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Sharing Metainformation
to Guide Cooperative Search

Among Heterogeneous Reusable Agents
Susan E. Lander, Member, IEEE, and Victor R. Lesser, Member, IEEE

Abstract —A reusable agent is a self-contained computational system that implements some specific expertise and that can be
embedded into diverse applications requiring that expertise. Systems composed of heterogeneous reusable agents are potentially
highly adaptable, maintainable, and affordable, assuming that integration issues such as information sharing, coordination, and
conflict management can be effectively addressed. In this article, we investigate sharing metalevel search information to improve
system performance, specifically with respect to how sharing affects the quality of solutions and the runtime efficiency of a reusable-
agent system. We first give a formal description of shareable metainformation in systems where agents have private knowledge and
databases and where agents are specifically intended to be reusable. We then present and analyze experimental results from a
mechanical design system for steam condensers that demonstrate performance improvements related to information sharing and
assimilation. Finally, we discuss the practical benefits and limitations of information sharing in application systems comprising
heterogeneous reusable agents. Issues of pragmatic interest include determining what types of information can realistically be
shared and determining when the costs of sharing outweigh the benefits.

Index Terms —Reusable agents, information (knowledge) sharing, distributed search, multiagent systems, system performance,
mechanical design, distributed artificial intelligence.

——————————   ✦   ——————————

1 INTRODUCTION

HE computational equivalent to a team of human spe-
cialists is the reusable-agent system, a multiagent system

in which expert agents are dynamically selected from a li-
brary and integrated with minimal customized implemen-
tation. With reusable-agent systems, diverse information can
be applied in situations that were not explicitly anticipated
at agent-development time. The benefits of this type of
system to an application builder are potentially large: For
example, agents can be flexibly and inexpensively modi-
fied, added to a system, or deleted from a system in re-
sponse to changes in specifications, resources, and technol-
ogy; agents will be more reliable over many uses; and the
cost of building an agent can be amortized over multiple
uses. Reusable-agent systems have enormous potential in
domains such as design engineering and manufacturing
where business trends and global competition are forcing
very rapid transitions in both technology and philosophy
[1]. Complex applications that incorporate reusable agents
are able to adapt quickly to changes without discarding the
main body of existing work. However, to participate in an
application, reusable agents must be technically capable of
effective interaction. The challenge goes much deeper than
the physical transfer of information between agents or even
mutual semantic-level understanding of shared informa-

tion. To achieve satisfactory performance in reusable-agent
systems, significant attention must be paid to what infor-
mation should be shared and how that information is cre-
ated and used to reason about the global state of problem
solving, to coordinate actions, and to resolve conflicts
stemming from inconsistent or incomplete knowledge and
evaluation criteria.

Local perspective is one of the most difficult problems to
be overcome in any multiagent system; it is especially pro-
nounced in reusable-agent systems because the agents are
created independently and without foreknowledge of ap-
plications into which they will be embedded. Therefore,
knowledge engineering during agent implementation is
impossible. Each individual agent perceives the world as
defined and bounded by its local knowledge rather than by
the knowledge of all agents in the system. This problem
could be easily addressed if all expertise were repre-
sented in the form of explicit constraints: The constraints
could be collected and processed by a centralized constraint-
satisfaction algorithm. However, agents are generally com-
plex systems in which expertise is represented by a combi-
nation of declarative and procedural knowledge. When this
is the case, constraint processing is not sufficient to repre-
sent the expertise of an agent. Instead, each agent must be
individually invoked to solve subproblems that are relevant
to its domain of expertise and the resulting solutions must
be integrated into a globally consistent solution. An agent
with only a local view of the search space cannot avoid
producing subproblem solutions that conflict with other
agents’ solutions and cannot make intelligent decisions
about managing conflicts that do occur. To overcome this
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problem, information sharing can be used to enhance the
local perspectives of agents. A better understanding of the
global situation leads to more intelligent and focused search
and, ultimately, to higher-quality solutions and more efficient
performance.

As noted by Neches et al. [2], software reuse in any form
is difficult and is impeded by the lack of tools available to
foster information sharing. Concurrent investigations of langu-
ages, ontologies, and protocols for agent interaction [3], [4],
[5] complement our research but focus on the development
of enabling technologies for information sharing rather
than on the effect of shared metainformation on problem
solving. In this article, the TEAM framework [6] is used as
the infrastructure technology to provide the communica-
tion and control backbone that enables effective interaction.
Rather than addressing issues of enabling technology, the
article will focus on how the communication of specific in-
formation among agents affects the quality of solutions and
the efficiency of a reusable-agent system. Our goal is to
show that reusable agents involved in distributed search
can improve their joint performance by sharing metainfor-
mation with other agents, assimilating shared information
from other agents, and using this information to refine their
local views of the global solution space.

1.1 Shared Metainformation
Multiagent systems generally assume some form of result-
sharing [7], i.e., the sharing of partial solutions to facilitate
global coherence. In our experiments, result-sharing is an
integral part of problem solving—agents are able to ex-
amine, evaluate, and extend others’ proposed partial so-
lutions. However, our focus is on the sharing of a differ-
ent type of information; namely, information that de-
scribes some abstraction of an agent’s solution space
rather than a specific solution instance. This will be re-
ferred to as metainformation.1

To illustrate the use of metainformation, consider a ge-
neric example of meeting scheduling. (Sen and Durfee in-
vestigate the effectiveness of various forms of shared in-
formation in a meeting scheduling domain in [8]). Assume
two agents, $ and %, are seeking a mutually acceptable
meeting time. A simple result-sharing approach would be
for $ to examine its local schedule and propose a time
based on its constraints: “How about Monday at 3:00?” %
responds with “No good. How about Tuesday at 9:00?” $
responds with “Maybe Monday at 3:30?” and so on until
one of the agents suggests a mutually acceptable time. In
contrast, the use of metainformation is seen in the following
exchange. $ again begins with “How about Monday at
3:00?” but now % responds: “No good. I’m tied up all day
Monday. I’ve got some time Tuesday morning though, and
I’m free most of Thursday.” As seen in this example, the
goal of sharing metainformation is not to pinpoint a specific
solution, but rather to provide focusing information that
will guide other agents in their search for a solution.

1. In the following text, information and metainformation are used inter-
changeably where it is clear from the context that this is the case.

1.2 Distributed Search
We explore the use of shared metainformation using a
prototype application system, STEAM, that represents a
class of cooperative distributed search systems for paramet-
ric design. Search systems are historically described in the
Artificial Intelligence literature as comprising three compo-
nents: a state space describing the current state of the search,
a set of operators used to manipulate the state space, and a
control strategy used for deciding what to do next, specifi-
cally, deciding what operator to apply and where to apply
it [9]. When all operators reside in a single program or logi-
cal entity and have access to a central store of knowledge
and databases, the search is centralized. In this article, we
are concerned with the problem of distributed search as
described in [10 ]:

A distributed search involves partitioning the state space and its asso-
ciated operators and control regime so that multiple processing ele-
ments can simultaneously perform local searches on different parts of
the state space; the (intermediate) results of the local searches are
shared in some form so that the desired answer is produced in a timely
manner.

