
Appeared in Autonomous Agents and Multi-Agent Sys tems , Kluwer
Academic Publishers, 1, 89–111, July 1998.

Reflections on the Nature of Multi-Agent
Coordination and Its Implications

for an Agent Architecture *

by
Victor R. Lesser

CMPSCI Technical Report 98-10
February 1998

Abstract

The development of enabling infrastructure for the next generation of multi-agent systems
consisting of large numbers of agents and operating in open environments is one of the key
challenges for the multi-agent community. Current infrastructure support does not
materially assist in the development of sophisticated agent coordination strategies. It is the
need for and the development of such a high-level support structure that will be the focus of
this paper. A domain-independent (generic) agent architecture is proposed that wraps
around an agent’s problem-solving component in order to make problem-solving
responsive to real-time constraints, available network resources and the need to coordinate
— both in the large and small, with problem-solving activities of other agents. This
architecture contains five components, local agent scheduling, multi-agent coordination,
organizational design, detection and diagnosis and on-line learning, that are designed to
interact so that a range of different situation-specific coordination strategies can be
implemented and adapted as the situation evolves. The presentation of this architecture is
followed by a more detailed discussion on the interaction among these components and the
research questions that need to be answered to understand the appropriateness of this
architecture for the next generation of multi-agent systems.

Key words: coordination, multi-agent architecture, agent societies

*This material is based upon work that has been sponsored by the Dept. of the Navy, Office of the Chief of
Naval Research (under Grant No. N00014-95-1-1198), the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF (under agreement
number F30602-97-1-0249), the National Science Foundation (under Grant No. IRI-9523419), and Network
General Corporation (now part of Network Associates). The views and conclusions contained herein are
those of the author and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Air Force Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

2

1. Introduction

The concept of large ensembles of semi-autonomous, intelligent agents working together is
emerging as an important model for building the next generation of sophisticated software
applications. This model is especially appropriate for effectively exploiting the increasing
availability of diverse, heterogeneous and distributed on-line information sources, and as a
framework for building large, complex and robust distributed information processing
systems. A prototype example of this model is WARREN, a recently developed multi-agent
system [9, 10, 11, 61] for doing portfolio management on the Internet. The development of
enabling infrastructure for mobile computing and interoperability among programs residing
at distant sites, and new generations of distributed operating systems, has made and will
continue to make the construction of systems based on this model much easier. However,
this infrastructure support mainly deals with low-level protocols for transmission of
information and does not embed any deep models about the nature of agent coordination.
Simply defined, agent coordination involves the selection, ordering and communication of
the results of agent activities so that an agent works effectively in a group setting. Agent
coordination needs to take into account in its reasoning the quantitative character of
interactions among agent activities [15], the performance characteristics and resource
demands of activities, the likely future activities of agents, resource loadings, hard and soft
deadlines for completion of agent activities [31], and also more symbolic information such
as the beliefs, desires and intentions of agents [7, 30, 33, 35, 52] and the desirability (or
undesirability) of certain joint states of agents being achieved [2, 60]. It is the development
of a high-level framework that exploits such analytic and symbolic information that will be
the focus of this paper1.

Coordination of agent activities becomes necessary when there are interdependencies
among agent activities, e.g., through contention for resources needed for their execution or
due to these activities (subproblems) contributing to the solution of a larger problem. For
example, a simple situation of subproblem interdependencies occurs when agents are
intending to work on the same or overlapping subproblems and have alternative methods or
data that can be used to generate a solution. Coordination in this case involves making
decisions about whether to have both agents work on the subproblem concurrently or, if
sequentially, then in what order; or if only one agent is to solve the subproblem, which
one. Another form of interdependence occurs when two subproblems are part of a larger
problem in which a solution to the larger problem requires that certain constraints exist
among the solutions to its subproblems2. Included in this latter case is the simple situation
where the results of one subproblem are needed to solve another, and the more complex
situation where there are constraints among joint states of agents. Coordination in this
second case involves making decisions about when each agent should begin to solve its
subproblem and whether and when intermediate results of a subproblem solution are
worthwhile transmitting. Additional interdependencies among subproblems, not inherent in
the problem domain, arise when it is not possible to decompose the problem into a set of
subproblems such that there is a perfect fit between the computational requirements for
effectively solving each subproblem and the location of information, expertise, processing,
and communication resources in the agent network [42, 43]. When there are these
interdependencies, overall system performance is significantly affected by the choice of
methods used to solve a subproblem, the order of solving the subproblems, the time at
which a subproblem will be solved, and what aspects of subproblem solutions are
transmitted and to whom.

The usefulness of coordination can be seen in the simple situation where one agent needs
the results of a subproblem that another agent is solving. If it can be arranged that the
producing agent will deliver in a timely fashion the desired result so that the consuming
agent does not have to idle waiting for the results, then system performance is improved.

3

On the surface this coordination decision is simple. However, suppose that the producing
agent has other tasks to do with their own deadlines in addition to producing a result for the
other agent. To further complicate this decision process, the agent may have alternative
methods for doing those tasks that trade off the quality of the task solution against the time
to complete the task. Similarly, the consuming agent may also have flexibility about when it
does its tasks because there are other tasks it is also working on, and it may also be able to
make trade-offs in how it accomplishes its tasks. The coordination decision then involves a
complicated optimization problem of ordering tasks and selecting how to accomplish them
that spans multiple agents. In general, the importance of effective coordination and the
corresponding need for more sophisticated coordination mechanisms increases in situations
where there are complex subproblem interdependencies among agents, where there are
time-pressures and resource bounds which preclude all goals of the system being solved in
an optimal manner, where there are many choices available about how to solve a goal, and
where the goals being solved and the agents and resources available to solve them are
changing over time.

Negotiation, the process of arriving at a state that is mutually agreeable to a set of agents, is
intimately related to coordination. The negotiation process can be used as part of a multi-
agent coordination algorithm that implements, for instance, a contracting mechanism for
getting one agent to commit to solving a subproblem for another agent. It may also be used
by agents to ensure that their solutions to subproblems are compatible. In this case, this
domain-level negotiation process places constraints on the order of agent activities in
solving the specific subproblems and requirements for the transmission of intermediate
results that must be adhered to by the coordination algorithm.

Effective coordination strategies will be very important for agents in next-generation multi-
agent systems. These agents will need to be highly adaptive due to their “open” operating
environments where the configuration and capabilities of other agents and network
resources could change dynamically. One of the ways that such agents can be adaptive is to
have multiple ways of solving their subproblems so they can adjust their problem solving
to produce the best possible result given their available processing, communication and
information resources. Agents can also be more adaptive if they are not restricted to solving
one goal at a time but are able to flexibly interleave their activities to solve multiple goals
concurrently. Similarly, an agent should be able to choose to carry out an entire task itself,
or it could elect to coordinate with appropriate agents to perform tasks collectively.
Additionally, systems consisting of hundreds to thousands of such agents will need to be
able to form and evolve higher order social structures such as teams and organizations to
exploit collective efficiencies and to manage emerging situations [27]. It is this ability to
adapt intra-agent and inter-agent problem solving to the dynamics of the environment in
both short- and long-term ways that will differentiate these types of agent-based systems
from more conventional distributed systems architectures where adaptability, especially at
the domain problem-solving level, is not a primary motivation [63].

The fundamental issue to be addressed in this paper is: what are the basic functions and
interaction patterns necessary for an agent architecture to support the construction of such
systems and to allow them to operate efficiently and robustly? The answer to this question
will of necessity be speculative since there is no substantial experience in building multi-
agent systems of this anticipated scale and complexity. It will be a personal view based on
my experiences over the last 25 years in thinking about and building a wide range of multi-
agent systems for applications such as distributed situation assessment [3, 22, 41, 44, 57],
distributed scheduling and resource allocation [7, 45, 48, 55], multi-expert design [38],
concurrent engineering [27] and cooperative information gathering [49]. These systems
have all involved agents performing significant local computation, and often involve agents
that cannot fully or accurately complete their local processing without interacting with other

4

agents [42, 43]. In these systems, generating a solution to a problem is often not a
straightforward assembly process based on combining the solutions of agents’ local sub-
problems. Rather, this process can be a multi-step and incremental process involving a
dialogue among agents using information at multiple levels of abstraction [3, 4]. Each step
of the dialogue may require the agent to reason about the new information in relation to its
existing knowledge.

