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ABSTRACT

DATA REPROCESSING IN SIGNAL UNDERSTANDING SYSTEMS

SEPTEMBER 1996

FRANK I. KLASSNER, III

B.S., UNIVERSITY OF SCRANTON

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor R. Lesser

Signal understanding systems have the difficult task of interpreting environmental signals:

decomposing them and explaining their components in terms of an arbitrary number of

instances of perceptual object categories whose properties can interact with one another.

This dissertation addresses the problem of designing blackboard-based perceptual systems

for interpreting signals from complex environments. A “complex environment” is one that

can (1) produce signal-to-noise ratios that vary unpredictably over time, and (2) can contain

perceptual objects that mutually interfere with each others’ signal signature, or have arbitrary

time-dependent behaviors. The traditional design paradigm for perceptual systems assumes

that some particular set of fixed front-end signal processing algorithms (SPAs) can provide

adequate evidence for reliable interpretations regardless of the range of possible scenarios in the

environment. In complex environments, with their dynamic character, however, a commitment

to parameter values inappropriate to the current scenario can render a perceptual system unable

to interpret entire classes of environmental events correctly.

To address these problems, this research advocates a new view of signal interpretation as

the product of two interacting search processes. The first search process involves the dynamic,

context-dependent selection of signal features and interpretation hypotheses, and the second

viii



involves the dynamic, context-dependent selection of appropriate SPAs for extracting evidence

to support the features. For structuring bidirectional interaction between the search processes,

this dissertation presents the Integrated Processing and Understanding of Signals (IPUS)

architecture as a formal and domain-independent blackboard-based approach. The architecture

is instantiated by a domain’s formal signal processing theory, and has four components for

organizing and applying signal processing theory: discrepancy detection, discrepancy diagnosis,

differential diagnosis, and signal reprocessing. IPUS uses an iterative process of “discrepancy

detection, diagnosis, reprocessing” for converging to the appropriate SPAs and interpretations.

Convergence is driven by the goal of eliminating or reducing various categories of interpretation

uncertainty.

This dissertation discusses the IPUS architecture’s features, the basic problem of auditory

scene analysis (the application domain used in testing IPUS), and evaluates performance results

in experiment suites that test the utility of the reprocessing loop and the ability of the architecture

to apply special-purpose SPAs effectively. Although the specific research reported herein focuses

on acoustic signal understanding, the general IPUS framework appears applicable to the design

of perceptual systems for a wide variety of sensory modalities.
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C H A P T E R 1

INTRODUCTION

This thesis addresses the problem of designing systems for interpreting signals from complex

environments. In this work, a “complex environment” is one that can produce signal-to-noise

ratios that vary unpredictably over time, can contain perceptual objects that mutually interfere

with each others’ signal signature, and can have perceptual objects that have arbitrary time-

dependent behaviors. Although the specific research reported herein focuses on acoustic

perceptual systems, the general design framework discussed in this thesis is applicable to the

design of perceptual systems for a wide variety of sensory modalities. The initial sections of this

chapter introduce the central ideas of the thesis by presenting 1) the traditional design paradigm

for signal interpretation systems, 2) the difficulties it encounters in complex environments, and

3) the alternative design approach explored in the thesis. The concluding sections of this chapter

establish evaluation criteria for the thesis by summarizing 4) the research and validation issues

for the new approach, 5) the thesis contributions, and 6) the organization of the thesis.

1.1 Traditional Interpretation System Design

The problem of signal interpretation, the generation of a set of symbolic hypotheses that

best explains which perceptual objects and their attributes could have produced a particular

numeric signal, has a long and venerable history in the field of machine perception. The

need for interpretation in perceptual systems became apparent in the early 1970’s with the

recognition in both the machine vision and speech recognition communities that numeric

signal representations alone do not provide a suitable basis for specifying systems for recognizing

perceptual objects [Brady and Wielinga, 1978, Erman et al., 1980]. This idea led researchers to

consider augmenting perceptual systems with the ability to use symbolic signal representations.
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Symbolic representations are formal entities with which a perceptual system could make

inferences about the abstract structures within a signal, such as surfaces in images or harmonic

track sets in spectrograms [Milios and Nawab, 1989]. Consider in Figure 1.1 the example of

the spectrogram, which is a discrete representation of the time-dependent frequency content

of a signal. Specifically, it is a matrix of values indicating, for particular time regions of the

signal, the coefficients (energy) for discrete sinusoid functions into which some frequency-

analysis algorithm has decomposed the signal. Examination of a three-dimensional view of

the spectrogram shows that, over time, certain patterns in a signal’s frequency content can

be discerned. The local maxima within the coefficients from a single time point represent

“peaks,” or frequencies that are prominent in the signal at the given time. The regions within

the spectrogram where a peak remains prominent over time form structures which are called

tracks. The tracks can be modelled symbolically within a system as abstract structures with

particular frequency variations, duration time durations, and energy variations, permitting

the system to represent still “higher-level” structure such as observed relationships among the

average frequency values of several tracks. A harmonic set, for example, is a set of tracks whose

frequencies are integer multiples of some fundamental frequency ��� .
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Figure 1.1. Abstract “Tracks” in a Spectrogram.

Symbolic representations can serve as a basis for perceptual object models that impose

top-down constraints on how a system processes a signal. For a basic example, consider
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when a track is detected in a spectrogram (generated “bottom-up” from the spectrogram

values). Symbolic sound-source models that list the frequency ranges in which a sound

will generate tracks could limit (provide “top-down” constraints for) the time-frequency areas

where additional tracking is done in the spectrogram to those within the track-regions of

sounds containing the observed track. � The presumed existence of one symbolic structure can

also impose constraints on the nature of other structures to be searched for. An example of

this occurs in the case of co-articulation phenomena in connected speech processing, where a

phoneme at the end of one word can impose constraints on the acoustic characteristics to be

expected at the beginning of the next word [Lee et al., 1990, Lowerre and Reddy, 1980].

Of course the decision to add interpretation processes to perceptual systems involved far

more than the symbolic representations themselves. The inferencing processes that manipulate

the representations, the control processes that schedule the inferencing and data-collection

processes, and the data structures that organize data and the symbolic representations had to

be built into the new perceptual systems as well. The body of knowledge to be incorporated

in the software for perceptual systems would be quite complex. It was natural, therefore, for

researchers to design software architectures that would provide "scaffolding" around which

system code could be organized. Several architectures were developed from the mid-1970’s to

the mid-1980’s, of which the most widely-used today is the blackboard architecture [Carver and

Lesser, 1993a, Nii, 1986]. This architecture provides support for 1) a blackboard, or shared

central storage data structure, that contains and organizes hypotheses about various signal

features, 2) knowledge sources (KSs), or pieces of code each implementing expert knowledge

about the relationships among signal hypotheses and the data that support them, and 3) a

control component, or code that schedules the access of KSs to data and hypotheses stored on

the blackboard, as well as the order of their execution.

Since the early 1980’s, most perceptual architectures have incorporated the basic design

shown in Figure 1.2. This design scheme produces systems with a numeric-oriented front end

�
As discussed in Dorken’s thesis [Dorken 1994], the bottom-up generation of spectrogram tracks is a highly

context-dependent problem.
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that is logically separated from a symbolic-oriented interpretation component. The front end is

permitted only one pass over the incoming signal, and the interpretation component is designed

with the assumption that the front end’s output is always an "adequate" decomposition of the

signal. Interpretation processes do not usually provide structured feedback to the front end

about either the adequacy of the signal processing outputs to be interpreted or any anticipated

signal behavior. The development of this scheme can be attributed to several factors, foremost

among them being the influence of Marr’s reconstructionist school of thought in computer

vision [Marr, 1982] and early psychophysical research on human perception which ignored the

role of expectations in human interpretation of visual and auditory signals. Both influences led

to the view that symbolic interpretation follows and depends upon signal decomposition by

the front end through inversion of the geometry and physical processes that led to the original

signal [Draper, 1993].

ENVIRONMENT

signals
data 

correlates
environmental 
interpretation 

Interpretation 
Algorithms

Front-End 
Signal 

Processing 
Algorithms

Control Strategy
+

Object Models

verification 
requests

Figure 1.2. Classic Signal Interpretation Architecture.

Within the blackboard paradigm, this design scheme resulted in a split at the control

level between KSs that implement numeric signal processing algorithms (SPAs) and KSs that

implement symbolic interpretation algorithms (SIAs).
�

Control components generally pursue

a strategy that first applies to the incoming signal a predetermined set of SPAs (the front end)

with fixed control parameter values to obtain data correlates, or SPA outputs.
�

The control

�

This view, to be sure, is not the only one within the machine perception community. There is an alternative
school of thought [Draper, 1993, Strat 1991, Kohl et al., 1987, Nagao and Matsuyama, 1980] that advocates
feedback (in various degrees) between the front end and interpretation components of a signal interpretation
system. As will be discussed in Chapter 3 the research in this thesis is complementary with this school.

�

Note that the term “correlate” is taken from the voice-recognition literature. Within the signal processing
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parameters of the SPAs are fixed to some setting that would provide correlates of adequate quality

for generating hypotheses about symbolic structures. These correlates are then interpreted as

reasonably certain support for symbolic signal structures at various abstraction levels. The

control component uses these “islands of certainty” [Lesser et al., 1977] within the signal to

index into an object-model database. The retrievedmodels then inform the control component

in the application of additional interpretation algorithms to verify other signal structures that

are required by the models.

1.2 Complex Environments and Traditional Design

The traditional design paradigm assumes that a fixed front end can provide adequate (not

necessarily optimal) evidence for reliable interpretations regardless of the range of possible

scenarios in the environment. This assumption is plausible for systems that monitor stable

environments, but not for those that monitor complex environments. In complex environments

with interacting objects and variable signal-to-noise ratios, the choice of front-end SPAs and

their parameter settings greatly impacts the generation of adequate correlates for interpretation

processes. Indeed, parameter values inappropriate to the current scenario can render a

perceptual system unable to interpret entire classes of environmental events correctly.

An SPA’s parameter values induce capabilities or limitations with respect to the scenario

being monitored. Consider the use of the generic Short-Time Fourier Transform (STFT)

algorithm [Nawab and Quatieri, 1988] to produce spectrograms for acoustic signals. Concep-

tually, the algorithm implementing the STFT computes a series of Discrete Fourier Transforms

(DFTs) [Oppenheim and Schafer, 1989] on successive blocks of data points in a discrete

time signal. Referring to Figure 1.1, consecutive columns in the spectrogram matrix from an

STFT are the DFTs of consecutive blocks of signal data. An STFT instance has particular

values for its parameters: analysis window length (number of signal data points analyzed at

a time), frequency-sampling rate (number of points computed per column in Figure 1.1’s

matrix), and decimation interval (number of signal data points between consecutive analysis

research community SPA outputs are referred to variously as “measurements,” “functionals,” or “statistics.”
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window positions).
�

Depending on assumptions about a scenario’s spectral features and their

time-variant nature, these parameter values increase or decrease the usefulness of the spectrogram

produced by the instance.

It can be shown through analysis of Fourier theory (see [Oppenheim and Schafer, 1989],

Section 11.3, for example) that a fixed STFT with a long analysis window length will provide

fine frequency resolution for scenarios containing sounds with time-invariant components, but

at the cost of poor time resolution for sounds with time-varying components. Tracks of sounds

that change in frequency over time, or “chirp,” too quickly for the STFT will produce correlate

peaks that look too widely separated to be linked as a track with a steep slope, while the onsets

and decays of impulsive sounds will be “smeared” over the spectrogram, making it difficult

to detect the presence of such sounds. Conversely, a fixed STFT instance with short window

lengths will provide fine time resolution for scenarios containing sounds with time-varying

components such as chirps or reverberatory decays, but at the cost of poor frequency resolution

for sounds with close frequency components. The tracks of sounds which are too close to

each other in frequency to be resolved (separated) by the STFT will produce correlate peaks

that indicate only a single merged track in the output spectrogram. It should be noted at this

point that analysis of the Uncertainty Principle [Gabor 1946] implies that one cannot obtain

an STFT SPA instance (or, for that matter, design a new SPA) that simultaneously provides

infinite frequency resolution and infinite time resolution.

Figure 1.3 illustrates the difficulty in using fixed front ends to interpret a complex acoustic

environment. Figure 1.3a shows the stylized frequency tracks of four sounds as they would

appear in an ideal spectrogram if they were processed with STFT SPAs appropriate for each

portion of the scenario. Darker shading indicates higher energy. Figure 1.3b shows how

the tracks appear when the entire scenario is processed by one STFT SPA appropriate only

�

Note that this is a nonstandard usage of the term “decimation.” The term “decimation” is most often used in
the signal processing literature to refer to the process of first downsampling (reducing the number of sample values
considered) a discrete signal and then lowpass filtering the result. (see [Oppenheim and Schafer, 1989], Section
3.6.1) There is no standard terminology for the STFT parameter being described here; “decimation interval” was
selected because the parameter effectively controls how often windows of signal data are analyzed (i.e. how often
the signal is “window-sampled”) to produce DFTs.
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Figure 1.3. Example Problems From Fixed-Front-End Processing.

for the steady-state portion of the last sound (Siren-Chirp’s last 0.5 seconds) in the

scenario. The STFT parameter settings used throughout Figure 1.3b were FFT-SIZE: 512,

WINDOW: 256, and DECIMATION: 256, while the peak-picker’s parameter setting was

PEAK-THRESHOLD: 0.09. The signal was sampled at 8KHz. DECIMATION is the

separation between consecutive analysis window positions; the value was set to 512 to permit

the fastest possible processing of the data. PEAK-THRESHOLD is the energy required for a

Discrete Fourier Transform point to be considered as a peak, and its value here was selected to

keep low-energy noise in the spectrogram from generating false-alarm tracks.

Due to inappropriate processing, the analysis of the first two seconds of signal data

introduces some distortions that would lead to ambiguous interpretations and completely

undetected sources. A distortion is a process caused by poor SPA parameter settings that

produces correlates that inaccurately represent the state of the environment to interpretation

processes. In the first block of data (time 0.0 to 1.0 seconds) in Figure 1.3b, Phone-Ring’s

tracks are merged because the frequency resolution afforded by the STFT is not adequate

for features so close in frequency. Glass-Clink’s frequency track is not even detected in

1.3b’s next data block (time 1.0 to 2.0 seconds) because the STFT’s analysis window does not

provide adequate time resolution to isolate the sound’s spectral features. The high peak-energy
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threshold causes the peak-picker to miss low-energy peaks in the STFT spectrogram that could

have served as evidence for Buzzer-Alarm’s high-frequency, low-energy track.

Within the traditional design paradigm the approach to handling these types of problems

is to add to the system’s front end more SPAs with settings appropriate to the problematic

environmental scenarios. This requires an exhaustive analysis of the environment and intricate

tailoring of front ends to each possible combination of perceptual objects in the environment.

This approach is feasible only for significantly constrained environments. To avoid ambiguous

signal-symbol mappings in complex environments, interpretation systems often require com-

binatorially explosive SPA sets with multiple parameter settings [Dorken et al., 1992], with

consequent processing time costs.

At this point one might question these criticisms of interpretation systems with fixed,

one-pass front ends by claiming that the human auditory system, with its cochlear signal

processing, is an example of a fixed, one-pass system that handles a wide variety of complex

acoustic scenarios quite well. However, the claim misses (1) the fact that the human auditory

system’s front end is only well-adapted for interpreting sounds from a moderately restricted

environment that was evolutionarily important to the species, and (2) the possibility that

two-pass revision, or reprocessing, occurs in the intermediate stages of the auditory system’s

interpretation process.

The cochlea’s time-frequency processing has been shown to be similar to that performed

by wavelet analysis [Rioul and Vetterli, 1991] parameterized to produce spectrograms having

fine frequency resolution with poor time resolution in the lower frequency regions, and poor

frequency resolution with fine time resolution in the higher frequency regions. Thus, the human

ear is able to discriminate low-frequency sounds (which, from an evolutionary standpoint, is

useful for differentiating the growls and calls of predators or mates) and determine precise times

for high-frequency events (which, from an evolutionary standpoint, is useful, for example, for

localizing the position of stalking predators which may have snapped twigs or scrapped rocks).

However, the fixed front end of this system creates difficulties for humans when they must

handle scenarios from a more unrestricted environment. For example, the human ear’s poor
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frequency resolution in the high-frequency spectral regions makes it ill-suited for discriminating

among various aircraft engine whines that could indicate metal fatigue or poor balancing. Such

unrestricted environments ultimately require additional “SPAs” (electronic hardware tuned to

the particular engines) beyond those of the human ear for adequate interpretation, leading to

the same type of combinatorial SPA explosion previously described.

In regard to the second objection, Ellis [Ellis, 1996] summarizes work [McAdams, 1984,

Warren, 1984] that indicates there is a possibility that the human auditory system reprocesses

its initial interpretations. The McAdams work reported that during the initial presentation of

an oboe note to human observers, a single note is perceived. However, as the note progresses,

the even harmonics of the note undergo progressively deeper frequency modulation. This led

observers to change their initial interpretation of the spectral energy as a single note to one in

which there were two distinct sounds, and to apply that changed interpretation to the entire

note. The Warren work examined how changes in the order of presentation of alternating wider

(0-2KHz) and narrower (0-1KHz) noise-bands influenced the grouping humans performed on

the signal components. When the narrower band came first, observers interpreted the signal as

containing a continuous 0-1KHz sound with a periodic 1KHz-2KHz sound. That is, the lower

0-1KHz energy of the wider bands was merged over time with that of the narrower bands, as

one might expect of a one-pass interpretation system that is primed to group new data with data

that has just been observered. However, when the wider band started the alternation, observers

reported that the first 0-2KHz band was interpreted as a single sound. After the initial wider

band was completed, and as the alternation continued, however, the interpretation of the first

band was revised to that obtained for the first alternation. That is, the observer reported that

the first 0-2KHz band was perceptually “broken” into a 1KHz-2KHz burst simultaneous with

a continuous narrower 0-1KHz sound, in light of the rest of the signal. Though by no means

conclusive, both experiments lend support to the possibility that the human auditory system

can revise its earlier interpretations.
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1.3 Thesis Paradigm

1.3.1 Motivation

To circumvent the combinatorial explosion of fixed SPAs, a small SPA set would be suffi-

cient if comparisons could be made between the SPAs’ computed correlates and dynamically-

generated signal structure expectations. Failure in the verification of expectations about SPA

outputs can indicate that either 1) the signal structure expectations are based on incorrect

interpretations or that 2) the SPA’s computed correlates have been distorted because the SPA’s

parameter values are inappropriate to the current scenario. In the first case a perceptual system

could follow the behavior of traditional interpretation systems and reinterpret the current

scenario based on the SPA’s given correlates. In the second case a system could reconfigure the

SPA’s parameters or selectively replace it with a more appropriate SPA, and reprocess the signal

in a focused manner to obtain expected correlates.