The partitioning of the state space in a reusable-agent
system is induced by the a priori division of expertise of
agents in the agent set. The set of operators available at an
agent is also an a priori attribute of the agent. The control
strategy used for a solving a particular problem should be
tailored to the problem but must be chosen from the set of
strategies known to the agents in the system. The selection
of operators and control strategies for distributed search are
addressed elsewhere in [11], [12].

1.3 The STEAM Application System
Throughout the article, we will augment the presentation of
concepts with examples from a seven-agent system, STEAM,
that performs parametric design of steam condensers. Fig. 1
shows the general form of a STEAM condenser. The agents
in STEAM each take responsibility for either:

1) designing some component of a steam condenser; or
2) critiquing some aspect of the condenser.

The agent set in STEAM is:

{pump-designer, heat-exchanger-designer,
motor-designer, platform-designer,

vbelt-designer, shaft-designer,
system-frequency-critic}

These agents were initially created for another parametric
design system [13] and were subsequently modified with
a more flexible external interface to make them reusable.
It is important to note that these agents in particular, and
reusable agents in general, come with predefined func-
tional capabilities and constraints and with predefined
declarative knowledge. In contrast to custom-built appli-
cations, it is necessary to work with what is available
rather than what is desirable. The trade-off between cus-
tom-built applications and applications comprising as-
sembled reusable agents must consider that not all infor-
mation that would be useful will realistically be available
in reusable-agent systems.
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1.4 Globally Cooperative Systems
The STEAM system is a globally cooperative system, mean-
ing that there is assumed to be a global measure of system
performance that overrides any local measures. This is
generally true for design problems: There is some meas-
ure of the quality of a design that is distinct from the
quality of any subcomponents of that design. An important
aspect of globally cooperative systems is that it is not useful
for agents to attempt to maximize their local payoffs for
solutions by withholding information from other agents.
The overriding goal of the system is to maximize the
global, rather than local, payoff for solutions. In this
situation, sharing information is not restricted by selfish
or adversarial motives of agents as in some multiagent
domains [14], [15].

Our emphasis is on the communication and assimilation
of metainformation among reusable agents, the influence of
shared information on an agent’s ability to focus its search
efforts, and the resulting performance improvements within
an application system. In Section 2, we give a formal de-
scription of shareable metainformation in reusable-agent
systems. Section 3 presents experimental results from STEAM
that substantiate our hypothesis that metainformation
sharing can improve solution quality and problem-solving
efficiency. Section 4 discusses what costs are involved in
sharing metainformation and what the practical limitations
of the technology are from an application-system perspec-
tive. We conclude with a summary of observed results and
some speculation as to the significance of these results
within the STEAM system and within the more general
realm of multiagent systems.

2 SOLUTION SPACES: A FORMAL PERSPECTIVE

When discussing the solution spaces of agents, we distin-
guish between the local space of an agent and the composite
space of the system. A local space is one that is private to an
agent, the composite space is one that is shared by all agents.2

In a parametric design application, the local solution space of

2. Spaces may also be shared by some subset of agents, but not the entire
agent set [6]. These common spaces are outside the scope of this article,
however, and we will not discuss them further here.

an agent is defined by the parameters that are assigned val-
ues by an agent in its local solutions, i.e., its output parame-
ters. An agent’s initial view of the composite solution space is
equivalent to its local solution space. However, this local
view is unlikely to be effective in finding solutions that are
mutually agreeable to all agents (solutions in the composite
space). A primary goal of communication among agents,
therefore, is for each agent to end up perceiving the closest
approximation possible to the part of the composite solution
space that contains its local output parameters. In nontrivial
cases, it is unlikely that a complete and correct global view
can be achieved at every agent. However, as an agent’s local
view approaches the global view, the agent is likely to be
more effective at proposing solutions that will be mutually
acceptable.

2.1 Defining a Local Solution Space
We will use examples from the STEAM system to illustrate
the concepts being discussed. Fig. 2 shows a simplified ver-
sion of the solution space of pump-designer . This figure is
simplified both in the number of parameters and the speci-
fication of the parameters’ domains. The set of parameters
in the solution space of an agent a is 3�a, the parameter set of
a. The parameter set of pump-designer , as shown in Fig. 2,
is {water-flow-rate, head, run-speed, pump-cost}.

The set of legal values for a parameter q at agent a is its
parameter space, 9

q

a . To illustrate, the parameter space of
run-speed  from Fig. 2 is the set of integers {1,200, 1,800,
2,400, 3,000, 3,600}. The parameter space of an agent can be
defined over various domains including integers, reals,
numeric intervals of the form {(min, max), min, max Î 5}, or
discrete labels such as {model-1, model-2, ¼, model-n}.

A solution in the solution space of a is a tuple sj
a  =

(p1, p2, ¼, pn) such that px Î 9
q
 xa and such that any con-

straining relationships on or between the px Î sj
a  are satis-

fied. A parameter space may be constrained by explicit con-
straints on solutions such as (run-speed  ³ 1,200) or
through implicit constraints that are embedded in the func-
tions an agent uses to search for solutions. As a trivial ex-
ample of an implicit constraint, consider the following loop
in pseudocode:

Fig. 1. A steam condenser.



196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  9,  NO.  2,  MARCH-APRIL  1997

head :== 0;
DO water-flow-rate = 0 to 500

new-head :==
calculate-head water-flow-rate;

head :==
select-best new-head head;

END DO;

An agent using this code implicitly constrains the pa-
rameter space of water-flow-rate  to be the set of inte-
gers from 0 to 500, although it may not declaratively repre-
sent this anywhere. In reality, functions tend to be more
complex and the implicit constraints more difficult to dis-
cern. In the above example, the value of head  is tacitly con-
strained by the implicit constraint on water-flow-rate .
However, the effect of this implicit constraint on the pa-
rameter space of head is not determinable without a deeper
understanding of the constraining relationship.

The existence of implicit constraints, goals, and heuris-
tics must be expected in the general case of expert agents.
Implicit metainformation cannot normally be shared since
it is an integral part of an agent’s expertise and cannot be
easily extricated.3 Unshareable information strongly af-
fects properties of the agent sets in which it is embedded.
For example, in [16], Khedro and Genesereth present a
distributed-search model in which agents provably con-
verge on a globally satisfactory solution if one exists.
However, the property of convergence can only be guar-
anteed if all constraining information can be explicitly
exchanged. When implicit constraints are added, this de-
sirable property no longer holds. When building an appli-
cation, therefore, it is important to carefully examine
whether all constraining information can be declaratively
represented and, if so, whether centralized constraint sat-
isfaction can be applied. In general, if centralized con-

3. It is possible that some agents may be able to share either code or some
form of abstracted explanation of implicit information. However, this re-
quires specialized capabilities on the part of both the sending and receiving
agents. Although it is possible to support these capabilities in specific
situations, generalized code exchange and assimilation among heterogene-
ous reusable agents is not a realistic option.

straint satisfaction is appropriate, it is likely to be the
most effective approach.