Another characteristic of these systems is that they have attacked combinatorially explosive
problems where it is impractical to explore all possible solutions. Additionally, they are
often implicitly or explicitly part of a larger system, i.e., they are subsystems; thus, their
performance criteria must be responsive to the current needs of their client. For this reason,
real-time performance and satisficing behavior needs to be an integral aspect of any agent
that operates in a large context. These needs for real-time performance and satisficing
behavior combined with the potentially complex nature of agent interaction justifies the
need for sophisticated coordination strategies in certain situations. There are numerous
examples occurring in even small agent systems where inappropriate coordination has led
to the system generating suboptimal answers or no answer at all, not meeting deadlines
and/or wasting considerable resources on inappropriate activities.

An early example of this problem occurred in the distributed Hearsay-II system [41], which
was one of the first multi-agent systems constructed. In this system of three agents which
were interpreting overlapping fragments of speech data, the lack of effective coordination
led to agent problem solving being distracted by unreliable information (partial and tentative
solutions to local subproblems) that was received from another agent. This distraction
resulted in agents performing unnecessary work and delaying the generation of a correct
solution because of computational resources used in pursuing the implications of the
incorrect information that it received from another node. Other manifestations of ineffective
coordination in this system were agents rederiving results already produced by another
agent and the transmission of information among agents that was no longer timely or that
did not contribute to the current line of reasoning of the receiving agent. These problems of
ineffective coordination can be traced to agents having a very limited view of the state of
network problem solving; it was based solely on the results they had received from other
agents — they had no way to compare their state of progress in problem solving with other
agents; they had no knowledge of what subproblems other agents had worked on, were
working on or intended to work on in the near future, nor the progress or lack of progress
these agents had made on solving these subproblems [43]. Without agents having some
perspective on the activities of agents solving interrelated subproblems, there will of
necessity be some level of incoherence among agents. As will be discussed in the next
section, in some situations a certain level of incoherence is acceptable given the costs of
acquiring and processing information to eliminate this incoherence.

The approach that will be suggested (based on the multi-agent systems that I have
constructed) for addressing the question of what is an appropriate multi-agent architecture
starts with the basic premise that an agent’s problem-solving component is sophisticated —
possessing a certain level of self-awareness about its current and intended goals including
the current state of their achievement and the performance characteristics of the approaches
that are possible to solve them, and being able to flexibly adapt its problem solving to the
available resources and current criteria for goal satisfaction. The ability of an agent’s
problem-solving component to provide abstracted information about its state permits the
implementation of complex coordination strategies and, in turn, the ability of an agent to
adapt its problem solving permits a coordination strategy to align an agent’s activities to
satisfy the more global objectives of the system. Implicit in this discussion is that the
appropriate granularity of agents’ computation is medium- to large-grain. It is in the context
of this type of computational granularity where problem solving for effectively interacting

5

with other agents could be quite complex, yet not overwhelm the agent's domain problem
solving.

Another important premise of the proposed approach is that the distinction between self-
interested (competitive) agents that are trying to optimize their own local performance and
cooperative (benevolent) agents which are trying to optimize overall system performance is
important but not an overriding factor in the design of coordination mechanisms for the
complex agent societies that operate in open environments. In fact, I feel agents that
populate such societies will use performance criteria that combine both local and non-local
perspectives and that these performance criteria, in terms of the balance between local and
non-local performance objectives, will change based on emerging conditions. Thus, I see
this distinction between self-interested and cooperative agents blurring in the next
generation of large and complex multi-agent systems. The basis for this view is that agents
that operate in these complex societies and open environments will have to cope with a
tremendous amount of uncertainty, due to limited computational and communication
resources, about how to best perform their local activities and how their activities will affect
the agent society more broadly — there will be complex interactions among the activities of
agents, e.g., chains of interdependencies among agents’ subproblems. These factors will
lead to self-interested agents behaving in more cooperative ways so that they can acquire
useful information from other agents and help other agents in ways which will eventually
improve their own local performance3; in turn, cooperative agents will behave in more self-
interested ways, given the costs of understanding the more global ramifications of their
actions, as a way of optimizing overall performance of the society4. The only real
difference between self-interested and cooperative agents is the evaluation function that they
use to rate the importance of performing specific activities. As will be discussed more fully
in the next section, by using a coordination framework that at its lowest level makes
decisions from a quantitative perspective, a range of higher level coordination mechanisms
can be constructed within this framework that support both self-interested and cooperative
agents.

There is much valuable insight to be gained at this stage of the field’s development by
beginning to consider what a comprehensive multi-agent system architecture would look
like. Frameworks have been developed [2, 6, 23, 35, 36, 52, 56, 62] that are good initial
starts but each makes simplified assumptions about the complexity of cooperative behavior
and agent capabilities and does not directly deal with one or more of the following issues:
large-scale agent societies, adaptation to resource availability, hard and soft real-time
deadlines, trade-offs between resource usage and quality of solution, complex
interdependencies among agents’ activities and domain-independence. The remainder of the
paper will lay out my view of some of the important concepts that need to be included in a
multi-agent architecture followed by my proposal for one such architecture.

2. Important Architectural Concepts

A central feature of large agent societies is that they will be populated by heterogeneous
agents created by many designers. The question naturally arises as to how much effort
designers must expend to adapt their agents to effectively interact with other agents; that is,
what aspects of the basic agent architecture are generic or domain-independent? One
approach is to provide a set of operations and associated protocols for locating and
communicating with agents, such as KQML [24]. However, in this approach, which is
knowledge “poor,” the decision about when to use a protocol, what information to
transmit, what order to execute tasks, etc., is left to the designer. Instead, a high-level
coordination framework that can be built on top of such protocols will be proposed. This
framework, which wraps around the agent’s problem-solving component, will
automatically make all the coordination decisions, once an agent has described in an

6

abstracted form its needs and capabilities for interacting with other agents in a domain-
independent way. The type of information that needs to be provided includes an agent’s
goals and criteria for their successful performance, the performance characteristics and
resource requirements of the alternative methods it possesses for accomplishing its goals,
and both the qualitative and quantitative interdependencies among its methods and those of
other agents [12, 15].

This high-level approach minimizes the amount of domain-dependent code and knowledge
that the designer must specify to achieve effective coordination with other agents in a
variety of situations, and permits the designer to build agents without significant expertise
in the development of coordination strategies. However, this approach does have the
drawback of forcing the designer to add code to the agent’s problem-solving component,
which will be referred to here as the task assessor module, to present the necessary
information in the appropriate form to the coordination framework. The better the task
assessor is at predicting the future goals of the agent and the performance characteristics of
the methods available to solve the goal, the more effective the framework is in making
coordination decisions; it also introduces a basic overhead that all agents must pay when
using this domain-independent approach.

I am not advocating that this framework be closed. It is crucial that the designer be able to
introduce, if desired, domain-specific higher level coordination strategies via a
programming language interface that builds on framework capabilities. An example of
where this would be appropriate is where an agent designer wants to build a complex
domain-level negotiation protocol among agents. This protocol makes decisions about what
to transmit and what computation to perform based on the responses of the other agent and
the local state of the agent. The domain-independent framework uses abstracted
information about the activities of agents so that it will be applicable to a wide variety of
agents, and its decision process will not be overwhelmed by extraneous details. However,
this abstracting can remove domain-specific knowledge (such as information about some
aspect of the joint state of two agents) that may be usefully employed in making
coordination decisions. The focus on keeping the high-level framework open allows the
agent designer to have some way of telling the high-level framework either directly about
this missing knowledge, or indirectly, by describing the implications of this knowledge on
coordination decisions. In this way, it is hoped that a unified approach to agent
coordination that includes both quantitative and symbolic reasoning can be constructed to fit
the needs of the particular application.