Adopting a search-oriented model of these two possible system responses to unmet

expectations, one can see that the first behavior corresponds to a decision to evaluate how

much better an alternative state in the interpretation state space might explain the front end’s

output. The second behavior then translates into a decision to evaluate how much better an

alternative state in the front end state space might be at generating evidence for unambiguously

supporting an interpretation. Figure 1.4 shows how an interleaving of these behaviors results

in progress in each search space. Figure 1.4A shows an interpretation system’s progress within

its interpretation space. The label outside each state indicates the front end(s) being used to

provide support evidence for the state’s interpretation (set of instances of perceptual objects

Hn). Figure 1.4B shows the front ends explored by the system. The label outside each state

indicates the interpretation expected for the front end, and whether the front end’s correlates

supported the interpretation.

The system behavior in Figure 1.4 can be summarized as follows. Initially, the interpretation

system uses front end
�

to collect evidence, and hypothesizes that one perceptual object of

type H1 is present. Attempting to account for more signal energy, the system then explores the
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H1

H1 H3

H1 H2 H3
H1 H3  H5

H1 H1 H3

H1 H1 H3 H4

SPA1(P1,P3)
SPA2(Q1)

SPA1(P1,P2)
SPA2(Q1)

A

A

A,B B
B,C

C

A

B

B. FRONT-END SPACE

SPA1(P1,P2)

Success!
{H1} & {H1,H3}

Failure!
{H1,H2,H3}

Failure!
{H1,H2,H3},
{H1,H3,H5},

& {H1,H1,H3}

SPA1(P1,P2)
SPA3(P1)

C

Success!
{H1,H1,H3} & 

{H1,H1,H3,H4}

A. INTERPRETATION SPACE

Figure 1.4. Example of Dual Interpretation and Front-End Search.

interpretation state � H1, H3 � and finds that
�

’s SPAs have also produced evidence to support

the interpretation. When attempting to explain the remaining signal energy, the system finds

that an additional single object of either type H1, H2, or H5 could be hypothesized. Choosing

H2 first (i.e. the interpretation state � H1,H2,H3 � ), the system finds that the SPAs in front

end
�

do not provide sufficient or unambiguous evidence for the H2 instance. Deciding

that
�

is not suited for the interpretation, the system applies front end � ’s SPAs to the

signal data, and this time finds negative evidence for H2’s instance, causing it to abandon

interpretation state � H1,H2,H3 � and proceed to explore � H1,H3,H5 � . The SPAs in front

end � provided indisputable negative evidence for any instance of H5, leading the system

to explore interpretation state � H1,H1,H3 � . This time although � did not provide positive

evidence for the second instance of type H1, the system finds that � was inappropriate to

the interpretation. The system then uses signal processing constraints to determine that front

end � should be appropriate for supporting or disproving the existence of the extra H1.

According to Figure 1.4B the correlates produced by the new front end do in fact support the

second H1 hypothesis, and ultimately support the creation of a final H4 hypothesis. The final

interpretation state is � H1,H1,H3,H4 � , and because it accounts for enough signal energy,

interpretation search stops.

A domain’s explicitly-represented signal processing theory can play three generic roles in

controlling the application of SPAs within constraints that dynamically arise from the emerging
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list of observed symbolic structures:

discrepancy detection: provide methods to determine discrepancies between an SPA’s expected

correlate set and its computed correlate set.

diagnosis: define distortion processes that explain how discrepancies between expectations and

an SPA’s computed correlates result when the SPA has inappropriate values for specific

parameters.

reprocessing: specify new strategies to reprocess signals so that distortions are removed or

ambiguous data is disambiguated.

These observations about the power of formal signal processing theory in analyzing complex

environments are the reasons behind the claim in this thesis that the explicit representation

of the knowledge in signal processing theory is crucial to systems that monitor complex

environments. The processing of signals from complex environments will benefit from a new

view of signal interpretation as the product of two interacting search processes. The first search

process involves the dynamic, context-dependent selection of signal features and interpretation

hypotheses, and the second involves the dynamic, context-dependent selection of appropriate

SPAs for extracting correlates to support the features. Signal interpretation architectures

should support the use of theoretical relationships between SPA parameters and SPA outputs

to structure these dual searches for SPAs appropriate to a scenario and for interpretations

appropriate to the SPA correlates.

1.3.2 Architecture Overview

This thesis proposes the Integrated Processing and Understanding of Signals (IPUS) ar-

chitecture as a formal and domain-independent blackboard-based framework for structuring

bidirectional SIA/SPA interaction in complex environments. This interaction combines the

search for front end SPA configurations appropriate to the environment with the search for

plausible interpretations of front end processing results. The architecture is instantiated by a
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domain’s formal signal processing theory. It has four primary components as conceptual “hooks”

for organizing and applying signal processing theory: discrepancy detection, discrepancy

diagnosis, differential diagnosis, and signal reprocessing. These components have the following

functionality:

� detect discrepancies between data expectations and actual data observations,

� diagnose these discrepancies and ascribe reasons for observational uncertainty,

� determine reprocessing strategies for uncertain data and expected scenario changes, based

on the results of the diagnosis, and

� determine differential diagnosis strategies to disambiguate data with several alternative

interpretations.

To exploit the constraints that signal processing theory can impose on the dual searches

within the signal interpretation problem, IPUS is designed with a “discrepancy detection,

diagnosis, reprocessing loop.” The architecture uses an iterative process for converging to the

appropriate SPAs and interpretations. For each block of data, the loop starts by processing

the signal with an initial configuration of SPAs (KSs). These SPAs are selected not only to

identify and track the signals most likely to occur in the environment, but also to provide

indications of when less likely or unknown signals have occurred. In the next part of the

loop, a discrepancy detection process tests for discrepancies between the correlates of each SPA

in the current configuration and (1) the correlates of other SPAs in the configuration, (2)

application-domain constraints, and (3) the correlates’ anticipated form based on high-level

expectations. Opportunism in the architectural control mechanism permits this process to

execute both after SPA output is generated and after interpretation problem solving hypotheses

are generated. If discrepancies are detected, a diagnosis process attempts to explain them by

mapping them to a sequence of qualitative distortion hypotheses. The loop ends with a signal

reprocessing stage that proposes and executes a search plan to find a new front end (i.e., a set
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of instantiated SPAs) to eliminate or reduce the hypothesized distortions. After the loop’s

completion, if there are any similarly-rated competing top-level interpretations, a differential

diagnosis process selects and executes a reprocessing plan to find correlates for features that will

discriminate among the alternatives.

Although the architecture requires the initial processing of data one block at a time,

the loop’s diagnosis, reprocessing, and differential diagnosis components are not restricted to

examining only the current block’s processing results. If the reprocessing results from the

current block imply the possibility that earlier blocks were misinterpreted or inappropriately

reprocessed, those components can be applied to the earlier blocks as well as the current blocks.

Additionally, reprocessing strategies and discrepancy detection application-constraints tests can

include the postponement of reprocessing or discrepancy declarations until specified conditions

are met in the next data block(s).

The dual searches discussed earlier become apparent in IPUS with the following two

observations. First, each time signal data is reprocessed, whether for disambiguation or

distortion elimination, a new state in the SPA instance search space is examined and tested

for how well it eliminates or reduces distortions. Second, failure to remove a hypothesized

distortion after a bounded search in the SPA instance space leads to a new search in the

interpretation space. This happens because the diagnosis and reprocessing results represent

an attempt to justify the assumption that the current interpretation is correct. When either

diagnosis or reprocessing fails, there is a stronger likelihood that the current interpretation is

not correct and a new search is required in the interpretation space.

1.4 Analysis of IPUS

The IPUS architecture implements perception as the integration of search in a front-end-

SPA space with search in an interpretation space. This integration raises several issues, and

encourages use of an alternative methodology for the design of perceptual systems’ front ends.

This section briefly describes the major issues and introduces the real-world problem domain

in which the thesis validates IPUS.
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1.4.1 Architectural Implications

The ability to interleave searches within the interpretation and front-end spaces raises the

question of how one search process is determined to be the guide for the other, and how

their roles can switch. In general, the search process whose current state produces the lower

uncertainty serves as the standard against which progress toward a complete interpretation

or adequate front end is measured in the other. Within the interpretation search process

“uncertainty” refers to the portion of the signal
�

explained by the current interpretation state

and the strength of the negative (i.e. missing or incomplete) evidence against each hypothesis

in the interpretation. Within the front-end search process “uncertainty” refers to the degree

of inconsistency found among the data correlates from SPAs whose outputs are supposed to

be related according to their domain signal processing theory. This reliance on uncertainty

for driving and halting the dual searches in IPUS requires some mechanism for representing

uncertainty; Chapter 2 details how the RESUN [Carver and Lesser, 1993b, Carver and Lesser,

1991] planning framework provides this mechanism.

Another important question to consider about the interleaved searches is whether the

interleaving process will converge. Although it is beyond the scope of this thesis to provide a

formal convergence proof, the following line of reasoning serves as an informal indication that

for a given finite subset of an input signal, convergence to a final interpretation hypothesis-set

and a final front-end SPA-set will occur. With a given interpretation as a standard, IPUS might

iterate on several diagnoses and reprocessings of a portion of the signal in attempts to verify

particular missing data correlates required by the interpretation. With each iteration, correlates

from various SPA-sequences with different control parameter settings will be generated. In the

IPUS paradigm these correlates are said to have originated from different processing contexts.

Assuming that not just each processing context but also their data correlates are recorded

during reprocessing, the successive diagnose-then-reprocess iterations will generate tighter and

�

In the IPUS framework evaluated in the thesis this will be the percent of the total input signal energy
accounted for by the current interpretation.
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tighter constraints on the types of signal features that could remain unobserved given all

previous reprocessings. Eventually a point will be reached when the domain’s formal signal

processing theory and the narrowing constraints on the possible values of an interpretation’s

feature (e.g. track energy) preclude the existence of the desired data correlates. If search is

restarted in the interpretation space, the results from previous reprocessings will constrain the

new interpretation search by eliminating from consideration objects with features requiring

correlates that should have been found during the reprocessing.

As an IPUS-based system performs reprocessing, it will generate correlates from various

processing contexts. Given the previous discussion’s conclusion that these correlates should

be saved rather than discarded, the question arises as to how this data should be managed

and exploited to offset its storage costs with time savings. As will be seen in Chapter 2, the

explicit representation of processing contexts and the domain’s signal processing theory permits

IPUS-based systems to examine their reprocessing history for processing contexts that would

provide data correlates that were at least as detailed as those required by a current reprocessing

request. If data correlates from such previous processing contexts exist, IPUS-based systems

can save reprocessing effort by reusing them as evidence for missing evidence. This process is

referred to as context mapping, and will be seen to be a useful mechanism for a type of sensor

fusion where results from various reprocessings can be combined as evidence for time-dependent

signal features.

The final issue considered in this section involves the implications of the IPUS architecture

for front-end design in interpretation systems. Since the traditional design paradigm has

emphasized one pass over input signal data, there has been a tendency to build systems with fixed

front ends that are expensive because they must provide detail for the most ambiguous cases even

when the detail is unnecessary. Because IPUS has the ability to selectively reprocess uncertain

portions of a signal with specialized SPAs, the framework provides many opportunities for

using approximate processing techniques to reduce the complexity of front ends while sacrificing

precision in SPA output where permissible. Approximate processing [Decker et al., 1990]
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refers to the deliberate limitation of search processes in order to trade off certainty for reduced

execution time. Approximate SPAs are algorithms whose processing time can be limited in order

to trade off precision in their output correlates for reduced execution time. The availability of

approximate SPAs permits the formulation of IPUS control strategies that first use approximate

SPAs to generate a rough picture of the environment that is refined only where the front-end

correlates’ interpretations are too uncertain. Refinement is achieved by reprocessing these

limited signal portions with SPAs that produce correlates having greater precision. These

non-approximate SPAs would ordinarily be quite expensive if applied to the entire signal, but

when they are applied only in restricted signal regions their costs become manageable.

1.4.2 Architecture Validation Domain

This thesis validates the IPUS architecture on the auditory scene analysis problem [Bregman

1990], which involves the segregation and identification of simultaneous and sequential sounds

in an acoustic signal. Auditory scene analysis is an interesting problem that arises in applications

such as assistive devices for the hearing impaired and robotic audition. The field is replete

with issues concerning the relationship between the determination of an SPA’s appropriateness

and multi-sound interactions in complex environments. In particular, the thesis work focuses

on the problem of adaptively generating spectrograms that provide time- and frequency-

resolution (i.e. detail in time or frequency) adequate to the task of separating signal signatures

of simultaneous sounds with a variety of time-dependent behaviors. A secondary reason for

performing validation in the acoustic domain is that signals from individual real-world sounds

are relatively simpler to collect and easier to combine for experimental work than signals from

other perceptual modalities such as vision or taction.

All thesis evaluation experiments are performed on an IPUS-based Sound Understanding

Testbed (SUT) implemented within the blackboard framework [Lesser et al., 1995, Lesser

et al., 1993]. The system has 10 KSs implementing SPAs that can be used in front-end

processing and 7 KSs implementing SIAs (signal interpretation algorithms) that generate

high-level interpretations, as well as other KSs implementing the key components within the
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IPUS architecture specification: discrepancy detection, discrepancy diagnosis, and differential

diagnosis.

Table 1.1. IPUS Sound Library Categories

CATEGORY PROPERTIES EXAMPLES

chirp time-dependent frequency shifts owl hoot,
door creak

harmonic sound has frequencies
�

�����������
���

that are fire alarm,
integer multiples of some fundamental

� � . car horn
impulsive short acoustic bursts cause wideband door knock,

energy over entire frequency spectrum. pistol shot
repetitive need not have a precise period. footsteps,

phone ring
transient signal onset or signal turn-off behaviors bell toll,

differ from those in steady-state. hairdryer start

The testbed has a library of 40 real-world sound models from which to generate signal

interpretations. The library sounds were selected to provide a reasonably complex subset of

the acoustic behaviors and sound interactions that can arise in random real-world auditory

scenarios. Table 1.1 summarizes the acoustic behaviors that can be found in the library. As an

indication of the potential for interactions among sounds randomly selected from the library

and placed in scenarios with random start times, it should be noted that the expected frequency

range of each narrowband track (e.g. � 100 Hz wide) of each library sound overlaps a track

of at least one other sound. Note that the greater the number of overlapping tracks there

are in a spectral region, the greater the amount of interpretation search that must be done to

disambiguate competing sound hypotheses that may arise.

The IPUS performance experiments in this thesis are designed first to demonstrate in

general the framework’s dexterity at effectively applying both special-purpose (e.g. approximate)

SPAs and general-purpose (e.g. non-approximate) SPAs and adapting interpretations in complex

scenarios and second to provide indications of the importance of the framework’s major

“reprocessing loop” components to signal interpretation.
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1.5 Contribution Summary

To summarize, this thesis makes the following research contributions:

� a generic architecture for designing perceptual systems for complex environments that

represents a significant departure from conventional systems,

� a framework for fusing correlates obtained from disparate front ends’ analysis,

� through validation of the IPUS architecture in the real-world problem of auditory scene

analysis:

– a demonstration of the role of reprocessing and SPA theory in improving the quality

of interpretations

– a demonstration of the applicability and potential advantages of approximate

processing within the IPUS architecture,

� a platform for future exploration of how to computationally approximate theories of

auditory perception.

1.6 Thesis Organization

The subsequent chapters in this thesis are organized as follows. Chapter 2 presents a

detailed description of the IPUS architectural paradigm. Chapter 3 discusses work in signal

interpretation architectures that is related to IPUS. Chapter 4 presents a description of how

IPUS was instantiated in a sound understanding testbed (SUT). Chapter 5 reports on the SUT’s

interpretation performance on acoustic scenarios composed of real-world sounds. Chapter 6

concludes with an evaluation of the SUT’s performance results and the IPUS framework’s

organization, with respect to the research contributions outlined earlier. Appendix A supplies

the interested reader with details on the sounds in the SUT library that was used in the

experiment suites, while Appendix B contains a trace of the SUT’s behavior for one of the

acoustic scenarios in Chapter 5’s experiments.



C H A P T E R 2

INTEGRATED PROCESSING AND UNDERSTANDING OF

SIGNALS

This chapter presents the abstract, domain-independent specification for the IPUS ar-

chitecture. It has five sections. The first section recounts an extended example of the

basic behavior that this thesis aims for in a blackboard interpretation system for complex

environments. With this description as a backdrop, the second section justifies and describes

the RESUN planning framework that was selected to implement the architecture and provide

appropriate control over blackboard KSs’ execution. The third section describes the RESUN

implementation of the basic IPUS control strategy as well as the data structures and code that

provide IPUS with the concepts of processing-context and adaptive front ends. The fourth

section discusses the generic specifications of each component of the architecture’s reprocessing

loop: discrepancy detection, discrepancy diagnosis, reprocessing, and differential diagnosis,

including their abstract realization in the planning framework. The fifth section closes the

chapter with a summary of what the architecture requires for instantiation.

2.1 IPUS-Based System Behavior: An Example

In Section 1.2 the acoustic scenario in Figure 1.3 was used to illustrate the pitfalls of fixed

front-end processing in complex environments. This section returns to that scenario for a

concrete example of how an IPUS-based interpretation system with an initially inappropriate

front end would ideally behave in processing a complex environment’s signal.

Figure 2.1a shows the time-domain waveform for the signal, while Figures 2.1b and 2.1c

duplicate the information from Figure 1.3 for the reader’s convenience. Figure 2.1b shows how

the correlates for the sounds in the scenario would appear in the time-frequency domain using

context-appropriate processing. Phone-Ring andSiren-Chirp are 1.2 times as energetic
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as Buzzer-Alarm, and Glass-Clink is an impulsive source 3.0 times as energetic as

Buzzer-Alarm. Darker shading indicates higher frequency-domain energy. Figure 2.1c

shows how the sounds’ correlates are distorted when a front end reasonably designed for the

end of the fourth data block is applied indiscriminately throughout the scenario.
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Figure 2.1. IPUS Processing Example.