Explicit (declaratively represented) information can be
shared and, as will be discussed in Section 3, this sharing
can greatly enhance the effectiveness and coherence of
the agent set. In STEAM, shareable information is limited
to simple boundary constraints with the basic form
(water-flow-rate  < 800) that specify minimum or
maximum values for a parameter (see Section 3.1 for a more
complete explanation of shareable constraints). This limita-
tion is not mandated by either our model of shareable in-
formation or the STEAM system, but rather was chosen due
to its simplicity and accessibility. The costs of information
sharing increase as agents apply more sophisticated tech-
niques. Restricting information to boundary constraints
may result in lower efficiency or lower-quality solutions
than could be achieved by sharing more complex forms of
information. However, the overhead costs associated with
boundary constraints are low and these constraints provide
a manageable, first-cut view of the composite solution
space. In Section 5, we will further discuss the trade-offs
inherent in supporting the sharing and assimilation of more
complex forms of information; namely, the trade-offs be-
tween improved system performance due to better-
informed agents and degraded system performance due to
the overhead associated with sharing.

To include explicit boundary constraints in the definition
of a solution space, we use the following notation: let cj

a  be

a declaratively represented boundary constraint of agent a
in the set of all explicit boundary constraints of a, &�a. Then, let
the notation {cj

a  : sk
a  } mean that cj

a  is satisfied with respect to a

particular solution, sk
a . For example if c1

a  is (p1 £ 10) and s1
a

= (9, 5, 3, 7), then c1
a  is satisfied with respect to s1

a , {c1
a  : s1

a  }.

When cj
a  is neutral with respect to sk

a  (it does not con-strain

any parameters in sk
a ), it is considered to be satisfied.

Using this notation, the shareable solution space of agent
a can be defined by specifying the parameter set of a, 3�a

Fig. 2. The local solution space of pump-designer from the STEAM system.



LANDER AND LESSER: SHARING METAINFORMATION TO GUIDE COOPERATIVE SEARCH AMONG HETEROGENEOUS REUSABLE AGENTS 197

and the set of explicit constraints over those parameters, &�a.
This shareable solution space is an approximation of the
actual local solution space since it does not represent any
implicit solution requirements that are embedded in the
agent. We formally describe the shareable local solution
space of agent a as follows: d 

a = {(p1, p2, ¼, pn) | (px Î 9
q

a   ),
("cj Î & 

a, {cj : (p1, p2, ¼, pn)})}. In nontrivial cases, d 
a will be a

superset of the valid solutions of agent a since it does not
take implicit constraints into account.

2.2 Defining the Composite Solution Space
Given a set of agents, $, and a problem that they are coop-
erating to solve, the desired composite solution must derive
its parameter values from the local solution spaces of the
agents. However, the parameter set of the composite solu-
tion space, 3�a, is not necessarily the union of the parameter
sets in the local solution spaces, as can be seen in Fig. 3.

In Fig. 3, the solution space of agent p (the pump agent)
contains the parameters water-flow-rate, head, run-speed,
and pump-cost. The solution space of agent h (the heat-
exchanger agent) contains the parameters water-flow-rate,

head, required-capacity, and heatx-cost. We find in Fig. 3 that
the parameters water-flow-rate and head are common to both
agents while run-speed, pump-cost, required-capacity, and
heatx-cost represent parameters unique to individual agents.
The composite solution space shown in Fig. 3 contains the
shared parameters water-flow-rate and head, the parameter
required-capacity from agent h, and also a unique parameter,
cost. Cost is not local to either agent p or agent h, but repre-
sents a transformation on local parameters of those agents,
i.e., the sum of pump-cost and heatx-cost. To summarize,
each parameter in the composite solution space is local to
either agent p or agent h, is local to both agent p and agent
h, or is a unique parameter whose value can be derived
from parameters local to agent p and/or agent h.

The run-speed output parameter of agent p does not ap-
pear in the composite solution. In this application system,
run-speed can be characterized as a throw-away parame-
ter: one that does not appear in a composite solution and
is not used as an input parameter by any other agent.
Throwaways are a common occurrence in reusable-agent
systems since the agents are constructed without any
foreknowledge of what output information will be re-

Fig. 3. Constructing a composite solution from the local solutions of agents.
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quired for any specific application system. Therefore,
there is no guarantee that the set of output parameters
implemented in the agent will be exactly what is needed
for any particular application.

In Fig. 3, notice that the constrained set of values (the
shaded areas) of the shared parameters, water-flow-rate and
head, are not identical for the two agents. If we are looking
only at constraint-satisfaction problems (problems in which
all constraints must be satisfied or no solution can be
found), the constrained composite parameter space of a
shared parameter is the intersection of the constrained local
parameter spaces. For example, the shared composite pa-
rameter space of water-flow-rate from Fig. 3 is the intersec-
tion of the local water-flow-rate parameter spaces of the two
agents p and h. We denote the composite water-flow-rate
parameter space as wC. If wC is empty, no solution exists that
will be mutually acceptable to agents p and h.

As discussed earlier, an agent’s perception of wC will not
be identical to the actual composite parameter space in the
general case. Formally, let wC

a
 be an agent’s perception of

the composite parameter space, wC. After all shareable in-
formation has been communicated and assimilated, agent a
perceives some superset of wC as defined by the explicit
constraints of other agents and its own explicit and implicit
constraints. If wC

a
 is not empty, there are two possibilities:

1) a mutually acceptable composite solution, sx
C  = (p1, p2,

¼, pn), exists with pw Î wC; or
2) no composite solution exists because there are implicit

constraints at other agents that exclude values in wC,
but that do not exclude values in wC

a
.

Therefore, because of the possibility that implicit constraints
exist, it is impossible to tell by looking at wC

a
 whether or not a

mutually acceptable solution exists. An example of the dis-
crepancy between an agent’s local solution space and other
agents’ perceptions of that space based on transmitted con-
straints is shown in the next section in Fig. 5.

Intersection of the fully constrained local solution spaces
of agents (spaces constrained by both implicit and explicit
constraints) defines the composite solution space in a con-
straint-satisfaction problem. However, in a constraint-
optimization problem, not all constraints must be satisfied in
a solution. Instead an attempt is made to satisfy constraints
to the fullest extent possible. Constraints may have differ-
ing amounts of flexibility: Some may be hard, meaning that
they must be satisfied in any legal solution, while others
may be soft, meaning that they can be relaxed if necessary.
Soft constraints can have different degrees of flexibility:
Some can be “softer” than others. In these types of prob-
lems, composite solutions must lie within the intersection of
the local parameter spaces under the set of hard constraints,
but not necessarily under all soft constraints. The order in
which constraints are relaxed can strongly affect system
performance and solution quality [17], [18]. A discussion of
these issues is beyond the scope of this article, however, in
[6], Lander presents the algorithms used by STEAM agents
to determine which constraints to relax in conflict situations
and in situations where problem-solving progress has
stalled.

