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ABSTRACT 

To control problem solving activity, a planner must 
resolve uncertainty about which specific long-term goals 
(solutions) to pursue and about which sequences of actions 
will best achieve those goals. In this paper, we describe 
a planner that abstracts the problem solving state to 
recognize possible competing and compatible solutions 
and to roughly predict the importance and expense of 
developing these solutions. With this information, the 
planner plans sequences of problem solving activities that 
most efficiently resolve its uncertainty about which of the 
possible solutions to work toward. The planner only 
details actions for the near future because the results of 
these actions will influence how (and whether) a plan 
should be pursued. As problem solving ‘proceeds, the 
planner adds new details to the plan incrementally, and 
monitors and repairs the plan to insure it achieves its goals 
whenever possible. Through experiments, we illustrate 
how these new mechanisms significantly improve problem 
solving decisions and reduce overall computation, We 
briefly discuss our current research directions, including 
how these mechanisms can improve a problem solver’s real- 
time response and can enhance cooperation in a distributed 
problem solving network. 

I INTRODUCTION 

A problem solver’s planning component must resolve 
control uncertainty stemming from two principal sources. 
As in typical planners, it must resolve uncertainty about 
which sequence of actions will satisfy its long-term goals. 
Moreover, whereas most planners are given (possibly 
prioritized) well-defined, long-term goals, a problem 
solver’s planner must often resolve uncertainty about the 
goals to achieve. For example, an interpretation problem 
solver that integrates large amounts of data into “good” 
overall interpretations must use its data to determine 
what specific long-term goals (interpretations) it should 
pursue. Because the set of possible interpretations may 
be intractably large, the problem solver uses the data to 
form promising partial interpretations and then extends 
these to converge on likely complete interpretations. The 
blackboard-based architecture developed in Hearsay-II 
permits such data-directed problem solving [ 7). 

In a purely data-directed problem solver, control 
decisions can be based only on the desirability of the 
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expected immediate results of each action. The Hearsay-II 
system developed an algorithm for measuring desirability 
of actions to better focus problem solving [lo]. Extensions 
to the blackboard architecture unify data-directed and 
goal-directed control by representing possible extensions 
and refinements to partial solutions as explicit goals 
[2]. Through goal processing and subgoals, sequences 
of related actions can be triggered to achieve important 
goals. Further modifications separate control knowledge 
and decisions from problem solving activities, permitting 
the choice of problem solving actions to be influenced 
by strategic considerations [9]. However, none of these 
approaches develop and use a high-level view of the current 
problem solving situation so that the problem solver can 
recognize and work toward more specific long-term goals. 

In this paper, we introduce new mechanisms that 
allow a blackboard-based problem solver to form such a 
high-level view. By abstracting its state, the problem 
solver can recognize possible competing and compatible 
interpretations, and can use the abstract view of the data to 
roughly predict the importance and expense of developing 
potential partial solutions. These mechanisms are much 
more flexible and complex than those we previously 
developed [6] and allow the recognition of relationships 
between distant as well as nearby areas in the solution 
space, We also present new mechanisms that use the high- 
level view to form plans to achieve long-term goals. A 
plan represents specific actions for the near future and 
more general actions for the distant future. By forming 
detailed plans only for the near future, the problem solver 
does not waste time planning for situations that may never 
arise; by sketching out the entire plan, details for the 
near-term can be based on a long-term view. As problem 
solving proceeds, the plan must be monitored (and repaired 
when necessary), and new actions for the near future are 
added incrementally. Thus, plan formation, monitoring, 
modification, and execution are interleaved [1,3,8,12,13]. 

We have implemented and evaluated our new 
mechanisms in a vehicle monitoring problem solver, where 
they augment previously developed control mechanisms. In 
the next section, we briefly describe the vehicle monitoring 
problem solver. Section 3 provides details about how a 
high-level view is formed as an abstraction hierarchy. The 
representation of a plan and the techniques to form and 
dynamically modify plans are presented in Section 4. In 
Section 5, experimental results are discussed to illustrate 
the benefits and the costs of the new mechanisms. Finally, 
Section 6 recapitulates our approach and describes how the 
new mechanisms can improve real-time responsiveness and 
can lead to improved cooperation in a distributed problem 
solving network. 