In this architecture, coordination decisions are made on three separate and semi-
autonomous layers that operate concurrently: an agent organization layer, a small agent
group coordination layer5, and a local agent scheduling layer. Each layer makes decisions,
respectively, that involve different durations and specificity. The organization layer makes
decisions that are of long-term duration and the least specific, while the local agent
scheduling layer makes decisions that are of short-term duration and very detailed. The
three control layers interact by higher layers providing constraints (policies) to lower levels
that modulate (circumscribe) their control decisions. These constraints indicate, for
example, what level of resources should be used to make control decisions (e.g., how
much effort should the local scheduler spend in finding the best sequence of tasks to
execute) and to determine the scope of the decisions (e.g., which tasks in which agents
need to be coordinated, and what type of coordination is necessary) [8, 16]. The interaction
among layers is not just top-down but also bottom-up. As constraints flow down the
layers, information that flows in the other direction allows these constraints to be modified
in case they cannot be met or lead to inappropriate behavior. This type of interaction
provides the capability for control layers to negotiate to reconcile their different perspectives
on what actions to take in the current situation [25]. This architecture should make no

7

specific decision about which agents or set of agents implement each control layer. Rather,
the agent organization for control should, if it is warranted, be separable from the agent
organization for domain problem solving [8, 21, 22, 37, 43].

This perspective on coordination is closely associated with the viewpoint that both long-
and short-term coordination can be specified in terms of commitments that have varying
duration and specificity [20]. The ability to appropriately bound the intentions of agents,
and to create and sufficiently guarantee the commitments of agents to accomplish certain
tasks, is at the heart of efficient, organized behavior [5, 16, 20, 26, 29, 33, 34]. Another
way of seeing long-term commitments is that they define agent roles and responsibilities.
For large agent societies, organizing agents in terms of roles and responsibilities can
significantly decrease the computational burden of coordinating their activities by limiting
both the information that needs to be acquired and the scope of the decision process.
However, these assignments should not be so strict that an agent does not have sufficient
latitude to respond to unexpected circumstances, nor should they necessarily be fixed for
the duration of problem solving [8]. An example of the efficacy of assigning long-term
roles is the following: instead of an agent incurring the computational overhead of
dynamically coordinating with a group of agents to determine which agent is most
appropriate to provide a desired result and at what time, the organizational design could
have prescribed ahead of time that a specific agent take on the role of providing the agent
with the desired result by a certain time. This role assignment could have been based on an
analysis of which tasks the agents would likely perform, their relative importance,
frequency, deadlines and performance characteristics, etc. To the degree that these
characteristics are not highly variable, it may not be efficient from an overall system
perspective to try to dynamically optimize which agent is the most appropriate in the current
situation to provide the needed information.

I feel that it is crucial when dealing with large agent societies to be able to reason about the
assumptions behind the organizational design in order to effectively adapt it when the
operating environment changes. The organizational design encodes knowledge about
when, where and which type of coordination strategies are useful in the current
environment. To the degree that the system can either re-derive or explicitly represent the
assumptions behind these design decisions, the system can more effectively detect and
diagnose the causes of inappropriate or unexpected agent behavior. The results of this
analysis will let the system adapt the agent organization to correct for this problem based on
a revised set of assumptions about environment and agent performance characteristics [58,
59]. Consider the organizational design discussed above where one agent is assigned the
role of providing a specific result at a defined time to another agent based on assumptions
about what tasks it will likely work on and their computational requirements. Suppose the
agent that is supposed to receive the result does not get it at the expected time. A diagnosis
process could then be invoked to find out why. Suppose that it found out that the agent was
delayed in producing the desired result because the associated computation was taking
longer than expected due to the saturation of the database server that was used by the
computation. This understanding could be directed back to the organizational design
component which would revise its assumptions about task and resource characteristics; the
analysis of these updated assumptions could result in organizational changes such as
revising the due date on the commitment to a later time, finding an alternative way of
generating the result that does not need the saturated resource, finding a way of
unsaturating the resource, etc.

Another important idea is that the use of resources to generate optimal coordination patterns
is not justified in all situations. There is no one best approach to organizing and controlling
computational activities for all situations when the computational and resource costs of this
control reasoning is taken into account. Instead, each agent should be able to tailor, to the

8

specifics of the current situation, all aspects of control reasoning to balance the resource
requirements of this reasoning against the gains achieved by more coherent agent behavior
[13, 14, 20, 21, 43, 46]. An associated corollary is that the system needs a rich set of
criteria (performance objectives) that can be used to define the characteristics of the
satisficing behavior that is most appropriate for the given situation [66, 67]. Thus, even
though it has been argued that sophisticated coordination is needed in certain situations, it is
also the case that the use of resources for implementing sophisticated coordination is
counter-productive in other situations. Therefore, any architecture that will be appropriate
for a wide class of multi-agent systems must be able to support a range of coordination
strategies in terms of their sophistication and the information they require.

I also feel strongly that the right way to view the decision about how best to coordinate can
be framed as a complex, discrete optimization problem based on how coordination actions,
in a quantifiable way, contribute to high-level system tasks meeting their performance
objectives and the relative importance of each of these tasks. Efficient and effective
coordination must account for the benefits and the costs of coordination in the current
situation in a quantitative way. The current situation includes the goals (and their
importance or value) that the agent is currently pursuing and likely to pursue in the near
term, the performance characteristics of the methods available to the agent for achieving its
goals, the requirements these goals/methods impose on other agents, the requirements that
the goals/methods of other agents impose on this agent, the state of network resources and
domain constraints on agent activities. Purely symbolic reasoning about costs and benefits
can be extremely complex, particularly in large systems and open environments, or where
agents can simultaneously pursue multiple goals. Thus, the ability to reason quantitatively
about these benefits and costs of coordination seems essential for effective system
operation where there is a large set of situations that need to be reasoned about [16, 43].
Another way of saying this is that there must be a mechanism at the lowest control layer to
arbitrate among the various objectives of the agent, such as the local processing goals it is
pursuing and the various requests by other agents for its assistance. It is this view that
leads to what I feel is a principled and general approach to coordination even though
heuristic methods will be needed to get approximate solutions to this NP-hard optimization
problem.

As discussed in the introduction, the ability to consider the worth of alternative courses of
action from a quantitative perspective, and to allow the evaluation function to be agent-
specific, permits the development within this framework of coordination strategies that
support both self-interested and cooperative agents. For example, if one agent needs
another agent to perform a particular task by a particular time, but the other agent is self-
interested and the task has little value to this agent, the value associated with the satisfaction
of the commitment made with the other agent will be very slight or even non-existent; the
self-interested agent is accordingly unlikely to perform the given task as requested unless
value is provided. The realization that the value associated with completing a task can be a
complex calculation that is agent-dependent and can take into account such things as the
other tasks the agent can potentially perform, the importance attributed to completion of this
task with a certain quality and by a certain deadline, etc., leads us to an understanding of
how negotiation is incorporated into the quantitative coordination model. A new
coordination mechanism could be created to coordinate activities between not-fully-
cooperative agents, and this mechanism would determine the effect that coordinating
activities has on the local value of particular tasks. For example, if two agents negotiate
and strike a deal for one agent to perform a task for another agent, and the agent is
receiving a high fee for performing the task, then a high value will be associated with the
task and the agent will consider it accordingly against other local tasks that need to be done.

The next section details a proposed multi-agent architecture based on these ideas.

9

3. A Proposal for a Multi-Agent Architecture

The proposed architecture builds upon the Generic Partial Global Planning (GPGP)
framework for coordination of small teams of agents [16, 39]6. The basic idea behind
GPGP is that each agent constructs its own local view of the activities (task structures) that
it intends to pursue in the short-to-medium-term time frame, and the relationships among
these activities. This view can be augmented by information from other agents, thus
becoming a view that is not entirely local (ergo, Partially Global). Individual coordination
mechanisms that are part of GPGP help to construct these partial views, and to recognize
and respond to particular task structure relationships by making commitments to other
agents. These commitments result in more coherent, coordinated behavior by specifying the
affects of other agents’ actions on the tasks an agent will execute, when they will be
executed, and where their results will be transmitted.