In this section, we have defined the local, composite, and
locally perceived composite solution spaces of a system of
heterogeneous reusable agents. In complex application
systems, the composite solution space is an amalgam of
local spaces, each of which may be constrained in ways that
cannot be articulated outside of the local context. Informa-
tion sharing is viewed as a mechanism for reducing the
difference between agents’ local perceptions of the com-
posite solution space and the actual space. The hypothesis
is that as agents begin to understand the “big picture” they
become more effective at generating high-quality solutions
quickly. In the next section, we investigate this hypothesis
through experimental observation of how information-
sharing affects solution quality and processing time in the
STEAM system.

3 EMPIRICAL ANALYSIS OF INFORMATION
ASSIMILATION

In this section, we empirically demonstrate the effectiveness
of sharing potentially useful information among agents
during distributed search. The experiments reported below
were run in the STEAM system with the seven active agents
listed in Section 1.3. There were two categories of experi-
mental trials: assimilation trials and nonassimilation trials. In
the assimilation trials, three agents instantiated the capa-
bilities required for information assimilation: the pump de-
signer, motor designer, and heat-exchanger designer agents. The
other agents did not attempt to assimilate information; the
reasons for limiting assimilation to three agents will be ex-
plained in Section 4.1. In the nonassimilation trials, the as-
similation capabilities were not active at any agent.

The agents in STEAM, as in any multiagent system, must
have an underlying infrastructure that supports agent in-
teraction. STEAM was built on top of the commercial black-
board product GBB. Blackboard systems are an effective
core technology in integrated multiagent environments
because they provide highly efficient data sharing and so-
phisticated control capabilities.

The shared language in STEAM that is used to represent
data on the global blackboards is a customized language that
was created specifically for describing steam condensers.
Shared languages in the general case can be thought of as
ontologies that represent the terms and concepts required for
interaction about the global theme of the integrated envi-
ronment. In STEAM, local languages may include terms not
represented in the shared language and, likewise, may not
include all terms that are represented in the shared language.
For internal processing, each agent uses a local dialect that is
syntactically modified from the shared language. For exam-
ple, pump-designer uses the term pump:run-head for internal
processing of the run-head parameter and removes the pre-
fix, pump:, for shared information. Boundary constraints
have a format that is known to and understood by all agents
to the degree that the terms embedded in the constraints are
understood. An agent that sends out a constraint translates it
into the shared language before transmission and the receiv-
ing agents translate it into their local idioms. If an agent does
not have a local representation for some term in a boundary
constraint, it ignores it.
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Control of processing in STEAM is fairly complex, repre-
senting the need to develop and extend multiple alternative
solutions, examine and resolve conflicts that occur in each
solution, and evaluate solutions under both global and local
evaluation criteria. The control strategy used is described in
detail in [12]; it is an externally specified strategy that does
not require sophisticated control reasoning mechanisms
within the agents.

As described above, in order for an agent to use infor-
mation received from an external source to guide its local
processing (i.e., learn about other agents’ requirements for
solutions), the agent must be able to receive constraining
information sent from other agents, translate that informa-
tion into a locally usable form, and store the translated in-
formation into a local knowledge base so that it can be eas-
ily retrieved and applied. We call this process information
assimilation. Notice, however, that with reusable agents, the
usefulness of shareable information cannot be determined
at agent-development time since it is dependent on capa-
bilities and interests of other agents that may eventually be
integrated into a joint agent set. Therefore, not all shared
metainformation will be assimilated by all agents.

Assimilated information is used by the assimilating
agent to guide its search for local solutions. We have devel-
oped mechanisms that extend or replace the traditional re-
trieval capability of an agent to extract relevant constrain-
ing information from its knowledge base. These mecha-
nisms were developed specifically to enable reusable agents
to handle potentially conflicting information that has been
received from external sources since there is no guarantee
that shared external information will be consistent with
internal information. The goal of the retrieval process is to
find the most restrictive, but nonconflicting, set of known
constraints on solutions for the current problem using both
local and assimilated information. This set of constraints
defines the closest possible approximation of the composite
solution space in which globally acceptable solutions must
lie. However, it requires that intelligent conflict-resolution
capabilities be applied to select which constraints to relax
when conflicts do occur. Although we do not address spe-
cific techniques for conflict management in this article, it is
an important and encompassing problem. Work describing
computational conflict-management techniques includes [19],
[20], [12], [21], [8], [22], [15].

In these experiments, agents transmitted boundary con-
straints directly in response to conflict situations rather
than transmitting information that might potentially be
useful. In other words, a boundary constraint was shared
only when it conflicted with a proposed solution. The rela-
tive benefits and costs of reactive versus proactive informa-
tion sharing are not explored here. The conflict that trig-
gered the information exchange was handled by the agent’s
conflict-resolution capabilities while the exchanged infor-
mation was assimilated by other agents and used to avoid
similar future conflicts.

The system was run on each of 100 different solvable
problem specifications, once with active assimilation capa-
bilities and once without. The problem specifications were
generated by randomly choosing a feasible value for each
of the steam condenser attributes, {required capacity, maxi-

mum platform deflection, platform side length}, for each specifi-
cation. The complete set of input problem specifications and
observed data from the experiments are tabulated in [6].

3.1 Information Shared in the STEAM System
The information shared in these experiments was limited to
simple boundary constraints of the form {constraint-
form, flexibility }. A constraint-form  is a single
clause with the syntax (x < n), (x <= n), (x > n), or (x >= n), as
previously discussed in Section 2.1. x is a shared numeric
parameter and n is some numeric value. These constraints de--
fine an n-dimensional “box” in the solution space, where each
dimension represents a parameter in the parameter set of the
agent a, 3�a. Ignoring for the moment the flexibility  at-
tribute, Fig. 4 shows the boundary constraints derived by two
agents to represent their local solution spaces. The accuracy
of the representation is dependent upon characteristics of the
space. For example, when the solution space is sparse, as in
Fig. 4a, the shareable view defined by boundary constraints
will not be highly accurate, as shown in Fig. 4c.

Continuing the example in Fig. 4, Fig. 5 shows the per-
ceived situation from each agent’s perspective after the
boundary constraints have been transmitted, along with the
actual composite space.

Agent A has a much more accurate perspective than
Agent B because, as noted earlier, Agent B’s boundary con-
straints more accurately represent its solution space. There-
fore, it is important to note that when boundary constraints
are used as the primary mechanism for information shar-
ing, it is possible to either predict (through agent analysis)
or learn which agents have will the best global perspective.
This is the basis of work that has been done by Lander [6]
on making effective assignments of roles to agents within
an agent set. It also provides the foundation for ongoing
work in building reusable-agent sets that can automati-
cally adjust role assignments for effective problem solving
without requiring knowledge-based analysis of agent
characteristics [23].

