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Abstract 

This paper presents a simple, fast coordination algo- 
rithm for the dynamic reorganization of agents in a 
distributed sensor network. Dynamic reorganization is 
a technique for adapting to the current local problem- 
solving situation that can both increase expected sys- 
tem performance and decrease the variance in perfor- 
mance. We compare our dynamic organization algo- 
rithm to a static algorithm with lower overhead. ‘One- 
shot’ refers to the fact that the algorithm only uses one 
meta-level communication action. 
The other theme of this paper is our methodology 
for analyzing complex control and coordination issues 
without resorting to a handful of single-instance exam- 
ples. Using a general model that we have developed of 
distributed sensor network environments [Decker and 
Lesser, 1993a], we present probabilistic performance 
bounds for our algorithm given any number of agents 
in any environment that fits our assumptions. This 
model also allows us to predict exactly in what situ- 
ations and environments the performance benefits of 
dynamic reorganization outweigh the overhead. 

Introduction 
The distributed sensor network (DSN) domain has been 
a fertile source of examples for the study of coopera- 
tive distributed problem solving [Carver and Lesser, 1991; 
Durfee et al., 1987; Lesser, 19911. A key result of the early 
work in DSNs has been the demonstration of the advan- 
tages available to groups of agents that communicate about 
their current problem solving situation. Algorithms for co- 
ordinating DSN agents can be divided into two classes on 
the basis of their communication patterns: static algorithms 
communicate only the results of tasks and no other infor- 
mation about the local state of problem solving; dynamic 
algorithms use meta-level communication about their lo- 
cal problem-solving states to adapt to a situation (examples 
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of this include partial global planning [Durfee and Lesser, 
19911 and many negotiation algorithms). 

This paper presents a simple one-shot dynamic algorithm 
for reorganizing agents’ areas of responsibility in response 
to a particular DSN problem-solving episode, and analyzes 
the agents’ resulting behaviors. The class of one-shot dy- 
namic algorithms is interesting because it is the class of 
coordination algorithms with the lowest communication 
overhead (only one meta-level communication action) that 
still allows agents to adapt to a particular situation during 
problem solving. This low overhead allows dynamic algo- 
rithms to be used in environments where the higher costs 
of multiple meta-level communications and negotiation are 
not warranted. The particular algorithm presented here, 
called one-shot dynamic reorganization, allows agents to 
very quickly resolve to a new organization by limiting each 
agents’ area of responsibility to a rectangular shape. 

We will analyze the performance of the dynamic al- 
gorithm relative to a static one, the effect of some en- 
vironmental assumptions such as the cost of commu- 
nication, and the reduction of variance in performance 
caused by dynamic adaptation (which can be exploited 
by real-time scheduling algorithms[Decker et al., 1990; 
Garvey and Lesser, 19931). The model we will use for 
our analysis[Decker and Lesser, 1993a] grew out of the set 
of single instance examples of distributed sensor network 
(DSN) problems presented in [Durfee et al., 19871. The 
authors of that paper compared the performance of sev- 
eral different coordination algorithms on these examples, 
and concluded that no one algorithm was always the best. 
This is the classic type of experimental result[Cohen, 19911 
that our modeling and analysis method was designed to 
address-we wish to explain this result, and better yet, to 
predict which algorithm will do the best in each situation. 
We wish to identify the characteristics of the DSN envi- 
ronment, or the organization of the agents, that cause one 
algorithm to outperform another. Our approach relies on 
a statistical characterization of an environment rather than 
single instance examples. 

The first section will summarize our model of DSN en- 
vironments and the results of our previous analysis of static 
coordination algorithms. The next section will discuss dy- 
namic coordination in general, and then we will present the 
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one-shot dynamic reorganization algorithm and confidence 
intervals on its performance. Finally, we will present our 
relative performance, communication cost, and variance re- 
duction results. 

Our task environment model assumes that several indepen- 
dent task groups arrive at multiple physical locations over a 
period of time called an episode. In a distributed sensor net- 
work (DSN) episode a single vehicle track corresponds to a 
task group. The movements of several independent vehicles 
will be detected over a period of time (the episode) by one 
or more distinct sensors, where each sensor is associated 
with an agent. For example, on the left side of Figure 2 we 
see a single episode with 5 vehicle tracks and the outlines 
of 9 non-overlapping sensor areas. 

