Carver and Lesser, 1991;
Durfee et al., 1987; Lesser, 19911. A key result of the early
work in DSNs has been the demonstration of the advan-
tages available to groups of agents that communicate about
their current problem solving situation. Algorithms for co-
ordinating DSN agents can be divided into two classes on
the basis of their communication patterns: static algorithms
communicate only the results of tasks and no other infor-
mation about the local state of problem solving; dynamic
algorithms use meta-level communication about their lo-
cal problem-solving states to adapt to a situation (examples

*This work was supported by ARPA under ONR contract
N00014-92-J-1698, ONR contract N00014-92-J-1450, and NSF
contract CDA 8922572. The content of the information does not
necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

of this include partial global planning [Durfee and Lesser,
19911 and many negotiation algorithms).

This paper presents a simple one-shot dynamic algorithm
for reorganizing agents’ areas of responsibility in response
to a particular DSN problem-solving episode, and analyzes
the agents’ resulting behaviors. The class of one-shot dy-
namic algorithms is interesting because it is the class of
coordination algorithms with the lowest communication
overhead (only one meta-level communication action) that
still allows agents to adapt to a particular situation during
problem solving. This low overhead allows dynamic algo-
rithms to be used in environments where the higher costs
of multiple meta-level communications and negotiation are
not warranted. The particular algorithm presented here,
called one-shot dynamic reorganization, allows agents to
very quickly resolve to a new organization by limiting each
agents’ area of responsibility to a rectangular shape.

We will analyze the performance of the dynamic al-
gorithm relative to a static one, the effect of some en-
vironmental assumptions such as the cost of commu-
nication, and the reduction of variance in performance
caused by dynamic adaptation (which can be exploited
by real-time scheduling algorithms[Decker et al., 1990;
Garvey and Lesser, 19931). The model we will use for
our analysis[Decker and Lesser, 1993a] grew out of the set
of single instance examples of distributed sensor network
(DSN) problems presented in [Durfee et al., 19871. The
authors of that paper compared the performance of sev-
eral different coordination algorithms on these examples,
and concluded that no one algorithm was always the best.
This is the classic type of experimental result[Cohen, 19911
that our modeling and analysis method was designed to
address-we wish to explain this result, and better yet, to
predict which algorithm will do the best in each situation.
We wish to identify the characteristics of the DSN envi-
ronment, or the organization of the agents, that cause one
algorithm to outperform another. Our approach relies on
a statistical characterization of an environment rather than
single instance examples.

The first section will summarize our model of DSN en-
vironments and the results of our previous analysis of static
coordination algorithms. The next section will discuss dy-
namic coordination in general, and then we will present the

210 Decker

one-shot dynamic reorganization algorithm and confidence
intervals on its performance. Finally, we will present our
relative performance, communication cost, and variance re-
duction results.

Our task environment model assumes that several indepen-
dent task groups arrive at multiple physical locations over a
period of time called an episode. In a distributed sensor net-
work (DSN) episode a single vehicle track corresponds to a
task group. The movements of several independent vehicles
will be detected over a period of time (the episode) by one
or more distinct sensors, where each sensor is associated
with an agent. For example, on the left side of Figure 2 we
see a single episode with 5 vehicle tracks and the outlines
of 9 non-overlapping sensor areas.

The performance of agents in such an environment will be
based on how long it takes them to process all the task groups
(vehicle tracks), which will include the cost of communicat-
ing data, task results, and meta-level communication, if any.
The organizational structure of the agents will imply which
subsets of which task groups (which portions of which vehi-
cle tracks) are available to which agents and at what cost (an
agent can get information from its own sensor more cheaply
than by requesting information from another agent’s sen-
sor). Usually DSN agents have overlapping sensors, and
either agent can potentially work on data that occurs in the
overlapping area without any extra communication costs.
We make several simplifying assumptions: that the agents
are homogeneous (have the same capabilities with respect
to receiving data, communicating, and processing tasks),
that the agents are cooperative (interested in maximizing
the system performance over maximizing their individual
performance), that the data for each episode is available
simultaneously to all agents as specified by their initial or-
ganization, and that there are only structural (precedence)
constraints within the subtasks of each task group.’