Returning to our discussion of how boundary constraints
represent shareable perspectives of agents’ solution spaces,
notice that in some situations an agent may choose its
boundary constraints such that some local solutions are ex-
cluded from the shared information. For example, if there are
spurious outlying points, it may be advantageous to the en-
tire system to exclude those points. By excluding them, the
area that needs to be searched can be made much smaller,
although this may result in missing valid or even optimal
solutions. This idea is similar to that of relaxing the admissi-
bility condition in A* search whereby h* is allowed to overes-
timate the distance to the goal, resulting in less search but a
possibly nonoptimal solution. If an agent intentionally mis-
states its boundaries, whether its motives are benevolent or
malicious, issues of deception arise. Deception in multiagent
environments is an important and ongoing area of research
[24], [25], [26] that must be addressed in the larger scope of
multiagent systems in general. However, because we are
looking at globally cooperative systems (in which the inter-
ests of individual agents are preempted by global measures
of quality and performance), there is considerably less moti-
vation for agents to misrepresent their expertise or results.



200 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  9,  NO.  2,  MARCH-APRIL  1997

Fig. 4. Shareable views of agent solution spaces built using boundary constraints.

Fig. 5. Perceived solution spaces contrasted with the actual space.
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In addition to the constraint-form  clause of a con-
straint, the boundary constraints used by the STEAM agents
include a flexibility  attribute, loosely based on the
notion of utility suggested by Fox [27]; flexibility  is
represented as an integer from 0 to 4. A flexibility of 0
specifies a hard (nonrelaxable) constraint that must be met
by any feasible solution. A flexibility of 4 implies that solu-
tions satisfying the constraint are of high quality and meet
the most restrictive requirements of the agent. The use of a
flexibility attribute on boundary constraints defines a set of
n-dimensional boxes in the solution space, each represent-
ing an equivalence class of solutions of a given quality. For
example, the box circumscribed by an agent’s boundary
constraints at flexibility 4 contains solutions that satisfy the
most demanding local constraints of the agent. In contrast,
the box circumscribed by an agent’s boundary constraints
at flexibility 0 contains solutions that are feasible but not
necessarily desirable. For example, pump-designer  speci-
fies a soft constraint, {(water-flow-rate < 175), 4}, meaning
that all pumps rated as excellent will have a water-flow-rate
less than 175. It also specifies a hard constraint, {(water-flow-
rate < 415), 0}, that indicates any value ≥ 415 will result in
an infeasible solution.

The boundary constraints described above are only one
form of information that can potentially be shared. They
will not be adequate or appropriate in all domains. How-
ever, one result of our work has been the recognition that
they are adequate to significantly improve processing in
our domain. There is a high degree of complexity inherent
in building heterogeneous agents that can understand each
other well enough to positively affect mutual work. As the
type of information to be shared increases in complexity,
the design and implementation of agents needs to be more
tightly coordinated to support effective generation and as-
similation of shared information. Even the simple form of
sharing shown here requires some uniform mechanisms
across agents for representing, assimilating, and applying
constraints. A primary principle in the development of re-
usable agents is that the degree of coordination required
among agent implementers should be kept as small as pos-

sible. These constraints provide a minimal basis for interac-
tion that can be shown to positively influence the overall
search activity of the agent set.

There are two measures of system performance in the
STEAM system: solution quality and runtime. We expected
to see that extra costs associated with sharing information
would be balanced, in the majority of cases, by improve-
ments in performance. In the following sections, we first
present the results from the information-sharing experi-
ments on solution quality and runtime. We then discuss the
underlying mechanisms in the STEAM system that produce
the results: what is it about the agents that is affected by
having external information available?

3.2 Solution Quality
We compared the results of running the system when
agents assimilated constraining information and when they
did not. In STEAM, solution quality is determined by the
monetary cost of each solution: the minimum-cost accept-
able design is considered the most highly rated. The results
of the 100 experimental trials are graphically summarized
in Fig. 6. In this figure, the results are sorted into ascending
order based on cost in the assimilation trial.

For the 100 problem specifications tested, the mean cost
in the assimilation trials was $8,504.77; in the nonassimila-
tion trials, it was $9,020.43. The mean cost improvement
with assimilation operators enabled was 5.72%, meaning
that the monetary cost of the most highly rated solution in
an assimilation trial was 5.72% lower on average than that
in the associated nonassimilation trial under the identical
problem specification.

We had hypothesized that enabling assimilation would
lower the cost of a design (thereby improving solution
quality) and the experimental results appeared to support
this hypothesis. To statistically confirm this result, we ap-
plied a paired difference t-test. In this type of test, the re-
sults from two matched trials are compared—in our case
nonassimilation trials are compared to assimilation trials
performed under the same problem specification. For each
paired trial, the difference between the resulting design
costs is calculated. Then the mean of the differences is com-

Fig. 6. Solution quality results in assimilation experiments.
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puted over the entire set of trials. The null hypothesis in
this case is Ho : mD = 0 (the population mean of the differ-
ences is 0), meaning that the results of the two types of tri-
als are not significantly different. The alternative hypothe-
sis is Ha : mD > 0 (the population mean of the nonassimila-
tion trial results minus the assimilation trial results is
greater than 0), meaning that the cost of designs in the non-
assimilation trials are higher than those in the assimilation
trials. Applying the paired t-test results in a t-score of 6.455,
which allows us to reject the null hypothesis with a confi-
dence of more than 99%. We can thus say with a high level
of confidence that when STEAM agents apply assimilation
capabilities, the average quality of solutions improves.

An inherent characteristic of the STEAM domain is that
good solutions are easy to find under many problem speci-
fications (the solution space is dense). We believe that there
is a significant floor effect in the domain, meaning that
minimum-cost designs are easy enough to find even in the
nonassimilation trials that it is difficult to dramatically im-
prove solution quality. However, the ability to consistently
lower design costs approximately 5.72% by sharing simple
boundary constraints is compelling evidence that informa-
tion sharing and assimilation is an important technique for
improving solution quality in multiagent systems. Fur-
thermore, if it is the case that a floor effect is influencing
our results, larger improvements could be expected in some
domains.

The 5.72% figure given above for the improvement in
solution quality may understate the significance of the im-
provement if the assimilation trials are approaching opti-
mality. For example, assume that our average figures of
$8,504.77 and $9,020.43 represent the results of a matched
pair trial. If the optimal solution in this trial was actually
$8,300, the assimilation run would be suboptimal by
$204.77 while the nonassimilation run would be suboptimal
by $720.43. With respect to the optimal solution, then, the
assimilation run would show approximately a 72% im-
provement over the nonassimilation run in terms of error.
Although this is a hypothetical situation since we do not
know the average optimal solution for these trials, we be-
lieve it represents a reasonable estimate.

3.3 Runtime
Runtime is directly measured in these experiments as the
elapsed real time from the invocation of the system until
termination of the system.4 The average runtime with as-
similation is 121.98 seconds, without assimilation the aver-
age runtime is 132.67 seconds. The assimilation runtimes
are, on average, 8.06% lower than the nonassimilation run-
times. However, direct comparison of the runtimes of as-
similation and nonassimilation trials is somewhat mislead-
ing. There is a bias in the system that indirectly favors the
nonassimilation trials; both the bias and its remedy are dis-
cussed next.