The performance of agents in such an environment will be 
based on how long it takes them to process all the task groups 
(vehicle tracks), which will include the cost of communicat- 
ing data, task results, and meta-level communication, if any. 
The organizational structure of the agents will imply which 
subsets of which task groups (which portions of which vehi- 
cle tracks) are available to which agents and at what cost (an 
agent can get information from its own sensor more cheaply 
than by requesting information from another agent’s sen- 
sor). Usually DSN agents have overlapping sensors, and 
either agent can potentially work on data that occurs in the 
overlapping area without any extra communication costs. 
We make several simplifying assumptions: that the agents 
are homogeneous (have the same capabilities with respect 
to receiving data, communicating, and processing tasks), 
that the agents are cooperative (interested in maximizing 
the system performance over maximizing their individual 
performance), that the data for each episode is available 
simultaneously to all agents as specified by their initial or- 
ganization, and that there are only structural (precedence) 
constraints within the subtasks of each task group.’ 

Any single episode can be specified by listing the task 
groups (vehicle tracks), and what part of each task group 
was available to which agents, given the organizational 
structure. Our analysis will be based on the statistical 
properties of episodes in an environment, not any single 
instance of an episode. The properties of the episodes in 
a simple DSN environment are summarized by the tuple 
2) =< A, 7, T, o, 7 > where A specifies the number of 
agents, 7 the expected number of task groups, r and o spec- 
ify the structural portion of the organization by the physical 
range of each agent’s sensor and the physical overlap be- 
tween agent sensors2, and ir specifies the homogeneous task 
group structure (an example of the task group structure is 
shown in Figure 1). A particular episode in this environment 
can be described by the tuple D =< A, r, o, 71,. . . , Tn > 

‘In general there are usually more complex interrelationships 
between subtasks that affect scheduling decisions, such as fucili- 
tation [Decker and Lesser, 19911. 

2We will also assume the sensors start in a square geometry, 
i.e, 4 agents in a 2 x 2 square, 25 agents arranged 5 x 5. 

where n is a random variable drawn from a Poisson distri- 
bution with an expected value of Q. 

In a DSN episode, each vehicle track is modeled as a task 
group. The structure of each task group is based loosely on 
the processing done by a particular DSN, the Distributed Ve- 
hicle Monitoring Testbed (DVMT)[tisser and Corkill, 19831. 
Our simple model is that each task group z is associated 
with a track of length Zi and has the following structure: 
(Zi) vehicle location methods (VLM’s) that represent pro- 
cessing raw signal data at a single location resulting in a 
single vehicle location hypothesis; (Zi - 1) vehicle track- 
ing methods (VIM’s) that represent short tracks connecting 
the results of the VLM at time t with the results of the 
VLM at time t + 1; (1) vehicle track completion method 
(VCM) that represents merging all the VTM’s together into 
a complete vehicle track hypothesis. Non-local precedence 
relationships exist between each method at one level and the 
appropriate method at the next level as shown in Figure l- 
two VLMs precede each VTM, and all VIM’S precede the 
lone VCM. Besides executing methods, agents may also 
execute communication actions and information gathering 
actions (such as getting data from the sensors or commu- 
nications from other agents). We assume that communica- 
tion and information gathering are no more time consuming 
that problem solving computation (in practice they are of- 
ten much quicker- see the analysis in the final section of 
this paper). A more complete description of our modeling 
framework, which can handle much more complexity than 
this simple model illustrates, can be found in [Decker and 
Lesser, 1993b], in this volume. 

accrual function min 

Figure 1: Task structure associated with a single vehicle 
track. 

