
An Application of Automated Negotiation to Distributed Task Allocation∗

Michael Krainin, Bo An, Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
{krainin, ban, lesser}@cs.umass.edu

Abstract

Through automated negotiation we aim to improve task
allocation in a distributed sensor network. In particular, we
look at a type of adaptive weather-sensing radar that per-
mits the radar to focus its scanning on certain regions of
the atmosphere. Current control systems can only compu-
tationally handle the decision making for a small number
of radars because of the complexity of the process. One so-
lution is to partition the radars into smaller, independent
sets. Redundant scanning of tasks and loss of cooperative
scanning capabilities can occur as a result. With negoti-
ation we can reduce these occurrences, helping to ensure
that the correct radars scan tasks based on the overall so-
cial welfare. We develop a distributed negotiation model
where on each cycle the overall system utility improves or
remains constant. Experimental results show that as com-
pared to the centralized task allocation mechanism, the pro-
posed distributed task allocation mechanism achieves al-
most the same level of social welfare but with a significantly
reduced computational load.

1. Introduction

This paper explores the use of negotiation for a network
of short-range, adaptive radars called NetRad [11], which
work together as described in the next section in order to
improve weather detection at low elevations. NetRad adap-
tive radars are controlled by the Meteorological Command
and Control (MCC) system, which gives them instructions
as to where to scan based on emerging weather conditions.
In the context of MCCs, a task is a weather phenomenon in
need of being scanned. The process of allocating tasks to
the radars, however, takes an amount of time exponential in

∗This work was supported primarily by the Engineering Research Cen-
ters Program of the National Science Foundation under NSF Cooperative
Agreement No. EEC-0313747. Any Opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect those of the National Science Foundation.

the number of radars and weather-tracking tasks which the
MCC must consider. As outlined in [4], one approach to
handling these combinatorics as the radar network is scaled
up is to partition the network control so that there are mul-
tiple MCCs. Each MCC is responsible for controlling a set
of radars, and no radar is in the radar set of more than one
MCC. Unfortunately, if MCCs do not know each others’
scanning strategies, redundant scanning can occur. Addi-
tionally, in certain situations it is very advantageous for a
task to be scanned by multiple radars, but some of these op-
portunities can be lost when these radars are controlled by
different MCCs. To prevent these undesirable behaviors, we
will use automated negotiation as a means of task allocation
among MCCs.

Many approaches have been used for task allocation in
the past. Often there is a focus on conserving limited re-
sources [10][17], but the sensors in this application are
resource-rich, and the primary concerns are speed of com-
putation and quality of scans. The process needed for allo-
cating tasks is similar to that of coalition formation [1][2];
however, the agents involved are not individual radars but
rather groups of radars. Each decision to either join or quit
a coalition involves a potentially very costly computation.
Although [17] deals with allocating tasks in a clustered sen-
sor network, its goal of energy minimization is not appro-
priate for this application.

Our approach to negotiation is one which uses marginal
utility calculations to determine which MCC benefits most
from altering its configuration. In doing so we monotoni-
cally increase the social welfare. This approach still allows
for concurrency in the network and also resolves issues of
how multiple MCCs can interact to handle tasks on partition
boundaries. The concurrency that results when each MCC
runs its own optimization is particularly important because
a centralized approach may only handle a few radars and
a few tasks given its approximately 30 second time limi-
tation; whereas, spanning the United States could require
thousands of radars. Through automated negotiation, we
can allow for concurrency and properly handle issues in-
volving multiple MCCs. Although we can potentially in-

crease processing power and communication bandwidth at
the centralized site, the distributed resource allocation ap-
proach has some additional advantages such as higher re-
liability and scalability. The spacial locality of tasks also
makes partitioning a particularly appealing option.

The rest of the paper is structured as follows. Section 2
introduces the NetRad radars and Meteorological Com-
mand and Control more thoroughly. Section 3 discusses the
simulator used to obtain the results later in the paper. The
negotiation scheme proposed for this application as well as
its implementation are in Section 4. Section 5 gives the
results of our experiments. In Section 6, we investigate sce-
narios in which the negotiation performs particularly well
or particularly poorly. Section 7 describes the use of this
protocol in the physical weather-sensing network. Finally,
our conclusions and possible future work are contained in
Section 8. Related work is discussed throughout.

2. Architecture Overview

The MCC system is a closed-loop control system in that
it responds to the emerging weather events based on de-
tected features in the radar data and end-user concerns that
may vary over time. End-users such as forecasters, emer-
gency managers, and researchers can provide information
as to what sort of data they are looking for and how fre-
quently. This end-user data goes into determining the pri-
ority of any given task. Consequently, the MCC ranks the
importance of tasks so as to give preference to the data users
want.

The NetRad radar is a radar specially designed for the
purpose of quick detection of low-lying meteorological phe-
nomena such as tornadoes. They are short-range radars used
in dense networks, thereby alleviating blind-spots caused
by the curvature of the Earth. NetRad radars additionally
do not use the traditional sit-and-spin strategy; rather, they
can be focused to scan only in a particular volume of space.
By using the combined data gathered by the NetRad radars,
scanning strategies may be created which target radar scan-
ning more effectively than a simple sit-and-spin technique.

The MCC gathers moment data from the radars and runs
detection algorithms on the weather data. The results of this
analysis lead to a set of weather-scanning tasks of interest
for the next radar scanning cycle. The MCC then deter-
mines the best set of scans for the available radars that will
maximize the sum of the utility associated with the chosen
tasks according to a utility function based on the end-user
priorities. These scans are used by the NetRad radars on the
next cycle of this process each cycle being approximately
thirty seconds.

The utility for a task from a single radar is the priority of
the task multiplied by a factor meant to represent the qual-
ity of the data that would result from the scan. This factor

is itself a combination of factors: (coverage factor) × (dis-
tance factor + elevation factor). These represent the amount
of the scanning task that is covered by the scan of a radar,
the distance of the scanning task region of interest from the
radar, and the number of elevations scanned respectively.
The elevation factor is weighted nine times as heavily as
the distance factor; the exact values are determined by a
step function. Using this formula, the MCC considers both
the importance of the data to the user and how well it would
be able to collect that data. For a more in-depth description
of the MCC system, see [18], or see [7] for more details on
the utility function.