Any single episode can be specified by listing the task
groups (vehicle tracks), and what part of each task group
was available to which agents, given the organizational
structure. Our analysis will be based on the statistical
properties of episodes in an environment, not any single
instance of an episode. The properties of the episodes in
a simple DSN environment are summarized by the tuple
2) =< A, 7, T, o, 7 > where A specifies the number of
agents, 7 the expected number of task groups, r and o spec-
ify the structural portion of the organization by the physical
range of each agent’s sensor and the physical overlap be-
tween agent sensors2, and ir specifies the homogeneous task
group structure (an example of the task group structure is
shown in Figure 1). A particular episode in this environment
can be described by the tuple D =< A, r, o, 71,. . . , Tn >

‘In general there are usually more complex interrelationships
between subtasks that affect scheduling decisions, such as fucili-
tation [Decker and Lesser, 19911.

2We will also assume the sensors start in a square geometry,
i.e, 4 agents in a 2 x 2 square, 25 agents arranged 5 x 5.

where n is a random variable drawn from a Poisson distri-
bution with an expected value of Q.

In a DSN episode, each vehicle track is modeled as a task
group. The structure of each task group is based loosely on
the processing done by a particular DSN, the Distributed Ve-
hicle Monitoring Testbed (DVMT)[tisser and Corkill, 19831.
Our simple model is that each task group z is associated
with a track of length Zi and has the following structure:
(Zi) vehicle location methods (VLM’s) that represent pro-
cessing raw signal data at a single location resulting in a
single vehicle location hypothesis; (Zi - 1) vehicle track-
ing methods (VIM’s) that represent short tracks connecting
the results of the VLM at time t with the results of the
VLM at time t + 1; (1) vehicle track completion method
(VCM) that represents merging all the VTM’s together into
a complete vehicle track hypothesis. Non-local precedence
relationships exist between each method at one level and the
appropriate method at the next level as shown in Figure l-
two VLMs precede each VTM, and all VIM’S precede the
lone VCM. Besides executing methods, agents may also
execute communication actions and information gathering
actions (such as getting data from the sensors or commu-
nications from other agents). We assume that communica-
tion and information gathering are no more time consuming
that problem solving computation (in practice they are of-
ten much quicker- see the analysis in the final section of
this paper). A more complete description of our modeling
framework, which can handle much more complexity than
this simple model illustrates, can be found in [Decker and
Lesser, 1993b], in this volume.

accrual function min

Figure 1: Task structure associated with a single vehicle
track.

Later analysis in this paper will be verified by comparing
model-based predictions against a DSN simulation, which
generates and simulates the execution of arbitrary environ-
ments 2). In the simulation we assume that each vehicle is
sensed at discrete integer locations (as in the DVMT), ran-
domly entering on oneedge and leaving on any other edge.
Inbetween the vehicle travels along a track moving either
horizontally, vertically, or diagonally each time unit using
a simple DDA line-drawing algorithm (for example, see
Figure 2). Given the organization (r, o, and A, and the
geometry), we can calculate what locations are seen by the
sensors of each agent. This information can then be used

istributed Problem Solving 211

along with the locations traveled by each vehicle to deter-
mine what part of each task group is initially available to
each agent. The analysis summaries in the next section were
also verified by simulation; please see [Decker and Lesser,
1993a] for the derivation and verification of these early re-
sults; later in this paper we will discuss our verification
methodology.

Environmental Analysis Summary
The termination of the system as a whole can be tied to the
completion of all tasks at the most heavily loaded agent.
Normally, we would use the average number of methods
to be executed, but since the focus of our analysis is the
termination of problem solving, we need to examine the
expected maximum size (9) of an initial data set seen by
some agent as a random variable. This basic environmental
analysis result is taken from the derivation in [Decker and
Lesser, 1993a]; it is equivalent to the expected number of
VLM methods seen by the maximally loaded agent in an
episode. This value also depends on the expected number
of task groups (fi) seen by that same agent, another random
variable. For example, the observed value of the random
variable (8) in the particular episode shown on the left side
of Figure 2 is 22 sensed data points at agent A4, and the
number of task groups (tracks) seen by that same agent is 4
(fi = 4). The average number of agents that see a single
track (which we represent by the variable a) is 3.8 in the the
same episode.