An example of a mechanism that reduces redundant activity is one that first determines
whether agents are intending to perform the same activities (based on the detection of an
overlapping task relationship and multiple intentions to perform the activity denoted by the
action being on the scheduling queue of multiple agents). Once this situation is recognized,
a dialogue is initiated among the agents. Analysis of the current performance criteria and the
scheduling flexibility of agents results in a decision to have one or more of the agents
perform the activity and the other agents remove the activity from their schedules. This
decision will result in the introduction of commitments to send the results of the activity to
the other agents that had intended to perform the activity. If the agents that expect to receive
the results either do not receive them in a timely fashion (or the quality of the result is not as
expected) or are warned ahead of time that this is likely to occur based on monitoring of
task execution, they will then reschedule their local activities so that the desired activity is
performed. Integral to GPGP is a domain-independent scheduler [67] that, based on
commitments, agents’ goals, agent activity constraints and the current performance criteria,
creates a schedule of activities for the agent to perform that tries to optimize agent
performance. This scheduling process is by nature heuristic due to the inherent
combinatorics of the problem [67]. GPGP coordinates the activity of agents through
modulation of their local control as a result of placing constraints and commitments on the
local scheduling process. No single coordination strategy will be appropriate for all task
environments, but by selecting from a set of possible coordination mechanisms (each of
which may be further parameterized), a wide set of different coordination responses can be
created.

The central representation that drives all of the GPGP coordination mechanisms is that of
the local (and non-local) task structures. Several important pieces of information are
captured in the task structure. These include: (a) the top-level goals/objectives/abstract-tasks
that an agent intends to achieve or can be requested by another agent to achieve; (b) one or
more of the possible ways that they could be achieved (expressed as an abstraction
hierarchy whose leaves are basic action instantiations, called methods, that are characterized
statistically via discrete probability distributions in three dimensions: quality, cost, and
duration); (c) a precise, quantitative definition of the value of a task or method in terms of
how it affects agent objectives based on measurable characteristics such as solution quality,
cost and time; (d) task-task relationships that indicate how basic actions or abstract task
achievement affect tasks elsewhere in the task structure7; and e) a task-resource relationship
that indicates how the execution of a task affects the state of the resource which it uses
during execution, and how the state of the resource affects the performance characteristics
of the tasks that use it8. Optionally, organizational information can also be specified about
which agents should be asked to achieve certain non-local task relationships and how much
effort should be spent in trying to coordinate with other agents so as to achieve a non-local

10

task relationship. The language used to represent these task structures is called TÆMS [12,
15, 66], and can be thought as a pre-compiled network of possible plans for achieving a
desired goal. A simple TÆMS task structure is shown in Figure 1. Unlike many other
approaches, TÆMS deals with worth-oriented [53] environments where a goal is neither
black nor white, but rather has a degree of achievement associated with it. It represents this
type of environment by tracking a quantitative vector of task characteristics or criteria over
which some utility preference may be expressed [66]. TÆMS also allows many task
structures to be active at once, representing several objectives — all of which must be
achieved to some degree. The agent's task structure view may change over time due to
uncertainty or a dynamically changing environment. Some of that contingency can be
represented in TÆMS by having different outcomes associated with task completion as
shown in the “Find Information on WP Products” task in Figure 1; however, more
completely representing those contingencies, in most cases, is not cost effective in terms of
both the costs incurred by the agent generating the more complex representation and the
coordination framework processing this representation. A balance needs to found between
contingency representation within TÆMS and the dynamic updating of the TÆMS
structure by the task assessor module when the current task structure is no longer
representative of agent problem solving; in the latter case, the coordination framework
cannot reason about contingencies in making its decision. Furthermore, a highly reactive or
opportunistic agent should not generate an extensive representation of its activities since
this additional information would not be valuable for coordinating the activities of this type
of agent, and in fact, would be counterproductive in terms of wasted computational
resources. More generally, the agent, by choosing the level of abstraction and the temporal
scope of its representation of computational activities, defines the level of detail at which its
activities will be controlled and the type of coordinated interactions that are possible with
other agents.

Find Information on WP
Products

Iterate
 Until quality>=Q
 While cost<=C and duration<=D

Outcomes
Success
(q>=Q)

Failure
(q<Q)

seq()

Use Known
Source A

q (2% 0)(60% 5)(38% 8)
d (50% 20sec)(50% 25sec)
c (100% $.50)

Get Product
Information

Extract Data
From Text

Use Known
Source B

q (5% 0)(95% 5)
d (10% 10sec)(40% 15sec)
 (40% 17sec)(10% 18sec)
c (100% 0)

Find New
Source

q (25% 0)(75% 1)
d (50% 10sec)(50% 12sec)
c (100% 0)

Use Simple
Pattern Matching

q (5% 0)(95% 10)
d (100% 5sec)
c (100% 0)

Use Text
Extraction

q (10% 0)(90% 20)
d (50% 1.5min)(50% 2min)
c (100% 0)

enables

sum() sum()

Display Results
to User

Make Decision
Ask Client to Refine Query

or Provide Assistance

seq_sum()

Recommend Word Processor for Windows 95

q (..), d (..), c (..)

enables

enables

enables

q = Quality
c = Cost
d = Duration

Subtask Relation

Enables NLE Method

Task

Certainty

Quality Cost Duration

100%

0%

Raw Goodness

Quality Cost Duration

66%

33%

50% 50%

Meta
Thresholds/

Limits
Raw

Goodness

Thresholds/Limits

Duration

Limit

Quality

Threshold

Cost

Limit

$5.75

100%

Certainty Thresholds

DurationQuality

Threshold

Cost

80%

Certainty
Certainty

Thresholds

100%

Threshold Threshold

25% 25% 25% 25%

Client Goal Criteria

Figure 1: An example of a TÆMS task structure for an Information Gathering Agent

The results of applying GPGP to a number of different applications, including distributed
situation assessment, information gathering and management, coordination of concurrent

11

engineering activities, and hospital scheduling [18, 19, 47, 49, 50] have led me to believe
that the basic approach to small agent team coordination, based on quantitative coordination
relationships represented in TÆMS and the generation of commitments among agents that
then constrain local agent scheduling, is a very powerful and general framework for
implementing coordination mechanisms. Further, GPGP can be naturally extended to be
highly situation-specific, where the overhead for coordination can be adjusted for the
specific coordination problem. This can be accomplished by substituting dynamically
acquired knowledge and dynamically generated commitments for a range of prior
knowledge9. Additionally, GPGP can be easily extended to allow the implementation of
more top-down and contracting types of coordination mechanisms [39]. It is these
extensions to GPGP which will be built upon to create a multi-layered control architecture
in which an organizational design defines situation-specific policies for multi-agent
coordination.

The multi-agent architecture, pictured in Figure 2, is based on each agent having some of
the following components: local agent scheduling, multi-agent coordination, organizational
design, detection and diagnosis of inappropriate behavior in the face of environmental
change, and on-line learning of knowledge that can improve the performance of the other
components. The last three components represent extensions to the GPGP architecture,
added to create an architecture more applicable to large agent organizations. All the
components will use as their basic representation an extended version of TÆMS that
includes statistical information about long-term environmental conditions such as resource
availability and task arrival patterns.

The upper section of Figure 2 contains components that agents use to execute their short-
term coordination behaviors. The lower section contains the additional components that
agents will need to alter their long-term behavior. These latter components are involved in
organizational design and not all agents will need to have these components. Agents that are
performing domain problem solving must contain the local agent scheduling and multi-
agent coordination components. Agents that are not doing domain problem solving in turn
do not require these two components. Other than these constraints, the choice of an agent’s
components provides a way of creating agent organizations that have different performance
characteristics in terms of the responsiveness to changing environmental conditions, the
effectiveness of agent re-organization based on the level of knowledge that can be brought
to bear in adapting the organization, and the survivability characteristics of the organization.
The achievement of these characteristics has to be balanced against the computational and
communication overhead incurred by more agents in the organization being configured with
components for organization adaptation.