3. Simulator

To test out new ideas, we have created an abstract simu-
lation of the NetRad radar system. The primary focus of the
simulator is to determine how best to decentralize control
and as such abstracts away details of the actual system. The
simulator, built on top of the Farm simulator framework [5],
consists of a number of components. Radars are clustered
based on location, and each cluster of radars has a single
MCC. Each MCC has a feature repository where it stores
information regarding tasks in its spacial region, and each
task represents a weather event. It also has an optimization
function, which takes the tasks from the feature repository
and returns scans for each of the radars belonging to the
MCC as well as the value of the scans as determined by
the utility function. The simulator additionally contains a
function that abstractly simulates the mapping from physi-
cal events and scans of the radars to what the MCC even-
tually sees as the result of those scans. Depending on the
elevations scanned, the number of radars scanning, the type
of task, and the speed of scanning, it assigns error values to
the attributes of the task within certain bounds. In this way,
the MCCs do not see exactly what is there but rather some-
thing slightly off. Through this process, MCCs discover and
track the movement of the weather events.

Tasks are abstracted and are represented as circular ar-
eas. Each task has a position, a velocity, a radius, a priority,
a preferred scanning mode, and a type. The preferred scan-
ning mode is meant to encapsulate the elevations that need
to be scanned to get the most accurate results in scanning the
event. Tasks may be one of a few different types: storms,
rotations, reflectivity, or velocity. Each of these types has
its own distributions for the characteristics described above.
The tasks are added into the system by an event genera-
tor that places a set number of weather events randomly in
the region the radars occupy. The event generator sets all
other attributes of the tasks randomly within certain bounds
which depend on the type of task.

Tasks may also be either pinpointing or non-pinpointing
meaning either there is, or is not, a significant gain by scan-

ning the associated volume of space with multiple radars
at once. The utility gained from scanning a pinpointing
task increases with the number of radars scanning the task;
whereas, the utility for a non-pinpointing task is the maxi-
mum of the utilities from the individual radars. This final
utility for a task is calculated the same way in the simulator
as it is in the real system. Similarly, the optimization func-
tion used by MCCs in the simulator for maximizing these
utilities is the same as the one used in the real system.

Several abstractions are used to simplify the simulator.
Most notably, time is discretized into units of system cycles.
Rather than having a beam sweep across moving targets, the
scans are instead represented by wedges of scanning area,
and all motion of tasks occurs between cycles. This is a
reasonable approximation as each cycle represents only 30
seconds of time, and the radars have a range of approxi-
mately 30 kilometers. The meteorological phenomena do
not change significantly at these small time scales.

4. Distributed Negotiation Model

Although switching from a centralized to a distributed
system increases speed of calculation of scanning strategies,
it also decreases quality of scanning. Each MCC ends up
with only a partial view of the physical space; tasks cross-
ing partition boundaries can thus be lost where they would
not in a centralized system. This problem can be allevi-
ated by allowing MCCs to share abstract level data such as
task location with each other for tasks lying on boundaries.
Each MCC also does not know what other MCCs will do,
which results in two distinct ways scanning quality can de-
cline. The first source of quality degradation is the loss of
the ability to cooperatively scan pinpointing tasks on bound-
aries, which can be solved by coordinating scans between
MCCs and sharing resulting raw data. The second source of
lessened quality is redundant scanning. Most tasks do not
require scanning by multiple radars, but without any extra
mechanism, each MCC will believe it should scan all tasks
on partition boundaries. This can also be helped by coordi-
nating scans. Through negotiation, we can help prevent all
of these causes of poorer scanning.

Negotiation has been used in distributed sensor networks
in the past; however, previous techniques are not entirely
appropriate for these weather-sensing radars. For example,
[15] uses an argumentation-based approach to coalition for-
mation: an initiator attempts to recruit other sensors to scan
a specific task. In our domain, a per task negotiation would
not be feasible due to time limitations.

Contract-net based negotiation schemes [8][13] face
similar limitations in the NetRad radar network. Although
the contract net protocol’s generality allows for both coop-
erative and self-interested agents by allowing each agent to
make bids based on a local utility function, it is not a suit-

able protocol. The agents are strictly cooperative in this
domain, with the relevant measure being the social welfare.
The need to consider specific subsets of tasks to add or re-
move leads to an excessive number of marginal utility cal-
culations. Every time an MCC’s neighbor changes its scan-
ning strategy, that MCC must perform potentially as many
optimizations for marginal utility calculations as the size of
the powerset of the boundary tasks belonging to it. As we
will see, by properly structuring the negotiation and taking
the focus of the negotiation away from individual tasks or
sets of tasks, we can reduce this number to one.

Our negotiation scheme is a hillclimbing algorithm with
the goal being to monotonically increase the social welfare
each round. We chose utilitarian social welfare as the rel-
evant measure because we want to maximize the average
value we receive per task. As [3] discusses, there are other
measures which could be used instead such as the egalitar-
ian social welfare and the elitist social welfare. For any
given timestep, we are not looking to make sure that each
task is at least partially scanned, so an egalitarian model
would not make sense for our purposes. Also, while it can
make sense to scan certain tasks very thoroughly, we do not
always want to focus on maximizing the utility for a single
task while starving others. Therefore, we chose utilitarian
social welfare as the measure to maximize.

To do this, we use marginal utility calculations to de-
termine what configuration change will produce the great-
est overall benefit. Negotiation proceeds in rounds, and
MCCs need only utilize their optimization functions once
per round. Each marginal utility calculation made re-
flects any configuration changes that were made in previ-
ous rounds of the negotiation. In a way, the optimization
run each round is analogous to a search for a specific type
of contract. This contract is similar to the OCSM-contracts
discussed in [14], but with the additional constraint that it is
only one agent making any changes.