58 / SCIENCE 



II A VEHICLE MONITORING 
PROBLEM SOLVER 

A vehicle monitoring problem solving node in the 
Distributed Vehicle Monitoring Testbed (DVMT) applies 
simplified signal processing knowledge to acoustically 
sensed data in an attempt to identify, locate, and track 
patterns of vehicles moving through a two-dimensional 
space [ll]. Each node has a blackboard-based problem 
solving architecture, with knowledge sources and levels 
of abstraction appropriate for vehicle monitoring. A 
knowledge source (KS) performs the basic problem 
solving tasks of extending and refining hypotheses (partial 
solutions). The architecture includes a goal blackboard 
and goal processing module, and through goal processing 
a node forms knowledge source instantiations (KSIs) that 
represent potential KS applications on specific hypotheses 
to satisfy certain goals. KSIs are prioritized based both on 
the estimated beliefs of the hypotheses each may produce 
and on the ratings of the goals each is expected to satisfy. 
The goal processing component also recognizes interactions 
between goals and adjusts their ratings appropriately; for 
example, subgoals of an important goal might have their 
ratings boosted. Goal processing can therefore alter KS1 
rankings to help focus the node’s problem solving actions 
on achieving the subgoals of important goals [2]. 

A hypothesis is characterized by one or more time- 
locutions (where the vehicle was at discrete sensed times), 
by an event-class (classifying the frequency or vehicle 
type), by a belief (the confidence in the accuracy of 
the hypothesis), and by a blackboard-level (depending on 
the amount of processing that has been done on the 
data). Synthesis KSs take one or more hypotheses at one 
blackboard-level and use event-class constraints to generate 
hypotheses at the next higher blackboard-level. Extension 
KSs take several hypotheses at a given blackboard-level and 
use vehicle movement constraints (maximum velocities and 
accelerations) to form hypotheses at the same blackboard- 
level that incorporate more time-locations. 

For example, in Figure 1 each blackboard-level is 
represented as a surface with spatial dimensions z and y. 
At blackboard-level s (signal level) there are 10 hypotheses, 
each incorporating a single time-location (the time is 
indicated for each). Two of these hypotheses have been 
synthesized to blackboard-level g (group level). In turn, 
these hypotheses have been synthesized to blackboard-level 
v (vehicle level) where an extension KS has connected them 
into a single track hypothesis, indicated graphically by 
connecting the two locations. Problem solving proceeds 
from this point by having the goal processing component 
form goals (and subgoals) to extend this track to time 
3 and instantiating KSIs to achieve these goals. The 
highest rated pending KS1 is then invoked and triggers the 
appropriate KS to execute. New hypotheses are posted 
on the blackboard, causing further goal processing and the 
cycle repeats until an acceptable track incorporating data 
at each time is created. One of the potential solutions is 
indicated at blackboard-level v in Figure 1. 

III A HIGH-LEVEL VIEW FOR 
PLANNING AND CONTROL 

Planning about how to solve a problem often requires 
viewing the problem from a different perspective. For 
example, a chemist generally develops a plan for deriving a 
new compound not by entering a laboratory and envisioning 
possible sequences of actions but by representing the 

Blackboard-levels are represented as surfaces containing 
hypotheses (with associated sensed times). Hypotheses at 
higher blackboard-levels are synthesized from lower level 
data, and a potential solution is illustrated with a dotted 
track at blackboard-level v. 

Figure 1: An Example Problem Solving State. 

problem with symbols and using these symbols to 
hypothesize possible derivation paths. By transforming 
the problem into this representation, the chemist can more 
easily sketch out possible solutions and spot reactions that 
lead nowhere, thereby improving the decisions about the 
actions to take in the laboratory. 