Assume that an IPUS interpretation system has an STFT SPA, a local-peak-picker SPA, a

time-domain energy-tracker SPA, and is configured to interpret the 8KHz-sampled waveform

data in 1.0-second blocks. Assume also that the system’s sound-model database was loaded

with models for the five narrowband sources shown in Figure 2.2. The vertical axis represents

frequency and the horizontal axis represents time. The range below the time axis indicates

the minimum and maximum expected durations for the sound’s spectral tracks. The energy

changes for each track are represented qualitatively by shading gradations, with darker shades
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indicating higher energy. In the figure the sounds’ frequency components are labelled by

single-frequency values only for clarity; the formal sound definitions would have frequency

ranges specified for each component.

Buzzer Alarm

[3.0, 5.0]

2540 Hz

1470 Hz

Phone Ring
[1.6, 1.7]

500 Hz
460 Hz

Car Horn

730 Hz

440 Hz

Glass Clink

[0.10, 0.13]

2235 Hz

Siren Chirp

[1.3, 1.5] [0.4, 0.7]

1950 Hz

550 Hz

Attack Steady

1275 Hz 950 Hz

420 Hz

3760 Hz

1675 Hz
2350 Hz

[0.4, 2.5]

Figure 2.2. IPUS Processing Example’s Sound Database.

Next, assume that the front end SPAs were initialized with the following parameter values

under the assumption that Siren-Chirp’s steady behavior (seen at the end of block 4)

would predominate in the scenario:

FFT-SIZE: 512

The number of uniformly-spaced frequency samples computed for each Short-Time Fourier

Transform (STFT) analysis window position.

WINDOW: 256

The number of data points to which each FFT in the STFT algorithm is applied ( �
FFT-SIZE).
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DECIMATION: 256

The number of points between consecutive STFT analysis window positions.

PEAK-THRESHOLD: 0.09

Spectrum points with energy below this value are rejected by the peak-picking algorithm.

That is, assuming that Siren-Chirp’s steady frequency tracks are all separated by approxi-

mately 700 Hz, and that this kind of signal would predominate in the environment, the 31.25

Hz frequency resolution permitted by the length of the 256-point analysis window would

enable the STFT to resolve the siren’s tracks with little difficulty. The decimation value of 256

is selected to ensure no overlap between consecutive analysis windows, which in turn provides

the quickest complete processing of the signal data points, at a cost of interacting with the

analysis window length to produce a spectrogram that can resolve frequency events no closer

than 0.032 seconds in time. Lastly, the peak-threshold was selected to prevent the system from

becoming distracted with noise-generated peaks whose energies are lower than that generally

observed for Siren-Chirp’s steady tracks.

Finally, assume that the system pursues an “island-driving” control strategy for each block

where it executes the front end and produces peak hypotheses, then retrieves the models of

sounds whose tracks roughly overlap the frequency regions covered by the peaks, then confirms

the models’ tracks by verifying that the peak bounds unambiguously lie within the tracks’

expected regions.

There are several critical behaviors that the IPUS system should perform if it is to reasonably

analyze Figure 2.1a’s signal. In block 1, after initial front-end processing and model-retrieval, the

system finds three alternative interpretations of the data in the ���������
	������ frequency region. That

is, there is the possibility that it could be caused by Phone-Ring or Car-Horn, or perhaps

both occurring simultaneously. One reason for this confusion stems from the fact that the

energy threshold setting for the peak-picking algorithm is high and would preventCar-Horn’s

low-energy microstream from being detected if in fact it were present. The second reason is that

the frequency-sampling provided by the STFT algorithm’s fft-size parameter does not provide
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enough frequency sample points to resolve the ������� � 	�� � � region into Phone-Ring’s three

microstreams. � The uncertainty in this situation should be resolved through reprocessing under

the direction of differential diagnostic reasoning, which increases resolution and decreases the

energy threshold.

While verifying that the data in block 1’s supports all of Buzzer-Alarm’s tracks, the

system also should detect that the sound’s track at 3760 Hz is missing. After engaging in signal

processing diagnosis of the discrepancy, the system should find that one reason for this is that

the track’s energy might be too low for the peak-picker’s peak-threshold parameter setting. The

discrepancy would be resolved when the system reprocessed the existing spectrogram with a

peak-picker having a lower peak-threshold value.

In block 2, as it executes its front end, the system should detect a discrepancy between

the outputs of its time-domain energy estimator SPA and its STFT SPA. Due to Glass-Clink’s

presence, the energy tracking SPA’s correlates will indicate a substantial energy increase followed

about 0.1 seconds later by a precipitous decrease. The STFT SPA, however, will produce a

spectrogram with only one or two high-energy peaks, which, in a noisy environment, is not

significant enough for believing that new short frequency track accounting for the time-domain

energy flux is present at 2235 Hz. The system should determine through diagnosis that

this could be because the STFT’s decimation value is too long. The testbed also detects a

discrepancy between expectations established from block 1 for the ��� � ��� 	 ����� frequency region

and the STFT SPA’s output. The STFT SPA produces short contours that cannot support

the expected microstreams for Phone-Ring because of inadequate frequency sampling in

the region. Both discrepancies are resolved by reprocessing. The first discrepancy is resolved

through reprocessing with a smaller decimation value and smaller STFT intervals, while the

second is resolved through reprocessing with the finer frequency sampling provided by a 1024

fft-size.
�
Although the center frequencies of each track are further apart than the

�������������
	��������	��
Hz frequency

sampling afforded by the STFT, the tracks’ expected frequency ranges are too close.
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In block 3, Siren-Chirp’s attack interacts with the poor time-resolution of the STFT

SPA to produce a set of widely-separated peaks that the testbed cannot immediately interpret

as the sound’s attack region. In block 4, however, the testbed should use the discovery of

Siren-Chirp’s steady region as the basis for looking back to block 3’s region for the attack.

After finding no conclusive peak support for the sound’s attack region, the system should

diagnose the discrepancy as being attributable to poor time resolution in the spectrogram. It

should then reprocess the waveform in the time-region of the expected chirp with an STFT

suitable for detecting the behavior (e.g. one with a short WINDOW around 64 points long).

2.2 Control in IPUS

From the preceding description of desired IPUS behavior, one should be struck by

the important role the concept of “discrepancy” plays in how the architecture controls the

application of SPAs and other KSs. It would appear useful therefore to design IPUS with the

ability to represent discrepancies as symbolic, explicit factors that can influence the confidence

levels a system maintains for interpretation hypotheses or numeric SPA outputs. Such sources

of uncertainty (SOUs) could provide some of the cues for a control mechanism to use in

making context-sensitive decisions to engage or interrupt the architecture’s reprocessing loop

or dynamically modify a system’s default front end.

Indeed, the overall context-sensitive nature of the hypothetical system’s behavior is a

key feature. Though the hypothesized system required that the signal be processed one

block at a time, the diagnosis, reprocessing, and differential diagnosis components were

not restricted to examining only the current block’s processing results. When the current

block’s processing results implied the possibility that earlier blocks were misinterpreted or

inappropriately reprocessed, those components were applied to the earlier blocks as well as the

current blocks. Although it did not happen in the example scenario, the postponement of

reprocessing until specified conditions are met would also be a useful context-sensitive behavior

for cases when uncertain signal data at the very end of a block requires the next block’s data for

meaningful reprocessing.
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For these reasons, IPUS uses Carver’s RESUN [Carver and Lesser, 1993b] planner

framework to control blackboard KS execution. This framework views interpretation as a

process of gathering evidence to resolve hypotheses’ SOUs. It incorporates a rich language

for representing SOUs as structures which trigger the selection of appropriate interpretation

strategies. For some idea of the this representation’s scope, consider the following partial list of

SOUs in the language. There is an SOU called Partial-Support, which, when found on

a blackboard hypothesis, represents the situation that the hypothesis has uncertainty because

support evidence has not yet been sought for it (e.g. a spectrogram track’s termination has not

been searched for yet). Another SOU called Possible-Alternative-Explanation

represents the situation that a hypothesis is uncertain because there exist other explanations for

it that have not yet been considered. A third SOU called Support-Exclusion represents

the uncertainty that a hypothesis has because some subset of the support evidence desired for

it has not been found because it is highly likely that the evidence in fact does not exist.

In addition to its SOU language, the RESUN planning framework provides an elaborate

language for specifying and executing the plans available to a system for satisfying the goals it

generates as it solves an interpretation problem. The following brief description of the control-

plan framework concentrates on the RESUN features that are relevant to IPUS; interested

readers can find more detailed treatments in the planning community’s literature [Carver

and Lesser, 1993b, Carver and Lesser, 1991]. Problem-solving under RESUN is driven by

information in a problem solving model (PSM), which is a data structure that maintains a list

of the current highlevel blackboard interpretation hypotheses and the SOUs associated with

each one’s supporting hypotheses. SOUs from the PSM are selected by the planner to be

resolved. That is, with selection of an SOU, the RESUN planner establishes a goal that the

SOU be eliminated or reduced, if possible. Goals are expressed as predicate statements such

as (Have-SOU-Solved *SOU*) where *SOU* would be an SOU to be solved. The planner

controls the selection and execution of blackboard KSs for achieving this goal with its library

of control plans and focusing heuristics. Both Figures 2.3 and 2.4 should be consulted closely
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in the following discussion of control-plan definitions, while Figure 2.3 should aid in the later

discussion of focusing heuristics.

FOCUS(match-list)

SEQ

M
at

ch
in

g

P
la

n

Subgoal-3
IN: ?A, ?X
OUT: ?E

Subgoal-1
IN: ?A, ?B
OUT: ?C 

Primitive-X
GOAL: Subgoal-1
IN: ?IN1, ?IN2
OUT: ?OUT1*

Root-Plan
GOAL: ROOT
IN: ?A, ?B
INTERNAL: ?C, ?D
OUT: ?E

IN: FOCUS(?C)
OUT: ?X

Subgoal-2

M
at

ch
in

g

P
la

n

Plan-9
GOAL: Subgoal-2
IN: ?IN1
INTERNAL: 
OUT: ?OUT1

Plan-1
GOAL: Subgoal-3
IN: ?IN1, ?IN2
INTERNAL: ?X, ?Y, ?Z
OUT: ?OUT1

Figure 2.3. Control Plan and Focusing Heuristics.

A control plan is a plan schema that specifies either a set of subgoals that must be met

in order achieve the plan’s goal, or a primitive action (e.g. blackboard KS or other code

for manipulating objects on the blackboard or planner’s data structures) that can be taken

immediately to achieve the plan’s goal. As shown in Figure 2.3, a control plan’s definition

includes a GOAL form indicating the predicate form of the goal that the plan is intended to

satisfy. The RESUN planner uses this information to retrieve any relevant plan from its plan

library, then logically unify the goal form with the plan’s goal form and variables. IN and OUT

plan variables are used to pass information to higher-level plans, while INTERNAL variables

are used to pass information among a plan’s subgoals. RESUN’s subgoal grammar supports the

specification of rather complex scheduling relationships and dependencies among the subgoals

of a plan. To aid the reader in understanding the structure of IPUS control plans, Figure 2.4

illustrates the five common subgoal relationships used in plans for IPUS:
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(A) Subgoals must be achieved in sequential order left-to-right.

(B) Subgoal-1 must first be achieved, then depending on the value returned by g(), either

subgoal-2 ( ���������
	 � ) or subgoal-3 (���������	�� ) must be achieved.

(C) Subgoal-1 and subgoal-2 both must be achieved, but in any order.

(D) Subgoal-2 needs to be achieved only if the condition is true.

(E) Subgoal-2 must be repeatedly achieved until the condition is false.

Subgoal-1
IN: ?A
OUT: ?C 

SEQ

XOR(g(?C))

Root-Plan
GOAL: ROOT
IN: ?A, ?B
INTERNAL: ?C
OUT: ?D

Subgoal-2
IN: ?A, ?B
OUT: ?D

Subgoal-3
IN: ?B, ?C
OUT: ?D

Subgoal-1
IN: ?A
OUT: ?C 

SEQ

COND(?C = NIL)

Root-Plan
GOAL: ROOT
IN: ?A, ?B
INTERNAL: ?C
OUT: ?D

Subgoal-3
IN: ?A, ?C
OUT: ?D

Subgoal-2
IN: ?A, ?B
OUT: ?C

SEQ

Root-Plan
GOAL: ROOT
IN: ?A,?B
INTERNAL: ?C
OUT: ?D

Subgoal-1
IN: ?A
OUT: ?C 

Subgoal-2
IN: ?B, ?C
OUT: ?D

SEQ

Root-Plan
GOAL: ROOT
IN: ?A,?B
INTERNAL: ?C, ?X
OUT: ?D

Subgoal-1
IN: ?A
OUT: ?C 

ITER(?X > 100)

Subgoal-2
IN: ?B, ?C
OUT: ?X

Subgoal-3
IN: ?A, ?X
OUT: ?D

SHUFFLE

Root-Plan
GOAL: ROOT
IN: ?A,?B
INTERNAL:
OUT: ?C

Subgoal-1
IN: ?A
OUT: ?C

Subgoal-2
IN: ?B
OUT:

(A) (B)

(C)

(E)

(D)

Figure 2.4. RESUN Subgoal Relationships

Focusing heuristics are context-sensitive tests for making a choice when there is more than

one way to refine a plan. Figure 2.3 shows the two types of focusing heuristics used in IPUS:
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variable-focusing heuristics and match-focusing heuristics. To see the role of variable-focusing,

note that Primitive-X returns an uncertain value (?OUT1) which means that Subgoal-1’s ?C

variable could have two or more possible values. A variable-focusing heuristic is applied to

uncertain-valued variables when an attempt is made to use them in another subgoal (Subgoal-2

in Figure 2.3’s case). To see the role of match heuristics, note that Plan-1 was not the only plan

in the control-plan database that could possibly satisfy Subgoal-3. A match-focusing heuristic,

however, selected Plan-1. In both types of focusing, the decision is not final; if a subgoal could

not be achieved with the first result of a focusing heuristic, the planner can (if the user so

specifies) re-apply the heuristic to obtain the next best choice.

Most significantly for IPUS, RESUN is an incremental planner, which means that plans are

only expanded into constituent subgoals until the next primitive action that can be executed

is identified. The action is then executed, and its effects on the blackboard or its output

plan-variable results are used to update planner structures before more planning is performed.

This has the important consequence of interleaving planning and KS execution, which in turn

makes possible the kind of context-dependent behavior the thesis seeks for IPUS.

The RESUN framework was developed to address existing interpretation systems’ limited

ability to express and react to the reasons for interpretation hypotheses’ uncertainty. It

emphasizes the separation of hypothesis belief evaluation from control decision evaluation

by making control responsive not only to the levels of numeric belief in hypotheses but also to

the presence of specific SOUs in the problem-solving model or on hypotheses. The refocusing

formalism supports opportunistic control by enabling the planner to switch among several

plan elaboration points (current leaf nodes in the plan tree) in a context-dependent manner.

RESUN facilitates two basic problem-solving modes: evidence aggregation and differential

diagnosis. Problem-solving for evidence aggregation seeks data for increasing or decreasing the

certainty of one particular interpretation, whereas problem-solving for differential diagnosis

seeks data for resolving ambiguities (uncertainties) that produced competing interpretations.

IPUS-based systems need to use both problem-solving approaches in deciding when to reprocess



30

data previously examined under one SPA with another SPA to obtain evidence for resolving

uncertainties.

2.3 Generic Architectural Strategy

The generic IPUS architecture,with its primary data and control flow, appears in Figure 2.5.

Solid arrow lines indicate dataflow relations. Dotted arrow lines indicate classes of plans that the

planner can pursue when trying to reduce or eliminate particular uncertainties (discrepancies)

in the problem solving model that were selected by the focusing heuristics. Note that the figure

shows reprocessing being done only on the lowest-level SPAs for clarity’s sake. Within IPUS,

reprocessing can cause SPA execution at any SPA output level, not just the lowest. Two types

of signal interpretation hypotheses are stored on the hierarchical blackboard: interpretations of

correlates from current and past signal analyses, and expectations about the interpretations of

data correlates from future analyses.

Reprocessing Loop

SOU 
summary

Signal 
Data

Blackboard

SOU selected by focusing heuristics

Selected Control Plan:
one of 

Interpretation KSs,
Reprocessing Loop,

Differential Diagnosis,
or SPA execution

.

.

.

.

.

.

Problem Solving Model

hypotheses expectations
Level N

SPA output
Level k+1

hypotheses expectations
Level k+1

SPA output
Level 1

{
{ (Interpretation 

KSs)

Discrepancy
Detection

Control
Planner

Differential 
Diagnosis

Diagnosis

Reprocessing

(SPA KSs)

Figure 2.5. The Abstract IPUS Architecture

The IPUS architecture is designed to support variations on the following four-phase

general control strategy. Within the first phase, each block of signal data is processed with an
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initial configuration of SPAs (initial front end), producing data correlates at various blackboard

abstraction levels up to some cutoff level. As the initial front end is executed, discrepancy

detection tests are performed to check for discrepancies between each SPA’s data correlates and

(1) the correlates of other SPAs in the configuration, and (2) application-domain constraints.

Depending upon the system designer’s intentions, IPUS provides the ability either to proceed

to the second phase of execution, to act immediately upon detected discrepancies at this point

(third phase), or to interleave these behaviors. In the second control-strategy phase, IPUS

applies signal interpretation algorithms (SIAs) to the front end results both to confirm support

for expectations from previous data blocks’ interpretations and to generate new hypotheses to

explain unexpected correlates’ occurences.
�

In the course of confirming expected correlates,

IPUS performs a third set of discrepancy-detection tests to compare the initial front end’s

output with the correlates’ anticipated form based on high-level expectations. During the third

general control phase IPUS selects various discrepancies, generates diagnostic explanations

for them, and, if explanations exist, searches for and applies new front ends to eliminate or

reduce the discrepancies. As before, IPUS permits a system designer to interleave actions

from this phase with actions from the second phase. In the fourth and final control-strategy

phase, if there are any similarly-rated competing top-level interpretations, IPUS can perform

differential diagnosis to select and execute reprocessing plans to find correlates for features that

will discriminate among the alternatives. At the end of this phase, IPUS also allows the system

designer to specify methods for updating the initial front end for the next data block so as to

prevent reprocessings for predictable discrepancies.

2.4 Basic IPUS Machinery

This section describes both the RESUN elements and the IPUS-specific mechanisms that

provide the framework for the general IPUS architecture. The first subsection describes the

role of RESUN’s SOU concept in IPUS, while the second subsection presents the basic control

�

for example, new tracks from a newly-started sound or a new shadow from an object that has just moved into
a camera’s field of view.
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plans that implement IPUS. The third subsection concludes with a discussion of the IPUS

mechanisms for supporting processing contexts and adaptable front ends.