If the system of agents as a whole sees n total task groups,
then the discrete probability distributions of fi and ,!? are:

(1)
Pr[i = s]fi = N] = ga,N,O.S (8) (2)

3 = (rG + (r/2)(N - 5)) (3)

The function ga,n,p (9) is called the max binomial order
statistic, and is defined in terms of the simple binomial
probability function b,,, (s) as follows:

~~,P(4 =
L-
:)P”(l -d”-” [Pr [S = s]]

%P(S) = :=o L?J (4 Pr is 5 41
swds) = &Js)” - B&s - 1)” [P@ = 41

The variable a represents the average number of agents
that see a single task group, and is estimated as follows:

These results, derived and verified in [Decker and Lesser,
1993a], will be used in the following sections within for-
mulae for the predicted performance of coordination algo-
rithms.

Static Coordination Algorit alysis summary
In our static algorithm, agents always divide up the overlap-
ping sensor areas evenly between themselves so that they
do not do redundant work, and never have to communicate
about their areas of responsibility. The total time until ter-
mination for an agent receiving the maximum initial data

set (of size 9) is the time to do local work, combine results
from other agents, and build the completed results, plus two
communication and information gathering actions. Because
this agent has the maximum amount of initial data, it will not
finish any more quickly than any other agent and therefore
we can assume it will not have to wait for the results of other
agents. The termination time of this agent (and therefore
the termination time of the entire statically organized sys-
tem) can be computed from the task structure shown earlier,
and a duration function de(M) that returns the duration of
method M:

T static =

gdo(VLM) + (9 - fi)do(VTM) +

(a - l)&do(VTM) + &do(VCM) +

2do(I) + 2do(C) (5)
We can use Eq. 5 as a predictor by combining it with the
probabilities for the values of 3 and fi given in Eqns. 3
and 1. Again, we refer the interested reader to [Decker and
Lesser, 1993a] for derivations and verification.

Analyzing Dynamic Organizations
In the dynamic organizational case, agents are not limited
to the original organization and initial distribution of data.
Agents can re-organize by changing the initial static bound-
aries (changing responsibilities in the overlapping areas), or
by shipping raw data to other agents for processing (load
balancing). We will assume in this section that the agents
do not communicate with each other about the current local
state of problem solving directly. A clearer distinction is
that in a one-shot dynamic organization each agent makes
its initial decision (about changing boundaries or shipping
raw data) without access to non-local information. By con-
trast, in a full meta-level communication algorithm (like
Partial Global Planning) the agent has access to both its
local information and a summary of the local state of other
agents. In this paper the decision to dynamically change the
organization is made only once, at the start of an episode
after the initial information-gathering action has occurred.

In the case of reorganized overlapping areas, agents may
shift the initial static boundaries by sending a (very short)
message to overlapping agents, telling the other agents to
do more than the default amount of work in the overlapping
areas. The effect at the local agent is to change its effective
range parameter from its static value of r’ = r -o/2 to some
value r” where r - o/2 > r” 2 r - o, changing the first two
terms of Equation 5, and adding a communication action to
indicate the shift and an extra information gathering action
to receive the results. The following section discusses a
particular implementation of this idea that chooses the par-
tition of the overlapping area that best reduces expected
differences between agent’s loads and averages competing
desired partitions from multiple agents.

In the load balancing case, an agent communicates some
proportion p of its initial sensed data to a second agent,
who does the associated work and communicates the results
back. Instead of altering the effective range and overlap,
this method directly reduces the first two terms of Equa-
tion 5 by the proportion p. The proportion p can be chosen

212 Decker

dynamically in a way similar to that of choosing where to
partition the overlap between agents (see the next section).