A blackboard-based, vehicle monitoring problem solver 
requires the same capabilities. Transforming the node’s 
problem solving state into a suitable representation 
for planning requires domain knowledge to recognize 
relationships-in particular, long-term relationships-in 
the data. This transformation is accomplished by 
incrementally clustering data into increasingly abstract 
groups based on the attributes of the data: the hypotheses 
can be clustered based on one attribute, the resulting 
clusters can be further clustered based on another attribute, 
and so on. The transformed representation is thus a 
hierarchy of clusters where higher-level clusters abstract 
the informat ion of lower-level clusters. More or less 
detailed views of the problem solving situation are found 
by accessing the appropriate level of this abstraction 
hierarchy, and clusters at the same level are linked by 
their relationships (such as having adjacent time frames 
or blackboard-levels, or having nearby spatial regions). 

We have implemented a set of knowledge-based 
clustering mechanisms for vehicle monitoring, each of which 
takes clusters at one level as input and forms output clusters 
at a new level. Each mechanism uses different domain- 
dependent relationships, including: 

temporal relationships: the output cluster 
combines any input clusters that represent data in 
adjacent time frames and that are spatially near 
enough to satisfy simple constraints about how far 
a vehicle can travel in one time unit. 
spatial relationships: the output cluster combines 
any input clusters that represent data for the same 
time frames and that are spatially near enough to 
represent sensor noise around a single vehicle. 
blackboard-level relationships: the output 
cluster combines any input clusters that represent the 
same data at different blackboard-levels. 
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l event-class relationships: the output cluster 
combines any input clusters that represent data with 
the same event-class (type of vehicle). 

l belief relationships: the output cluster combines 
input clusters representing data with similar beliefs. 

The abstraction hierarchy is formed by sequentially 
applying the clustering mechanisms. The order of 
application depends on the bias of the problem solver: 
since the order of clustering affects which relationships are 
most emphasized at the highest levels of the abstraction 
hierarchy, the problem solver should cluster to emphasize 
the relationships it expects to most significantly influence 
its control decisions. Issues in representing bias and 
modifying inappropriate bias are discussed elsewhere [4]. 

To illustrate clustering, consider the clustering sequence 
in Figure 2, which has been simplified by ignoring many 
cluster attributes such as event-classes, beliefs, and volume 
of data and pending work; only a cluster’s blackboard- 
levels (a cluster can incorporate more than one) and its 
time-regions (indicating a region rather than a specific 
location for a certain time) are discussed. Initially, the 
problem solving state is nearly identical to that in Figure 1, 
except that for each hypothesis in Figure 1 there are 
now two hypotheses at the same sensed time and slightly 
different locations. In Figure 2a, each cluster CL (where 1 
is the level in the abstraction hierarchy) corresponds to 
a single hypothesis, and the graphical representation of 
the clusters mirrors a representation of the hypotheses. 
By clustering based on blackboard-level, a second level 
of the abstraction hierarchy is formed with 19 clusters 
(Figure 2b). As is shown graphically, this clustering 
‘Lcollapses” the blackboard by combining clusters at the 
previous abstraction level that correspond to the same 
data at different blackboard-levels. In Figure 2c, clustering 
by spatial relationships forms 9 clusters. Clusters at the 
second abstraction level whose regions were close spatially 
for a given sensed time are combined into a single cluster. 
Finally, clustering by temporal relationships in Figure 2d 
combines any clusters at the third abstraction level that 
correspond to adjacent sensed times and whose regions 
satisfy weak vehicle velocity constraints. 

The highest level clusters (Figure 2d) indicate four 
rough estimates of potential solutions: a vehicle moving 
through regions R1R2R3R4&&, through Ri&R&RkRL, 
through R~R!&R4R5RG, or through R\RLR3R4Rk.Rk. The 
problem solver could use this view to improve its control 
decisions. For example, this view allows the problem solver 
to recognize that all potential solutions pass through Rs 
at sensed time 3 and R4 at sensed time 4. By boosting 
the ratings of KSIs in these regions, the problem solver can 
focus on building high-level results that are most likely to 
be part of any eventual solution. 

In some respects, the formation of the abstraction 
hierarchy is akin to a rough pass at solving the problem, 
as indeed it must be if it is to indicate where the 
possible solutions may lie. However, abstraction differs 
from problem solving because it ignores many important 
constraints needed to solve the problem. Forming the 
abstraction hierarchy is thus much less computationally 
expensive than problem solving, and results in a 
representation that is too inexact as a problem solution 
but is suitable for control. For example, although the 
high-level clusters in Figure 2d indicate that there are four 

potential solutions, three of these are actually impossible 
based on the more stringent constraints applied by the 
KSs. The high-level view afforded by the abstraction 
hierarchy therefore does not provide answers but only rough 
indications about the long-term promise of various areas 
of the solution space, and this additional knowledge can 
be employed by the problem solver to make better control 
decisions as it chooses its next task. 