2.4.1 SOUs and IPUS

The key to using RESUN to implement the general IPUS control strategy yet provide

generality for system designers using IPUS in various domains lies in RESUN’s SOU concept.

It is the generality of the RESUN SOU language that gives IPUS its own generality. IPUS

requires a system designer to specify control decision tests using both application-specific

focusing heuristics and application-specific control plans. These tests must be expressed in

terms of what kinds of SOUs are present in the PSM or on a particular hypothesis.

There are three general categories of SOU that IPUS borrows from RESUN, which are

named according to where SOUs in the category can be found within IPUS:

1. Problem-Solving-Model SOUs These SOUs are used to summarize the general state of

the current interpretation. IPUS makes use of four RESUN SOUs in this category:

(a) No-Evidence: Summarizes where the current interpretation is uncertain because

there is unprocessed signal data beyond the current data block.

(b) Uncertain-Hypothesis: Summarizes which hypotheses in the current interpretation

are uncertain and why. This SOU is used with symbolic interpretation hypotheses

that are not at the “answer” blackboard abstraction level (the level of hypotheses at

which a system is supposed to return results).

(c) Uncertain-Answer: This SOU is used with symbolic interpretation hypotheses

that are at the “answer” blackboard abstraction level, and that have sufficient

(though possibly incomplete) support to be believed. Summarizes which believed

answer-level hypotheses are uncertain and why.

(d) Uncertain-Nonanswer: This SOU is used with symbolic interpretation hypotheses

that are at the “answer” blackboard abstraction level, and that have sufficient
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(though possibly inaccurate) negative evidence to be disbelieved. Summarizes

which disbelieved answer-level hypotheses are uncertain and why.

2. Hypothesis SOUs These SOUs are used to express general reasons for why a particular

hypothesis is uncertain. IPUS adopts eight from the RESUN SOU language, and uses

a ninth SOU specific to the architecture:

(a) No-Support: This SOU represents the uncertainty in a hypothesis that arises because

it was generated through top-down inferencing and not any support hypotheses

have yet been sought for it.

(b) No-Explanation: This SOU represents the uncertainty in a hypothesis that arises

because no bottom-up inferencing has yet been done to explain it as a feature of

(i.e. evidence for) a higher-level hypothesis.

(c) Partial-Support: This SOU represents the uncertainty in a hypothesis that arises

because not all of the potentially available support evidence for it has been searched

for.

(d) Support-Exclusion: This SOU represents the uncertainty in a hypothesis that arises

because some subset of its required support evidence has been sought for but not

found, which raises the possibility that the evidence may not in fact exist

(e) Possible-Alternative-Explanation: This SOU represents the uncertainty in a hypoth-

esis that arises because there exist explanations for it that have not been considered

due to pruning decisions in the interpretation search space.

(f ) Possible-Alternative-Support: This SOU represents the uncertainty in a hypothesis

that arises because there exist other classes of support that have not been considered

due to pruning decisions in the interpretation search space or the front-end search

space.

(g) Alternative-Extension: Within RESUN (and IPUS), to represent the fact that a

hypothesis at one abstraction level is supported by one or more other hypotheses at
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lower abstraction levels, inference structures that link the hypotheses’ data structures

are created. When the inference structure is created, copies of the involved

hypotheses’ data structures are also created with updated attribute values according

to the constraints of the inference. These copies are called hypothesis extensions.

The alternative extension SOU represents the uncertainty in a hypothesis that

arises because it has two or more extensions that support higher-level competing

hypotheses.

(h) Uncertain-Support: This SOU summarizes the uncertainty that a hypothesis has

due to the uncertainty in the support hypotheses upon which it depends. Within

IPUS this SOU serves as a “placeholder” in which focusing heuristics can find

summary information about the uncertainty in the support for a hypothesis.

(i) Constraint-Inconsistency: This SOU defined for IPUS represents the uncertainty

in a hypothesis that arises because one or more domain-dependent relationships

between it and other hypotheses have not been observed. For example, assume that

the local maxima selected by a peak-picking SPA from a spectrum hypothesis must

account for 50% of the spectral energy. If this constraint is not met, the spectrum

hypothesis will be annotated with a constraint-inconsistency SOU.

3. Inference SOUs IPUS includes two SOUs in this category for representing uncertainty

about the validity of inferences between support hypotheses and conclusion hypotheses.

(a) Constraint: Occasionally some constraint in the application-rule that permits a

support inference to be made is “moderately” violated. For example, assume a

domain-specific rule that states that a set of frequency tracks in a spectrogram can

be considered to represent (i.e. provide support for) a harmonic set if they are

all integer multiples of a fundamental frequency. Depending on the application

domain’s processing requirements, this rule might be considered to have been

“moderately” violated when a set of tracks is used as support for a harmonic
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set even though their frequencies each are 5 to 10 percent off from true integer

multiples. Constraint SOUs represent the uncertainty in the inference caused by

such situations.

(b) Possible-Inappropriate-Parameter: This SOU represents the uncertainty in a negative

inference that support hypotheses might be missing or distorted due to signal

processing with an inappropriate front end, rather than because the support is

not present. For example, an inference recording that no spectral peaks were

found for an expected track hypothesis would be annotated with this SOU if the

track’s possible range of expected energy included values below an energy threshold

parameter used by the peak-picking SPA for identifying spectrogram values as

peaks.

2.4.2 Basic IPUS Control Plans

Figure 2.6 depicts the control-plans used to implement the most general control in

IPUS: PSM-based control. After an IPUS system is initialized, it will iterate within the

Resolve-PSM-Uncertainty plan until some iteration’s achievement of the Have-

PSM-SOU-Resolved subgoal results in the absence of a No-Evidence SOU in the PSM. In

instantiating IPUS, the user must specify a variable focusing heuristic function for selecting

the value of ?psm-sou from all sous in the PSM. Once a value is established, predefined

match focusing heuristics based on the type of PSM SOU selected select a plan from those in

Figures 2.7 through 2.11.

The “No Evidence” control plan (Figure 2.7) effectively implements the first control-

strategy phase as well as the end of the fourth control-strategy phase defined earlier in this section.

The “Uncertain Hypothesis” control plan and the “Uncertain Answer” control plan (Figures 2.8

and 2.9) will be seen to provide the hooks for users to add control plans implementing the

remaining control-strategy phases. The “Uncertain Nonanswer” control plan (Figure 2.10) is

provided as a hook for adding control plans that can re-evaluate certain disbelieved answer

hypotheses when (for example) new signal data becomes available, while the “Solve PSM
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Solve-Interpretation-Problem

Have-Interpretation-Uncertainty-ResolvedHave-Initialized-System

SEQ

IN: ?ps-criteria
OUT:

Have-PSM-SOU
IN: ?ps-criteria, ?prev-sous
OUT: ?psm-sou*

SEQ

Get-PSM-SOUs
GOAL: Have-PSM-SOU
IN: ?ps-criteria, ?prev-attempts
INTERNAL:
OUT: ?sou

ITER (More data blocks exist)

Resolve-PSM-Uncertainty
GOAL: Have-Interpretation-Uncertainty-Resolved
IN: ?ps-criteria
INTERNAL: ?psm-sou, ?result, ?prev-sous
OUT:

Have-PSM-SOU-Resolved
IN: ?ps-criteria, FOCUS(?psm-sou)
OUT: ?result

M
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g

P
la

n

M
at

ch
in

g
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IN: ?ps-criteria, ?library, ?init-front-end
OUT: 

GOAL: ROOT
IN: ?ps-criteria, ?library, ?init-front-end
INTERNAL:
OUT: ?answers

M
at

ch
in

g

P
la

n FOCUS(match-list)

?

Initialize-System
GOAL: Have-Initialized-System
IN: ?ps-criteria, ?library, ?init-front-end
INTERNAL:
OUT: 

Figure 2.6. Highest-Level IPUS Control Plans.

SOU List” control plan (Figure 2.11) is provided so that the system designer is free to have

the PSM-SOU focusing heuristic return more than one SOU to be handled simultaneously.

The ?ps-criteria input variable for these four plans is a means for making available a data-

structure capturing high-level problem-solving constraints that govern the long-term behavior

of a system, such as minimum required rating values for determining if a hypothesis is believed,

or names of critical answer-level hypotheses that should be considered before all others. Such

problem-solving criteria could have been incorporated in focusing heuristics, but they would

then be static and unalterable for the duration of the system’s execution. Maintaining them in

a modifiable data structure allows system designers to specify control-plans that could modify

these constraints if the system’s environment changed from what it was when then system was

originally deployed.

At this point it is instructive to examine how the PSM-level control plans produce the

general processing-strategy stages identified in Section 2.3. The discussion will first focus
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SEQ

Have-Earlier-Block-Pruned
IN: ?psm-sou, ?front-end
OUT:

COND(?waveform)

Have-Updated-Front-End
IN: ?ps-criteria, ?front-end
OUT: ?front-end

SEQ

Have-Front-End-Applied
IN: ?waveform, ?front-end
OUT:

Solve-No-Evidence-SOU
GOAL: Have-PSM-SOU-Resolved
IN: ?ps-criteria, ?psm-sou
INTERNAL: ?region, ?front-end, ?waveform
OUT: ?status

Have-New-Data-Block
IN: ?psm-sou
OUT: ?waveform,?status

Figure 2.7. “No Evidence” Control Plan.

GOAL: Have-PSM-SOU-Resolved
IN: ?ps-criteria, ?psm-sou
INTERNAL: ?hyp-extension
OUT: ?status

SEQ

Resolve-Uncertain-Hypothesis-SOU

XOR(if (= ?hyp-extension :NONE) 1 0)

Have-Uncertain-Extension
IN: ?psm-sou
OUT: ?hyp-extension

IN: ?ps-criteria, FOCUS(?hyp-extension)
OUT: ?status

Have-Uncertain-Extension-SOU-ResolvedHave-PSM-Hyp-Disbelieved
IN: ?psm-sou
OUT: ?status

Figure 2.8. “Uncertain Hypothesis” Control Plan.

SEQ

GOAL: Have-PSM-SOU-Resolved
IN: ?ps-criteria, ?psm-sou
INTERNAL: ?answer-extension
OUT: ?status

Resolve-Uncertain-Answer-SOU

Have-Uncertain-Extension
IN: ?psm-sou
OUT: ?answer-extension

Have-Uncertain-Extension-SOU-Resolved
IN: ?ps-criteria, FOCUS(?answer-extension)
OUT: ?status

Figure 2.9. “Uncertain Answer” Control Plan.
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on the “No Evidence” control plan. The Have-Earlier-Block-Pruned subgoal of the “No

Evidence” control plan provides system designers with a hook for incorporating criteria and

strategies for simplifying the current interpretation before the next data block is examined. The

“Simplify Interpretation” control plan in Figure 2.12 provides a general strategy for achieving

the subgoal. This plan can be customized through focusing heuristics and domain-dependent

plans and primitives for its subgoals.

The overall strategy shown in Figure 2.12 has five stages. The first stage is represented by the

Have-Answer-Summary subgoal, and involves the summarization of the answer-level hypotheses

for the most recent data block into three categories: viable, dropped, and suspended. Viable

hypotheses are those answer-level hypotheses that are believed, while dropped hypotheses are

those answer-level hypotheses that have been disbelieved, or “pruned” from the interpretation,

SEQ

GOAL: Have-PSM-SOU-Resolved
IN: ?ps-criteria, ?psm-sou
INTERNAL: ?answer-extension
OUT: ?status

Resolve-Uncertain-Nonanswer-SOU

Have-Uncertain-Extension
IN: ?psm-sou
OUT: ?answer-extension

Have-Uncertain-Extension-SOU-Resolved
IN: ?ps-criteria, FOCUS(?answer-extension)
OUT: ?status

Figure 2.10. “Uncertain Nonanswer” Control Plan.

SEQ

GOAL: Have-PSM-SOU-Resolved
IN: ?ps-criteria, ?psm-sou-list
INTERNAL: (as needed)
OUT: ?status

Resolve-PSM-SOU-List

Have-SOU-Set-Handled
IN: ?ps-criteria, ?psm-sou-list
OUT: ?status

FOCUS(match-list)

Figure 2.11. “Solve PSM SOU List” Control Plan.
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SEQ

SEQ

Simplify-Interpretation
GOAL: Have-Earlier-Block-Pruned
IN: ?no-evidence-sou, ?front-end
INTERNAL: ?viable,?hyps, ?dropped, ?suspended, ?sufficientp,
                      ?believed, ?disbelieved
OUT:

Have-Answer-Summary
IN: ?no-evidence-sou
OUT: ?hyps, ?dropped,
          ?suspended

Have-Competitors-Pruned
IN: ?hyps, ?viable
OUT:?dropped

ITER(and (not FOCUS(?sufficientp))
                    ?dropped))

Have-Answer-Sufficiency
IN: ?viable, ?suspended,
      ?dropped, ?front-end
OUT: ?sufficientp*

Have-Answer-Sufficiency
IN: ?viable, ?suspended,
      ?dropped, ?front-end
OUT: ?sufficientp*

ITER(Unpruned competitors exist)

SEQ

ITER(and (not FOCUS(?sufficientp))
                    ?suspended))

Have-Competitor-Reconsidered
IN: ?hyps, ?no-evidence-sou,
OUT: ?believed, ?disbelieved

Have-Nonanswer-Reconsidered
IN: ?suspended, ?no-evidence-sou, ?viable
OUT: ?suspended

Have-Answer-Sufficiency
IN: ?viable, ?suspended,
      ?dropped, ?front-end
OUT: ?sufficientp*

Figure 2.12. “Simplify Interpretation” Control Plan.

in favor of a higher-rated competing hypothesis. Suspended hypotheses are those answer-level

hypotheses that were disbelieved or eliminated from further consideration before all possible

evidence for them had been sought because of a decision in some search-pruning focusing

heuristic. The second stage is represented by the Have-Competitors-Pruned subgoal, and entails

iteratively disbelieving hypotheses whose competitors have higher belief,
�

until all lower-ranked

competitors have been removed from consideration. The third stage is represented by the

first Have-Answer-Sufficiency subgoal, which is achieved through a domain-specific focusing

heuristic that determines the adequacy of the current data block’s interpretation (i.e. selects

a true or false value for the ?sufficientp variable). “Adequacy” in this context refers to some

set of domain-specific features that define the stopping criteria for problem-solving on a data

block. When these criteria are met, the interpretation is assumed to be complete for the current

data block, and the system can proceed to work on the next data block. The fourth and

fifth “Simplify Interpretation” stages involve work on repairing interpretation inadequacies;

their order can be switched according to application-domain requirements. In the iteration

�

The belief metric can include tests for SOUs as well as numeric ratings.
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that reconsiders dropped hypotheses, the first subgoal involves the determination of whether

in fact a dropped hypothesis and its competitor are both present in the signal, in which case

a pruning decision based on arbitrarily different ratings would be superseded. This subgoal

can be achieved by the IPUS-supplied differential diagnosis control plan to be discussed in

Subsection 2.5.4 or by domain-specific plans supplied by the system designer. In the iteration

that reconsiders suspended hypotheses, the first subgoal involves the determination of whether

in fact a suspended hypothesis had been discarded from consideration too soon, in which case

a pruning decision based on an arbitrary rating at an arbitrary time would be superseded. This

subgoal can be achieved by control plans whose subgoals require the IPUS-supplied “Uncertain

Nonanswer” control plan in Figure 2.10 or by domain-specific plans supplied by the system

designer.

Continuing the elaboration of the subgoals of the PSM-level control plans, this subsection

turns to the “Uncertain Hypothesis” and “Uncertain Answer” control plans, postponing

discussion of the last two subgoals of the “No Evidence” plan to the next subsection. This is

done since the material in Subsection 2.4.3 strongly interacts with the design of the plans for

those subgoals. In general, the plan for uncertain-hypothesis PSM SOUs (Figure 2.8) leads to

“bottom-up” system interpretation behavior or to diagnosis and reprocessing. That is, achieve-

ment of the plan’s subgoals involves either the explanation of hypotheses at lower abstraction

levels as evidence for higher-level hypotheses, or the application of the reprocessing loop to

resolve discrepancies noted among hypotheses produced by the front end. The first subgoal

requires the selection of one extension when a hypothesis has more than one (Subsection 2.4.1,

Alternative-Extension), and may involve focusing heuristics. The branch at the end of the plan

permits the system designer to have the hypothesis disbelieved if no extension is found whose

uncertainty can be resolved. This action might be justified, if, for example, the selection of

an extension involved preliminary tests for whether the candidate extension could be used to

hypothesize any higher-level or answer-level hypotheses. Failure to pass such a test could be an

indication that the hypothesis represented a bottom-up derived “hallucination” that should be



41

disbelieved, or removed from further consideration by the interpretation processes.
�

The second

subgoal of the branch is handled by the short plan in Figure 2.13, whose subgoals require first

the selection of some hypothesis SOU through a focusing heuristic, and second the resolution of

the selected SOU. When a No-Explanation or Possible-Alternative-Explanation SOU is selected,

domain-dependent control-plans are considered that will cause the problematic hypothesis to

be explained as evidence for a higher-level or answer-level hypothesis. These “No Explanation”

plans implement the part of the second general control-strategy phase that generates explanation

hypotheses for unexpected hypotheses from SPA outputs, or generates preliminary answer-level

explanations. When, however, a Constraint-Inconsistency SOU is selected, domain-dependent

control-plans are considered that will perform discrepancy diagnosis and reprocessing for

discrepancies detected in front-end results. These plans implement part of the third general

IPUS control-stategy phase.

SEQ

GOAL: Have-Uncertain-Extension-SOU-Resolved
IN: ?ps-criteria, ?extension
INTERNAL: ?ext-sou
OUT: ?status

Resolve-Extension-SOU

Have-Extension-SOU
IN: ?extension
OUT: ?ext-sou*

Have-Extension-SOU-Resolved
IN: ?ps-criteria, FOCUS(?ext-sou)
OUT: ?status

Figure 2.13. “Resolve Extension SOU” Control Plan.