Later analysis in this paper will be verified by comparing 
model-based predictions against a DSN simulation, which 
generates and simulates the execution of arbitrary environ- 
ments 2). In the simulation we assume that each vehicle is 
sensed at discrete integer locations (as in the DVMT), ran- 
domly entering on oneedge and leaving on any other edge. 
Inbetween the vehicle travels along a track moving either 
horizontally, vertically, or diagonally each time unit using 
a simple DDA line-drawing algorithm (for example, see 
Figure 2). Given the organization (r, o, and A, and the 
geometry), we can calculate what locations are seen by the 
sensors of each agent. This information can then be used 
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along with the locations traveled by each vehicle to deter- 
mine what part of each task group is initially available to 
each agent. The analysis summaries in the next section were 
also verified by simulation; please see [Decker and Lesser, 
1993a] for the derivation and verification of these early re- 
sults; later in this paper we will discuss our verification 
methodology. 

Environmental Analysis Summary 
The termination of the system as a whole can be tied to the 
completion of all tasks at the most heavily loaded agent. 
Normally, we would use the average number of methods 
to be executed, but since the focus of our analysis is the 
termination of problem solving, we need to examine the 
expected maximum size (9) of an initial data set seen by 
some agent as a random variable. This basic environmental 
analysis result is taken from the derivation in [Decker and 
Lesser, 1993a]; it is equivalent to the expected number of 
VLM methods seen by the maximally loaded agent in an 
episode. This value also depends on the expected number 
of task groups (fi) seen by that same agent, another random 
variable. For example, the observed value of the random 
variable (8) in the particular episode shown on the left side 
of Figure 2 is 22 sensed data points at agent A4, and the 
number of task groups (tracks) seen by that same agent is 4 
(fi = 4). The average number of agents that see a single 
track (which we represent by the variable a) is 3.8 in the the 
same episode. 

If the system of agents as a whole sees n total task groups, 
then the discrete probability distributions of fi and ,!? are: 

(1) 
Pr[i = s]fi = N] = ga,N,O.S (8) (2) 

3 = (rG + (r/2)(N - 5)) (3) 

The function ga,n,p (9) is called the max binomial order 
statistic, and is defined in terms of the simple binomial 
probability function b,,, (s) as follows: 

~~,P(4 = 
L- 
:)P”(l -d”-” [Pr [S = s]] 

%P(S) = :=o L?J (4 Pr is 5 41 
swds) = &Js)” - B&s - 1)” [P@ = 41 

The variable a represents the average number of agents 
that see a single task group, and is estimated as follows: 

These results, derived and verified in [Decker and Lesser, 
1993a], will be used in the following sections within for- 
mulae for the predicted performance of coordination algo- 
rithms. 

Static Coordination Algorit alysis summary 
In our static algorithm, agents always divide up the overlap- 
ping sensor areas evenly between themselves so that they 
do not do redundant work, and never have to communicate 
about their areas of responsibility. The total time until ter- 
mination for an agent receiving the maximum initial data 

set (of size 9) is the time to do local work, combine results 
from other agents, and build the completed results, plus two 
communication and information gathering actions. Because 
this agent has the maximum amount of initial data, it will not 
finish any more quickly than any other agent and therefore 
we can assume it will not have to wait for the results of other 
agents. The termination time of this agent (and therefore 
the termination time of the entire statically organized sys- 
tem) can be computed from the task structure shown earlier, 
and a duration function de(M) that returns the duration of 
method M: 

T static = 

gdo(VLM) + (9 - fi)do(VTM) + 

(a - l)&do(VTM) + &do(VCM) + 

2do(I) + 2do(C) (5) 
We can use Eq. 5 as a predictor by combining it with the 
probabilities for the values of 3 and fi given in Eqns. 3 
and 1. Again, we refer the interested reader to [Decker and 
Lesser, 1993a] for derivations and verification. 

Analyzing Dynamic Organizations 
In the dynamic organizational case, agents are not limited 
to the original organization and initial distribution of data. 
Agents can re-organize by changing the initial static bound- 
aries (changing responsibilities in the overlapping areas), or 
by shipping raw data to other agents for processing (load 
balancing). We will assume in this section that the agents 
do not communicate with each other about the current local 
state of problem solving directly. A clearer distinction is 
that in a one-shot dynamic organization each agent makes 
its initial decision (about changing boundaries or shipping 
raw data) without access to non-local information. By con- 
trast, in a full meta-level communication algorithm (like 
Partial Global Planning) the agent has access to both its 
local information and a summary of the local state of other 
agents. In this paper the decision to dynamically change the 
organization is made only once, at the start of an episode 
after the initial information-gathering action has occurred. 