4.1. Definitions

For negotiation, there are multiple MCCs, which we
will denote M =

{
M1, M2, . . . ,M|M |

}
. These MCCs

control radars R =
{
R1, R2, . . . , R|M |

}
, where Ri ={

ri,1, ri,2, . . . , ri,|Ri|
}

is the set of radars controlled by
Mi. Over the area the radars scan there are a number of
tasks, which are weather phenomena to be scanned: T ={
t1, t2, . . . , t|T |

}
. Ti ⊆ T is the set of tasks observable

by Mi’s radars. Out of the tasks in Ti, some are boundary
tasks, meaning they lie in the region of more than one MCC,
and we will call this set T o

i .
A configuration, or scanning strategy, of Mi is

a set of sweeps for Ri and is defined as Ci ={
si,1, si,2, . . . , si,|Ri|

}
, where si,j is the sweep for radar

ri,j . The global scanning strategy is just C =

{
C1, C2, . . . , C|M |

}
. In Sections 2 and 3, we defined the

notion of utility of a single task based on the scanning strat-
egy of some collection of radars. For the scanning strategy
Cpartial ⊆ C of some number of MCCs, we may represent
this utility for a task ti with the notation U

(
ti, C

partial
)
.

The utility for a set of tasks is defined to be the sum of the
utilities for the individual tasks. With this definition we may
define the social welfare ω = U (T, C) =

∑
ti∈T U (ti, C).

In our experiments, we define a neighbor of Mi to be
any MCC whose radars overlap in space with those con-
trolled by Mi. Communication among neighboring MCCs
can be decreased by refining the definition to be just those
MCCs that share a task with Mi. During negotiation, an
MCC Mi will know not only its configuration Ci, but
also the configurations Cneigh

i ⊂ C of the neighboring
MCCs. With this information, Mi may calculate the util-
ity of Ti for its own configuration and its neighbors con-
figurations, U

(
Ti, {Ci} ∪ Cneigh

i

)
. Thus it may also cal-

culate the marginal utility for a change in configuration
from Ci to C ′

i as Umarg (C ′
i) = U

(
Ti, {C ′

i} ∪ Cneigh
i

)
−

U
(
Ti, {Ci} ∪ Cneigh

i

)
. Note that only the scans in Cneigh

i

that cover tasks in Ti are considered in calculating U.

4.2. The Negotiation Model

Before MCCs can begin the main stages of negotiation,
each MCC Mi communicates with its neighbors to make
sure its set of boundary tasks T o

i is in agreement with
the boundary tasks of other MCCs. If one MCC’s radars
scanned a region more recently than those of a neighbor-
ing MCC, the one that scanned more recently likely has a
better idea of the tasks in the region. The most recent task
information is used by all MCCs. Mi’s initial value for Ci

is calculated with Cneigh
i = ∅. Each MCC shares its ini-

tial configuration with other MCCs, and the configurations
collected by Mi become the initial Cneigh

i . Now that each
MCC has these initial values, the main stages of negotiation
can begin. Rounds are run until a time limit of approxi-
mately 30 seconds is reached. This time limit is set because
each system pulse is restricted to a very brief time period in
order to keep the radars sufficiently adaptive. Each round k
consists of the following sub-stages:

1. Sub-stage k1 (proposing) : Each MCC Mi

computes its best configuration given Cneigh
i

as C ′
i = argmax C′

i
U
(
Ti , C ′

i ∪ Cneigh
i

)
−

U
(
Ti , Ci ∪ Cneigh

i

)
. This is equivalent to simply

argmax C′
i

U
(
Ti , C ′

i ∪ Cneigh
i

)
. Mi additionally

calculates the marginal utility of this potential move,
Umarg (C ′

i) as defined above. Note that if neither Ci

nor Cneigh
i changed from the previous round, then

C ′
i and Umarg (C ′

i) from the previous round can be
used again without any additional computation. Mi

then sends its marginal utility and C ′
i to each of its

neighbors.

2. Sub-stage k2 (agreement selection): Each MCC Mi

received the marginal utilities from each of its neigh-
bors during sub-stage k1. Mi changes its configuration
to C ′

i if it has a higher marginal utility than any of its
neighbors, and the marginal utility is greater than zero.
In the case of a tie, the MCC with higher index num-
ber is the one to change its configuration. In this way
when one MCC changes its configuration, none of its
neighbors will change theirs.

3. Sub-stage k3 (informing of changes): Each MCC
sends out its current configuration to all of its neigh-
bors. Although most MCCs will not have changed
their configurations, this technique is used for sim-
plicity. An MCC may not know if its neighbor with
greatest marginal utility actually ended up changing
its configuration. In practice the number of messages
needed in this sub-stage could likely be decreased. For
each Mi, the configurations it receives become the new
Cneigh

i .

This approach is similar to the DBA algorithm [16]
and the LID-JESP algorithm [12], which makes use of the
DBA algorithm. These algorithms also take a hillclimb-
ing approach to multi-agent optimization. In LID-JESP,
agents begin with a random policy then each agent calcu-
lates its best policy given its neighbors’ current policies; if
an agent’s gain is greater than its neighbors’, it changes its
policy and sends its new policy to its neighbors. This is the
basic structure of our algorithm as well; however, we re-
strict ourselves to considering policies for a single timestep
at a time due to the enormous size of the action and obser-
vation spaces and the time-restrictions faced by MCCs. To
reduce the number of iterations needed, we start each MCC
not with a random configuration but with one that is likely
somewhat close to its final configuration.

Our algorithm also shares some of the problems faced by
LID-JESP. Primarily, there is some loss of concurrency by
requiring an MCC’s marginal utility to be greater than all of
its neighbors’. This is particularly problematic in the case
where chains of MCCs not making moves are formed. For
example if Mi’s marginal utility is greater than its neighbor
Mj’s, which is in turn greater than its neighbor Mk’s, nei-
ther Mj nor Mk will make a move. One possible solution
is the type of alteration introduced in the SLID-JESP algo-
rithm [6], which is to allow any move with positive marginal
utility with a certain probability. An alternative to this is a
mediation-based approach discussed further in Section 4.4.