The “Uncertain Answer” PSM-level control-plan involves the achievement of subgoals

analogous to those associated with the “Uncertain Hypothesis” plan, but the SOUs that it leads

�

Of course, this conclusion is completely reasonable only if the system designer can assume that all possible
types of hypotheses at the answer-level are known to the system (i.e. all possible perceptual objects are modelled
in the system’s model library). When this assumption is not plausible, that is, there may be unknown objects
whose structure (hypotheses below the answer-level) might be discerned but whose identity may be unknown, the
system designer must exercise care in permitting consideration of the first XOR subgoal.
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the planner to consider resolving on answer-level hypotheses or their supporting hypotheses

are different. The planning associated with this plan’s subgoals will cause an IPUS system to

resolve No-Support, Partial-Support, Possible-Alternative-Support, or Uncertain-Support SOUs

indicating unsought support evidence at lower support-levels if focusing heuristics decide

that the system should be engaged in the second part of the second phase of the general

IPUS control stategy. That is, the system attempts to verify expectations from high-level

interpretation hypotheses. Should focusing heuristics select Support-Exclusion, Alternative-

Extension, or Uncertain-Support SOUs indicating low-quality support, domain-dependent plans

implementing the remainder of the third general control strategy phase are considered. That is,

planning is performed to apply the reprocessing loop to resolve discrepancies detected between

interpretation expectations and front-end outputs.

2.4.3 IPUS and Front Ends

This subsection discusses how SPAs are defined and embedded within an IPUS-based

system and how the processing-context mechanism supports their manipulation.

Before discussing the implementation of SPAs within IPUS, it is important to review the

context-dependent nature of certain SPA executions. This review will serve as background

for the reasons why various information categories about SPAs are included in IPUS. For the

purposes of IPUS, the features that perceptual systems monitor in complex environments can

be divided into two classes. The first class contains features which can be used to indicate

the existence of one or more perceptual objects, though not necessarily the identities of those

objects. These features often have supporting correlates that can be computed independent of

the context being analyzed. In the auditory domain, for example, any collection of one or more

“sound objects” may be conceptualized as an acoustic intensity distribution with minimum

and maximum limits on gross features such as temporal spread, frequency spread, duration of

silence intervals, and degree of randomness in intensity fluctuations. The SPA correlates for

supporting such gross features can generally be computed in a context-independent manner;

hence they are termed context-independent features.
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The second feature class contains those features which can be used to identify an object

or monitor the behavioral changes of an object. The computation of correlates to support

these features is often very sensitive to the context being analyzed; hence they are termed

context-dependent features in the IPUS design framework. In the auditory domain, for example,

a frequency track would be a context-dependent feature of a sound (“acoustic object”). As

Figure 2.14 illustrates, if the current interpretation for a scenario contains only one sound

(sound A) having spectral energy at frequency f1, then even an STFT SPA with an analysis

window length providing only very coarse frequency resolution (STFT-1, in addition to the

other STFTs shown) would still produce correlates (a sequence of high-energy spectrogram

values) that could support the claim that track ������� exists. However, as in Figure 2.15, an

interpretation that assumes another sound (sound B) in the environment with spectral energy at

a frequency f2 near f1 creates a new context with different processing needs. In this new scenario

only STFTs providing frequency resolution of at least the minimum difference between f1 and

f2 (STFT-3 only) will produce correlates that could unambiguously support the existence of

��� ��� (or, for that matter, the existence of �	� ��
 ). Figure 2.16 uses an instance of an environment

suddenly changing from having one sound-source to having two sound-sources to provide a

more concrete example of the context-dependent nature of track detection in a spectrogram in

a real-world system.

It is important to note that the distinction between context-independent and context-

dependent features lies in the usage of the features. If a feature is used only to indicate

the presence of some object(s), the feature is considered context-independent. However, if

the same feature were to be used as support for the identity of some object(s), it would in

general require context-dependent correlate computation, and would therefore be considered

a context-dependent feature.

Each time an SPA is executed within IPUS, the blackboard hypotheses representing the

output correlates from the execution are annotated with the name of the SPA and the control

parameter values used in the execution. This annotation is a data structure referred to as
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Figure 2.14. Context-Dependent Feature Example Part 1.
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Figure 2.16. Context-Dependent Example Part 3.

the correlates’ parameter context. In addition to the parameter context, each SPA correlate

is annotated with a processing context, or a data structure listing the sequence of SPAs that

produced the correlate from the input signal.

In IPUS SPAs are defined with six elements. The first element is the actual code for the

algorithm. The second element is the list of specific parameters that control how the algorithm

produces output correlates, and bounds on the range of values each can take on. The third

element is a set of rules defining how individual control parameters should be modified to

eliminate or reduce various classes of distortions that could be manifested in the algorithm’s

correlates. The preconditions of these rules are expressed in terms of one or more distortions,

while the conclusions or actions of these rules specify methods for computing parameter values

to ameliorate instances of the distortions. These rules actually are stored with reprocessing

strategies. The concept of “distortion” is discussed further in Subsection 2.5.2. The fourth
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element of an SPA definition is a set of discrepancy tests. These are application-dependent tests

that compare the output of one SPA with the output of another SPA for consistency according

to theoretical signal processing constraints. The fifth definition element is a list of “supercontext

methods” that take as input a parameter-context and an optional “information category” label.

These methods return patterns indicating the range of values for each control-parameter in

an SPA parameter-context that would permit the SPA to produce correlates having the same

or greater detail in the specified “information category” as found in the specified parameter

context. The returned patterns
�

must designate all SPAs which produce the same type of

output as that produced by the SPA specified in the supplied parameter context, regardless of

whether they share the same control-parameter sets. As an example, assume an SPA that selects

local maxima from a spectrogram on the basis of whether their energy values are greater than

a threshold control-parameter. The supercontext method for this SPA would, when supplied

with a particular parameter context and the information category “peaks,” return a pattern

indicating that any execution of the SPA with a parameter context having threshold values

below that of the given parameter context would provide at least the same number of peaks as

were produced by the given parameter context. The sixth and final SPA definition element is a

mapping function that takes two parameter contexts and a list of correlates produced from the

first context, and returns a list of the correlate hypotheses modified to reflect how they would

appear had they been produced by the second context.

Figure 2.17 shows the basic control plan used by IPUS for executing an SPA. The

first subgoal, Have-Supercontext-Output, encourages the reuse of correlates from earlier SPA

executions that could provide the same “information” as would be provided by the execution

of the specified SPA with the parameter values specified in the ?context variable. This subgoal

involves the application of supercontext tests. The ?context variable can hold either a parameter

context, a processing context, or a front end, which is a list of parameter-contexts specifying

the default control-parameter values to be used by the front end. In general, reuse occurs

�

In the IPUS Sound Understanding Testbed these are simply parameter contexts with range-values for the
control-parameters.
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during reprocessing, and not during the first execution of the SPAs in the default front

end. The second subgoal updates the region of application for the SPA based on what data

was found that could be reused. The Have-SPA-Executed subgoal applies the SPA with the

control-parameter values specified for it in the ?context variable. The final subgoal involves the

application of discrepancy-detection tests for comparing outputs from the SPA for consistency

with the outputs from other front-end SPAs or with environmental constraints.

SEQ

ITER(?new-regions)

Have-SPA-Executed
IN: ?input, ?new-region, ?spa, ?context, ?result
OUT: ?new-results, ?result

SEQ

Have-Discrepancy-Detection-Done
IN: ?new-results, ?spa, ?context
OUT:

Have-UpdatedRegions
IN: ?old-results, ?region
OUT: ?new-regions

Have-Supercontext-Output
IN: ?context, ?region
OUT: ?temp-results

Call-SPA
GOAL: Have-SPA-Applied
IN: ?input, ?region, ?spa ?context
INTERNAL: ?new-regions,?old-results, ?new-input, ?new-results
OUT: ?result

Figure 2.17. “Call SPA” Control Plan.

The plan for executing the front end in IPUS is domain-dependent and must be specified by

the system designer as a plan with COND clauses with calls to the Have-SPA-Applied subgoal.

The COND test will check for whether the front-end SPA list contains a parameter-context with

the name of the SPA the clause’s subgoal would cause to execute. The Have-Updated-Front-End

subgoal of the Resolve-No-Evidence-SOU general IPUS control plan (Figure 2.7) involves

the execution of rules for checking how often the current front end has caused diagnosable

discrepancies and deciding whether a change in front-end SPAs or a change in SPA control-

parameters is necessary to reduce the time spent in reprocessing. If changes are necessary, this

subgoal will effect changes in the front-end SPA list.
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2.5 IPUS Reprocessing Loop Components

This section presents the generic specifications of each component of the IPUS reprocessing

loop as depicted in Figure 2.5, and, where appropriate, describes the generic control-plan

implementation for the component.

2.5.1 Discrepancy Detection

The discrepancy detection process is crucial to the IPUS architecture’s iterative approach.

The process is required to recognize three groups of discrepancies, based on the source of the

expectation (i.e. ground truth) used in the comparisons.

fault A discrepancy between an SPA’s computed correlates and correlates from other SPAs

applied to the same signal data. This class is included based on two propositions. The

first is that correlates for context-dependent features, if computed by SPAs appropriate

to the context, do not contradict the correlates for context-independent features. The

second is that correlates for context-dependent features, if computed by SPAs appropriate

to the context, do not contradict other context-dependent correlates computed by other

SPAs from the same data. Figure 2.18 illustrates this type of comparison with an acoustic

example comparing the context-independent output of a time-domain energy-tracking

SPA with the context-dependent selection of peak values from the output of an STFT

SPA. The energy tracking SPA indicates a short burst of energy while the first STFT’s

correlates do not support new frequency tracks during the burst’s time period. A fault

should be declared in this case since Fourier theory requires indications of the burst’s

presence in both analyses, � given the assumption that the peak-picking analysis done on

the STFT’s output was appropriate to the environment.

violation A discrepancy detected between an SPA’s data correlates and domain constraints. This

class is included based on the proposition that correlates, if computed by SPAs appropriate

�
Specifically, Parseval’s Theorem

��� ��
���
	�� �� �
���

� � ��
��� ��
� �
	 � ���������

�

requires that time-domain energy (lefthand

side) be conserved in the frequency-domain (righthand side).
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Figure 2.18. Fault Discrepancy Example.

to the context, do not support features that violate the environment’s physical constraints.

As an example, if the application domain is considered subject only to wideband gaussian

noise (5000 Hz wide), STFT output correlates showing only a narrowband noise signal

(say 500 Hz wide) would give rise to a violation. Note that violations can indicate

either that an SPA was inappropriately applied or that the environment’s characteristics

have changed from those in the assumed in the current interpretation. In the first case

reprocessing based on the interpretation should succeed in eliminating the discrepancy.

In the second case reprocessing based on the invalid interpretation should fail.

conflict A discrepancy between an SPA’s computed correlates and model-based expectations.

Model-based expectations arise from two sources. The first source is the set of models

for objects already assumed to be present. The second source is the set of models for

objects under consideration for interpreting newly-detected correlates in the current

block of data. Conflict discrepancies may involve either a total or a partial mismatch
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between correlates and the hypotheses they were supposed to support. This class is

included based on the proposition that features supported by correlates computed from

appropriate SPAs ought to be completely consistent with the object features specified

by the context expected to be observed. The concept of “object features” includes not

only features that are not expected to be distorted but also features that are expected

to be distorted because of the existence of other objects in the environment. Conflicts

can indicate that an SPA is not appropriate to the context or that the context actually

contained objects different from those expected. As a simple example, a conflict would

occur when the interpretations of past correlates predict a sound with two tracks at 230

Hz and at 250 Hz with no decline in their amplitudes, but peaks picked from the current

spectrogram support only one or none of the tracks. This discrepancy could indicate that

possibly the peak-picker’s energy threshold is inappropriate because the sound’s volume

decreased, or that a new sound’s tracks are overwhelming those of the expected sound.

Fault and violation discrepancies are tested for during the achievement of the Have-

Discrepancy-Detection-Done subgoal in the “Call SPA” control-plan of Figure 2.17. The tests

for these discrepancies are application-dependent and are specified in the "discrepancy-test"

element of each SPA’s definition. When discrepancies are found, they are represented as

Constraint-Inconsistency SOUs on the problematic hypotheses. Conflict discrepancies are tested

for within SIAs while they search for evidence confirming expectations. If no evidence is

found, the conflict is represented as a Support-Exclusion SOU on the expectation hypothesis.

When there is reason to believe that the lack of evidence could be attributable to use of an

inappropriate front end, � a Possible-Inappropriate-Parameter SOU is attached to the negative

inference structure linking the unverified expectation hypothesis with an empty evidence set.

On the other hand, if partially supportive evidence is found, the support inference structure

between the expectation hypothesis and the support evidence is annotated with a Constraint

�
This determination should be limited to simple heuristic checks of SPA parameter values rather than complex

tests involving deep SPA knowledge that would be performed only by the discrepancy diagnosis KS.
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SOU. In general, it is the presence of inference SOUs that identifies the presence of conflicts

that may be rectifiable by the reprocessing loop. In all cases the SOUs are annotated with

the processing contexts used in the failed or partially successful attempts at finding desired

evidence.

Examination of a wide range of domains reveals two generic classes of correlates: point

correlates and region correlates. A point correlate is a value associated with one point in the

SPA output coordinate space. A region correlate is a value associated with a subset of the SPA

output space. Consider the following examples. A spectral peak energy value in the “time,

frequency, energy” space of acoustic signal processing and an image pixel intensity value in the

“x, y, intensity” space of image processing are examples of point correlates. A noise-distribution

tag for a region in a radar sweep and a mean-intensity value for a region in the output of an

image filtering SPA are examples of region correlates. A track of spectral peaks over several

time slices from a spectrogram is an example of a region correlate comprised of non-contiguous

subsets of the SPAs’ output space.

For both point and region correlates, the IPUS discrepancy detection component must

support tests for the following generic discrepancies between an SPA’s anticipated correlate set

and its computed correlate set.

1. missing: An anticipated correlate is not in the computed correlate set. An example of

this discrepancy in the acoustic domain occurs when a spectral peak is expected in the

output of an FFT SPA, but is not found.

2. unassociated: An unanticipated correlate occurs in the computed correlate set. An

example of this discrepancy in the radar domain occurs when an unanticipated clutter

region is produced during a radar sweep.

3. value-shift: A correlate is found in the computed correlate set at its anticipated coor-

dinates, but with an unanticipated value. In the visual domain this discrepancy would

be encountered when an image region’s hue label produced by a color-analysis SPA is

different from the one expected.



52

4. coordinate-shift: A correlate with an anticipated value is found in the computed correlate

set but at unanticipated coordinates. This includes the situation where a region’s

boundaries shift from their expected locations. An example of this discrepancy in

the acoustic domain occurs when a track of spectral peaks produced by a curve-fitting

algorithm has the correct energy value but is 30 Hz from its expected position.

5. merge: Two or more anticipated correlates are deemed to have appeared as one unan-

ticipated correlate in the computed correlate set. The criteria for this merging are

domain-specific and often depend on relationships between the missing correlates’ values

or coordinates and the unanticipated correlate’s value or coordinates. An example of

this discrepancy in the visual domain occurs when two adjacent regions with different

expected textures are replaced by one region with an unanticipated texture.

6. fragmentation: An anticipated correlate is deemed to have been replaced by several

unanticipated correlates in the computed correlate set. The criteria for this splitting are

domain-specific and often depend on relationships between the missing correlate’s values

or coordinates and the unanticipated correlates’ values or coordinates. An example of

this discrepancy in the radar domain occurs when a noise-analysis SPA computes two

or more small regions with a particular noise-distribution label instead of an expected

single region with that label.

2.5.2 Discrepancy Diagnosis

SPA processing models serve as the basis for defining how the parameter settings of

an SPA can introduce distortions into the SPA’s computed correlates. These distortions

cause correlate discrepancies. Consider an SPA processing model rule relating the STFT’s

WINDOW-LENGTH parameter to the characteristics of SPA output and how this model

can be used to define distortions. Formally, Fourier theory defines the following relationship.

Assume that an STFT with a rectangular analysis window of
�

sample points is applied to

a discrete signal that has been sampled at � samples per second. If the signal came from
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a scenario containing frequency tracks closer than ��� �
Hz, the correlates for those tracks

in the STFT’s spectrogram (values in the spectrogram matrix indicating prominent energy at

the track frequencies over time) will be merged and will support at most one distinct track.

Referring to Figure 2.16, as the WINDOW-LENGTH parameter’s value increases, merged

and missing correlate discrepancies between (b) and the tracks expected from the updated

interpretation disappear. Conversely, as the parameter’s value decreases, merged and missing

correlate discrepancies occur more frequently.

The primary formal task of an IPUS discrepancy diagnosis KS is to generate a sequence of

distortions that can explain the discrepancies between an initial state that represents the assumed

ground-truth (e.g. application-specific signal constraints, high-level expectations, or outputs

from alternative SPAs whose outputs are less precise but more reliable) and a goal state that

represents the observed SPA output. In effect the distortion list provides an “inverse mapping”

explaining how the ground-truth could have been misrepresented by the front end so as to

appear like the observed correlates. Note that there is a difference between discrepancies and

signal distortion processes; there is not usually a one-to-one mapping between discrepancies

and distortions. It is possible for several distortion processes to explain the same kinds of

discrepancies. A “low frequency resolution” distortion explains the “missing” discrepancy in

Figure 2.19’s example, but a “low time resolution” distortion would explain the “missing”

discrepancy between the outputs from the first two SPAs back in Figure 2.18’s example.

Within IPUS, the actual discrepancy-detection KS is considered domain-dependent, as is

the implementation of the distortion knowledge. It will be seen in Chapter 4 that the Sound

Understanding Testbed (SUT) used a discrepancy-detection KS that relied on means-ends

analysis to generate a list of distortion operators that reduced the differences between an initial

state representing the expected form of front-end data or the expected form of high-level

interpretation hypotheses, and a final state that represented the observed data or hypotheses.

However, a system designer using IPUS would be free to specify some other KS design, perhaps

based on neural nets or cased-based reasoning.
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Figure 2.19. Sample Distortion Explanation.

The domain-independent input requirement for the KS is that it accept as input an

SOU structure that will point to the hypotheses on which it is stored and that can contain

a record of failed diagnosis explanations that did not enable the reprocessing component to

resolve the SOU. The domain-independent output requirement for the KS is that it return

an explanation structure containing a list of distortions, the processing goals for eliminating

them, and the region in which diagnosis was performed. In principle the processing goals

depend on the domain. However, in the development of the Sound Understanding Testbed

reported in Chapter 4, only two general goals were found necessary. The first is of the form

(Have-Hypothesis-Supported ?hyp), which is specified when the SOU under consideration is

related to some hypothesis (?hyp) for which no support evidence was found, and the explanation

requires that the hypothesis be supported. The second general processing goal is of the form

(Have-Hypothesis-Characterized ?hyp ?feature). This goal is specified when the elimination

of the distortions merely requires a more refined value for ?hyp’s feature named in ?feature, or
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the calculation of the feature if it hadn’t already been calculated. The SOU being diagnosed

is annotated with the explanation structure, permitting the IPUS planner the flexibility of

postponing reprocessing for the SOU in case a PSM SOU unrelated to the diagnosed SOU

demands attention.