Whether or not a dynamic reorganization is useful is a
function of both the agent’s local workload and also the
load at the other agent. The random variable S again repre-
sents the number of initially sensed data points at an agent.
Looking first at the local utility, to do local work under the
initial static organization with n task groups, any agent will
take time:

Sdo(VLM) + (S - n)do(VTM) (6)

When the static boundary is shifted before any processing
is done, the agent will take time

~O(Cshcxt) + S”do(VLM) + (s” - n)do(VTM) + do(l) (7)

to do the same work, where Cshort is a very short commu-
nication action which is potentially much cheaper than the
result communications mentioned previously, and S” is cal-
culated using the new range r”. When balancing the load
directly, local actions will take time

do(Gong) + pSdo(VLM) + p(S - n)do(flM) + do(l) (8)

where da(Crong) is potentially much more expensive than the
communication actions mentioned earlier (since it involves
sending a large amount of raw data). If the other agent had
no work to do, a simple comparison between these three
equations would be a sufficient design rule for deciding
between static and either dynamic organization.

Of course, we cannot assume that the other agent is not
busy; the best we can do a priori (without an extra meta-
level communication during a particular episode) is to as-
sume the other agent has the average amount of work to
do. We can derive a priori estimates for the average lo-
cal work at another agent from Equation 6 by replacing S
with S, the probability distribution of the average initial
sensed data at an agent. This probability distribution is the
same as Eq. 3 except that we replace the probability func-
tion of the max order statistic ga,N,p(S) in Eq. 2 with the
simple binomial probability function b~,~ (8) (we’ll restate
the equations for our implementation in the next section).
Therefore without any meta-level communication an agent
can estimate how busy its neighbors are, and a system of
agents could choose intelligently between static, dynamic
overlap reorganization, and dynamic load balancing given
these constraints.

One-shot Dynamic Coordination Algorithm for
Reorganization

This section describes a particular implementation of the
general idea described earlier of dynamically reorganizing
the partitions between agents for the DSN simulation. This
implementation will keep each agent’s area of responsibility
rectangular, and relaxes competing constraints from other
agents quickly and associatively (the order of message ar-
rival does not affect the eventual outcome). To do this, the
message sent by an agent requests the movement of the four
corridors surrounding an agent. The northern corridor of
Agent 1, for example, is the northern agent organizational
responsibility boundary shared by every agent in the same

row as Agent 1. As can be seen in Figure 2, a 3x3 organiza-
tion has four corridors (between rows 1 and 2,2 and 3, and
between columns 1 and 2,2 and 3).

The coordination algorithm described here works with
the static local scheduling algorithm described in [Decker
and Lesser, 1993a]. This is consistent with our view of
coordination as a modulating behavior [Decker and Lesser,
19911. This simple local scheduler basically runs a loop that
finds all local methods that can currently be executed that are
also tied to data within the agent’s static, non-overlapping
sensor area, and then executes one. If no methods can be
executed, the current set of results (if new) are broadcast
to the other agents, and an information gathering action
is executed to receive any new communication from other
agents. The only modification to the local scheduler for the
dynamic system is that we prevent it from scheduling local
method execution actions until our initial communications
are completed (the initial and reception phases, described
below).

The coordination algorithm is then as follows. During
the initial phase the local scheduler schedules the initial
information gathering action, and we precede to the second
phase, reception. In the second phase we use the local
information to decide what organizational design to use, and
the parameter values for the design we choose. To do this
we calculate the duration of our (known) local work under
the default static organization (Eq. 6), and then estimate
that duration under the alternative organizations (dynamic
reorganization or load-balancing). When a parameter needs
to be estimated, we do so to minimize the absolute expected
difference between the amount of work to be done locally
and the amount of work done at the remote agent that is
impacted the most by the proposed change.

For example, when dynamically restructuring, if the over-
lap between agents is more than 2 units, we have a choice
of reducing the area an agent is responsible for by more
than 1 unit (this is the organizational design parameter p in
question). To decide on the proper reduction (if any), each
agent computes its known local work W using Eq. 6 with
the actual (not estimated) S and N computed assuming the
agent’s area is reduced by p. Then the agent finds the value
of p that minimizes the difference in its known local work
W(r - p, S, N) and the average work w(r + p, 3, N) at
the other agent:

S(r,s,N) = (7-s + p - 5))

W(T,S,N) = S(r, s, N)do(VLM)

+(S(r, 8, N) - N)&(W)

EVW = 2 5 b,% (N)bN,o.s(s)W(r, 9, IV) (9)
N=O a=0

IfP = 0, then the agent will not restructure. If p # 0, then
the agent sends a message to all affected agents requesting
a reduction of amount p in each corridor (north, east, south,
and west). The agent sets its current area of interest to
include only the unique (non-overlapping) portion of its area
(if any), and enters the unique-processing phase. During this
phase the regular local scheduler described earlier controls
method execution actions.