Component Interactions

In order to understand how the proposed multi-agent architecture functions, the details will
be presented on how the components of this architecture interact so that agents can respond
to both long- and short-term coordination policies. These policies can be adapted as the
result of the actions of agents and the status of resources. In thinking about these
interactions, it is important to keep in mind the optimization perspective on coordination.
The purpose of these component interactions is to limit the amount of knowledge that needs
to be dynamically acquired and processed in order for the set of local agent optimization
problems to be an “adequate” reflection of the global optimization problem. When these
local agent optimization problems are no longer an adequate reflection then it is important to
recognize this situation and reassess how these local problems can be modified to more
closely mirror the global optimization problem.

12

Exchange
Domain
Information

Task Assessor

Design-to-Resource
Scheduler

Execution Subsystem

Execution Monitor

Problem Solver

Data Flow

Data

Components

State Information

Key:

Current Goals
of Organization

Organizational
Designer

Problem Solver

Detection
and

Diagnosis
Module

Learning
Module

Schedule

Knowledge
Long-term Agent

Network
Resource

Information

Knowledge
Organizational

Organizational Design
and Learning
Components

Agents
Belief DB

GPGP
Coordination

Module

Non-Local
Commitment

DB

Exchange
Short-term
Meta-level
Information

Exchange of
Long-term
Meta-level
Information

Update
s

Task Structure
and

Client Goal Criteria

Exception

U
pdates

Notification

U
pdates

U
pdates

U
pdates

U
se

s
U

pd
at

es

U
ses

Notification

Uses

U
ses

Uses

U
pdates

U
ses

Uses
Produces

Reschedule Requests

U
ses

U
ses

Updates

U
pdates

Reschedule Requests

UsesU
ses

Updates

Updates
Uses

U
pdates

Figure 2: An Agent Architecture for a Large-Scale Multi-Agent Environment

From a top-down perspective, the organizational design components in one or more agents
work collaboratively to design an organization appropriate for those agents and the
resources they are responsible for managing. The inputs to organizational design are: 1) the
current performance goals of the system; 2) long-term agent knowledge about typical tasks
together with their frequencies of occurrence, possible relationships among other tasks in
terms of co-occurrence, and specific performance goals and resource requirements; and 3)
the available resources and their performance characteristics including the expertise

13

(processing capabilities, know-how) of agents. The output of this process is an
organizational design — a description for each agent of: 1) tasks it is responsible for
handling and their importance; 2) coordination relationships among tasks handled by other
agents to be considered when scheduling this task, and the level of effort to be spent in
establishing them; and 3) long-term commitments to be honored, their priority, and which
agents should be notified when these commitments cannot be honored.

An organizational design is used when an agent receives a request to execute a new goal
(with its associated task structure). This request can come from either its local problem-
solving component or other agents. A part of the local problem-solving component is a task
assessor module that is responsible for determining the problem-solver’s expected near- to
medium-term activity patterns for achieving a specific goal and translating these patterns
into a TÆMS task structure10. Based on the organizational design, an agent's coordination
component decides both how to constrain the characteristics of the task so the agent can
meet coordination requirements with other agents and how to value the task’s importance.
For example, the coordination component might introduce a deadline if the task's results
are useful to another agent or to associate a high value (relative to the importance attributed
to the agent’s own tasks) to a priority task request from an agent who is playing an
important role in the current organization. Such decisions are made in collaboration with the
coordination component of relevant agents.

The new task, with any constraints and related commitments that have been added by the
coordination component, is then passed to the scheduling component. It schedules this task
and its associated subtasks in the context of possible other tasks that the system is currently
working on. The result of this scheduling is an ordered list of subtasks to be accomplished
with associated performance envelopes. The local problem-solving component then
executes the subtasks in the specified order and reports their execution status to the
scheduling component. The scheduling component then updates its database to reflect the
current state of task processing. Additional coordination and scheduling can occur during
task execution and after the execution of any subtask, so that the system responds to
changing circumstances such as the arrival of new high-level tasks or the failure of one or
more subtasks.

This top-down coordination process can be modified in a number of ways. At the lowest
level, the problem-solving component, as a result of a partially executed subtask, can
recognize that the subtask will not fall within the performance envelope indicated by the
scheduler. This will cause the scheduler to determine whether there exists an alternative
way of completing the execution of the high-level task to meet the specified performance
goals and commitments associated with its successful completion. The inability to meet
these goals and commitments will result in either the local problem-solving component or
another agent being notified to take corrective action.

The problem solver, as a result of executing a subtask, may also realize that the high-level
task description specified by the task assessor is no longer representative of the problem
solver’s activities. This will result in the local problem solver indicating to the scheduler
that the high-level task cannot be completed successfully, or the task assessor providing a
modified description of how to complete the high-level task in terms of either updated
performance characteristics of subtasks or changes in the type of subtasks and their
relationships that will be required to complete the high-level task. Rescheduling will then
occur with the possibility of also reinvoking the coordination module to establish revised
commitments for this task.

The scheduler can also cause the reinvocation of the coordination module during the initial
stages of scheduling because tentative commitments that the coordination module has

14

established cannot be met. Additionally, the scheduler is pro-active in that it can also
suggest ways of partially meeting these commitments. This information can be used by the
coordination component as a basis for negotiating with other agents' coordination
components to find a compromise set of commitments. The scheduler can also suggest to
the coordination component that it attempt to determine whether there is another agent
willing to execute some task in a timely fashion rather than it being scheduled locally.

Agent activities and resource utilization characteristics are constantly monitored for
situations that may indicate that the organization is not operating effectively. For example,
when an agent is not able to satisfy commitments, or resources become overloaded or
underutilized, the diagnosis component will be notified. The diagnosis component will then
reconstruct the situation to understand why the problem has occurred and whether any
assumptions used in the design of the organizational structure are no longer valid. If this is
the case, the organizational design component responsible for this area of the organization
will be notified so as to adapt the organization to the new situation. The organization
component is also notified when resource failures occur and new resources enter the
system. The learning component is connected to the monitoring and detection components
to generate more precise descriptions of task performance characteristics, recognize
coordination relations that are not apparent on the surface (such as seemingly unrelated
tasks repeatedly co-occurring in the system within a fixed time period), and recognize
problem phenomena that cannot be isolated by the diagnosis component based on a single
problem instance.

An important part of the architecture not adequately reflected in this diagram is the ability of
the agent designer through the problem-solving/task assessor component to introduce new
and possibly domain-dependent coordination strategies via a programming language
interface as described in such systems as [2,36,60,62], thus expanding the range of
possible small group coordination strategies that can be implemented in this architecture.
Our proposed approach will be for the task assessor to translate aspects of the
representation of the user-defined coordination strategy into organizational knowledge that
will appropriately condition the coordination component (e.g., what coordination
relationships/mechanisms to use for particular tasks, what a priori commitments need to be
initialized with their relative importance, etc.) and will signal the task assessor when certain
conditions occur in the coordination process (e.g., not being able to meet a commitment,
resource overload, etc.). The task assessor, as the result of being notified of the occurrence
of an event either by the problem solver or by the coordination mechanism, will provide
new organizational knowledge directives to the coordination component in order to
implement the semantics of the user-defined coordination strategy. I feel that this goal of
extensibility can be achieved given the right base-level coordination mechanisms, the
appropriate abilities to tailor these mechanisms through organizational knowledge, and the
capability to monitor and react to events occurring during the execution of the coordination
mechanism.