Figure 1. Three radars belonging to different
MCCs

In Section 5 we will explore simple modifications to the
negotiation protocol to allow neighboring MCCs to make
moves simultaneously. The first idea we test is the most
obvious technique to try, which is to allow any MCC with a
positive marginal utility to make its move regardless of its
neighbors’ actions. This is akin to using SLID-JESP with
the probability for making a move set to one.

The other modification we explore performs a more ad-
vanced check of neighbors’ moves. Suppose an MCC Mi

has a positive marginal utility. For each neighbor Mj of Mi,
Mi determines whether its move conflicts with its neigh-
bors. If Mi’s marginal utility is greater or if the two MCCs
have no common boundary tasks, then Mj presents no rea-
son for Mi not to make its move. Otherwise, for each shared
boundary task tk, Mi compares U

(
tk, {C ′

i} ∪
{
C ′

j

})
to

U
(
tk, {Ci} ∪

{
C ′

j

})
and U (tk, {C ′

i} ∪ {Cj}). The pur-
pose of the comparison is to determine how the marginal
utilities change when the assumed configurations change.
As long as Mi can assure that both marginal utilities will re-
main positive, Mi’s move does not conflict with Mj’s move.
If an MCC has no conflicts with neighbors, then it makes its
move. Clearly, this modification requires that marginal util-
ity messages also include the proposed new configuration,
but the hope is that by increasing concurrency, this modifi-
cation will reduce the number of rounds needed.

Fig. ?? illustrates how negotiation works. t1 is a pin-
pointing task, so it gets a low value if scanned by only one
radar and a high value if scanned by more than one. The
negotiation begins with each MCC sending messages to its

neighbors containing descriptions of the common tasks be-
tween them. The MCCs then calculate their initial configu-
rations. Let us suppose that M1 would scan t2, M2 would
scan t3, and M3 would scan t1 and t3 as shown in part a of
Fig. 1. Each MCC then sends its initial configuration to its
neighbors.

The first round commences with each MCC determining
its best move based on the configurations it received from
its neighbors. M1 can now improve the social welfare con-
siderably by switching to the pinpointing task t1 since M1

now knows M3 is scanning it. M2 does not have any other
configuration options. M3 can slightly improve the social
welfare by focusing just on t1 since M2 is taking care of t3.
Each MCC sends its marginal utility to its neighbors. M1

likely has the highest marginal utility, so it would change its
configuration. The round ends with each MCC sending out
its configuration (part b of Fig. 1).

The second round starts with MCCs again calculating
the marginal utilities for their best moves. M1 and M2 do
not have any beneficial moves. M3 on the other hand can
still improve the social welfare by scanning only t1. The
MCCs again send out their marginal utilities, after which
M3 changes its configuration. The MCCs once more send
out their configurations. Part c of Fig. 1 shows the final con-
figurations. More rounds may be run in the time remaining
after the second round, but no new moves would be made
because no MCC has a beneficial move remaining.

4.3. Negotiation Implementation

Algorithm 1 MCC algorithm
round = 0
while time spent negotiating is less than the limit do

if round == 0 then
send and collect messages describing boundary
tasks
calculate configuration Ci without any Cneigh

i

send and collect messages describing configurations
collected configurations become Cneigh

i

end if
if Ci or Cneigh

i has changed then
recalculate best C ′

i and marginal utility
end if
send and collect messages containing marginal utilities
if this agent’s marginal utility is highest then

update Ci to C ′
i

end if
send and collect messages with new configurations
set Cneigh

i to the collected configurations
round + +

end while

Each MCC uses Alg. 1 for negotiating with other MCCs.
Configurations and marginal utilities are calculated as de-
fined in Sections 4.1 and 4.2. The algorithm requires no
centralized entity. Synchronization is accomplished by re-
quiring MCCs to wait for messages from each neighbor be-
fore proceeding, and the negotiation process is terminated
by each MCC if it has been running for a pre-specified
amount of time.

The algorithm makes the following assumptions. We
assume that all agents are cooperative. We can safely as-
sume this as it is the goal of each MCC to maximize the
social welfare. A second assumption is that the MCCs will
all know when to terminate negotiations and do so at the
same time. This can be accomplished by synchronizing the
clocks of the MCCs. The algorithm additionally assumes
that MCCs know the geometric layout of their neighbors’
radars; this is information that need only be sent once, so
the assumption is reasonable. One final assumption is that
neighbors will always respond, and their responses will get
through. For reliable radar nodes and a reliable data trans-
port protocol such as TCP, this is fairly reasonable, but to
make the algorithm more robust, one could add a timeout.
If no response is received within a certain amount of time
from an MCC, that MCC’s neighbors simply remove the
non-responsive MCC from their lists of neighbors. Thus
this type of negotiation allows for fault tolerance should
there be a failure of communication. One assumption we
do not make is that MCCs have the same representation of
tasks. Since utility calculations are based on scanning strat-
egy, an MCC does not need to know how its tasks relate to
its neighbor’s tasks.

4.4. System Properties

Proposition 1. If an MCC makes a move, all of its neigh-
bors keep their configurations.

Proof. An MCC Mi only makes a move if its marginal util-
ity is greater than its neighbors’, or the marginal utilities are
the same and Mi’s index is highest. Each of Mi’s neigh-
bors receives Mi’s marginal utility, so each sees that ei-
ther its own marginal utility is less than Mi’s or its index
is lower than Mi’s. Therefore, if Mi makes a move, none
of its neighbors do.

The above property is necessary because Mi calcu-
lates its marginal utility as U

(
Ti, {C ′

i} ∪ Cneigh
i

)
−

U
(
Ti, {Ci} ∪ Cneigh

i

)
. If Cneigh

i also changes and be-

comes Cneigh ′
i , then the actual change in social welfare is

U
(
Ti, {C ′

i} ∪ Cneigh ′
i

)
−U

(
Ti, {Ci} ∪ Cneigh

i

)
. It may

be that this new difference is negative even if the original
difference is positive.