2.5.3 Reprocessing

The signal reprocessing component of IPUS uses explanations from the diagnosis compo-

nents to propose and execute search plans for finding new SPA control parameter values that

eliminate or reduce the hypothesized distortions. In the course of a reprocessing plan’s execution,

the signal data may be reprocessed several times under different SPAs with different parameter

values. The incremental search is necessary because the diagnosis explanation is at least partially

qualitative, and therefore it is generally impossible to predict a priori exact parameter values to

be used in the reprocessing. The reprocessing component relies on user-encoded knowledge

from SPA processing models to select new SPAs and/or parameter values when instantiating

the proposed reprocessing plan.

The input to the general reprocessing control-plan is the diagnostic explanation for resolving

an SOU. Strategies for eliminating various distortions are specified as domain-dependent

control plans to be selected by the IPUS planner as indexed by the diagnostic explanation.

From the retrieved set of applicable plans, one is selected by domain-dependent focusing

heuristics. Selections can be governed by criteria such as estimated plan execution time, or

the availability of data from earlier executions of SPAs that were supercontexts of SPAs to be

executed. The execution of a reprocessing plan consists of incrementally adjusting the control

parameters of SPAs within the plan, applying the SPA sequence to the portion of the signal

data that is hypothesized to contain distortions, and testing for discrepancy removal. The

incremental process is necessary because the situation description is at least partially qualitative,

and therefore it is not generally possible to predict exact values for the control parameters to be

used in the reprocessing.
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Reprocessing continues until the goal of distortion removal is achieved or it is concluded

that the reprocessing plan has failed. There are two general criteria for determining plan

failure in IPUS. The first criterion simply considers the number of plan iterations. If the

number surpasses a fixed threshold supplied with the control-plan definition, failure is indicated

automatically. The second criterion relies on fixed lower and upper bounds for SPA processing

parameters. If a reprocessing reiteration requires a parameter value outside of its prespecified

range, the plan is considered to have failed.

When plan failure is indicated, the diagnosis process can be re-invoked to produce

an alternative explanation for the SOU being resolved, if appropriate focusing heuristics

for hypothesis-sou-level control plans have been defined. If no alternative explanation is

available (i.e., the diagnostic knowledge source fails to find another distortion explanation), the

IPUS system annotates the hypotheses involved in the discrepancy with SOUs indicating low

confidence due to unresolvable discrepancies. These SOUs’ effects on the entities’ confidence

levels are then propagated to interpretations that were generated from those hypotheses. If

the SOUs caused serious enough rating decreases in the affected hypotheses, the associated

answer-level hypotheses could be disbelieved.

2.5.4 Differential Diagnosis

In the course of processing signal data, IPUS-based systems will encounter signals that could

support several alternative interpretations. In addition to overlapping features from multiple

object models, ambiguous sets of alternative interpretations can also arise from interactions

among co-occurring objects and from application of SPAs inappropriate to a set of objects.

The differential diagnosis component in IPUS must support in these situations the context-

dependent selection of features to disambiguate perceptual objects and processing strategies

to find those features. The basic control-plan for performing differential diagnosis in IPUS

appears in Figure 2.20.

A system designer instantiates the component by supplying a KS as a primitive for satisfying

the first subgoal. The specified input for the differential diagnosis KS is the ambiguous data’s
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SEQ

ITER(FOCUS(?explanations))

Have-Reprocessing-Done
IN: ?explanation
OUT:?results

Have-Differential-Diagnosis-Explanations
IN: ?hyp-list, ?region
OUT: ?explanations*

Differential-Diagnosis
GOAL: Have-Competitor-Reconsidered, Have-SOU-List-Handled
IN: ?hyp-list, ?region
INTERNAL: ?results, ?explanations
OUT: ?believed, ?disbelieved

Have-Results-Updated
IN: ?result, ?believed, ?disbelieved,
      ?explanations
OUT:?explanations, ?believed,
         ?disbelieved

Figure 2.20. “Differential Diagnosis” Basic Control Plan.

set of alternative interpretations and the regions (e.g. time) in the signal where they compete.

The KS’s output is a list of explanations for each alternative, each specifying 1) the region in

the signal data to be reprocessed 2) the verification goals that must be met for confirming each

alternative, and 3) a set of distortions hypothesized as the reason for why the verification goals

hadn’t been achieved earlier. These verification goals are of the same variety as those supplied

by the discrepancy diagnosis KS.

As with the discrepancy diagnosis KS, the differential diagnosis KS applies knowledge from

SPA processing models to predict how the front-end SPAs’ parameter values could have made

correlates for different features of alternative objects appear similar. Based on these predictions,

the reprocessing component can then propose a reprocessing strategy to disambiguate the

features’ correlates.

2.6 Summary

This chapter has presented the domain-independent specification for IPUS in terms of the

basic RESUN control plans used to achieve the general control strategy for the architecture. It

also described the specifications for the reprocessing-loop components and their interactions

with the data structures and code for capturing the formal signal processing knowledge of a

perceptual domain. This section concludes the chapter with a summary of the information

that must be supplied to instantiate the architecture.
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1. Blackboard Signal Representations

2. SPA Definitions

(a) SPA code

(b) control parameters

(c) distortion-reduction rules

(d) violation and fault discrepancy tests

(e) supercontext tests

(f ) mapping functions

3. SIA Definitions

(a) conflict discrepancy tests

4. domain-dependent control plans and focusing heuristics

(a) focusing heuristic for selecting PSM SOUs for resolution

(b) plans and heuristics for resolving hypothesis SOUs

(c) heuristics for determining the highest abstraction level produced by the front end

before top-down processing commences

(d) plan for executing front end

(e) plan for determining adjustments to front-end SPAs

(f ) interpretation sufficiency test for Simplify-Interpretation plan

5. Discrepancy Diagnosis and Differential Diagnosis Components

(a) discrepancy diagnosis KS

(b) differential diagnosis KS

(c) distortion processes
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6. Reprocessing Component

(a) iterative parameter adaptation rules

(b) control-plans encoding the SPA sequences of reprocessing strategies



C H A P T E R 3

RELATED RESEARCH

This chapter discusses related work in three areas connected with IPUS. The first section

discusses general approaches to the problem of integrating signal processing and environmental

interpretation in perceptual systems that do not rely on IPUS’ dual search approach. The second

section clarifies the relationship between the adaptive behavior provided by control-theoretic

approachs and that provided by IPUS. The third section describes related work in the area of

auditory scene analysis, the application domain that is used to validate the IPUS framework in

this thesis.

3.1 Architectural Work

The IPUS architecture represents the formalization and extension of concepts explored

in earlier work on a diagnosis system that exploited formal signal processing theory to debug

signal processing systems [Nawab et al., 1987] and in work on meta-level control [Hudlická

and Lesser, 1987, Hudlická and Lesser, 1984] that used a process of fault-detection, diagnosis,

and replanning to decide the most appropriate parameters for controlling a problem-solving

system.

Several recent systems have been developed that try to integrate interpretation activity and

numeric-level signal processing without recourse to IPUS’ planner-based dual search approach.

These systems will be examined as representatives of general architectural approaches to the

problem of controlling the interaction of signal processing and environmental interpretation in

perceptual systems. For clarity the approaches are described in terms of the IPUS components

they functionally include.

The perceptual framework of Hayes-Roth’s GUARDIAN system [Hayes-Roth et al., 1989]

is typical of systems whose input data points already represent useful information and require
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little formal front-end processing other than to control the rate of information flow. The

system was designed to monitor the basic vital signs of patients in an intensive care unit. The

system incorporates an input-data management component that controls the sampling rate of

signals in response to workload constraints. Information flow is controlled through variable

sample-value thresholds and variable sampling rates. This control framework is somewhat

limited since it is based only on the system’s time requirements for reasoning about classes of

signals, and provides good performance primarily because the signals monitored are relatively

simple and noise-free in nature: heart-rate, temperature fluctuations, etc. The framework’s lack

of centralized components for any of the four IPUS reprocessing-loop tasks leads to inadequate

generality for the wide range of signal/environment interactions which can include signals

containing complex structures that must be modeled over time in the presence of variable

noise levels. No implication should be inferred from this discussion that frameworks in this

class do not perform any diagnostic reasoning. Rather, the observation should be made that

this reasoning capability is not applied to the identification of potentially adverse interactions

between the environmental signal and the front-end processing.

The framework used by Dawant to build a system for interpreting EKG traces [Dawant

1991] is closer in spirit to IPUS. It is typical of systems designed with the intent of providing

alternative evidence sources as “backup” evidence when moderate deviations are observed

between signal behavior and partially-matched signal event models. The framework does not

support the selective reprocessing or selective application of specialized SPAs since data is always

gathered from every front-end SPA whether required for interpretation improvement or not.

This reliance on a fixed set of SPAs that are all always executed leads to systems where more

and more SPAs are added to front ends � as the environmental complexity increases, ending

in a combinatorial explosion in the number of SPAs necessary to unambiguously identify all

signals in an environment. Unlike IPUS, most architectures in this category operate on the

implicit assumption that the signal-generating environment will not interact adversely with

�
as opposed to a library of SPAs to be used only when needed.
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the signal processing algorithms’ limitations to produce output distortions that might not have

occurred if more appropriate processing algorithms had been used. Any deviations between

observed signal behavior and available signal event models are attributed to chance variations

in the source being monitored, never to the signal’s interaction with inappropriate SPAs or with

other sources in the environment.

De Mori et al. [De Mori et al., 1987] developed a formal interaction framework in a

system to recognize spoken letters of the English alphabet. This framework is representative

of architectures with strong reliance on differential diagnosis techniques. These architectures

are often employed in domains where there is little or no dependence between consecutive

signal events. Interpretations in the system were generated by learned rules expressing letter

identifications in terms of a signal-event grammar. Often more than one letter could be

indicated by a single rule (in their terminology the rule has a confusion set). When such rules

are activated, the system pursues a differential diagnosis strategy relying on rules describing

SPAs that are suited to disambiguating confusion sets with given members. Thus, the system

makes use of selective SPA application and differential diagnosis strategies. However, given

the framework’s relatively restricted application domain, there is a serious question of whether

the approach can be scaled up without including the ability to model the environment’s signal

processing theory. Since the environment of the system considers its objects (letters) as isolated,

unrelated entities, the framework does not incorporate any use of diagnosis in conjunction with

environmental constraints (e.g., A ‘C’ has been identified at time ��� � and a ‘B’ is expected at

time � � since there is an environmental constraint that ‘B’s follow ‘C’s. When no evidence

supporting the expectation is observed, diagnostic reasoning should be attempted to explain

why).

GOLDIE [Kohl et al., 1987] is an image segmentation system that uses high-level inter-

pretation goals to guide the choice of numeric-level segmentation algorithms, their sensitivity

settings, and region of application within an image. The system’s architecture represents the

set of architectures that place strong emphasis on selective SPA application without explicit
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guidance from formal signal-processing theory. The system uses a “hypothesize-and-test”

strategy to search for algorithms that will satisfy high-level goals, given the current image

data. While it incorporates an explicit representation of algorithm capabilities to aid in this

search, and an explicit representation of reasons for why it assumes an algorithm is appropriate

or inappropriate to a particular region, the system notably does not incorporate any diagnosis

component for analyzing unexpected “low quality” segmentations. If an algorithm were applied

to a region and the resulting segmentation were of unexpectedly low quality, the framework

would not parallel IPUS and attempt to diagnose the discrepancy and exploit this information

to reformulate the algorithm search but would select the next highest rated algorithm from the

original search.

In the same category as GOLDIE is TraX [Bobick and Bolles, 1992], a system for

interpreting image frame sequences. Although its design was driven by the goal of supporting

multiple, concurrent object descriptions, the system incorporates some concepts similar to

those in formulation of the IPUS architecture. The system supports detection of deviations

from expected measurements and determination of the possibility that these deviations might

have resulted from processing techniques inappropriate to the current context. In a manner

similar to conflict discrepancy detection in IPUS, TraX compares higher-level expectations

from previous frames against its segmentation SPAs’ outputs for the current frame. In contrast

to the IPUS architecture specification, however, TraX does not use models derived from an

underlying theory for its SPAs to inform the discrepancy detection and diagnosis processes.

It relies instead on empirically derived statistical performance models for the segmentation

algorithms. While TraX allows for the use of different SPAs for different contexts, it does not

support the adaptation of SPAs’ control parameters for different contexts.

Bell and Pau [Bell and Pau, 1990a, Bell and Pau, 1990b] formalize the search for processing

parameter values in numeric-level image understanding algorithms in terms of the Prolog

language’s unification and backtracking mechanisms. They express SPAs as predicates defined

on tuples of the form ��� ��� � � � � � ���
� � , where � represents an image pattern and the � ’s
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represent SPA control parameters. These predicates are true for all tuples where � can

be found in the SPA output when its control values are set to the tuple’s � values. Prolog’s

unification mechanism enables these predicates to be used in both goal-directed and data-driven

modes. In a goal-driven mode, � is specified and some of the parameters are left unbound. The

unification mechanism verifies the predicate by iteratively binding the unspecified parameters

to values from a permissible value set, applying the SPA, then checking if the pattern is found.

In a data-driven mode, � is not bound and the parameter values are set to those of the

front-end processing. � is then bound to the SPA results. The method relies on Prolog’s

backtracking cuts [Giannesini et al., 1986] to limit parameter-value search. A cut is a point

in the verification search space beyond which Prolog cannot backtrack. This reliance on a

language primitive makes it difficult to explicitly represent (and therefore to reason about)

heuristic expert knowledge for constraining parameter-value search as can be done in IPUS’s

reprocessing component. The cut mechanism also does not permit the use of formal diagnostic

reasoning to further constrain parameter-value search based on the cause of an SPA predicate

failure.

3.2 IPUS and Control Theory

Research in active vision and robotics has recognized the importance of tracking-oriented

front-end SPA reconfiguration [Swain and Stricker, 1991], and tends to use a control-theoretic

approach for making reconfiguration decisions. It is indeed sometimes possible to reduce the

reconfiguration of small sets of front-end SPAs to problems in linear control theory. In general,

however, the problem of deciding when an SPA (e.g., a specialized shape-from-X algorithm or

an acoustic filter) with particular parameter settings is appropriate to a given environment may

involve nonlinear control or be unsolvable with current control theory techniques.

It is important to clarify the relationship between the IPUS approach and the classic

control theoretic approach [Seborg 1986]. Control theory uses stochastic-process concepts to

characterize signals, and these characterizations are limited to probabilistic moments, usually

no higher than second-order. Discrepancies between these stochastic characterizations and an
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SPA’s output data are used to adapt future signal processing. In contrast, the IPUS architecture

uses high-level symbolic descriptions (i.e., interpretation models of individual sources) as well as

numeric relationships between the outputs of several different SPAs to characterize signal data.

Discrepancies between these characterizations and SPAs’ output data are used to adjust future

signal processing. Classic adaptive control should therefore be viewed as a special case of an

IPUS architecture, where the interpretation models are described solely in terms of probabilistic

measures and low-level descriptions of signal parameters.

3.3 Auditory Scene Analysis Work

The segregation and identification of simultaneous sounds in an acoustic stream has been

an important problem for psychoacousticians and psychologists for over a century [Helmholtz

1885]. Bregman’s comprehensive book, Auditory Scene Analysis [Bregman 1990], provides a

thorough treatment of the problem’s history and many signal cues psychoacousticians have

identified as useful to humans in perceptually separating sounds. In the field of machine

perception, however, investigation of the problem of computational auditory scene analysis

(CASA) has only recently started in earnest, with most work focused on feature extraction.

In addition to the nascent CASA field, the specialized fields of speech recognition and music

transcription and interpretation have bearing on the problem of acoustic stream segregation.

Except for simultaneous multiple-speaker speech segregation [Weintraub 1986, Parsons

1976], most speech recognition work abstracted the problem of auditory scene analysis away

by assuming that the acoustic signal either contained only speech or had a high signal-to-

noise ratio of speech to non-speech sounds. Recently, work in speech recognition in noisy

environments [Brown and Cooke, 1992, Cooke and Brown, 1994] has begun to eliminate

this assumption with some success. However, most efforts in this research direction tend to

focus more on resynthesis of a “clean” speech signal from a noisy signal than on automatic

recognition of all sounds in the signal. Thus, most of the segregation approaches adopted in

this research divide acoustic signals into “speech” and “non-speech” categories, with little or

no further specialization on “non-speech.” A notable exception to this trend can be found in
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Nawab et al.’s work [Nawab et al., 1995], which developed a detailed taxonomy decomposing

non-speech sounds into acoustic primitives on the same scale as phonemes. The research found

that knowledge of the particular kinds of sounds that co-ocurred with speech aided in the

selection of SPAs for separating the speech and non-speech signals.

The field of automatic music transcription and interpretation has explored approaches that

come closer to being general methods for the CASA problem [Brown and Cooke, 1994, Kashino

and Tanaka, 1993, Mellinger, 1991], including interleaved bottom-up signal processing and

top-down interpretation. Most work in this area, however, concentrates on designing and

applying fixed front ends that only incorporate processing strategies (e.g. SPA sequences)

discerned from the human auditory system. In effect, the “architecture” studied in this research

is the human auditory system. Such study has been and should continue to be useful in finding

inspiration for the design of new individual SPAs though, as noted at the end of Section 1.2,

it places limits on the range of capabilities considered for perceptual architectures.

Within the CASA field itself, most research is devoted to evaluating various acoustic

signal features’ utility in identifying certain signals and designing extraction techniques for

the useful features. However, some research on general systems has begun. Much of the

work has been done within the blackboard paradigm [Nii, 1986], under the assumption that

auditory stream segregation can benefit from some kind of interleaved symbolic interpretation

and adaptive numeric signal-processing [Cooke et al., 1993, Ellis, 1996, Lesser et al., 1995,

Lesser et al., 1993]. The work reported by Ellis is of particular interest in that it builds upon

earlier reported IPUS work on SOU-usage, conflict-detection and reprocessing and incorporates

these mechanisms in a framework for modelling the human auditory system’s sound-segregation

behaviors. That is, the framework uses predictions from models of sound-producing objects to

constrain application of front-end SPAs in directed search for secondary evidence when direct

evidence for an expected sound is not found.