IV INCREMENTAL PLANNING 

The planner further improves control decisions by 
intelligently ordering the problem solving actions. Even 
with the high-level view, uncertainty remains about 
whether each long-term goal can actually be achieved, 
about whether an action that might contribute to achieving 
a long-term goal will actually do so (since long-term goals 
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A sequence of clustering steps are illustrated both with 
tables (left) and graphically (right). cf represents cluster 
z at level 1 of the abstraction hierarchy. initial clusters 
(a), are clustered by blackboard-level (b), then by spatial 
proximity (c), and finally by temporal relationships (d). 

Figure 2: Incremental Clustering Example. 
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are inexact), and about how to most economically form a 
desired result (since the same result can often be derived 
in different ways). The planner reduces control uncertainty 
in two ways. First, it orders the intermediate goals for 
achieving long-term goals so that the results of working 
on earlier intermediate goals can diminish the uncertainty 
about how (and whether) to work on later intermediate 
goals. Second, the planner forms a detailed sequence of 
steps to achieve the next intermediate goal: it determines 
the least costly way to form a result to satisfy the goal. The 
planner thus sketches out long-term intentions as sequences 
of intermediate goals, and forms detailed plans about the 
best way to achieve the next int)ermediate goal. 

A long-term vehicle monitoring goal to generate a track 
consisting of several time-locations can be reduced into 
a series of intermediate goals, where each intermediate 
goal represents a desire to extend the track satisfying the 
previous intermediate goal into a new time-location.* To 
order the intermediate goals, the planner currently uses 
three domain-independent heuristics: 

Heuristic-l Prefer common intermediate goals. Some 
intermediate goals may be common to several long- 
term goals. If uncertain about which of these long- 
term goals to pursue, the planner can postpone its 
decision by working on common intermediate goals 
and then can use these results to better distinguish 
between the long-term goals. This heuristic is a 
variation of least-commitment 1141. 

Heuristic-2 Prefer less costly intermediate goals. Some 
intermediate goals may be more costly to achieve 
than others. The planner can quickly estimate the 
relative costs of developing results in different areas 
by comparing their corresponding clusters at a high 
level of the abstraction hierarchy: the number of 
event-classes and the spatial range of the data in 
a cluster roughly indicates how many potentially 
competing hypotheses might have to be produced. 
This heuristic causes the planner to develop results 
more quickly. If these results are creditable they 
provide predictive information, otherwise the planner 
can abandon the plan after a minimum of effort. 

Heuristic-3 Prefer discriminative intermediate goals. If 
the planner must discriminate between possible long- 
term goals, it should prefer to work on intermediate 
goals that most effectively indicate the relative 
promise of each long-term goal. When no common 
intermediate goals remain this heuristic triggers work 
where the long-term goals differ most. 

These heuristics are interdependent. For example, common 
intermediate goals may also be more cost,ly, as in one of the 
experiments described in the next section. The relative 
influence of each heuristic can be modified parametrically. 

Having identified a sequence of intermediate goals to 
achieve one or more long-term goals, t,he planner can reduce 
its uncertainty about how to satisfy these intermediate 
goals by planning in more detail. If the planner possesses 
models of the KSs that roughly indicate both the costs 
of a particular action and the general characteristics of 

*In general terms. an intermediate goal in any interpretation t.ask 
is to process a new piece of information and to integrate it into the 
current partial interpretation. 

the output of that action (based on the characteristics 
of the input), then the planner can search for the best 
of the alternative ways to satisfy an intermediate goal. 
We have provided the planner for our vehicle monitoring 
problem solver with coarse KS models that allow it to make 
reasonable predictions about short sequences of actions to 
find the sequences that best achieve intermediate goals.“ 
To reduce the effort spent on planning, the planner only 
forms detailed plans for the next intermediate goal: since 
the results of earlier intermediate goals influence decisions 
about how and whether to pursue subsequent intermediate 
goals, the planner avoids expending effort forming detailed 
plans that may never be used. 