As a sidenote, the possibility that the new difference
could in fact be greater than the old difference leads to in-
teresting possibilities. For instance, if multiple MCCs have
moves that by themselves are beneficial, it may be worth-
while to begin a mediation process such as that used in [9]
to determine the possible benefits of performing multiple
moves simultaneously. The usefulness of such a technique
would depend on how often conflicts arise between poten-
tial moves, how often it is beneficial for multiple moves
to be made together, and how often they are all eventually
made. We aim to achieve a similar goal as mediation in our
experiments in which we change when an MCC is allowed
to make a move.

Proposition 2. We may guarantee that for the same set of
tasks, we will never do worse with negotiation than without
negotiation.

Proof. Suppose an MCC Mi changes its scanning strat-
egy from Ci to C ′

i at some point during negotiation, thus
changing the global configuration from C to C ′. The
change in social welfare is U (T, C ′) − U (T, C), which
is
∑

tj∈T U (tj , C ′)−
∑

tj∈T U (tj , C). All of these terms
cancel except for those tj for which U (tj , C ′) 6= U (tj , C).
Since the only change to C was from Mi’s configuration
change, the only tasks for which this inequality could be
true are those which Mi is capable of scanning, which is Ti.

Thus the change in social welfare is U (Ti, C
′) −

U (Ti, C). But since the only tasks involved here are those
of Mi, only a subset of the global configuration has any af-
fect on this value. In particular, any MCC capable of scan-
ning a task tj ∈ Ti must be a neighbor of Mi because tj
lies in a region also scannable by Mi. Therefore the subset
of the global configuration affecting tasks in Ti is Cneigh

i

together with Mi’s configuration.
This now makes the change in social welfare

U
(
Ti, {C ′

i} ∪ Cneigh
i

)
−U

(
Ti, {Ci} ∪ Cneigh

i

)
. This is,

however, the definition of Umarg (C ′
i). MCCs only make

moves when the marginal utility is positive, so the change
in social welfare from Mi’s move must be positive. Thus
any changes that arise from negotiation can only result in
an increase in social welfare.

Proposition 3. Alg. 1 may complete without finding the op-
timal solution.

Proof. Fig. 9 depicts a scenario where negotiation results in
a sub-optimal allocation. The MCCs would both be better
off scanning the pinpointing task t2, but neither MCC has a
positive marginal utility until the other commits to scanning
the pinpointing task. Therefore, M1 continues scanning t1
and M2 continues scanning t3.

Proposition 4. If at least one MCC has a positive marginal
utility for a round, a move will be made in the round.

Figure 2. Radar layout used for experiments

Proof. Let Mi be the MCC with highest marginal utility.
If there are multiple MCCs tied for the highest marginal
utility, let Mi be the one with highest index. Since there is
an MCC with positive marginal utility, Mi must also have
positive marginal utility. Mi cannot be required to keep its
configuration based on its neighbors marginal utilities and
indices based on the way we selected Mi. Since Mi has
positive marginal utility and no restrictions from making a
move, it makes the move.

5. Results

5.1. Experimental Settings

Here we examine the effectiveness as well as the cost of
negotiation embodied in Alg. 1. The first set of results were
obtained using the radar arrangement depicted in Fig. 2, in
which there are nine radars divided among three MCCs.
Each trial performed for these results was a simulation of
five thirty-second system cycles. Because of the possibil-
ity of weather-events going unseen, the variations in results
between trials could be large, but averaged over 5,000 tri-
als, the resulting graphs are quite smooth. For these trials,
negotiation was allowed to proceed until a round concluded
without any move as opposed to running rounds until a time
limit. The purpose of this was to see for how many rounds
the negotiation would ideally be allowed to run. All results
given are as a function of the number of tasks in the bound-
aries between MCCs. Specifically, this measurement is of
the number of tasks which are scannable by two or more
MCCs out of 12 total tasks.

For comparison, the results in Fig. 3 show the perfor-
mance of a system which allows cooperative scanning of
pinpointing tasks if it happens to occur but does not allow
negotiation for coordinating actions. So for example, if two
MCCs happen to scan the same pinpointing task, they may
share their data to get a good result for that task. Also shown
are the results for a system for which MCCs are separate en-
tities, which do not interact with each other. This technique
has no cooperative scanning, so the values for a boundary
tasks are counted differently; it is the highest value received

Figure 3. The performance as compared to a
centralized system for the nine radar system

from a single MCC. In this way there is no double count-
ing of boundary tasks. The percent drop in utility shown
for each technique is with respect to a centralized system,
meaning all nine radars belong to a single MCC.

We also include results in Fig. 5 and Fig. 6 for a system
for which there is a total of 50 tasks over 49 radars, divided
into 12 MCCs. We do these experiments to see how well the
negotiation protocol scales up as we add more tasks, radars,
and MCCs. We also use these trials with larger numbers of
MCCs in order to evaluate the effects of the concurrency we
lose as a result of not allowing neighboring MCCs to make
moves in the same round. We compare the results for the
regular negotiation protocol to those of the two modifica-
tions to the protocol described in Section 4.2. Again, the
first modification allows any MCC with positive marginal
utility to make a move. The second modification has MCCs
do a more advanced check of neighbors’ moves before mak-
ing a move.

5.2. Observation I

The negotiation provides a result generally within 5%
of that of a centralized system as shown in Fig. 3. Be-
cause of Prop. 3, the performance is still lower than the
centralized system, though. While it is clear from Fig. 3
that cooperative scans alone can help out considerably as
compared to the system with no cooperative scanning, ne-
gotiation provides an extra advantage. By reducing redun-
dant scanning and setting up additional cooperative scans,
negotiation brings the performance of a decentralized sys-
tem near that of a centralized one.