As detailed in the introduction, whether agents are self-interested or cooperative has
purposely not been indicated in these discussions. It is expected that the small-team agent
coordination mechanisms, contained in this architecture, will support both self-interested
and cooperative strategies, and also strategies for self-interested and cooperative agents to
work together. To reiterate, I feel that even though the coordination mechanisms that have
been developed to date for each type of agent are very different [28, 32, 53, 55, 68], there
is more in common among cooperative and self-interested coordination mechanisms than
currently believed, and this will become increasingly clear as self-interested agents are
applied to combinatorially explosive problems [28, 31, 54] and function in large ensembles
of agents.

15

This proposed multi-agent architecture should not be seen as a finished work but rather as
an instance of how the ideas and functionality discussed in the first two sections of this
paper can be computationally implemented.

4. Research Questions

Many of the components needed to fulfill this vision of robust and distributed information
systems have already been designed, built, and evaluated. However, these evaluations
have been limited to isolated components, a few example tasks, and small agent groups.
Thus, fundamental questions remain to be answered: Is this a sufficient set of technologies
with which to produce large and complex multi-agent systems? Can large-scale agent
organizations be constructed by appropriately tailoring the dynamic coordination patterns of
small groups of agents? Is it possible to have both a rich and complex coordination
mechanism and infrastructure while simultaneously making this infrastructure open to
being programmed? Can domain-specific coordination strategies be created that build upon
the infrastructure and were not envisioned in the original design? What are the appropriate
measures of system robustness and scalability?

In addition, there is a myriad of more detailed research questions that need to be answered:
Is the TÆMS representational framework sufficiently powerful to allow reasoning about a
wide range of computational activities? What is the appropriate interplay between local
agent scheduling, dynamic small group agent coordination and organizational design and
adaptation? How much situation-specificity can be achieved within a framework that is
attempting to be very broad in the systems that it can represent? Are there issues of scale
that will cause us to realize that a more complex view of control layers and their interaction
needs to be developed? Can organizations be constructed where there is effective
interaction among cooperative and self-interested agents? For what portion of an agent
organization and for what situations is it worthwhile to design off-line, based on a
description of the environment and likely tasks, versus on-line learning of the organization
as a result of a series of local adaptations based on experience? Can effective diagnosis of
ineffective or harmful behavior be based on a domain-independent representation of agent
activities? How many instances will be needed for effective learning and how can
knowledge learned in one part of the organization be transferred/related to other parts of the
organization?

Obviously, this list of research questions is only a small subset of the issues that need to be
addressed in order to be able to construct large, complex and robust distributed information
systems.

5. Conclusions

The paper lays out many of the problems associated with the design of an agent architecture
which has to operate in an open and large-scale multi-agent environment. In addition to
laying out the problems, a method of approach for addressing these problems and a generic
architecture based on this approach is put forward and a number of open research issues are
presented. I believe that this architecture contains many of the key features necessary to
support the next generation of sophisticated multi-agent applications. It contains five
components — local agent scheduling, multi-agent coordination, organizational design,
detection and diagnosis and on-line learning — that are designed to interact so that a range
of different situation-specific coordination strategies can be implemented and adapted as the
situation evolves. This proposed multi-agent architecture should not be seen as a finished
work but rather as an instance of how a wide range of ideas developed by the Multi-
Agent/DAI community can be integrated into a viable computational framework. There is
no intent to say that this is the “right” way to do things but rather to spark a dialogue among

16

researchers about the software infrastructure needed to make the construction of large,
complex and robust agent societies easier.

6. Acknowledgments

The reflections expressed in this paper about the type of agent architecture necessary to
build the next generation of multi-agent applications are based on a long lineage of ideas
that have come from both the Multi-Agent/DAI Laboratory at the University of
Massachusetts, Amherst, and from the wider community. Special mention needs to go to
Keith Decker, whose thesis work on GPGP is the underpinning of the proposed
architecture. I also want to give credit to the following people that I have closely
collaborated with, whose work directly relates to this paper: Norman Carver, Daniel
Corkill, Edmund Durfee, Satoru Fujita, Alan Garvey, Eva Hudlicka, David Jensen, Susan
Lander, Daniel Neiman, M. Nagendra Prasad, Tuomas Sandholm, Toshi Sugawara and
Thomas Wagner.

References

1. R. Axelrod, The Evolution of Cooperation, Basic Books, 1984.

2. M. Barbuceanu and M. S. Fox, “COOL: A Language for Describing Coordination in
Multi-Agent Systems,” in Proceedings of the First International Conference on Multi-
Agent Systems, AAAI Press: Menlo Park, CA, pp. 17-24, June 1995.

3. N. Carver and V. Lesser, “A New Framework for Sensor Interpretation: Planning to
Resolve Sources of Uncertainty,” in Proceedings of the Ninth National Conference on
Artificial Intelligence, pp. 724-731, August 1991.

4. N. Carver and V. Lesser, "The DRESUN Testbed for Research in FA/C Distributed
Situation Assessment: Extensions to the Model of External Evidence," in Proceedings
of the First International Conference on Multi-Agent Systems, AAAI Press: Menlo
Park, CA, pp. 33–40, June 1995.

5. C. Castelfranchi, “Commitments: From Individual Intentions to Groups and
Organizations,” in AI and Theories of Groups & Organizations: Conceptual and
Empirical Research, M. Prietula (ed.),Working Notes of AAAI Workshop, 1993.

6. D. Cockburn and N.R. Jennings, “ARCHON: A Distributed Artificial Intelligence
System for Industrial Applications,” in Foundations of Distributed Artificial
Intelligence, G.M.P. O’Hare and N.R. Jennings (eds.), John Wiley & Sons, Ch. 12,
pp. 319-344, 1996.

7. S.E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, “Multistage Negotiation
for Distributed Constraint Satisfaction,” IEEE Transactions on Systems, Man, and
Cybernetics, 21(6), November 1991.

8. D. D. Corkill and V. R. Lesser, “The Use of Meta-Level Control for Coordination in a
Distributed Problem Solving Network,” in Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 748-755, August
1983.

9. K. S. Decker, A. Pannu, K. Sycara, and M. Williamson, “Designing Behaviors for
Information Agents,” in Proceedings of the First International Conference on
Autonomous Agents, February 1997.

17

10. K. S. Decker, K. Sycara, and M. Williamson, “Middle-Agents for the Internet,” in
Proceedings of the 15th International Joint Conference on Artificial Intelligence,
Nagoya, Japan, August 1997.

11. K. S. Decker and K. Sycara, “Intelligent Adaptive Information Agents,” Journal of
Intelligent Information Systems, 1997. (To appear.)

12. K. S. Decker, “TÆMS: A Framework for Analysis and Design of Coordination
Mechanisms,” in Foundations of Distributed Artificial Intelligence, G. O'Hare and N.
Jennings (eds.), Wiley Inter-Science, Ch. 16, 1995.

13. K. S. Decker and V. R. Lesser, “An Approach to Analyzing the Need for Meta-Level
Communication,” in Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, Chambery, France, pp. 360-366, August 1993.

14. K. S. Decker and V. R. Lesser, “A One-Shot Dynamic Coordination Algorithm for
Distributed Sensor Networks,” in Proceedings of the Eleventh National Conference on
Artificial Intelligence, Washington, pp. 210-216, July 1993.

15. K. S. Decker and V. R. Lesser, “Quantitative Modeling of Complex Environments,”
International Journal of Intelligent Systems in Accounting, Finance, and Management,
Special issue on Mathematical and Computational Models of Organizations: Models
and Characteristics of Agent Behavior, 2(4): 215-234, December 1993.

16. K. S. Decker and V. R. Lesser, “Designing a Family of Coordination Algorithms,” in
Proceedings of the First International Conference on Multi-Agent Systems, AAAI
Press: Menlo Park, CA, pp. 73-80, June 1995. (Longer version available as UMass
CS-TR 94-14.)

17. K. S. Decker, Environment Centered Analysis and Design of Coordination
Mechanisms, Ph.D. Dissertation, Computer Science Department, University of
Massachusetts at Amherst, 1995.