Given the abstraction hierarchy in Figure 2, the planner 
recognizes that achieving each of the four long-term goals 
(Figure 2d) entails intermediate goals of tracking the 
vehicle through these regions. Influenced predominantly 
by Heuristic-l, the planner decides to initially work toward 
all four long-term goals at the same time by achieving 
their common intermediate goals. A detailed sequence of 
actions to drive the data in R3 at level s to level v is then 
formulated. The planner creates a plan whose attributes 

their values in this example) are: 

the long-term goals the plan contributes to achieving 
(in the example, there are four); 
the predicted, underspecified time-regions of the 
eventual solution (in the example, the time regions 
are (1 RlorR:)(2 Rzor$)(3 &) . . . ); 
the predicted vehicle type(s) of the eventual solution 
(in the example, there is only one type); 
the order of intermediate goals (in the example, begin 
with sensed time 3, then time 4, and then work both 
backward to earlier times and forward to later times); 
the blackboard-level for tracking, depending on the 
available KSs (in the example, this is level v); 
a record of past actions, updated as actions are taken 
(initially empty); 
a sequence of the specific actions to take in the short- 
term (in the example, the detailed plan is to drive 
data in region R3 at level s to level v); 
a rating based on the number of long-term goals being 
worked on, the effort already invested in the plan, 
the average ratings of the KSIs corresponding to the 
detailed short-t*erm actions, the average belief of the 
partial solutions previously formed by the plan, and 
the predicted beliefs of the partial solutions to be 
formed by the detailed activities. 

As each predicted action is consecutively pursued, the 
record of past actions is updated and the actual results of 
the action are compared with the general characteristics 
predicted by the planner. When these agree, the next 
action in the detailed short-term sequence is performed 
if there is one, otherwise the planner develops another 
detailed sequence for the next intermediate goal. In our 
example, after forming results in R3 at a high blackboard- 
level, the planner forms a sequence of actions to do the 
same in R4. When the actual and predicted results disagree 

**If the predict,ecl cost of satisfying an intermediate goal deviates 
substantially from the crude estimate based on the abstract view, the 
ordering of the intermediate goals may need to be revised. 
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(since the planner’s models of the KSs may be inaccurate), 
the planner must modify the plan by introducing additional 
actions that can get the plan back on track. If no such 
actions exist, the plan is aborted and the next highest rated 
plan is pursued. If the planner exhausts its plans before 
forming a complete solution, it reforms the abstraction 
hierarchy (incorporating new information and/or clustering 
to stress different problem attributes) and attempts to 
find new plans. Throughout this paper, we assume for 
simplicity that no important new information arrives after 
the abstraction hierarchy is formed; when part of a more 
dynamic environment, the node will update its abstraction 
hierarchy and plans with such information. 

The planner thus generates, monitors, and revises plans, 
and interleaves these activities with plan execution. In 
our example, the common intermediate goals are eventually 
satisfied and a separate plan must be formed for each of the 
alternative ways to proceed. After finding a partial track 
combining data from sensed times 3 and 4, the planner 
decides to extend this track backward to sensed time 2. The 
long-term goals indicate work in either Rz or RL. A plan 
is generated for each possibility, and the more highly rated 
of these plans is followed. Note, however, that the partial 
track already developed can provide predictive information 
that, through goal processing, can increase the rating of 
work in one of these regions and not the other. In this 
case, constraints that limit a vehicle’s turning rate are used 
when goal processing (subgoaling) to increase the ratings 
of KSI’s in R&, thus making the plan to work there next 
more highly rated.* 

The planner and goal processing thus work in tandem 
to improve problem solving performance. The goal 
processing uses a detailed view of local interactions 
between hypotheses, goals, and KSJs to differentiate 
between alternative actions. Goal processing can be 
computationally wasteful, however, when it is invoked 
based on strictly local criteria. Without the knowledge of 
long-term reasons for building a hypothesis, the problem 
solver simply forms goals to extend and refine the 
hypothesis in all possible ways. These goals are further 
processed (subgoaled) if they are at certain blackboard- 
levels, again regardless of any long-term justification for 
doing so. With its long-term view, the planner can 
drastically reduce the amount of goal processing. As it 
pursues, monitors, and repairs plans, the planner identifies 
areas where goals and subgoals could improve its decisions 
and selectively invokes goal processing to form only those 
goals that it needs. As the experimental results in the next 
section indicate, a planner with the ability to control goal 
processing can dramatically reduce overhead. 