Distributed Problem Solving 213

Figure 2: On the left is a 3x3 static organization, on the right is the dynamic reorganization result after agents 3, 4, 5 and 7
attempt to reduce their areas of responsibility by one unit. These are actual screen visualizations (originally in color) from our
simulation package.

When no more methods unique to this agent can be exe-
cuted, the coordination algorithm checks the current time. If
enough time has passed for the messages from other agents
(if any) to arrive (this depends on the communication de-
lays in the system), the coordination algorithm schedules
an information-gathering action to retrieve the messages.
Note that every agent may reach this point at a different
time; agents with a large amount of unique local work may
take some time, agents with no work at all will wait idle for
the length of communication delay time in the system.

At this point each agent will relax its borders according
to the wishes of the other agents. The relaxation algorithm
we have chosen is fairly simple and straightforward, though
several similar choices are possible. The algorithm is sym-
metric with respect to the four corridors surrounding the
agent, so we will just discuss the relaxation of the northern
corridor. There will be a set of messages about that corri-
dor, some wanting it moved up by some amount and some
wanting it moved down by some amount-we will consider
these as positive and negative votes of some magnitude.
The relaxation algorithm sums the votes, and returns the
sum unless it is larger than the maximum vote or smaller
than the minimum vote, in which case the max or min is
returned, respectively. Competing votes of the same mag-
nitude sum to zero, and cancel each other. The summed
value becomes the final direction and amount of movement
of that corridor. Figure 2 shows a particular example, where
four agents each vote to reduce their areas of responsibility
by one unit.

At this point the agent has a new static area that does not
overlap with any other agent (since all agents will see the
same information and follow the same decision procedure),
and it enters the final normalprocessing phase, and the local

214 Decker

scheduler schedules all further actions as described earlier
(scheduling only tasks in the new, non-overlapping range).

To summarize: the agents first perform information gath-
ering to discover the amount of local sensor data in the
episode. They then use this local information to decide how
to divide up the overlapping regions they share with other
agents, using the assumption that the other agents have the
average amount of local work to do. This parameter is
then communicated to all the affected agents, and the agent
works on data in its unique area (if any)-the part of the
agent’s sensor range that is never the subject of negotiation
because only that agent can sense it. After completing and
communicating this unique local work, the agent performs
another information gathering action to receive the param-
eter values from the other agents, and a simple algorithm
produces a compromise for the way the overlap will be di-
vided up. The agents now proceed as in the static case until
the end of the episode.

Analyzing the Dynamic estructuring Algorithm

As we did in [Decker and Lesser, 1993a], we can develop
an expression for the termination time of any episode where
the agents follow this algorithm. To do so, we start with the
basic termination time given all of the random variables:

T dynamic = maxfTstatic[r = r--p], Tstatic[r = r+p, 4 = 8, IV = IV)]
(10)

where p is computed as described in the last section using
the values of (r, 8, fi, 3, IV). To turn this into a predictive
formula, we then use the expressions for the probabilities
of the terms 3, fi, Z, and &r (from Eqns. 3 and 1). For
example, we can produce an expression for the expected

termination of the algorithm:

n I$ n iV 270

13=0 &o I?=0 a=0

bn,% (N) * b~,o.s(3) * Tdytmlic[r, 9, fi, 3, n] (11)

We tested the predictions of Equation 11 versus the mean
termination time of our DSN simulation over 10 repetitions
in each of 10 randomly chosen environments from the de-
signspace[2<r<lO,O<o~r,l<_fi55,1<N5
lo]. The durations of all tasks were set at 1 time unit, as were
the duration of information gathering and communication
actions, with the exception of the 4 environments shown in
the next section. We used the simulation validation statis-
tic suggested by Kleijnen [Kleijnen, 19871 (where $ = the
predicted output by the analytical model and y = the output
of the simulation):