In the case of reorganized overlapping areas, agents may 
shift the initial static boundaries by sending a (very short) 
message to overlapping agents, telling the other agents to 
do more than the default amount of work in the overlapping 
areas. The effect at the local agent is to change its effective 
range parameter from its static value of r’ = r -o/2 to some 
value r” where r - o/2 > r” 2 r - o, changing the first two 
terms of Equation 5, and adding a communication action to 
indicate the shift and an extra information gathering action 
to receive the results. The following section discusses a 
particular implementation of this idea that chooses the par- 
tition of the overlapping area that best reduces expected 
differences between agent’s loads and averages competing 
desired partitions from multiple agents. 

In the load balancing case, an agent communicates some 
proportion p of its initial sensed data to a second agent, 
who does the associated work and communicates the results 
back. Instead of altering the effective range and overlap, 
this method directly reduces the first two terms of Equa- 
tion 5 by the proportion p. The proportion p can be chosen 
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dynamically in a way similar to that of choosing where to 
partition the overlap between agents (see the next section). 

Whether or not a dynamic reorganization is useful is a 
function of both the agent’s local workload and also the 
load at the other agent. The random variable S again repre- 
sents the number of initially sensed data points at an agent. 
Looking first at the local utility, to do local work under the 
initial static organization with n task groups, any agent will 
take time: 

Sdo(VLM) + (S - n)do(VTM) (6) 

When the static boundary is shifted before any processing 
is done, the agent will take time 

~O(Cshcxt) + S”do(VLM) + (s” - n)do(VTM) + do(l) (7) 

to do the same work, where Cshort is a very short commu- 
nication action which is potentially much cheaper than the 
result communications mentioned previously, and S” is cal- 
culated using the new range r”. When balancing the load 
directly, local actions will take time 

do(Gong) + pSdo(VLM) + p(S - n)do(flM) + do(l) (8) 

where da(Crong) is potentially much more expensive than the 
communication actions mentioned earlier (since it involves 
sending a large amount of raw data). If the other agent had 
no work to do, a simple comparison between these three 
equations would be a sufficient design rule for deciding 
between static and either dynamic organization. 

Of course, we cannot assume that the other agent is not 
busy; the best we can do a priori (without an extra meta- 
level communication during a particular episode) is to as- 
sume the other agent has the average amount of work to 
do. We can derive a priori estimates for the average lo- 
cal work at another agent from Equation 6 by replacing S 
with S, the probability distribution of the average initial 
sensed data at an agent. This probability distribution is the 
same as Eq. 3 except that we replace the probability func- 
tion of the max order statistic ga,N,p(S) in Eq. 2 with the 
simple binomial probability function b~,~ (8) (we’ll restate 
the equations for our implementation in the next section). 
Therefore without any meta-level communication an agent 
can estimate how busy its neighbors are, and a system of 
agents could choose intelligently between static, dynamic 
overlap reorganization, and dynamic load balancing given 
these constraints. 

One-shot Dynamic Coordination Algorithm for 
Reorganization 

This section describes a particular implementation of the 
general idea described earlier of dynamically reorganizing 
the partitions between agents for the DSN simulation. This 
implementation will keep each agent’s area of responsibility 
rectangular, and relaxes competing constraints from other 
agents quickly and associatively (the order of message ar- 
rival does not affect the eventual outcome). To do this, the 
message sent by an agent requests the movement of the four 
corridors surrounding an agent. The northern corridor of 
Agent 1, for example, is the northern agent organizational 
responsibility boundary shared by every agent in the same 

row as Agent 1. As can be seen in Figure 2, a 3x3 organiza- 
tion has four corridors (between rows 1 and 2,2 and 3, and 
between columns 1 and 2,2 and 3). 