Figure 4. The number of rounds required to
complete negotiations with nine radars, three
MCCs, and 12 tasks

5.3. Observation II

Based on the number of rounds in Fig. 4, we can see
that the number of optimizations which must be performed
by each MCC is quite low. Looking back at the algorithm,
one can see that the maximum number of calculations each
MCC will have to do is equal to the number of rounds in the
negotiation plus one. For this layout of MCCs, the number
of calculations equals the number of rounds plus one. The
reason for the equality is that all MCCs neighbor all oth-
ers, so if none of them make a move, the negotiation simply
terminates. In the general case, an MCC and its neighbors
could all keep their configurations, resulting in some MCCs
not having to recalculate their configurations in the follow-
ing round. Additionally, the number of messages each MCC
needs to send is linear in the number of rounds that are run.
Messages are broadcast by MCCs a fixed number of times
each round.

5.4. Observation III

As noted in the previous observation, the number of opti-
mizations required of each MCC is approximately the num-
ber of rounds in the negotiation. Fig. 4 shows that the num-
ber of rounds needed is generally fairly low, at least for this
setup of MCCs and tasks. Because each MCC is a neighbor
of the other two MCCs in the example used, the number of
moves made in the negotiation is equal to exactly the num-
ber of rounds minus one. What this suggests is that for this
setup, not many moves are needed. For larger numbers of
radars and MCCs, the number of moves goes up, but the
neighbor relation does not form a |M |-clique, so multiple

Figure 5. The performance as compared to
the standard negotiation protocol for the 49
radar system

moves can be made in the same round. Thus the number
of rounds needed would remain fairly low. Even in trials
with 49 radars, the number of rounds needed is generally
under four, as shown in Fig. 6. The ramifications of this are
that few optimizations are required of each MCC, making
negotiation a reasonable option for a real-time system.

5.5. Observation IV

The utility for the standard negotiation protocol is almost
identical to the utilities for the two modifications to the pro-
tocol that were described in Section 4.2, as shown in Fig. 5,
but the number of rounds varies. It is not surprising that the
ability for neighboring MCCs to make simultaneous moves
does not increase the utility. The modifications allow for
simultaneous moves given that each MCCs wants to make
its move to begin with, but the modifications do not allow
reasoning during marginal utility calculations about what
combinations of moves would be beneficial. Thus situations
such as those illustrated in Fig. 9 are not improved by the
modifications. That would require additional mechanisms.

Although the modified protocols provide similar utilities,
we can see in Fig. 6 that the number of rounds needed can
be quite different. A negotiation that uses a more advanced
check requires fewer rounds as it increases concurrency in
the network by letting neighbors make moves during the
same round. The same often also happens with the modi-
fication that does no check of neighbors’ marginal utilities,
but there is another effect which brings the average number
of rounds up significantly. Because in general we cannot
guarantee that the social welfare increases when neighbor-
ing MCCs make simultaneous moves, neighboring MCCs
can get into situations in which they loop between con-

Figure 6. The number of rounds required
to complete negotiations with 49 radars, 12
MCCs, and 50 tasks

Figure 7. Negotiation can eliminate redun-
dant scanning.

figurations. We cap the number of rounds at 20 to keep
these looping agreements from continuing indefinitely. An-
other way to prevent these loops from continuing is to use a
probability lower than one for MCCs to make simultaneous
moves given that they both have positive marginal utilities.
These results demonstrate that there are ways to reduce the
number of rounds needed for negotiation, and even for a
system as large as 49 radars, we can keep the number of
rounds quite low.

6. Scenario Analysis

There are particular situations for which negotiation pro-
vides a particularly large advantage. One such situation is
demonstrated in Fig. 7. In this example, t2 has a higher pri-
ority than t1 and neither task is pinpointing. M1 and M2

both scan t2 when no negotiation is used. Without negotia-
tion M1 assumes it is better to scan the higher priority task.
Since t2 is not a pinpointing task, M1 would be better off
scanning t1. Negotiation allows M1 to take M2’s configu-
ration into account when comparing its options, and thus it

Figure 8. Negotiation can set up cooperative
scans.

Figure 9. No change in configuration from
a to b can be made in a single negotiation
round.

leads to both tasks being scanned. This sort of improvement
is based on the reduction of redundant scanning.

Another situation in which negotiation provides an ad-
vantage is in setting up cooperative scans. In Fig. 8, t1 is a
non-pinpointing task, and t2 is a pinpointing task. t2 gets
a lower value than t1 when its volume is scanned with only
one radar but a much higher value than t1 when it is scanned
by multiple radars. M1 scans t1 when there is no negotia-
tion because it does not know M2 is scanning t2. Knowing
M2’s configuration, though, it becomes much more benefi-
cial for M1 to switch to scanning t2 so that the two MCCs
may cooperatively scan t2. Negotiation allows the MCCs
to set up cooperative scans that would not have occurred
otherwise.

Despite the advantages of negotiation, there are still
drawbacks. One example is shown in Fig. 9. In this situ-
ation, we would want both MCCs scanning the pinpointing
task t2 as shown in part b of the figure, as opposed to scan-
ning t1 and t3. Neither MCC can make a move until the
other does. A move for either MCC to t2 would result in a
drop in social welfare. In general, the type of situation that
this negotiation cannot deal with well are those for which
temporary drop in social welfare must be endured in order
to achieve a greater gain later.

Figure 10. The centralized model

Figure 11. A generalized hierarchy

7. Real World Usage

Due to the promising results for this negotiation proto-
col in simulation, it has been implemented for the physi-
cal radar network as well. The removal of abstractions has
some interesting effects on the protocol and invites some
new lines of investigation. Most notably, in the physical
system the control flow is more tiered than in the simulator.
The optimization and the feature repository are separate en-
tities as is the feature detection process. In normal, central-
ized operation, only one of each of these components runs,
and together they form the MCC as depicted in Fig. 10.
This is also the model used by the simulator, except that
multiple MCCs may run concurrently. We now have the op-
tion, though, of using more general hierarchical structures
of feature detection algorithms, feature repositories, and op-
timization modules shown in Fig. 11.