V EXPERIMENTS IN INCREMENTAL 
PLANNING 

We illustrate the advantages and the costs of our 
planner in several problem solving situations, shown in 
Figure 3. Situation A is the same as in Figure 2 except 
that each region only has one hypothesis. Also note that 
the data in the common regions is most weakly sensed. In 
situation B, no areas are common to all possible solutions, 
and issues in plan monitoring and repair are therefore 
stressed. Finally, situation C has many potential solutions, 
where each appears equally likely from a high-level view, 

‘In fact the turns to RZ and Rk exceed these constraints, SO the 
only track that satisfies the constraints is R~R~&R~&.&. 

d14 4 

L 4 - 
solution = d:dad3d4dsdG 

A 

solutions = dldzdaddds, 
d’ d’ d’ d’ d’ 1 2 3 4 5 

C 

solutions = dld2dsd4d5, 
d;d;d&d;d; 

B 

d, = data for sensed time i, 

l = strongly sensed, 

l = moderately sensed, 

0 = weakly sensed 

Three problem solving situations are displayed. The pos- 
sible tracks (found in the abstraction hierarchy) are indi- 
cated by connecting the related data points, and the ac- 
ceptable solution(s) for each situation are given. 

Figure 3: The Experimental Problem Situations. 

When evaluating the new mechanisms, we consider 
two important factors: how well do they improve control 
decisions (reduce the number of incorrect decisions), and 
how much additional overhead do they introduce to achieve 
this improvement. Since each control decision causes the 
invocation of a KSI, the first factor is measured by counting 
KSIs invoked-the fewer the KSIs, the better the control 
decisions. The second factor is measured as the actual 
computation time (runtime) required by a node to solve 
a problem, representing the combined costs of problem 
solving and control computation. 

The experimental results are summarized in Table 1. To 
determine the effects of the new mechanisms, each problem 
situation was solved both with and without them, and for 
each case the number of KSIs and the computation time 
were measured. We also measured the number of goals 
generated during problem solving to illustrate how control 
overhead can be reduced by having the planner control the 
goal processing. 

Experiments El and E2 illustrate how the new 
mechanisms can dramatically reduce both the number of 
KSIs invoked and the computation time needed to solve 
the problem in situation A. Without these mechanisms 
(El), the p ro bl em solver begins with the most highly 
sensed data (di, da, db, and d:). This incorrect data 
actually corresponds to noise and may have been formed 
due to sensor errors or echoes in the sensed area. The 
problem solver attempts to combine this data through 
ds and da but fails because of turning constraints, and 
then it uses the results from d3 and d4 to eventually 
work its way back out to the moderately sensed correct 
data. With the new mechanisms (E2), problem solving 
begins at d3 and da and, because the track formed (d3d4) 
triggers goal processing to stimulate work on the moderate 
data, the solution is found much more quickly (in fact, in 
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Expt Situ Plan. 3 KSIs Rtime Goals Comments 
El A no 58 17.2 262 - 
E2 
E3 

2 yes 24 8.1 49 - 

yes 32 19.4 203 1 

E4 A’ no 58 19.9 284 2 

E5 A’ yes 64 17.3 112 2,3 
E6 A’ yes 38 16.5 71 214 

no 73 21.4 371 - 
yes 45 11.8 60 - 

E9 B yes 45 20.6 257 1 

El0 C no 85 29.8 465 
El1 C yes 44 19.3 75 - 

Situ: 
Plan?: 
KSIs: 
Rtime: 
Goals: 
Comments: 

Legend 
The problem situation. 
Are the new planning mechanisms used? 
Number of KSIs invoked to find solution. 
The total CPU runtime to find solution lin minutes). 
The number of goals formed and processed. 