The residue-driven architecture of Nakatani et al. [Nakatani et al., 1995] is a non

blackboard-based CASA framework that relies on the agent metaphor. In this research

specialized agents are created to actively track spectral energy features such as frequency tracks
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in a harmonic set, or wide-band background energy. The approach is residue-driven because

new agents are created only when the current block of data has residual unaccounted-for energy

(e.g. the possibility exists that a new sound has appeared in the environment). The approach

has produced good interpretation results in tests on two- and three-source scenarios, but may

be prone to a combinatorial explosion of increasingly-specialized agents as more complicated

scenarios with a variety of feature-interactions are considered.

3.4 Research Summary

Taken individually, each reprocessing-loop component and control behavior of the IPUS

architecture has been partially explored within at least one of the fields cited as relevant to

this thesis. What qualifies the work in this thesis as a contribution to all the fields is that

it represents the first time that an interpretation architecture using all the components and

organizing control around the signal processing theory of a system’s SPAs has been proposed

and evaluated in a complex environment.



C H A P T E R 4

THE IPUS SOUND UNDERSTANDING TESTBED

This chapter provides a description of the domain knowledge used to instantiate an IPUS

Sound Understanding Testbed (SUT) that was developed to evaluate the IPUS architecture

in a real-world application. Beyond providing a description of one system for interpreting

acoustic signals from a complex environment having the potential for several interpretation

problems, it serves as the logical conclusion to the abstract IPUS specification in Chapter 2.

In studying the descriptions of the particular SPAs included in this instantiated IPUS system

and in evaluating the testbed performance reported in Chapter 5 the reader should note that

the SPAs themselves are not being directly evaluated in this work. While they are certainly

reasonable SPAs to include in an acoustic interpretation system, this thesis does not mean

to imply that collectively they are exhaustive or optimal. The descriptions of the SPAs are

provided to facilitate understanding of how the testbed handles interactions between front-end

signal processing and symbolic interpretation components.

The chapter has two sections. The first section summarizes the acoustic domain knowledge

in the SUT. This includes the blackboard abstraction levels on which hypotheses about acoustic

signal structures can be posted, the SPAs available to the testbed’s front end, and the sound

library used for generating the scenarios used to evaluate the system. The second section

describes the information used in instantiating the SUT’s control framework (control plans,

SOUs, and focusing heuristics) and reprocessing loop (discrepancy-detection tests, context-
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Table 4.1. SUT Sound Library

alarm clock1 chicken foghorn razor (electric)
alarm clock2 chime footsteps smoke alarm1
bell1 toll clap glass clink smoke alarm2
bell2 toll clock chime gong telephone dial
bicycle bell clock ticks hairdryer telephone ring
bugle note1 cuckoo clock knock telephone tone
bugle note2 door chime ovenbuzzer truck motor
burglar alarm door creak owl vending machine hum
car engine firengine bell pistolshot viola
car horn firehouse alarm policecar siren wind

manipulation functions, discrepancy and differential diagnosis components, and reprocessing

strategies).

4.1 SUT Acoustic Knowledge

4.1.1 Sound Library

For the evaluation experiments presented in Chapter 5 the SUT was supplied with an

acoustic library containing 40 sound-source models. As was briefly discussed in Chapter 1

the particular sources chosen for the library were selected to simulate a moderately complex

acoustic environment containing a variety of real-world acoustic behaviors that would lead to

interesting processing interactions among sounds in a random scenario. The range of acoustic

behavioral categories in the library is defined in Table 4.2, while Table 4.1 lists all sounds in

the library and their behavioral categories. Note that the categories are not mutually exclusive,

since sounds can exhibit more than one behavior over time. A comprehensive catalog of the

sound-source models in the library can be found in Appendix A. To give an indication of

the potential for interactions among sounds randomly selected from the library and placed in

scenarios with random start times, Figure 4.1 shows a histogram of the number of overlapping

narrowband (e.g. � 100-Hz wide) sound tracks in the library. Note that the higher the number

of overlapping tracks there are in a spectral region, the greater the processing work that must be

done to decide (1) whether in fact overlapping tracks are present in a scenario, and (2) which

subset of the tracks that could be in the region of overlap are actually present.
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Table 4.2. Sound Library Category Definitions.

CATEGORY chirp
DEFINITION the sound has relatively smooth time-dependent frequency shifts

SOUNDS door creak, hairdryer, owl, wind

CATEGORY harmonic
DEFINITION the sound has a set of frequencies

�
��������� �

���
that are integer multiples of

some fundamental frequency
� � . Some multiples can have zero energy.

SOUNDS alarm clock1, alarm clock2, bell1 toll, bell2 toll, bicycle bell, bugle note1,
bugle note2, burglar alarm, car engine, car horn, chicken, chime, clock chime,
cuckoo clock, doorbell chime, firengine bell, firehouse alarm, foghorn, gong,
gong, hairdryer, owl, ovenbuzzer, policecar siren, razor, smoke alarm1, smoke
alarm2, telephone dial, telephone ring, telephone tone, triangle, vending
machine hum, viola

CATEGORY impulsive
DEFINITION the sound’s acoustic energy is concentrated in a short time period.

Such sounds tend to have significant energy throughout the spectrum.
SOUNDS clap, clock ticks, footsteps, glass clink, knock, telephone dial, pistolshot

CATEGORY repetitive
DEFINITION the sound is repeated, though not necessarily with a regular period.

SOUNDS clock chimes, clock ticks, cuckoo clock, footsteps, owl, policecar siren,
telephone ring, telephone tone, telephone dial

CATEGORY transients
DEFINITION the sound’s attack (signal onset) or decay (signal turn-off ) behaviors

differ from those found during the steady-state.
SOUNDS bell1 toll, bell2 toll, chime, clap, clock chimes, door creak, gong, hairdryer,

knock, razor, triangle
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Figure 4.1. SUT Library Spectral Histogram

4.1.2 Acoustic Structure Knowledge

The testbed uses thirteen partially-ordered evidence representations to construct an in-

terpretation of incoming signals. They are implemented through thirteen levels on the

testbed’s hypothesis blackboard. Figure 4.2 illustrates the support relationships among the

representations, while the following discussion highlights the representations’ content:

WAVEFORM: the raw waveform data. This representation is maintained since the testbed

architecture will sometimes need to reprocess data. To conserve storage, only the last 3

seconds of waveform data are kept on the testbed’s blackboard.

ENVELOPE: the envelope, or shape, of the time-domain signal. This level also maintain

statistics such as zero-crossing density and average energy for each block of signal data.

SPECTROGRAM: spectral hypotheses derived for each waveform segment with algorithms

such as the Short-Time Fourier Transform (STFT) and the Quantized Short-Time

Fourier Transform [Nawab and Dorken, 1995] (QSTFT), an approximate SPA.

PEAK: peak spectral energy regions in each time-slice in a spectrogram. These indicate

narrow-band features in a signal’s spectral representation.
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Figure 4.2. SUT Acoustic Abstraction Hierarchy.

SHIFT: sudden energy changes in the time-domain envelope.

EVENT: time-domain events, which group shifts into boundaries (i.e. a step-up or step-down

in time domain energy indicating the possible start or end of some sound) and impulses

(i.e. sudden spikes in the signal).

CONTOUR: groups of peaks whose time indices, frequencies, and amplitudes represent a

contour in the time-frequency-energy space with uniform frequency and energy behavior.

SPECTRAL BAND: regions of spectral activity (i.e. clusters of peaks) in a spectrogram. this

abstraction level implements a knowledge approximation technique that avoids over-

reliance on strict narrowband descriptions of sounds by mapping rough clusters of

spectral activity in a spectrogram to those sounds in the sound library that overlap those

frequency regions.

MICROSTREAM: a track. A microstream represents a sequence of contours that has an

energy pattern consisting of an attack region (signal onset), a steady region, and a decay

(signal fadeout) region. The attack and decay regions can have frequency chirps in
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addition to their energy change. The steady region of “long-term” tracks have stochastic

entropy-like measures of the frequency and energy variability among the peaks in the

track.

NOISEBED: the wideband component of impulsive areas within a sound source’s acoustic

signature. Microstreams (tracks) often form “ridges” on top of noisebed “plateaux,” but

not every noisebed has well-defined microstreams associated with it.

STREAM: a set of microstreams and noisebeds grouped as a perceptual unit on the basis

of streaming criteria developed in the psychoacoustic community [Bregman 1990].

Specifically, the SUT’s KSs group microstreams together when they have similar fates

(e.g. synchronized onset- and end-times, synchronized chirp behavior), or when they

share a harmonic relationship. Noisebeds are predicted and searched for only after a

stream has been identified as a particular source’s signature. Expectation-derived stream

hypotheses also record the expected energy ratios among the steady-state regions of

component microstreams.

SOURCE: stream hypotheses, with their durations supported by boundaries, are interpreted

as sound-source hypotheses according to how closely they match source-models available

in the testbed library. Partial matches (e.g. a stream missing a microstream, or a

stream with duration shorter than expected for a particular source) are accepted, but

hypotheses resulting from these matches will later cause the testbed to attempt to account

for the missing or ill-formed evidence (e.g. microstreams or noisebeds) as artifacts of

inappropriate front-end processing.

SCRIPT: temporal streaming of a sequence of sources into a single unit (e.g. a periodic source

such as footsteps being composed of a sequence of footfalls, or the combination of

cuckoo-chirps and bell-tones in a cuckoo-clock chime).
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The following discussion elaborates the information about microstream entropies � and

noisebed features that is maintained in the acoustic database’s sound-source models.

4.1.2.1 Microstream Entropy Values

Microstream entropies are intended to express the variability in frequency and amplitude

exhibited by the steady-state peaks in a sound’s spectrogram. They are calculated only for sounds

whose microstreams’ steady-state behavior lasts longer than 0.75 seconds, and only for peaks

generated from a 2048-point short-time Fourier Transform with a 256-point decimation and

a 1024-point rectangular analysis window. Whenever the SUT needs to verify entropy values

for a track, it must use peaks from that STFT parameter context. Since both frequency and

amplitude entropies are calculated in the same manner, only the amplitude entropy calculation

will be described in detail.

The first step in calculating a microstream’s amplitude entropy is to calculate the segment

amplitude entropy,

���� 	
� ��� ��

for each segment in the steady region of the microstream, where � �� and � �� are the mean

and standard deviation, respectively, of the amplitudes of the � peaks in the � ’th segment

in the track. In the library a segment has � 	���� peaks, which covers 0.5 seconds in a

16KHz-sampled signal’s spectrogram. Note that segments overlap; the � ’th segment includes

the � ’th through � � � 	 � ’th consecutive peaks. By considering tracks of length at least

0.75-seconds, this gives us at least 15 segments per track. A microstream’s amplitude entropy

is defined by the values � and � , which are the mean and standard deviation of the segment

entropies, respectively.

�
Although the term “entropy” is used most often in information theory to measure the logarithmic information

content of a signal, in this thesis it is borrowed to refer to the stability, or organization, within a track. High
entropy values will indicate unstable, highly-variable tracks, while entropy values near zero will indicate stable
tracks. Statistics textbooks often refer to this measure as the “coefficient of relative variation.”
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4.1.2.2 Noisebed Models

The noisebed model is generated from an impulsive sound’s spectrogram as follows.

The spectrogram is produced from a 128-point short-time Fourier Transform with 32-point

decimation and a 64-point rectangular analysis window. A 0.2-second region in the spectrogram

is divided into an ��� � � (frequency � time) grid, starting at a point just before the sound reaches

maximum energy. The grid’s energy values are normalized with the maximum grid tile set to

1.0. From this grid four noisebed features are calculated: (1) the spectral center of gravity at

the time the impulse is at its maximum energy, (2) the difference between the energy of the

maximum-energy grid tile and that of the tile one frequency-slice above it at the same time,

(3) the difference between the energy of the maximum-energy grid tile and that of the tile one

frequency-slice below it at the same time, and (4) the least-squares exponential decay rate fitted

to the energy values in the tiles in the same frequency-slice as the maximum-energy tile, but at

time-slices after and including the maximum tile.

4.2 Architecture Instantiation

This section summarizes the information used to meet the instantiation checklist provided

at the end of Chapter 2. The first part presents highlevel accounts of the SPAs and SIAs used

in the testbed. The second part completes the representation information from the previous

section with a description of how the SUT summarizes belief in types of signal hypotheses.

The third part discusses the domain-dependent control plans and focusing heuristics used in

the SUT, and the fourth, fifth and sixth parts discuss the instantiation of the reprocessing loop’s

diagnostic components and the reprocessing component, respectively.

4.2.1 SPAs and SIAs

4.2.1.1 SPAs and Support Information

The SUT has 9 KSs implementing SPAs that can be used in front-end processing, and 7 KSs

implementing SIAs that can be used to generate high-level interpretations, in addition to 3 KSs

for discrepancy-detection, discrepancy diagnosis, and differential diagnosis. SPA KSs can be
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distinguished from SIA KSs by their task. SPA KSs implement mathematical transformations

involving no search on the input data, whereas SIA KSs implement search processes for evidence

to support some hypothesis. In lieu of code, Tables 4.3 and 4.4 summarize all the testbed SPAs

and their their control parameters.

While examining the entry for the STFT SPA, readers familiar with signal processing

applications will note that in many applications the window of signal data for each Discrete

Fourier Transform is first “tapered” toward the ends by multiplication with another window

of scale values. The shape of the scale-value window can be shown (see [Oppenheim and

Schafer, 1989], Chapter 7) to have an effect on both the frequency resolution of the resulting

spectrogram and the introduction of spurious peak-values of low-to-moderate energy appearing

on either side of true spectrogram peaks.
�

In the SUT a uniform, rectangular, scaling window

is used, which provides the sharpest resolution at the expense of increased spurious peak values.

The two peak-picking SPAs (THRESH-PEAK and MAX-PEAK) in the SUT were designed to

ignore these spurious peaks.

In the SUT only the SHIFT and THRESH-PEAK SPAs perform fault and violation

discrepancy tests on their results. Recall from Section 2.5.1 that fault discrepancy tests check

to make sure that output from two front-end SPAs are consistent, while violation discrepancy

tests check to make sure that output from an SPA does not exceed certain gross environment

constraints and that the output is not subject to boundary effects of applying an SPA. “Boundary

effects” refers to the results of applying an SPA to data that do not meet some assumption. In

the SUT the SHIFT SPA performs a violation test to make sure that all shift hypotheses occur

away from the trailing edge of the current envelope, since the envelope edge does not provide

a sufficient neighborhood for determining if a shift represents a boundary (i.e. long-term

sound’s onset) with a sustained signal energy, or an impulse with a momentary burst of signal

energy. When a violation is detected, the SHIFT SPA attaches a Constraint-Inconsistency to the

�

These are referred to as peaks caused by the sidelobes of the scale window’s Fourier Transform. See Chapter
7 of [Oppenheim and Schafer, 1989] for more details.
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Table 4.3. Summary of SUT Front-End SPAs, Part 1.

SPA TRANSFORM PARAMETERS DESCRIPTION

Produces a spectrogram
Short-Time from FFT-Size-

Fourier Transform Spectrogram Window, point FFTs on Window-
(STFT) � Decimation, point data blocks whose

see Waveform FFT-Size start points are sep-
[Nawab and Quatieri, 1988] arated by Decimation

data points.
Produces a spectrogram
evaluated only at the

Limited Freq-Point, Freq-Point’th
Short-Time Spectrogram Window, frequency in DFT-Size-

Fourier Transform � Decimation, point Fourier Transforms on
(LSTFT) Waveform DFT-Size Window-point signal

blocks with starts
Decimation data
points apart.

Quantized Quantizes the signal to
Short-Time QWindow, (-1,0,1) and computes only

Fourier Transform Spectrogram QFFT-Size, frequencies within Freq-
(QSTFT) � QDecimation, Radius of estimated

see Waveform Freq-Radius max-energy frequency. SPA
[Nawab and Dorken, 1995] is an order of magnitude

faster than the STFT.
Similar to STFT, except

Adaptive Spectrogram Window-List, spectrogram maximizes the
Time-Frequency � FFT-Size, energy concentration of

(ATF) Waveform Decimation locally dominant tracks
see [Jones and Parks, 1990] over those produced by

STFT analysis with windows
in Window-List.
Classifies the max energy
value within Freq-Region

Max Peak-Picker Peak Cutoff, in each spectrum of a spectro-
(MAX-PEAK) � Freq-Region gram as a peak, so long as it

Spectrogram is � Cutoff% of max
energy value over all spectra.
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Table 4.4. Summary of SUT Front-End SPAs, Part 2.

SPA TRANSFORM PARAMETERS DESCRIPTION

Classifies as peaks the (at most) Limit
Thresholded Peak Threshold, energy values in a spectrum that are
Peak-Picker � Limit, greater than Threshold and are the

(THRESH-PEAK) Spectrogram Neighborhood local maximum over the adjacent
Neighborhood values on either side.

Banding Spectral Band Threshold, Clusters regions of at least Threshold
(BAND) � Max-Dead-Time peaks into bands. Regions closer than

Peak Max-Dead-Time are merged.
Envelope is generated from signal points

Envelope-Tracker Envelope Order that are local maxima within a window
(ENV) � equal to the avg. zero-crossing separ-

Waveform ation. This process is done recursively
an Order number of times.
Identifies places in the envelope where

Shift-Detection Shift Rel-Diff the amplitude changes by more than
(SHIFT) � Rel-Diff% from one envelope point

Envelope to the next.

Groups peaks into time sequences.
Contouring Contour Freq-Radius, Each peak is <= Freq-Radius

(CONTOUR) � Energy-Radius, and Energy-Radius from its
Peak Shift-Threshold immediate neighbors. Contours’ energy

shifts cannot have internal angles less
than Shift-Threshold degrees.

potentially-unreliable shift hypothesis, and stores an Uncertain-Hypothesis SOU in the PSM

corresponding to the shift.

The THRESH-PEAK SPA performs a fault discrepancy test on the set of peak hypotheses

produced to check that the total spectral energy contained within the peaks accounts for at

least 30% of the time-domain energy in the waveform from where the peaks’ spectra were

generated. When a fault is detected, the SPA places a Constraint-Inconsistency SOU on each

peak hypothesis, and stores an Uncertain-Hypothesis SOU in the PSM corresponding to the

peaks.