The coordination algorithm described here works with 
the static local scheduling algorithm described in [Decker 
and Lesser, 1993a]. This is consistent with our view of 
coordination as a modulating behavior [Decker and Lesser, 
19911. This simple local scheduler basically runs a loop that 
finds all local methods that can currently be executed that are 
also tied to data within the agent’s static, non-overlapping 
sensor area, and then executes one. If no methods can be 
executed, the current set of results (if new) are broadcast 
to the other agents, and an information gathering action 
is executed to receive any new communication from other 
agents. The only modification to the local scheduler for the 
dynamic system is that we prevent it from scheduling local 
method execution actions until our initial communications 
are completed (the initial and reception phases, described 
below). 

The coordination algorithm is then as follows. During 
the initial phase the local scheduler schedules the initial 
information gathering action, and we precede to the second 
phase, reception. In the second phase we use the local 
information to decide what organizational design to use, and 
the parameter values for the design we choose. To do this 
we calculate the duration of our (known) local work under 
the default static organization (Eq. 6), and then estimate 
that duration under the alternative organizations (dynamic 
reorganization or load-balancing). When a parameter needs 
to be estimated, we do so to minimize the absolute expected 
difference between the amount of work to be done locally 
and the amount of work done at the remote agent that is 
impacted the most by the proposed change. 

For example, when dynamically restructuring, if the over- 
lap between agents is more than 2 units, we have a choice 
of reducing the area an agent is responsible for by more 
than 1 unit (this is the organizational design parameter p in 
question). To decide on the proper reduction (if any), each 
agent computes its known local work W using Eq. 6 with 
the actual (not estimated) S and N computed assuming the 
agent’s area is reduced by p. Then the agent finds the value 
of p that minimizes the difference in its known local work 
W(r - p, S, N) and the average work w(r + p, 3, N) at 
the other agent: 

S(r,s,N) = (7-s + p - 5)) 

W(T,S,N) = S(r, s, N)do(VLM) 

+(S(r, 8, N) - N)&(W) 

EVW = 2 5 b,% (N)bN,o.s(s)W(r, 9, IV) (9) 
N=O a=0 

IfP = 0, then the agent will not restructure. If p # 0, then 
the agent sends a message to all affected agents requesting 
a reduction of amount p in each corridor (north, east, south, 
and west). The agent sets its current area of interest to 
include only the unique (non-overlapping) portion of its area 
(if any), and enters the unique-processing phase. During this 
phase the regular local scheduler described earlier controls 
method execution actions. 
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Figure 2: On the left is a 3x3 static organization, on the right is the dynamic reorganization result after agents 3, 4, 5 and 7 
attempt to reduce their areas of responsibility by one unit. These are actual screen visualizations (originally in color) from our 
simulation package. 

When no more methods unique to this agent can be exe- 
cuted, the coordination algorithm checks the current time. If 
enough time has passed for the messages from other agents 
(if any) to arrive (this depends on the communication de- 
lays in the system), the coordination algorithm schedules 
an information-gathering action to retrieve the messages. 
Note that every agent may reach this point at a different 
time; agents with a large amount of unique local work may 
take some time, agents with no work at all will wait idle for 
the length of communication delay time in the system. 

At this point each agent will relax its borders according 
to the wishes of the other agents. The relaxation algorithm 
we have chosen is fairly simple and straightforward, though 
several similar choices are possible. The algorithm is sym- 
metric with respect to the four corridors surrounding the 
agent, so we will just discuss the relaxation of the northern 
corridor. There will be a set of messages about that corri- 
dor, some wanting it moved up by some amount and some 
wanting it moved down by some amount-we will consider 
these as positive and negative votes of some magnitude. 
The relaxation algorithm sums the votes, and returns the 
sum unless it is larger than the maximum vote or smaller 
than the minimum vote, in which case the max or min is 
returned, respectively. Competing votes of the same mag- 
nitude sum to zero, and cancel each other. The summed 
value becomes the final direction and amount of movement 
of that corridor. Figure 2 shows a particular example, where 
four agents each vote to reduce their areas of responsibility 
by one unit. 

At this point the agent has a new static area that does not 
overlap with any other agent (since all agents will see the 
same information and follow the same decision procedure), 
and it enters the final normalprocessing phase, and the local 

214 Decker 

scheduler schedules all further actions as described earlier 
(scheduling only tasks in the new, non-overlapping range). 