STEAM is a satisficing system [28]: There is no way to de-
termine if an optimal solution has been achieved, and it is

4. These experiments were run on a TI Explorer II. Incremental garbage
collection was turned off during the runs. However, the recorded time
includes time spent on process and memory management tasks. Therefore,
recorded times varied slightly across identical runs.

difficult to decide when to stop looking for a better solu-
tion. In any satisficing system, some policy must be pro-
vided that defines under what conditions the system will
terminate processing. The termination policy used in the
STEAM system is that when three acceptable solutions are
found, the system enters a termination phase. The rationale
behind creating at least three alternative solutions is that
alternative solutions represent various design trade-offs,
and the user should have the opportunity to decide which
of the trade-offs is best for her needs. Furthermore, instead
of halting immediately with the first three completed ac-
ceptable solutions, STEAM finishes all remaining acceptable
partial solutions (as long as they remain acceptable). This
policy is appropriate for the STEAM domain since solution
quality and user participation are higher priorities than
runtime.

Due to the focused search that occurs when information
is shared, there are likely to be more acceptable solutions
produced per run in the assimilation trials than in the non-
assimilation trials. We found that this is indeed the case:
More of the solution paths that are started in the assimila-
tion trials turn out to result in acceptable solutions. There-
fore, one result of the termination policy used in STEAM is a
bias in which direct runtime measures favor nonassimila-
tion trials because, in those trials, many of the potential so-
lutions are poor enough to prune.

To overcome this bias and make runtime comparisons
more meaningful, we divided the runtime of each trial by
the number of solutions completed during that trial, re-
sulting in a runtime-per-solution measure. The results ob-
tained using this method are graphed in Fig. 7.

The runtime-per-solution observations in the assimilation
and nonassimilation trials were averaged over the 100 ex-
periment sets for comparison. The average runtime per so-
lution in the assimilation trials was 11.58 seconds and in the
nonassimilation trials it was 19.50 seconds. The average
percent improvement achieved by the assimilation trials
over the nonassimilation trials in runtime per solution was
40.62% (also a statistically significant result). In addition to
highlighting the improvement in system efficiency in the
assimilation trials, the bias discussed above indicates that
the system could be tuned for faster runtime at the expense
of solution quality by changing the termination policy to
halt without finishing partial acceptable solutions.

3.4 Understanding the Effect of Shared
Metainformation on System Performance

We stated above, based on the t-test analysis of solution
quality, that when STEAM agents apply assimilation capa-
bilities, the average quality of solutions improves. How-
ever, knowing that quality improves is not equivalent to
understanding why it improves.

As described earlier, the goal of metainformation sharing
is to improve agents’ local perceptions of the composite
solution space in order to make local search more produc-
tive. The more accurate the view of the composite solution
space, the less time is wasted in producing solutions that
are locally, but not globally, acceptable. Therefore, we ex-
pected to see runtime measurements improve in the as-
similation trials because agents would waste less time in
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unproductive tasks. This expectation was fulfilled in the
experiments performed.

Though it seems clear that system runtime would be af-
fected by information sharing, it is not as easy to see why
solutions would improve in quality as well. To understand
the relationship between solution quality and information
assimilation in the STEAM system, it is necessary to under-
stand the relationship between constraint relaxation and
solution quality. In this section, we describe the mecha-
nisms of constraint relaxation that are affected by informa-
tion sharing and that, in turn, affect the quality of solutions
produced.

In any nontrivial agent environment, there will be con-
flicts among the boundary constraints of different agents.
These conflicts are often soft conflicts, meaning conflicts that
occur over soft constraints. In order to find any solution in
the composite solution space, these soft conflicts must be
resolved by relaxing one or more of the conflicting con-
straints. In the STEAM domain, there is an approximate
mapping between the degree of local constraint satisfaction
and the quality of a solution. In general, the more relaxation
has occurred in the environment, the lower the quality of
solutions produced. This is an approximate mapping be-
cause the global evaluation of a design in a globally coop-
erative system is not necessarily a direct function of local
agent evaluations. For that matter, a local agent evaluation
is not necessarily a direct function of local constraint satisfac-
tion. However, it is usually the case that there is a relation-
ship between constraint satisfaction and solution quality
and, in the STEAM domain, this is a reasonable assumption.

There are three primary types of constraint relaxation
used in STEAM [6]:

• Unilateral relaxation occurs at an agent in direct re-
sponse to a problem specification—the agent will re-
lax local soft constraints in order to meet require-
ments imposed by the specification. Unilateral re-
laxation is not dependent on information sharing and
will not be further discussed.

• Responsive relaxation occurs when there are explicit
conflicts between an agent’s constraints and some

other agent’s constraints. In responsive relaxation, an
agent that has received conflicting constraints from
another agent determines which of its own constraints
to relax or which of the received constraints to ignore
based on some conflict-management criteria. In this
case, relaxation is used to remove a conflict and it is
specifically enabled by information sharing.

• Automatic relaxation occurs in response to a lack of
problem-solving progress. Because not all relevant in-
formation is shareable, it is sometimes the case that
problem solving stalls over implicit conflicts without
any agent being able to pinpoint the cause. One way
to handle this situation is to set up the system so that
one or more agents must select and relax a local con-
straint after some amount of time has gone by. Deci-
sions about which agent should relax which con-
straint are not discussed here—this is a complex
problem and in general these decisions are highly
domain-dependent and agent-set specific. However,
the basic rationale for automatic relaxation is that
unless it is possible to directly attribute a lack of
problem-solving progress to a particular constraint,
there must be a mechanism for selecting and relaxing
arbitrary constraints until the obstacle is removed.
This basic idea has been part of the DAI literature for
some time. For example, in the Hearsay-II speech
understanding system developed in the late 1970s,
a group of hypotheses for words were generated and
rated, and the most highly rated hypotheses were
passed to the word-sequence level of processing that
would then try to build multiword sequences. If prob-
lem solving stagnated at that level, rating thresh-
olds were relaxed at the word level in order to
provide more breadth in the word-sequence search
space [29].

Given this brief introduction to constraint relaxation, we
now return to our discussion of how information sharing
and assimilation affects global solution quality in a globally
cooperative system. Without information sharing, the de-
fault form of constraint relaxation is automatic relaxation:

Fig. 7. Runtime-per-solution results in assimilation experiments.
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basically a blind search for the source of a problem. In the
course of “fixing” the problem, other nonproblematic con-
straints are also often relaxed. This leads to lower standards
for solutions and, ultimately, lower quality solutions. In con-
trast, responsive relaxation supports the agents in making
globally beneficial decisions about which constraints to re-
lax. By providing an agent with specific knowledge about
the source of the problem, information sharing enables the
agent to make an intelligent decision about the most ap-
propriate solution to the problem. Knowledge that can be
brought to bear in deciding which constraint to relax in-
cludes power relationships between agents and the flexibil-
ity of the constraints involved in the conflict.