(12)

where Var(p) is the predicted variance.3 The result z can
then be tested for significance against the standard normal
tables. In each case, we were unable to reject the null
hypothesis that the actual mean termination equals the pre-
dicted mean termination at the cx = 0.05 level, thus validat-
ing our formal model.4

ncreasing task durations
Figure 3 compares the termination of static and dynamic re-
structuring organizations on identical episodes in four differ-
ent environments. From left to right, the environments were
[A = 9, r = 9, o = 9, n = 71, [A = 4, T = 9, o = 3, n = 51,
[A = 16,r = 8,0 = 5,n = 43, [A = 9,r = 10,o = 6,n = 71.
Ten different episodes were generated for each environment.
In order to see the benefits of dynamic restructuring more
clearly, we chose task durations for each environment sim-
ilar to those in the DVMT: &(VLM) = 6, &(VTM) = 2,
and do (VCM) = 2.5 Note that the dynamic organization
often does significantly better than the static organization,
and rarely does much worse-remember that in many par-
ticular episodes that the dynamically organized agents will
decide to keep the static organization, although they pay a
constant overhead when they keep the static organization
(one extra communication action and one extra information
gathering action, given that the time for a message to reach
all agents is no longer than the communication action time).

Comparative Analyses
The next figure demonstrates the effect of the ratio of com-
putation duration to communication duration. This and

3The predicted variance of Equation 5 can be easily derived
from the statistical identity Var(z) = E[z’] - (E[z])~.

4For non-statisticians: the null hypothesis is that our prediction
is the same as the actual value, we did not wish to reject it, and we
did not.

‘The idea being that the VLM methods correspond to lowest
three DVMT KSIs as a group, and the other methods correspond
to single DVMT KSIs, and that a KS1 has twice the duration of a
communication action.

g 220

jl70

E
120

70

Figure 3: Paired-response comparison of the termination of
static and dynamic systems in four different environments
(ten episodes in each). Task durations are set to simulate
the DVMT (see text).

subsequent figures assume that the dynamic restructuring
shrinkage parameter p is set to minimize the difference be-
tween maximum and average local work as described in the
previous section. Figure 4 shows how the expected value
and 50% confidence interval on system termination changes
as the duration of a method execution action changes from
equal to (lx) a communication action to 10 times (10x) that
of a communication action. The task structure remains that
of the DSN example described in Section . In Figure 4 we
see a clear separation emerge between static and dynamic
termination. The important point to take from this example
is not this particular answer, but that we can do this analysis
for any environment 2).

400

$ 350

,; 300

2 250
-8 - 200
1

Figure 4: Predicted effect of decreasing communication
costs on expected termination under a static organization
and dynamic restructuring (expected value and 50% confi-
dence interval, A = 25, r = 9, o = 9, n = 7).

ecreasing Pe rmance Variance
The earlier figure assumes that the number of task groups
n is known beforehand. The reason for this is to highlight
the variance implicit in the organization, and minimize the
influence of the external environment. Figure 5 shows how
much extra variance is added when only the expected value
of n, which is q, is known. We assume that the number
of task groups n (in the DSN example, vehicle tracks) that
occur during a particular episode has a Poisson distribu-
tion with an expected value of q. The discrete probability

Distributed Problem Solving 215

function for the Poisson distribution, given in any statistics
book, is then:

l%(Y) = se--y Pr[n = Yll

We can use this probability in conjunction with Eqns. 3, 6,
and 9 to calculate the expected value, SO%, and 95% con-
fidence intervals on termination in the static or dynamic
organizations. An example of this calculation for one en-
vironment is shown in Figure 5. Note in Figure 5 both the
large increase in variance when n is random, and the small
decrease in variance in the dynamic restructuring organi-
zation. Note also that the mean termination time for the
dynamic organization is less than that for the static organi-
zation.