I 

Additional asoects of the exneriment: 
1 = independint goal procesiing and planning 
2 = noise in da and d4 
3 = Heuristic-l predominates 
4 = Heuristic-2 predominates 

Table 1: Summary of Experimental Results. 

optimal time 151). The planner controls goal processing 
to generate and process only those goals that further the 
plan; if goal processing is done independently of the planner 
(E3), the overhead of the planner coupled with the only 
slightly diminished goal processing overhead (the number 
of goals is only modestly reduced, comparing E3 with El) 
nullifies the computation time saved on actual problem 
solving. Moreover, because earlier, less constrained goals 
are subgoaled, control decisions deteriorate and more KSIs 
must be invoked. 

The improvements in experiment E2 were due to the 
initial work done in the common areas d3 and d4 triggered 
by Heuristic-l. Situation A’ is identical to situation A 
except that areas d3 and d4 contain numerous competing 
hypotheses. If the planner initially works in those areas 
(E5), then many KSIs are required to develop all of these 
hypotheses-fewer KSIs are invoked without planning at 
all (E4). However, by estimating the relative costs of the 
alternative intermediate goals, the planner can determine 
that d3 and dq, although twice as common as the other 
areas, are likely to be more than twice as costly to work 
on. Heuristic-2 overrides Heuristic-l, and a plan is formed 
to develop the other areas first and then use these results to 
more tightly control processing in d3 and dq. The number 
of KSIs and the computation time are thus reduced (E6). 

In situation B, two solutions must be found, 
corresponding to two vehicles moving in parallel. Without 
the planner (EV), problem solving -begins with the most 
strongly sensed data (the noise in the center of the area) 
and works outward from there. Only after many incorrect 
decisions to form short tracks that cannot be incorporated 
into longer solutions does the problem solver generate the 
two solutions. The high-level view of this situation, as 
provided by the abstraction hierarchy, allows the planner 
in experiment E8 to recognize six possible alternative 
solutions, four of which pass through di (the most common 
area). The planner initially forms plani, pZan2, and 
plans, beginning in dg, ds, and d$ respectively (Heuristic-l 
triggers the preference for dz; and subsequently Heuristic-3 
indicates a preference for d3 and d$). Since it covers the 

most long-term goals, plan1 is pursued first-a reasonable 
strategy because effort is expended on the solution path if 
the plan succeeds, and if the plan fails then the largest 
possible number of candidate solutions are eliminated. 
After developing di, pl an1 is divided into two plans to 
combine this data with either d2 or d\. One of these equally 
rated plans is chosen arbitrarily and forms the track dzd’,‘, 
which then must be combined with di. However, because 
of vehicle turning constraints, only dldz rather than dld2dg 
is formed. The plan monitor flags an error, an attempt 
to repair the plan fails, and the plan aborts. Similarly, 
the plan to form d\did!J eventually aborts. Plan2 is then 
invoked, and after developing d3 it finds that d2 has already 
been developed (by the first aborted plan). However, the 
plan monitor detects that the predicted result, dzd3 was 
not formed, and the plan is repaired by inserting a new 
action that takes advantage of the previous formation of 
dldE to generate dld2d3. The predictions are then more 
than satisfied, and the plan continues until a solution is 
formed. The plan to form the other solution is similarly 
successfully completed. Finally, note once again that, if the 
planner does not control goal processing (E9), unnecessary 
overhead costs are incurred, although this time the control 
decisions (KSIs) are not degraded. 

Situation C also represents two vehicles moving in 
parallel, but this time they are closer and the data points 
are all equally well sensed. Without the new mechanisms 
(ElO), control decisions in this situation have little to 
go on: from a local perspective, one area looks as good 
as another. The problem solver thus develops the data 
points in parallel, then forms all tracks between pairs of 
points, then combines these into larger tracks, until finally 
it forms the two solution tracks. The planner uses the 
possible solutions from the abstraction hierarchy to focus 
on generating longer tracks sooner, and by monitoring 
its actions to extend its tracks, the planner more quickly 
recognizes failed extensions and redirects processing toward 
more promising extensions. The new mechanisms thus 
improve control decisions (reduce the KSIs) without adding 
excessive computational overhead (El 1). However, the 
planner must consider 32 possible solutions in this case and 
does incur significant overhead. For complex situations, the 
planner may need additional control mechanisms to more 
flexibly manage the many possibilities. 