Although automatic constraint relaxation occurs both
with and without information sharing and assimilation, its
effects are mitigated when sharing occurs. A general conse-
quence of automatic relaxation policies is that the local
quality of proposed solutions degrades over time as re-
quirements become less stringent. Because of this, the tim-
ing of solution generation is important—it is important that
each agent quickly focus its local search as narrowly as pos-
sible. Because information assimilation and sharing accom-
plishes precisely that, the quality of solutions improves
simply because good solutions are proposed before any
arbitrary relaxation occurs.

3.5 Summary
The results presented in this section demonstrate that in-
formation sharing can positively affect both solution quality
and runtime in a heterogeneous reusable-agent system.
However, there are costs associated with information sharing
and, in fact, the richer the sharing environment, the higher
the costs are likely to become. In the following section, we
discuss the costs involved in information sharing with an
eye toward determining how sophisticated it is practical to
become.

4 INFORMATION-SHARING COSTS

Sharing information has five primary costs (where cost is
measured in time):

1) Generation: the cost of generating shareable informa-
tion at the sending agent specifically intended to be
transmitted to other agents to guide their local searches;

2) Determination: the cost of determining what informa-
tion to share at a given point in problem solving;

3) Transmission: the actual costs associated with the physi-
cal transmission of messages among agents;

4) Translation: the cost of translating shared information
either directly from one agent’s language to another’s
or from the local language to a shareable format at the
sending agent and then from the shareable format
into a local language at the receiving agent;

5) Local Management: the cost of managing shared infor-
mation at the receiving agent; determining the appli-
cability of received information (sorting, filtering,
detecting conflicts and locally resolving those con-
flicts) and managing the greater volume of informa-
tion that results from accumulating received informa-
tion (storage and retrieval costs).

In the timing analysis described below, we do not in-
clude transmission costs (those associated with the physical
transfer of information from one agent to another). This is
consistent with the current implementation of STEAM in
which all agents reside on the same machine and run in the
same process, making transmission costs virtually nil. This
exclusion of transmission costs should not be extended to
the general case however.

The list above summarizes the types of costs incurred as
a direct result of information sharing. We next give a more
complete description of those costs and present observed
data from their measurements in the STEAM system. We
then move on to discuss the relevance of our observations
in the more general context of reusable-agent systems. We
conclude with some thoughts on how agent reusability af-
fects information sharing, discussing both the positive and
negative issues that arise.

Generation: The costs listed as generation costs should
represent only the time an agent spends generating share-
able information that would not otherwise be declaratively
represented. This can potentially entail a great deal of ‘self-
analysis’. Types of information that can be used to focus
other agents’ searches include:

1) constraints that are completely independent of the speci-
fic problem being addressed (independent constraints);

2) constraints that are dependent only on the problem
specification without regard to any particular solution
(problem-dependent constraints); and

3) constraints that are dependent on existing instanti-
ated parameters for a particular solution (solution-
dependent constraints).

These different categories are explained in more detail in
[6]; the effect of each category in the timing studies re-
ported are described briefly below.

In the timing studies reported here, we investigate the
use of problem-dependent constraints. In other words, we
measure the time it takes to construct boundary constraints
that are dependent on a particular problem specification.
For example, a problem specification in STEAM includes a
fixed value for the required capacity of the desired steam
condenser. Required capacity is an input parameter to the
heat-exchanger-designer that affects possible values of other
local parameters. Therefore, each time a new problem speci-
fication is provided to the system, the heat-exchanger de-
signer must recompute the boundary constraints on any para-
meters affected by the assigned value of required capacity.

Costs associated with generating independent con-
straints are not considered to be part of the normal cost of
developing a solution because these constraints can be gen-
erated in a one-shot preprocessing procedure.

Solution-dependent constraints are not used in STEAM
although, in some domains, it is possible to exploit these
constraints. If the agents in an application system (or some
subset of the agents) have a limited number of local alter-
native solutions, it may be effective to develop guiding in-
formation that relates specifically to a single solution. For
example, say an agent, =, in a globally cooperative system
has only two alternative local solutions, either proposal 1 or
proposal 2. Any global solution will therefore incorporate
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one of those two proposals. In this situation, it might well
be worthwhile to specify solution-dependent constraints
such as {if x = proposal1.x, then y > 10}. Even though deriv-
ing this constraint might entail considerable runtime analy-
sis, it will be applicable 50% of the time. However, assume
instead that = has 100,000 alternative solutions. In this case,
the above constraint is only applicable in 0.001% of the po-
tential solutions, and it is unlikely that the time spent in
generating the constraint will be recovered by its effect on
focusing the composite search. In their work on multistage
negotiation, Conry et al. have developed a formalism that
generates solution-dependent constraints for a set of sub-
plans through iterative agent interactions. These constraints
focus the system and enable it to determine that no solution
exists when no nonconflicting constraint set can be found
[30]. However, solution-dependent constraint generation
and manipulation techniques are not useful in the STEAM
domain because of the size of the solution spaces at each of
the agents.

Determination: An agent must decide what information
to transmit. In STEAM, agents transmit information directly
in response to conflict situations rather than transmitting
information that is anticipated to be potentially useful. There-
fore, only constraints that are in direct conflict with an ex-
isting solution are transmitted. The costs of retrieving po-
tentially conflicting constraints and checking each con-
straint to see if it conflicts with the existing solution are re-
ported in this measure.

Notice that in some domains, agents might be more pro-
active than reactive with respect to when information is
transmitted. For example, an agent might broadcast its con-
straints without waiting for a conflict to occur, thereby fa-
cilitating conflict avoidance rather than conflict resolution.
If all constraints are transmitted proactively at some set
time (e.g., as soon as problem solving begins), determina-
tion costs would be insignificant; otherwise, some time
must be spent in deciding what to send.

Translation: In the general case of heterogeneous reus-
able-agent systems, local information can be represented at
an agent in any form that is appropriate for that agent but
some mechanism must be provided to ensure that agents
are able to understand each other. When translation is nec-
essary, the cost can vary greatly depending on exactly what
is entailed. Some agents may share a language and have no
translation costs, others may translate using simple syntac-
tic procedures, and others may require complex semantic
translation. In STEAM, the local representation of an agent’s
information is unrestricted, but in order for information to
be shared, it must be translated into a globally specified
language. All agents use the same simple syntactic proce-
dures for translation between local and global formats.
Translation costs, therefore, do exist but are relatively
small.

Local Management: Conflict between local and assimilated
information is one factor that potentially undermines the
benefits of information sharing: What happens when an
agent receives information that contradicts something it
already knows? With independently developed and het-
erogeneous agents, it must be assumed that conflict will

occur. In the STEAM system, the costs of managing conflicts
between inconsistent local and external information are
categorized as local management. Other local management
costs include costs that accrue from the greater volume of
information that must be stored and retrieved due to as-
similated information.

4.1 Observed Information-Sharing Costs in STEAM

In these experiments, the costs attributed to sharing infor-
mation are broken down into four categories:

1) generation (for problem-dependent constraints);
2) determination;
3) translation; and
4) local management, as described earlier.