Static, n Poisson

Dynamic, n Poisson

Static, n known

Dynamic, n known
I

I

35 85 135 185
Estimated Termination Time

Figure 5: Demonstration of both the large increase in per-
formance variance when the number of task groups n is
a random variable, and the small decrease in variance with
dynamic restructuring coordination [A = 9, T = 22, o = 91.
Where n is known, n = 5. Where n is a random variable,
the expected value q = 5.

Conclusions
This paper described a one-shot dynamic coordination al-
gorithm for reorganizing the areas of responsibility for
a set of distributed sensor network agents. When per-
formance is measured in terms of the time for a sys-
tem of agents to terminate, the class of dynamic algo-
rithms can often outperform static algorithms, and re-
duce the variance in performance (which is a useful char-
acteristic for real-time scheduling [Decker et al., 1990;
Garvey and Lesser, 19931). This paper presented a formula
for the expected value (or variance, or confidence interval)
of the termination time for a particular one-shot dynamic
reorganization algorithm. It showed how this result can be
used to predict whether the extra overhead of the dynamic
algorithm was worthwhile compared to a static algorithm in
a particular environment. Other questions were examined,
such as the effect of decreasing communication costs, or
increased uncertainty about the task environment.

We hope these results can be used directly by designers
of DSNs to choose the number, organization, and control
algorithms of agents for their particular environments, and

that they inspire the DAI community to move beyond the
development of ideas using single-instance examples.

We are currently analyzing a simple extension of this al-
gorithm that uses two meta-level communication actions to
provide agents with non-local information with which to
make decisions about how to reorganize. We have observed
only a small reduction in mean performance but a greater re-
duction in variance. Future work we have planned includes
the analysis of a multi-stage communication, PGP-style dy-
namic coordination algorithm, and the use of our expanded
model that includes faulty sensors and ghost tracks [Decker
and Lesser, 1993b].

References
Carver, N. and Lesser, V.R. 1991. A new framework for
sensor interpretation: Planning to resolve sources of un-
certainty. In Proceedings of the Ninth National Conference
on Artificial Intelligence. 724-73 1.

Cohen, Paul R. 1991. A survey of the eighth national
conference on artificial intelligence: Pulling together or
pulling apart? AI Magazine 12(1): 16-41.
Decker, K.S. and Lesser, V.R. 1991. Analyzing a quanti-
tative coordination relationship. Technical Report 91-83,
University of Massachusetts. To appear, Group Decision
and Negotiation, 1993.
Decker, K.S. and Lesser, V.R. 1993a. An approach to ana-
lyzing the need for meta-level communication. In Proc. of
the Thirteenth International Joint Conference on Artificial
Intelligence, Chambery.
Decker, K.S. and Lesser, V.R. 1993b. Quantitative model-
ing of complex computational task environments. In Proc.
of the Eleventh National Conference on Artificial Intelli-
gence, Washington.
Decker, K.S.; Lesser, V.R.; and Whitehair, R.C. 1990.
Extending a blackboard architecture for approximate pro-
cessing. The Journal of Real-Time Systems 2(1/2):47-79.
Durfee, E.H. and Lesser, V.R. 1991. Partial global plan-
ning: A coordination framework for distributed hypothesis
formation. IEEE Trans. on Systems, Man, and Cybernetics
21(5): 1167-1183.
Durfee, E.H.; Lesser, V.R.; and Corkill, D.D. 1987. Coher-
ent cooperation among communicating problem solvers.
IEEE Trans. on Computers 36(11): 1275-1291.
Garvey, A.J. and Lesser, V.R. 1993. Design-to-time real-
time scheduling. IEEE Trans. on Systems, Man, and Cy-
bernetics 23(6). Special Issue on Scheduling, Planning,
and Control.
Kleijnen, J.P.C. 1987. Statistical Tools for Simulation
Practitioners. Marcel Dekker, New York.
Lesser, V.R. and Corkill, D.D. 1983. The distributed vehi-
cle monitoring testbed. AlMagazine 4(3):63-109.
Lesser, V.R. 1991. A retrospective view of FA/C dis-
tributed problem solving. IEEE Trans. on Systems, Man,
and Cybernetics 21(6): 1347-1363.

216 Decker