To summarize: the agents first perform information gath- 
ering to discover the amount of local sensor data in the 
episode. They then use this local information to decide how 
to divide up the overlapping regions they share with other 
agents, using the assumption that the other agents have the 
average amount of local work to do. This parameter is 
then communicated to all the affected agents, and the agent 
works on data in its unique area (if any)-the part of the 
agent’s sensor range that is never the subject of negotiation 
because only that agent can sense it. After completing and 
communicating this unique local work, the agent performs 
another information gathering action to receive the param- 
eter values from the other agents, and a simple algorithm 
produces a compromise for the way the overlap will be di- 
vided up. The agents now proceed as in the static case until 
the end of the episode. 

Analyzing the Dynamic estructuring Algorithm 

As we did in [Decker and Lesser, 1993a], we can develop 
an expression for the termination time of any episode where 
the agents follow this algorithm. To do so, we start with the 
basic termination time given all of the random variables: 

T dynamic = maxfTstatic[r = r--p], Tstatic[r = r+p, 4 = 8, IV = IV)] 
(10) 

where p is computed as described in the last section using 
the values of (r, 8, fi, 3, IV). To turn this into a predictive 
formula, we then use the expressions for the probabilities 
of the terms 3, fi, Z, and &r (from Eqns. 3 and 1). For 
example, we can produce an expression for the expected 



termination of the algorithm: 

n I$ n iV 270 

13=0 &o I?=0 a=0 

bn,% (N) * b~,o.s(3) * Tdytmlic[r, 9, fi, 3, n] (11) 

We tested the predictions of Equation 11 versus the mean 
termination time of our DSN simulation over 10 repetitions 
in each of 10 randomly chosen environments from the de- 
signspace[2<r<lO,O<o~r,l<_fi55,1<N5 
lo]. The durations of all tasks were set at 1 time unit, as were 
the duration of information gathering and communication 
actions, with the exception of the 4 environments shown in 
the next section. We used the simulation validation statis- 
tic suggested by Kleijnen [Kleijnen, 19871 (where $ = the 
predicted output by the analytical model and y = the output 
of the simulation): 

(12) 

where Var(p) is the predicted variance.3 The result z can 
then be tested for significance against the standard normal 
tables. In each case, we were unable to reject the null 
hypothesis that the actual mean termination equals the pre- 
dicted mean termination at the cx = 0.05 level, thus validat- 
ing our formal model.4 

ncreasing task durations 
Figure 3 compares the termination of static and dynamic re- 
structuring organizations on identical episodes in four differ- 
ent environments. From left to right, the environments were 
[A = 9, r = 9, o = 9, n = 71, [A = 4, T = 9, o = 3, n = 51, 
[A = 16,r = 8,0 = 5,n = 43, [A = 9,r = 10,o = 6,n = 71. 
Ten different episodes were generated for each environment. 
In order to see the benefits of dynamic restructuring more 
clearly, we chose task durations for each environment sim- 
ilar to those in the DVMT: &(VLM) = 6, &(VTM) = 2, 
and do (VCM) = 2.5 Note that the dynamic organization 
often does significantly better than the static organization, 
and rarely does much worse-remember that in many par- 
ticular episodes that the dynamically organized agents will 
decide to keep the static organization, although they pay a 
constant overhead when they keep the static organization 
(one extra communication action and one extra information 
gathering action, given that the time for a message to reach 
all agents is no longer than the communication action time). 

Comparative Analyses 
The next figure demonstrates the effect of the ratio of com- 
putation duration to communication duration. This and 

3The predicted variance of Equation 5 can be easily derived 
from the statistical identity Var(z) = E[z’] - (E[z])~. 

4For non-statisticians: the null hypothesis is that our prediction 
is the same as the actual value, we did not wish to reject it, and we 
did not. 