18. K. S. Decker, “Task Environment Centered Simulation,” in Simulating Organizations:
Computational Models of Institutions and Groups, M. Prietula, K. Carley, and L.
Gasser (eds.), AAAI Press/MIT Press, 1997.

19. K. S. Decker and Jinjiang Li, “Coordinated Hospital Patient Scheduling,” University
of Delaware, Department of Computer Science Technical Report 98-12, 1998.

20. E. H. Durfee, “Blissful Ignorance: Knowing Just Enough to Coordinate Well,” in
Proceedings of the First International Conference on Multi-Agent Systems, AAAI
Press: Menlo Park, CA, pp. 406-413, June 1995.

21. E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent Cooperation Among
Communicating Problem Solvers,” IEEE Transactions on Computers, 36(11): 1275-
1291, November 1987.

22. E. H. Durfee and V. R. Lesser, “Partial Global Planning: A Coordination Framework
for Distributed Hypothesis Formation,” IEEE Transactions on Systems, Man, and
Cybernetics, 21(5): 1167-1183, September 1991.

23. K. Fischer, J.P. Muller and M. Pischel, “Unifying Control in a Layered
Architecture,” in Proceedings of the First International Conference on Multi-Agent
Systems, AAAI Press: Menlo Park, CA, pp. 446, June 1995.

24. T. Finin, R. Fritzson, D. McKay and R. McEntire, “KQML: An Information and
Knowledge Exchange Protocol,” Knowledge Building and Knowledge Sharing, K .
Fuchi and T. Yokoi (eds.), Ohmsha and IOS Press, 1994.

18

25. A. Garvey, K. Decker, and V. Lesser, “A Negotiation-based Interface Between a
Real-time Scheduler and a Decision-Maker,” in Proceedings of Workshop on Models
of Conflict Management in Cooperative Problem Solving, AAAI, Seattle, WA, July
1994. (Also appears as: University of Massachusetts, Computer Science Department
Technical Report 94–08, January 1994.)

26. L. Gasser, “DAI Approaches to Coordination,” Distributed Artificial Intelligence:
Theory and Praxis, N.M. Avouris and L. Gasser (eds.), Kluwer Academic
Publishers: Boston, pp. 31-51, 1992.

27. L. Gasser, Private communication, September 1997.

28. P.J. Gmytrasiewicz and E. H. Durfee, “A Rigorous, Operational Formalization of
Recursive Modeling,” in Proceedings of the First International Conference on Multi-
Agent Systems, AAAI Press: Menlo Park, CA, pp. 125–132, June 1995.

29. B.J. Grosz and C. L. Sidner, “Plans for Discourse,” in Intentions in Communication,
P.R. Cohen, J. Morgan, and M.E. Pollack (eds.), MIT Press: Cambridge, MA, pp.
417-444, 1990.

30. A. Haddadi, “Towards a Pragmatic Theory of Interactions,” in Proceedings of the
First International Conference on Multi-Agent Systems, AAAI Press: Menlo Park,
CA, pp. 133-139, June 1995.

31. J.Y. Halpern and Y. Moses, “Knowledge and Common Knowledge in a Distributed
Environment,” in Proceedings of the Third ACM Conference on Principles of
Distributed Computing, 1984.

32. B.A. Huberman and T. Hogg, “The Behavior of Computational Ecologies,” in The
Ecology of Computation, B.A. Huberman (ed.), Amsterdam: North-Holland Publ.,
pp. 77-115, 1988.

33. N.R. Jennings, “Commitments and Conventions: The Foundation of Coordination in
Multi-Agent Systems,” The Knowledge Engineering Review, vol. 8, no. 3, pp. 223-
250, 1993.

34. N.R. Jennings, “Coordination Techniques for Distributed Artificial Intelligence,” in
Foundations of Distributed Artificial Intelligence, G.M.P. O’Hare and N.R. Jennings
(eds.), John Wiley & Sons, Ch. 6, pp. 187-210, 1996.

35. N. Jennings, “Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems Using Joint Intentions,” Artificial Intelligence, Vol. 75, No. 2, 1995.

36. K. Kuwabara, T. Ishida and N. Osato, “AgentTalk: Coordination Protocol
Description for Multiagent Systems,” in Proceedings of the First International
Conference on Multi-Agent Systems, AAAI Press: Menlo Park, CA, pp. 455, June
1995.

37. B. Lâasri, H. Lâasri, S. Lander, and V. Lesser, “A Generic Model for Intelligent
Negotiating Agents,” International Journal on Intelligent Cooperative Information
Systems, 1(2): 291-317, 1992.

38. S. Lander and V.R. Lesser, “Negotiated Search: Organizing Cooperative Search
Among Heterogeneous Expert Agents,” in Proceedings of the Fifth International
Symposium on Artificial Intelligence Applications in Manufacturing and Robotics,
December 1992.

39. V. Lesser, K. Decker, N. Carver, A. Garvey, D. Neiman, M. Nagendra Prasad and
T. Wagner, “Evolution of the GPGP Domain-Independent Coordination Framework,”
University of Massachusetts at Amherst, Computer Science Department Technical
Report 98-05, January 1998.

19

40. V. Lesser, B. Horling, F. Klassner, A. Raja, T. Wagner and S. XQ. Zhang, “BIG: A
Resource-Bounded Information Gathering Agent,” University of Massachusetts at
Amherst, Computer Science Department, Technical Report 98-03, January 1998.

41. V. Lesser and L.D. Erman, “Distributed Interpretation: A Model and an Experiment,”
IEEE Transactions on Computers — Special Issue on Distributed Processing, Vol.
C–29, 12, pp. 1144–1163, December 1980.

42. V. Lesser and D.D. Corkill, “Functionally-Accurate Cooperative Distributed
Systems,” IEEE Transactions on Systems, Man, and Cybernetics — Special Issue on
Distributed Problem-Solving, Vol. SMC–11, No. 1, pp. 81–96, Jan. 1981.

43. V. Lesser, “A Retrospective View of FA/C Distributed Problem Solving,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 21, no. 6, pp. 1347-1362,
Nov./Dec. 1991.

44. V. Lesser and D. D. Corkill, “The Distributed Vehicle Monitoring Testbed,” AI
Magazine, 4(3): 63-109, Fall 1983.

45. T. Moehlman, V. Lesser, and B. Buteau, “Decentralized Negotiation: An Approach to
the Distributed Planning Problem,” Group Decision and Negotiation, 1(2): 161-192,
1992.

46. M. Nagendra Prasad and V. Lesser, “The Use of Meta-level Information in Learning
Situation-Specific Coordination,” in Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, August 1997.

47. M.V. Nagendra Prasad, K. Decker, A. Garvey and V. Lesser, “Exploring
Organizational Designs with TAEMS: A Case Study of Distributed Data Processing,”
in Proceedings of the Second International Conference on Multi-Agent Systems, AAAI
Press: Menlo Park, CA, pp. 283–290, 1996.

48. D. Neiman, D.W. Hildum, V.R. Lesser, and T.W. Sandholm, “Exploiting Meta-
Level Information in a Distributed Scheduling System,” in Proceedings of the Twelfth
National Conference on Artificial Intelligence, Seattle, WA, August 1994.

49. T. Oates, M. V. Nagendra Prasad and V. Lesser, “Cooperative Information
Gathering: A Distributed Problem Solving Approach,” in IEE Proceedings on
Software Engineering, Special Issue on Agent-based Systems, vol. 144, no. 1, 1997.

50. L. Obrst, M. Woytowitz, D. Rock, S. Lander, K. Gallagher and K. Decker, “Agent-
Based Integrated Project Teams,” in Proceedings of the EIM97 Engineering
Information Management Symposium of the ASME Design Engineering Technical
Conferences, Sacramento, CA, September 1997.

51. K. Ramamritham and J. A. Stankovic, “Scheduling Algorithms and Operating
Systems Support for Real-Time Systems,” in Proceedings of the IEEE, pp. 55-67,
Jan. 1994.