The observed costs for each of these categories over the 100
problem specifications are summarized in Fig. 8 (the com-
plete set of data is tabulated in [6]).

The approximate average time spent in constraint gen-
eration per problem is 7.3 seconds, in determination of
which constraints to transmit is 0.4 seconds, in translation is
0.5 seconds, and in local management is 4.2 seconds, for an
average total time for information assimilation of approxi-
mately 12.4 seconds per run (out of 121.98 seconds average
runtime). The average total percentage of time spent in in-
formation sharing in these trials is 10.17%. These figures are
highly domain-dependent and each of the different areas
could be more or less expensive in other situations. For ex-
ample, if more elaborate constraints were being generated
or if a more sophisticated analysis of the local search space
was performed, the constraint generation time would be
higher and consume a larger proportion of the processing
time. Likewise, if translation were more difficult and in-
volved some semantic interpretation as well as strict syn-
tactic replacement, it would take more time. The most im-
portant point to bring away from these experiments is that
these costs will be incurred in any domain though the fig-
ures will vary. Determining the degree of information
sharing to support in a particular application requires that
the agent implementer understand where the costs lie and
whether the potential gains outweigh them.

In the assimilation experiments described above, only three
of the seven agents instantiated information-assimilation
capabilities. The primary reason for this is that implement-
ing these capabilities is very difficult. For each agent, the
implementation is unique and requires a thorough under-
standing of the information requirements and search
mechanisms of that agent. This suggests that it must be
done by the agent implementer at the time the agent is
built. The agent implementer cannot be responsible for de-
termining what local information will be relevant in a par-
ticular application system since the agent may be embed-
ded in different systems. However, the agent implementer
must determine what local information will be shareable.
Furthermore, the agent developer must anticipate the types
of information that may become available to the agent
during problem solving and build into the agent the capa-
bilities required to effectively apply that information.

We demonstrate the difficulty inherent in implement-
ing effective information assimilation through an example.
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Say that the pump designer  receives a constraint from the
heat-exchanger designer  that restricts a parameter called
run-head of pumps proposed by the pump agent. This con-
straint is not directly applicable during the search for can-
didate pumps because the value of run-head is computed
after the specific pump is chosen: it is an output parameter
rather than an input parameter. However, once a candidate
pump has been generated, the run-head for that pump can
be computed and the constraint can be applied as a filtering
mechanism to eliminate nonviable candidates. If pump de-
signer  does apply the filtering constraint, it will still have
to iteratively generate and test candidate pumps locally, but
will eliminate infeasible ones before other agents are asked
to respond to them. Therefore, by appropriately applying
assimilated information, it can reduce the workload of
other agents.

The point here is that it is not only necessary to under-
stand the language of received information, it is also neces-
sary that the agent know how to apply it. Applying the in-
formation appropriately can be subtle—it may have to be
applied differently than the agent’s own local information,
for example, as a postsearch filter as described above. This
implies that an agent must anticipate the kinds of informa-
tion it may receive and have internal procedures available
to effectively use that information.

5 CONCLUSIONS

In this article, our objective was to clarify the costs and
benefits that are attributable to information sharing in sys-
tems of heterogeneous reusable agents. The experiments in
Section 3 demonstrated that sharing and assimilating meta-
information about the composite solution space positively
affects both solution quality and runtime. When external
information is assimilated by an agent, that agent is able to
focus its search efforts in areas of its local solution space

that are more likely to be contained in the composite solu-
tion space as well. By focusing its search in areas that are
likely to be mutually acceptable, the agent’s work is more
productive and will tend to improve both solution quality
and system performance. However, there are implementa-
tion and performance costs associated with information
sharing and, in some situations, these costs may outweigh
the benefits.

We classified the costs of information sharing as involv-
ing: the generation of information to share; the translation
of information into and out of a shared language; the de-
termination of what information to communicate at any
given time; the transmission of information (not included in
our experiments); and local management (storage, retrieval,
and use of potentially conflicting assimilated information).
We observed these costs within the STEAM system and
found them to total approximately 10.17% of the overall
runtime. In this domain, the time spent in sharing informa-
tion is more than balanced by the productivity enhance-
ment that comes from focusing on mutually acceptable ar-
eas of the composite solution space: We recorded mean
improvements in solution quality of 5.72% and in runtime-
per-solution of 40.62%.

Our experience with information sharing suggests some
conflicting perspectives on its achievement in systems of
heterogeneous reusable agents. On the one hand, our ex-
periments showed that information sharing can be potent
tool for improving system performance, both in terms of
solution quality and runtime. On the other hand, we found
sharing difficult to realize effectively because it utilizes both
global understanding of the needs of a complete system
and an in-depth understanding of characteristics of indi-
vidual agents. Either the application developer (who inte-
grates a set of reusable agents into a comprehensive sys-
tem) or the agent implementers (who build individual
agents) must be responsible for achieving information

Fig. 8. Information-sharing costs in STEAM.
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sharing in a multiagent application. The application devel-
oper cannot be expected to have a deep enough under-
standing of individual agents to install mechanisms such as
the postsearch filter described above. Likewise, the agent
implementers don’t know what information will be needed
or available in the system and must therefore make deci-
sions about what mechanisms to install in individual agents
in an ad hoc manner.

Can reusable-agent search systems be built without giv-
ing agents the ability to exchange metainformation? The
answer depends on what is required. Multiagent search
without metainformation reduces to blind search or possi-
bly search guided by local heuristics in the composite
search space. In small, simple application systems, this may
be enough. However, reusable agents that cannot coher-
ently focus their search are unlikely to be effective in com-
plex application systems. Future research in reusable-agent
systems should examine questions of balancing the infor-
mation-sharing capabilities of agents with the benefits of
sharing various types of information. It may be that some
general guidelines will emerge that can be applied by agent
implementers to decide what capabilities are likely to be
most beneficial and cost-effective in an agent.

In conclusion, we have shown that information sharing
and assimilation can enhance system performance in the
STEAM system. Although there is no basis on which to gen-
eralize any specific figures outside of STEAM, the STEAM
domain is typical of a class of small-scale globally coopera-
tive design domains and our results indicate that informa-
tion sharing and assimilation can improve performance in
this class of systems. Furthermore, the categories of infor-
mation-sharing costs hold across all domains. Both the em-
pirical evidence demonstrated here and intuitive arguments
for the benefits of focused search suggest that information
sharing and assimilation will be effective in more complex
domains.

Although sharing metainformation is potentially benefi-
cial, it is not particularly easy to achieve. Most of the work
must be done at agent-implementation time when nothing
is known about the application system(s) into which the
agent will be embedded. The costs of making agents that
are highly proficient in sharing and using assimilated in-
formation may outweigh the benefits that accrue from ap-
plying those capabilities. Future work may clarify the
boundaries of benefit versus hindrance based on types of
information and the capabilities required by agents to use
those various types. However, it is clear that information
sharing and assimilation should be considered a potential
source of performance enhancement when designing dis-
tributed-search systems comprising heterogeneous reusable
agents.
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