Inherent in this freedom of structure is the possibility
to create self-organizing structures and self-repairing struc-
tures. By adapting the structure based on emerging weather
conditions, we can reflect the set of tasks in the structure of

the MCC, thereby reducing the number of boundary tasks.
In this way, the system may be able to organize in ways that
make cooperation easier or reduce the need for communi-
cation. Dynamic structures also allow for increased fault
tolerance and the ability to compensate for varying compu-
tational loads throughout the system.

Also made clear from the components of the real system
is that data can be shared at various levels of abstraction.
In the simulator, all weather-phenomena represented at the
task level, but in reality there is a spectrum ranging from
the raw radar data to the tasks. MCCs can share raw data
or some compressed form of it, features resulting from the
detection algorithms, or tasks resulting from clustering the
features.

For pinpointing tasks, data from multiple radars must
be combined because individual radars can only measure
velocity in the radial direction. The most straightforward
way to combine the velocities is at the level of raw data by
adding components of the velocity vector field. Doing so
requires MCCs to share raw data, which is represented by
the dashed arrows between detection algorithms in Fig. 11.

There are a number of ways we can cut down on the
amount of information that needs to be sent when transmit-
ting raw data. The general techniques are restricting the
volumes for which any data is shared and compressing the
raw data by averaging over larger volumes. Obviously, data
corresponding to volumes that can only be scanned by one
radar need not be shared; only the boundary regions must
be shared. We can further restrict what data need to be sent
by using some additional domain knowledge. Using indi-
cators such as the single radar detections, MCCs can get a
good estimate of where possible regions of interest are, and
MCCs can push and pull data based on these regions of in-
terest. Similarly, based on the level of interest of a region,
the data can be compressed at varying levels of granularity.
Using techniques such as these, multi-radar detections can
be done efficiently in a decentralized MCC system.

An alternative to sharing the raw data for pinpointing
tasks is to use the radial components alone to do veloc-
ity detections on a per MCC basis. MCCs can then share
these detections and merge them. This technique provides
a savings in communication cost, but it has its tradeoffs1.
For one, the radial component for even a very strong wind
could be very small, so to ensure there are features for those
winds an MCC must have a low threshold for adding ve-
locity features. Thus, there could be a lot of features which
must be communicated and processed. Another problem is
in actually combining these radial velocity detections into
a set of detections resembling what a centralized detection
algorithm would produce.

By adding the components of features that roughly over-
lap, MCCs can get a general picture of the combined veloc-

1Special thanks to Eric Lyons for his analysis.

ity detections. For the analysis currently done in the MCC
system, there is no major loss. The problems come in when
a more detailed vector field is needed. For instance, the best
indicators for predicting how a storm will change are the up-
drafts, which require measurements of vorticity. Thus, for
more advanced detecting and predicting, raw data in some
form will have to be shared. For simple detection of veloc-
ity features, data can be shared and combined at the feature
level.

For non-pinpointing tasks, what gets detected is reflec-
tivity, which is a scalar quantity. Therefore, single radar
data is sufficient to perform the necessary detections. MCCs
can share these detections with each other to get a better
idea of the weather in the corresponding volumes, but no
altering of these features is needed in the way it was when
combining radial component velocity detections. MCCs
still benefit from sharing these detections, though, as one
MCC may not have scanned a volume as recently as an-
other, and certain radars may experience more attenuation
then others when looking at particular volumes.

Once MCCs have all of their features, they can begin
negotiation. Before negotiation, MCCs share data at the
feature level (depicted with dashed arrows between feature
repositories) as opposed to sharing all of the data from the
radars because it is much less data to be sent, but it is not as
coarse as the task level. It also carries the additional benefit
of allowing each MCC to easily decide its own regions of
interest. Finally, we depict the communication that occurs
during the negotiation with the arrows between optimiza-
tion nodes in Fig. 11. The negotiation consists of messages
containing marginal utilities and scanning strategies. These
messages are of negligible size in comparison to the raw
radar data.

We can save a lot in communication and processing costs
by not transporting all of the raw data, but in doing so, we
run the risk of tasks having different representations in dif-
ferent MCCs. This is generally not of great significance
as the negotiation operates at the level of scanning strate-
gies rather than individual tasks; however, the differences
in representation could conceivably change the decisions
MCCs make. Clustering of features into tasks in a de-
centralized network can result in two smaller tasks where
the central clustering would return one. This raises two is-
sues. The first is that if the centroid of a task is outside of
a radar’s range, the radar gets no value for that task; split-
ting a task results in one of the tasks having a centroid in
range. Thus, decentralized clustering promotes scanning
the edges of tasks if it can, which may actually be a better
design than the original centroid constraint. The main con-
cern, though, is ensuring that MCCs do not doubly count
what was previously one task because it becomes two. In-
tuitively, we should not have problems because each MCC
considers only one of these subtasks when computing the

marginal utilities; however, more testing is required to de-
termine the effects of task decomposition.

To evaluate the effectiveness of negotiation outside of the
simulator, we need some way to compare the centralized
and decentralized systems when run in the same weather
scenarios. We can do so by using archived or emulated radar
detections. To the extent that is possible with the amount of
data in those detections, we can create a set of oracle tasks
from the data. These oracle tasks represent the tasks a radar
network would perform if it had perfect information and
unlimited scanning resources. We can run the system in a
variety of modes and compare the effectiveness of the re-
sulting scans with respect to the maximum possible value
for the oracle tasks. Additionally, we can do these tests in
a number of ways. To see how the techniques will perform
given identical tasks, we can use the oracle tasks as the task
input. To see the effects of clustering, we can use the same
features as input but allow the clustering to be done inde-
pendently of the oracle clustering. Finally, if we want to see
downstream effects, we can selectively input features based
on the scans in the previous heartbeat. Comparing against
an oracle gives us a way to measure effectiveness with real
weather data.

8. Conclusions and Future Work

We introduced a hillclimbing approach to negotiation for
a time-restricted domain based upon the DBA algorithm.
We applied this algorithm to an abstract simulation of Ne-
tRad radars to show its usefulness in distributed radar net-
works. Based on the results obtained, negotiation seems
to do an excellent job of approaching the performance of a
centralized system. Additionally, the low number of opti-
mizations required of each MCC makes it a great candidate
for a decentralized technique because of the time-restricted
nature of weather radars.