52. A.S. Rao and M.P. Georgeff, “BDI agents: From Theory to Practice,” in Proceedings
of the First International Conference on Multi-Agent Systems, pp. 312–319, AAAI
Press: Menlo Park, CA, June 1995.

53. J. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers, Cambridge, MIT Press: MA, 1994.

54. T. Sandholm and V. Lesser, “Coalitions Among Computationally Bounded Agents,”
Artificial Intelligence, Special Issue on Principles of Multiagent Systems, 1997.

55. T. Sandholm and V. Lesser, “Issues in Automated Negotiation and Electronic
Commerce: Extending the Contract Net Framework,” in Proceedings of the First

20

International Conference on Multi-Agent Systems, AAAI Press: Menlo Park, CA,
1995.

56. D. Steiner, “IMAGINE: An Integrated Environment for Constructing Distributed
Artificial Intelligence Systems,” in Foundations of Distributed Artificial Intelligence,
G.M.P. O’Hare and N.R. Jennings (eds.), John Wiley & Sons, Ch. 13, pp. 344-366,
1996.

57. T. Sugawara and V. Lesser, “Learning to Improve Coordinated Actions in
Cooperative Distributed Problem-Solving Environments,” Machine Learning, Kluwer
Academic Publishers. (To appear, 1998.)

58. T. Sugawara and V. Lesser, “Learning Control Rules for Coordination,” in Multi
Agent and Cooperative Computation '93, pp. 121-136, 1993.

59. T. Sugawara and V. Lesser, “On-Line Learning of Coordination Plans,” in Twelfth
Annual Workshop on Distributed Artificial Intelligence, 1993.

60. S. M. Sutton, Jr. and L. J. Osterweil, “The Design of a Next-Generation Process
Language,” in Proceedings of the Joint 6th European Software Engineering
Conference and the 5th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Springer-Verlag: Zurich, Switzerland, September 1997.

61. K. Sycara, K. Decker, A. Pannu, M. Williamson and D. Zeng, “Distributed
Intelligent Agents,” IEEE Expert, vol 11, number 6, 1996.

62. M. Tambe, “Agent Architectures for Flexible, Practical Teamwork,” in Proceedings of
the Fourteenth National Conference on Artificial Intelligence, Providence, July 1997.

63. A. S. Tannenbaum, Distributed Operating Systems, Prentice-Hall, 1995.

64. R. Turner, “The Tragedy of the Commons and Distributed AI Systems,” University of
New Hampshire, Computer Science Department Technical Report 93-01.
(http://cdps.umcs.maine.edu/Papers/1993/TofCommons/TR.html), 1993.

65. F. von Martial, “Coordinating Plans of Autonomous Agents,” Lecture Notes in
Artificial Intelligence, no. 610, Springer-Verlag: Berlin, 1992.

66. T. Wagner, A. Garvey, and V. Lesser, “Complex Goal Criteria and Its Application in
Design-to-Criteria Scheduling,” in Proceedings of the Fourteenth National Conference
on Artificial Intelligence, 1997.

67. T. Wagner, A. Garvey, and V. Lesser, “Criteria Directed Task Scheduling,” in
International Journal of Approximate Reasoning, Elsevier Science Inc., Vol. 19, pp.
91–118.

68. M. Wellman, “A Market-Oriented Programming Environment and Its Application to
Distributed Multicommodity Flow Problems,” Journal of Artificial Intelligence
Research, vol. 1, pp. 1-22, 1993.

21

Footnotes
1As part of this framework, I see agents eventually using high-level content languages for
rich and succinct communication with other agents. I also foresee that the next generation
of distributed operating systems and network communication support will be more
reflective and able to adapt to changing resource availability [51]. This more sophisticated
operating environment opens up the possibility of dialogues between the multi-agent
system (concerned with performance and adaptability from the application level
perspective) and the operating system (concerned with performance and adaptability at the
resource level); the goal of this interaction would be to achieve the most appropriate
configuration of resources and computational processing. The implications of these
capabilities on an agent’s architecture will not be considered in further discussion.

2There is a wide range of these subproblem interdependencies—some of which have been
categorized such as facilitates relationship [15] where the solution to one subproblem, if it
is available at the point another subproblem is executed, will speed up the execution of that
subproblem or increase the likelihood that a higher quality result will be produced.
Another example is the favor relationship [65] where the solution to two subproblems
requires the use of the same resource, and by jointly solving the combined subproblems
the overall usage of the resource by the two agents can be reduced significantly. These
two can be characterized as soft relationships because they only affect performance issues.
Other relationships, such as enables which denote when the result from one problem-
solving activity is required to perform another, can be considered hard relationships
because they indicate relationships that must be enforced if problem-solving is to be
correct.

3There are numerous examples of social phenomena such as the tragedy of the commons
[1, 64] where agents basing their decisions from a totally self-interested perspective
eventually leads to disastrous consequences for every agent in the society.

4An early example of this perspective was the coordination mechanism proposed in [8]
which involved skeptical agents. The idea was to seed the agent society with a small
number of agents who would require very strong evidence to accept the views/directives
of other agents. In this way, it was reasoned that the society as a whole would always
possess some ability to recover from incorrect decisions that at the time seemed reasonable
to most of the agents.

5From the limited experience I have had in scaling up coordination to larger groups of
agents [22], it seems that small agent groups will probably involve less than ten agents.
The size of the group is dictated by the availability of computational and communication
resources which will allow the detailed scheduling of local agent activities so that they are
aligned with the activities of other agents in the group.

6The GRATE distributed planning protocol [35], which combines commitment importance
and temporal ordering constraints with symbolic reasoning about joint commitment, has a
lot of similarity with GPGP [16]. GPGP has more sophisticated quantitative reasoning
whereas GRATE has more sophisticated symbolic reasoning.

7When these relationships exist across tasks in other agents they are called NLEs (non-local
relationships). NLEs can either be specified by an agent a priori by indicating as part of
the task structure that a task of a particular type (name) in another agent will have a
specified relationship with one of its tasks, or can be discovered as a result of agents
exchanging information about their task structures. In this case, the agents need to provide

22

code that will take domain-specific attributes that can be optionally attached to the task
name to determine what task relationships exist among the tasks of both agents.

8Through the use of task-resource relationships, we can introduce information necessary to
understand how the concurrent use of a resource by multiple agents will affect agent
performance. In its simplest use, it permits the implementation of a coordination
mechanism that guarantees that non-sharable resources will be used by only one agent at a
time [19].

9Coordination in GPGP is achieved through the use of commitments, that is, inter-agent
contracts to perform certain tasks by certain times. These commitments are normally
constructed dynamically as a result of a dialogue among the coordination modules of
agents. By allowing these commitments to be specified a priori as part of an agent’s
TÆMS task structure representation of its activities, low overhead coordination can be
achieved among agents. For example, a priori commitments could indicate that an agent
can expect another agent to generate a specific result and transmit it to this agent by a
certain time [47]. The transmitting agent, in turn, has an a priori commitment to generate
the results by a specific time. In this way, agent activities can be coordinated without the
agents exchanging information about their current activities, and then negotiating over a
suitable commitment. Additionally, certain soft task relationships that require the
cooperation of other agents may not be worthwhile to achieve in the current environment,
because of the coordination overhead necessary to establish them. By indicating that these
relationships should not be achieved, the coordination strategy can be made situation-
specific.

10The task assessor module can be implemented without significant computational overhead
if the underlying problem solver’s control regime is not data-dependent or as in [50]
where a simplified version of TÆMS is already integrated into the control of domain
problem solving. The more opportunistic the problem solving the greater the effort
required of the task assessor to generate a task structure that is representative of the
possible activity patterns of the problem-solving component, is indicative of the
reasonable variations in performance that can be scheduled for, and specifies the points in
the activity pattern where interaction with other agents are appropriate. An early and
simplified example of such a task assessor was used in the predecessor work to GPGP
called PGP [22]. Moderately complex task assessor modules were recently constructed for
use in real-time control of a single-agent system in [40] and for multi-agent control in [4].