VI THE IMPLICATIONS OF 
ABSTRACTION AND PLANNING 

We have described and evaluated mechanisms for 
improving control decisions in a blackboard-based vehicle 
monitoring problem solver. Our approach is to develop 
an abstract view of the current problem solving situation 
and to use this view to better predict both the long- 
term significance and cost of alternative actions. By 
interleaving plan generation, monitoring, and repair with 
plan execution, the mechanisms lead to more versatile 
planning, where actions to achieve the system’s (problem 
solving) goals and actions to satisfy the planner’s needs 
(resolve its own uncertainty) are integrated into a single 
plan. Although incremental planning may be inappropriate 
in domains where constraints must be propagated to 
determine an entire detailed plan before acting (141, the 
approach we have described is effective in unpredictable 
domains where plans about the near future cannot depend 
on future states that may never arrive. 
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This approach can be generally applied to blackboard- 
based problem solvers. Abstraction requires exploiting 
relationships in the data-relationships that are used by the 
knowledge sources as well-such as allowable combinations 
of speech sounds [7] or how various errands are related 
spatially or temporally 191.’ Planning requires simple 
models of KSs, recognition of intermediate goals (to extend 
a phrase in speech, to add another errand to a plan), 
and heuristics to order the intermediate goals. We believe 
that many if not all blackboard-based problem solvers 
(and more generally, problem solvers whose long-term goals 
depend on their current situation) could incorporate similar 
abstraction and planning mechanisms to improve their 
control decisions. 

The benefits of this approach extend beyond the 
examples demonstrated in this paper. The more global 
view of the problem provided by the abstraction hierarchy 
helps the problem solver decide whether a goal is adequately 
satisfied by indicating areas where improvements are 
possible and potentially worthwhile. The ability to 
enumerate and compare possible solutions helps the 
problem solver decide when a solution is the best of the 
possible alternatives, and so, when to terminate activity. 

These mechanisms also help a problem solver to work 
under real-time constraints. The KS models provide 
estimates of the cost (in time) to achieve the next 
intermediate goal, and by generalizing this estimate to the 
other intermediate goals, the time needs for for the entire 
plan can be crudely predicted. With this prediction, the 
planner can modify the plan (replace expensive actions with 
actions that inexpensively achieve less exact results) until 
the predicted time costs satisfy the constraints. 

Finally, planning and prediction are vital to cooperation 
among problem solvers. A network of problem solvers 
that are cooperatively solving a single problem could 
communicate about their plans, indicating what partial 
solutions they expect to generate and when, to better 
coordinate their activities [4,5,6]. In essence, the 
problem solvers incrementally form a distributed plan 
together. The inherent unpredictability of actions and 
interactions in multi-agent domains makes incremental 
planning particularly appropriate in distributed problem 
solving applications. 

We are currently augmenting our mechanisms with 
capabilities to perform effectively in more dynamic 
environments with multiple problem solvers. The 
mechanisms, though they address issues previously 
neglected, should also be integrated with other control 
techniques (such as a blackboard architecture for control 
191) to be fully fl exible, as seen in experiment. Eli. 
Based on our experiences, we anticipate that the 
further development of these mechanisms for planning in 
blackboard-based problem solvers will greatly enhance the 
performance of these problem solving systems, will lead to 
improved real-time response and to better coordination in 
distributed problem solving networks, and will increase our 
understanding of planning and action in highly uncertain 
domains. 

‘In fact, t,he WORD-SEQ knowledge source in the Hearsay-11 
speech understanding system essentially is a clustering mechanism: by 
applying weak grammatical constraints about pairwise sequences of 
words, WORD-SEQ generated approximate word sequences solely to 
control the application of the more expensive PARSE KS that. applied 
full grammatical constraints about. sequences of arbitrary length [7]. 

PI R. T. Chien and S. Weissman. Planning and execution 
in incompletely specified environments. In Proceedings 
of the Fourth International Joint Conference on Artificial 
Intelligence, pages 169- 174: August 1975. 
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