‘The idea being that the VLM methods correspond to lowest 
three DVMT KSIs as a group, and the other methods correspond 
to single DVMT KSIs, and that a KS1 has twice the duration of a 
communication action. 

g 220 

jl70 

E 
120 

70 

Figure 3: Paired-response comparison of the termination of 
static and dynamic systems in four different environments 
(ten episodes in each). Task durations are set to simulate 
the DVMT (see text). 

subsequent figures assume that the dynamic restructuring 
shrinkage parameter p is set to minimize the difference be- 
tween maximum and average local work as described in the 
previous section. Figure 4 shows how the expected value 
and 50% confidence interval on system termination changes 
as the duration of a method execution action changes from 
equal to (lx) a communication action to 10 times (10x) that 
of a communication action. The task structure remains that 
of the DSN example described in Section . In Figure 4 we 
see a clear separation emerge between static and dynamic 
termination. The important point to take from this example 
is not this particular answer, but that we can do this analysis 
for any environment 2). 

400 

$ 350 

,; 300 

2 250 
-8 - 200 
1 

Figure 4: Predicted effect of decreasing communication 
costs on expected termination under a static organization 
and dynamic restructuring (expected value and 50% confi- 
dence interval, A = 25, r = 9, o = 9, n = 7). 

ecreasing Pe rmance Variance 
The earlier figure assumes that the number of task groups 
n is known beforehand. The reason for this is to highlight 
the variance implicit in the organization, and minimize the 
influence of the external environment. Figure 5 shows how 
much extra variance is added when only the expected value 
of n, which is q, is known. We assume that the number 
of task groups n (in the DSN example, vehicle tracks) that 
occur during a particular episode has a Poisson distribu- 
tion with an expected value of q. The discrete probability 
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function for the Poisson distribution, given in any statistics 
book, is then: 

l%(Y) = se--y Pr[n = Yll 

We can use this probability in conjunction with Eqns. 3, 6, 
and 9 to calculate the expected value, SO%, and 95% con- 
fidence intervals on termination in the static or dynamic 
organizations. An example of this calculation for one en- 
vironment is shown in Figure 5. Note in Figure 5 both the 
large increase in variance when n is random, and the small 
decrease in variance in the dynamic restructuring organi- 
zation. Note also that the mean termination time for the 
dynamic organization is less than that for the static organi- 
zation. 

Static, n Poisson 

Dynamic, n Poisson 

Static, n known 

Dynamic, n known 
I 

I 

35 85 135 185 
Estimated Termination Time 

Figure 5: Demonstration of both the large increase in per- 
formance variance when the number of task groups n is 
a random variable, and the small decrease in variance with 
dynamic restructuring coordination [A = 9, T = 22, o = 91. 
Where n is known, n = 5. Where n is a random variable, 
the expected value q = 5. 

Conclusions 
This paper described a one-shot dynamic coordination al- 
gorithm for reorganizing the areas of responsibility for 
a set of distributed sensor network agents. When per- 
formance is measured in terms of the time for a sys- 
tem of agents to terminate, the class of dynamic algo- 
rithms can often outperform static algorithms, and re- 
duce the variance in performance (which is a useful char- 
acteristic for real-time scheduling [Decker et al., 1990; 
Garvey and Lesser, 19931). This paper presented a formula 
for the expected value (or variance, or confidence interval) 
of the termination time for a particular one-shot dynamic 
reorganization algorithm. It showed how this result can be 
used to predict whether the extra overhead of the dynamic 
algorithm was worthwhile compared to a static algorithm in 
a particular environment. Other questions were examined, 
such as the effect of decreasing communication costs, or 
increased uncertainty about the task environment. 

We hope these results can be used directly by designers 
of DSNs to choose the number, organization, and control 
algorithms of agents for their particular environments, and 

that they inspire the DAI community to move beyond the 
development of ideas using single-instance examples. 

We are currently analyzing a simple extension of this al- 
gorithm that uses two meta-level communication actions to 
provide agents with non-local information with which to 
make decisions about how to reorganize. We have observed 
only a small reduction in mean performance but a greater re- 
duction in variance. Future work we have planned includes 
the analysis of a multi-stage communication, PGP-style dy- 
namic coordination algorithm, and the use of our expanded 
model that includes faulty sensors and ghost tracks [Decker 
and Lesser, 1993b]. 
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