We have implemented this negotiation protocol in the ac-
tual NetRad system and have begun tests on this system.
Some interesting questions arise in terms of sharing task in-
formation. We would like to investigate the ramifications
of different data sharing techniques and choose a technique
which best balances the amount of data being sent and the
cost we incur in having differing task representations.

There are also some possible changes that could be made
to the negotiation protocol. For example, an anytime ver-
sion of the optimization could be used in order to allow ne-
gotiation to proceed at varying degrees of precision. Also,
so far we have only focused on accepting agreements which
increase the social welfare. By doing so we guarantee we
do not lose value; however, we may often get stuck in a
poor local optimum. If this is the case, it may sometimes be
beneficial to accept a poor agreement to help in the long run.
Applying simulated annealing to this application would be a

possibility to pursue. Another possibility to look into would
be multilateral negotiation in order to allow neighboring
MCCs to make moves that they otherwise would not con-
sider. As opposed the the methods explored in Section 5 for
allowing neighbors to make simultaneous moves, we would
be looking to alleviate situations like the one shown in Fig. 9
rather than simply increasing concurrency. A multilateral
approach could conceivably result in configurations which
would not otherwise be reached. By modifying the negotia-
tion in various ways, we hope to be able to get closer to the
optimal configuration.

References

[1] J. Chen, C. Zang, W. Liang, and H. Yu. Auction-based Dy-
namic Coalition for Single Target Tracking in Wireless Sen-
sor Networks. The 6th World Congress on Intelligent Con-
trol and Automation, 1:94–98, 2006.

[2] V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings.
Overlapping Coalition Formation for Efficient Data Fusion
in Multi-Sensor Networks. In Proc. of the 21st Nat. Conf.
on Artificial Intelligence, pages 635–640, 2006.

[3] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Negotiating so-
cially optimal allocations of resources. Journal of Artificial
Intelligence Research, 25:315–348, 2006.

[4] B. Horling and V. Lesser. Distribution Strategies for Collab-
orative and Adaptive Sensor Networks. In Proc. of the Int.
Conf. on Integration of Knowledge Intensive Multi-Agent
Systems, pages 497–504, 2005.

[5] B. Horling, R. Mailler, and V. Lesser. Farm: A Scalable En-
vironment for Multi-Agent Development and Evaluation. In
Advances in Software Engineering for Multi-Agent Systems,
pages 220–237. 2004.

[6] Y. Kim, R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Exploiting Locality of Interaction in Networked Distributed
POMDPs. In 2006 Spring Symp. Distributed Plan and
Schedule Management, pages 41–48, 2006.

[7] J. F. Kurose, E. Lyons, D. McLaughlin, D. Pepyne,
B. Philips, D. Westbrook, and M. Zink. An End-User-
Responsive Sensor Network Architecture for Hazardous
Weather Detection, Prediction and Response. In Proceed-
ings of the Second Asian Internet Engineering Conference,
AINTEC, pages 1–15, 2006.

[8] P. Lou. Negotiation-Based Task Allocation in an Open Sup-
ply Chain Environment. Proc. of the I MECH E Part B Jour-
nal of Engineering Manufacture, 220:975–985, 2006.

[9] R. Mailler, V. Lesser, and B. Horling. Cooperative Nego-
tiation for Soft Real-Time Distributed Resource Allocation.
In Proc. of 2nd Int. Joint Conf. on Autonomous Agents and
MultiAgent Systems, pages 576–583, 2003.

[10] G. Mainland, D. C. Parkes, and M. Welsh. Decentralized
adaptive resource allocation for sensor networks. In Proc. of
the 2nd USENIX Symp. on Networked Systems Design and
Implementation, 2005.

[11] D. McLaughlin, V. Chandrasekar, K. Droegemeier,
S. Frasier, J. Kurose, F. Junyent, B. Philips, S. Cruz-Pol,
and J. Colom. Distributed Collaborative Adaptive Sensing

(DCAS) for Improved Detection, Understanding, and
Prediction of Atmospheric Hazards. In 9th AMS Symp.
on Integrated Observing and Assimilation Systems for the
Atmosphere, Oceans, and Land Surface, January 2005.

[12] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Net-
worked distributed POMDPs: A Synthesis of Distributed
Constraint Optimization and POMDPs. In Proc. of the 20th
Nat. Conf. on Artificial Intelligence, pages 133–139, 2005.

[13] T. Sandholm. An Implementation of the Contract Net Pro-
tocol Based on Marginal Cost Calculations. 11th Nat. Conf.
on Artificial Intelligence, pages 256–262, 1993.

[14] T. W. Sandholm. Contract types for satisficing task alloca-
tion: I theoretical results. In Proc. of the AAAI Spring Symp.:
Satisficing Models, pages 68–75, 1998.

[15] L.-K. Soh and C. Tsatsoulis. Reflective Negotiating Agents
for Real-Time Multisensor Target Tracking. In Proc. of the
Int. Joint Conf. on Artificial Intelligence, pages 1121–1127,
2001.

[16] M. Yokoo and K. Hirayama. Distributed Breakout Algo-
rithm for Solving Distributed Constraint Satisfaction Prob-
lems. In Proc. of the 2nd Int. Conf. on Multiagent Systems,
pages 401–408, 1996.

[17] M. Younis, K. Akkaya, and A. Kunjithapatham. Optimiza-
tion of Task Allocation in a Cluster-Based Sensor Network.
In Proc. of the 8th IEEE Int. Symp. on Computers and Com-
munications, pages 329–334, 2003.

[18] M. Zink, D. Westbrook, S. Abdallah, B. Horling, E. Lyons,
V. Lakamraju, V. Manfredi, J. Kurose, and K. Hondl. Me-
teorological Command and Control: An End-to-end Archi-
tecture for a Hazardous Weather Detection Sensor Network.
In Proc. of the ACM Workshop on End-to-End, Sense-and-
Respond Systems, Applications, and Services, pages 37–42,
2005.