Supercontext tests check to see whether there are already results on the signal-representation

blackboard which contain the information to be produced by a soon-to-be-invoked SPA. If such
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results already exist, and the information can be more cheaply extracted from existing results

than computed from scratch, context-mapping functions are called to extract the information

and return the (possibly estimated) SPA results. Supercontext tests and mapping functions

are defined for the STFT SPA, the LSTFT SPA, and both peak-picking SPAs. The LSTFT

supercontext test checks if any LSTFT or STFT spectrogram has already been produced which

covers the time-frequency region to be analyzed and which has a Decimation factor equal

to or higher than the desired spectrogram, or a frequency-sampling rate (FFT-Size) greater

than or equal to that of the parameter-context to be executed, coupled with an analysis window

Window equal to that of the parameter-context to be executed. The STFT’s SPA uses the

same test. For both SPAs, their mapping functions take existing results from supercontexts and

subsample the existing spectrograms in time or to approximate the desired spectrograms.

The THRESH-PEAK SPA’s supercontext test checks for results from earlier THRESH-

PEAK parameter contexts that used Thresholds equal to or lower than that of the desired

parameter context. The MAX-PEAK SPA’s supercontext test checks for peaks in the new

Freq-Range from earlier contexts that had Freq-Ranges wider than that of the desired

context. The context-mapping function for both SPAs is the identity function: peaks meeting

the criteria are simply returned as if they’d been produced by the desired parameter context.

Distortion-reduction rules for the SPAs define how individual control parameters should

be modified to eliminate or reduce various classes of distortions that could be manifested in

an SPA’s correlates. For the SUT’s SPAs these are incorporated into the reprocessing plans

discussed in Section 4.2.6.

4.2.1.2 SIAs and Support Information

Each SIA KS is used to make inferences about hypotheses on adjoining levels above the

interpretation line in Figure 4.2. They are referred to by the two levels for which they create

inferences: BAND-AND-SOURCE, CONTOUR-AND-MICROSTREAM, etc. The 7 SIA

KSs can be used in two modes: (1) explain a set of lower-level hypotheses as a higher-level

hypothesis, or (2) generate expectation hypotheses about how lower-level interpretations that



80

could support a higher-level hypothesis should appear. In IPUS it is the role of SIAs to

execute conflict discrepancy tests to check for unsuccessful matches between SPA correlates

and model-based expectations being confirmed. Since the control strategy used by the SUT

versions in this thesis depends only on the conflict discrepancy tests of the CONTOUR-AND-

MICROSTREAM SIA, this section describes only those tests.

When the CONTOUR-AND-MICROSTREAM SIA (or, for that matter, any SIA in an

IPUS system) detects no supporting contour evidence at all for a microstream expectation, it

places a Support-Exclusion SOU on the expectation hypothesis, annotated with the processing

context under which support had been sought. The SIA uses a heuristic test of the amount

of energy in the spectrogram and time-domain signal region being examined for contours to

estimate whether no tracks exist in the region or whether there are peaks in the region that for

some front-end-related reason were not combined into contours. If the test shows that (1) more

than half of the expected microstream region has unexplained peak energy, or that (2) envelope

energy has suddenly changed, or that (3) higher-energy microstreams related to the expectation

microstream have missing evidence in the same region, the SIA annotates the empty inference

link on the expectation microstream with a Possible-Inappropriate-Parameter SOU. This SOU

will reduce the negative evidence weight caused by the missing evidence (preventing the sound

hypothesis of the microstream from being disbelieved) until the discrepancy diagnosis KS can

be applied to the Support-Exclusion SOU.

If support contours meeting all expectations (i.e. contours are all within the time, energy,

frequency and entropy bounds of the microstream) the SIA links the support and expectation

with an inference structure and places an Uncertain-Support SOU on the expectation hypothesis.

If the contours overlap but do not precisely match the expectation microstream’s constraints, a

Constraint SOU is placed on the inference link from the contours to the microstream. As will

be seen in Section 4.2.2 these SOUs will reduce the positive evidence weight provided by the

contours and increase the negative evidence weight against the microstream.
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4.2.2 Hypothesis Beliefs and Summarization

In RESUN (and the SUT) the decisions to consider a some hypothesis as an answer or

to consider some hypothesis such as a microstream as credible ultimately depend on the levels

of uncertainty in the hypothesis. This section presents the process of generating beliefs for

blackboard interpretation-level hypotheses. The RESUN framework annotates each hypothesis

with a summary unit that numerically summarizes several categories of uncertainty in the

hypothesis. For the purposes of the SUT only three entries in the summary unit are considered

here: support rating, negative evidence rating, and negative evidence explanation increase

factor.

The support rating of a microstream numerically represents how complete is the contour

or spectrogram support recorded in the Uncertain-Support SOUs on the hypothesis. This value

is determined by adding the total weighted duration of found support and evaluating a sigmoid

strength function to see how much strength (range 0.00 to 1.00) the amount of support

provides. A set of found support contours is weighted by a fraction less than 1 only when they

have a Constraint SOU. The negative evidence rating is determined similarly, with the total

duration of all missing-support regions taking the place of the found support. Missing-support

regions are weighted by fractions less than 1 when a Possible-Inappropriate-Parameter SOU is

present for the regions. The negative evidence explanation increase factor shows how much

the support rating would increase if all of the negative evidence for a hypothesis were replaced

with reprocessed positive support once the negative evidence was explained away.

Noisebeds’ support ratings are based on how close the feature vector from the observed

spectrogram support approaches the mean vector of the noisebed model, using the same

sigmoid-style function as in the microstream case to weight the distance. If the distance is very

large, a support rating of zero is supplied, and a negative evidence rating of 1.0 is supplied.

The process of combining support information into a summary unit for the supported

hypothesis is termed summarization in the RESUN framework. Summarization occurs after

any KS creates an inference, in order to keep all hypotheses updated after a change to the
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blackboard. In the SUT stream hypotheses are summarized as follows. A stream’s support

rating is the average of the support ratings of its component microstreams and noisebeds. A

stream’s negative evidence rating is the maximum of its components’ negative evidence ratings,

and its negative evidence explanation increase factor is generated by comparing the current

support rating with the new average that would be obtained if the maximum negatively-rated

component’s evidence was found.

If a source hypothesis has stream support, it is summarized with an exact copy of its support

stream’s summary unit. If it has only spectral-band support, it is recursively summarized as in

the case of the stream, with spectral band sets taking the place of microstreams.

4.2.3 Domain-Dependent Focusing Heuristics and Plans

At the PSM level of control in the SUT, the focusing heuristic that selects SOUs from the

PSM for the ?psm-sou variable of the Resolve-PSM-Uncertainty plan (Figure 2.6)

uses the following preference hierarchy:

1. hypotheses for SPA outputs with Constraint-Inconsistency SOUs.

2. hypotheses for tonal sounds from earlier data blocks with expectations for the current

block, ordered by overall summary belief rating.

3. hypotheses for tonal sounds with no support, ordered by the sound’s projected start time.

4. hypotheses for sounds with explainable negative evidence, ordered by overall summary

belief rating.

5. hypotheses for sounds that could be explained as part of a script, ordered by overall

summary belief rating.

6. unexplained or partially explained spectral bands

7. hypotheses for partially supported impulsive sounds. That is, the sound’s wideband

noisebed has not yet been sought for.
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8. hypotheses for scripts that specify new expected sounds for the current block

9. hypotheses for impulsive sounds that have no support.

10. hypotheses for sounds expected for scripts in the next block.

11. the no-evidence SOU.

Note that “negative evidence” can be indicated either by an Uncertain-Support SOU

summarizing the uncertainty in a hypothesis’ supporting hypotheses, or by a Support-Exclusion

SOU indicating the absence of the expected support.

In lieu of an exhaustive list of figures listing all of the SUT-dependent control plans, the

following control strategy summary is provided. The basic control strategy of the SUT for each

data block achieved by the PSM-SOU selection heuristic and the control plans is to:

1. apply the front end, producing peaks and shift hypotheses as the highest-level blackboard

results

2. produce spectral bands from the observed peaks

3. apply the reprocessing-loop to Constraint-Inconsistency SOUs

4. if any sound hypotheses from the previous block are expected to extend into the current

block, perform steps 5–9, then return to step 4.

5. generate initial (possibly competing) source hypotheses based on the bands

6. recursively generate stream and microstream and noisebed expectations for the sources

7. for microstream expectations, generate and execute contouring SPAs with parameter con-

texts based on the frequency width and energy variations of the expected microstreams;

for noisebeds, do the same with STFT SPAs

8. search for support contours, spectrograms, and impulses
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9. if any missing evidence from the search in step 7 appears diagnosable, execute the

diagnosis KS, and the reprocessing component, if a diagnosis is found

10. repeat steps 6–8 for each sound hypothesis with partial-support in the current data block.

11. create expectations for the next data block, load in the next data block, and return to

step 1.

The application of the contouring SPA with specialized control parameters for each

microstream is referred to as focused contouring to distinguish it from the application of the SPA

with default parameters that would occur in the front end. In Chapter 5, when the number of

parameter contexts produced during reprocessing is counted, focused contouring contexts are

counted only if they are produced during the execution of a reprocessing plan.

In the SUT experiments in this thesis, the IPUS capability for adapting the front end

based on model-based expectations is not explored, so no plan for this component of IPUS is

reported.

The interpretation sufficiency heuristic used by the SUT in the generic Simplify

Interpretation control plan requires that 70% of the energy in the spectral-bands be

explained before the system can advance to the next data block, unless no sound hypotheses

can be credibly generated from the regions covered by unexplained spectral bands.

When a higher-level interpretation hypothesis has more than one hypothesis SOU that

could be solved, the following preference hierarchy is enforced by focusing heuristics for

the Have-Extension-SOU-Resolved subgoal of the “Resolve Extension SOU” control plan

(Figure 2.13):

� script: Partial-Support SOUs for as-yet unsought component sources in the current data

block.

� source:

1. Partial-Support SOUs, indicating that only some of the possibly available spectral-

band or stream or impulse support for the source has been sought.
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2. No-Support SOUs, when the source is a newly-generated script-based expectation.

3. Support-Exclusion SOUs, indicating an impulsive sound’s expected impulse was not

found in the current block.

4. Uncertain-Support SOUs, if they indicate that explainable negative uncertainty

exists for a supporting stream or impulse hypothesis.

� stream:

1. No-Support SOUs, when a stream expectation for a source has been generated

top-down.

2. Partial-Support SOUs, indicating that not all the possible duration of the stream’s

microstreams has had evidence sought for in the current block, or that not all

possible boundaries have been sought for.

3. Support-Exclusion SOUs, if they indicate explainable missing microstream or noise-

bed support.

4. Uncertain-Support SOUs, if they indicate that explainable negative evidence uncer-

tainty exists for a supporting microstream or noisebed hypothesis.

� impulse: No-Support SOUs, when an impulse expectation for a source has been generated

top-down.

� microstream:

1. No-Support SOUs, when a stream expectation for a source has been generated

top-down.

2. Partial-Support SOUs, indicating that not all the possible duration of the stream’s

microstreams has had evidence sought for in the current block, or that not all

possible boundaries have been sought for.

3. Support-Exclusion SOUs, if they indicate explainable missing contour evidence for

a region of the microstream.
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4. Uncertain-Support SOUs, if they indicate that constraint uncertainty (e.g. contour

support is too long in time or is too wide in frequency) exists for a region of the

microstream.

� noisebed: No-Support SOUs, when an impulse expectation for a stream has been

generated top-down.

Note that an Uncertain-Support SOU indicates explainable negative evidence if the support

hypothesis it represents itself has a supporting inference annotated with a Constraint SOU

or a Possible-Inappropriate-Parameter SOU. A Support-Exclusion SOU indicates explainable

negative evidence if the negative inference for the SOU’s missing support is annotated with a

Possible-Inappropriate-Parameter SOU. An Uncertain-Support SOU indicates explainable nega-

tive evidence if the support hypothesis it represents itself has a supporting inference annotated

with a Constraint SOU or a Possible-Inappropriate-Parameter SOU. A Support-Exclusion SOU

indicates explainable negative evidence if the negative inference for the SOU’s missing support

is annotated with a Possible-Inappropriate-Parameter SOU.

SOUs on a hypothesis that are of the same type but “located” at different times along the

extent of the hypothesis are handled in order starting from the one closest to the end of the

current data block and continuing backwards in time toward the earliest one.

4.2.4 Discrepancy Diagnosis KS

The SUT discrepancy diagnosis KS, which is based on the work of Nawab et al.[Nawab et

al., 1987], models the reasoning of a signal processing expert and carries out a discrepancies-

to-distortions inverse mapping. This diagnostic reasoning is captured within a means-ends

analysis framework [Newell and Simon, 1969] using multiple levels of abstraction and a

verification phase. Furthermore, the reasoning is carried out with a qualitative description

of the various signal quantities involved in order to deal with uncertain and approximate

information. Figure 4.3 outlines the plan-and-verify strategy of the diagnostic process.

The formal discrepancy diagnosis task is to generate a sequence of “distortion operators” that

can explain the discrepancies between an initial state that represents the information assumed
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Figure 4.3. SUT Discrepancy Diagnosis KS Design.

as ground-truth and a goal state that represents the observed SPA output that is assumed to be

somehow distorted. The diagnosis KS has a database containing operators that model various

kinds of distortions that can result from improperly-tuned signal-processing control parameters.

For example, in the context of the STFT algorithm, one of the distortion operators models a

“frequency-resolution" distortion that occurs in the SPA output data when the window-length

control parameter is not large enough to resolve two closely-spaced frequency components in

a signal (see figure 4.4). The diagnosis process hypothesizes a sequence of operators, which

when applied to the initial signal state will yield the distorted goal state. The search for the

sequence is carried out using progressively more complex abstractions of the initial and final

states, until finally an abstraction level is reached where an operator sequence can be generated

using no more signal information than is available at that level. That is, the diagnosis process

mimics the diagnostic reasoning of experts in that they first offer explanations (i.e., operator

sequences) that are as uncomplicated as possible[Peng and Reggia, 1986].

Once a candidate sequence has been obtained, the diagnostic process enters into its verify

phase. At this point, the diagnostic process “drops” to to the lowest abstraction level at which

a description of the initial state is known. Verification proceeds as a degenerate case of the

GPS algorithm at this lowest abstraction level. That is, no real “operator search” is carried

out: the “search” algorithm simply selects operators in the order they appear in the candidate
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operator sequence. This phase verifies that the pre- and post-conditions of each operator are

met even when all information about the initial and final states is considered. If verification

succeeds, the diagnosis process returns the candidate operator sequence as its final answer. If

verification fails at some point, however, the diagnosis process attempts to “patch” the operator

sequence by building a new sequence that eliminates the unmet conditions observed in the

original sequence. This new sequence is then inserted into the original operator sequence and

verification continues.

One issue not originally dealt with in [Nawab et al., 1987] that arises in the IPUS

framework is the problem of incorrect explanations. Sometimes the first explanation offered

by the diagnosis process will not enable the reprocessing mechanism to eliminate a discrepancy.

In these cases, IPUS may decide to reactivate the diagnostic process and provide the incorrect

explanation as one that must not be returned again. To prevent the diagnosis process from

repeating the same search it performed when it originally generated the incorrect explanation,

the system stores with the explanation the search-tree context it was in when the explanation

was produced. Then, the diagnosis process simply “starts up” from that point in the search

space when it begins considering operators for a new explanation.

Another extension to the original work concerns the use of diagnostic knowledge to modify

expectations for how future support evidence should appear under the current parameter

settings. Each distortion operator contains a logical “support specification” of how data that

is expected can appear distorted when processing parameters take on the current parameter

values. When a distortion-operator sequence is specified, each operator’s support-specification

is combined to form a single specification that is used to annotate the expectation units for the

hypothesis involved in the original discrepancy. This annotation serves to locally modify the

high quality-level usually required by the system for all evidence for any expectation. That is,

the specification permits the system to use less-clear evidence (without raising a discrepancy) for

supporting its near-future expectations about the sources currently involved in the discrepancy.
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4.2.4.1 Diagnostic Distortion Operators

The testbed instantiation of the IPUS diagnosis component models how SPA outputs

can be distorted by poor parameter settings with a database of distortion operators. When

applied to an abstract the description modified to contain the operator’s distortion. The SUT

discrepancy diagnosis KS uses these operators in a means-ends analysis framework [Nawab et

al., 1987] to “explain” discrepancies. The KS takes two inputs: an initial state representing

anticipated correlates and a goal state representing the computed correlates. The formal task of

the KS is to generate a distortion operator sequence mapping the initial state description onto

the goal state description.

For an example of how a distortion operator is developed, consider the situation in

Figure 4.4 where an STFT with an analysis window of
�

sample points is applied to a signal

sampled at � samples per second. If the signal came from a scenario containing frequency

tracks that approached closer than ��� �
Hz, Fourier theory predicts that the tracks will be

merged in the STFT’s computed correlates. Thus, the STFT’s signal processing theory provides

us with the concept of a “low frequency resolution” distortion process which can account for

missing and unanticipated correlates in the STFT output. Table 4.5 lists all the distortion

operators implemented in the SUT.

Distortion Operator Definition
Microstream Frequency Resolution
Preconditions: 
  1) N expected microstreams within a frequency region
       SAMPLE-RATE/WINDOW-LENGTH Hz wide.
  2) At most one microstream is detected in that region.

Result:
  1) Remove N microstreams, replace with one having
      energy = sum of N expected microstreams, and
       frequency-range = region in precondition 1.

Operator Application

INITIAL STATE
(expected)

FINAL STATE
(observed)

(MICROSTREAM-FREQUENCY-RESOLUTION)

DISTORTION OPERATOR LIST
(explanation)

Hz

Time

Hz

Time

Figure 4.4. SUT Frequency-Resolution Distortion Operator.
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Figure 4.5. Sample Differential Diagnosis Execution.

4.2.5 Differential Diagnosis KS

One situation in which differential diagnosis can be used in IPUS occurs when a query

to the source database returns more than one source model whose frequency components (or

energy levels, or whatever other indexing feature is used) overlap the observed data. An abstract

example of this situation in the auditory scene analysis domain appears in Figure 4.5 along

with a possible execution trace for an IPUS differential diagnosis KS.

Spectral data from the current block in the � � ����� � � � ����� Hz range could support both

sound A and sound D’s existence. In such cases IPUS (under the RESUN framework)

pursues a least-commitment interpretation strategy. For each retrieved model, an explanation

hypothesis supported by an extension of the observed data is created, and on each support

extension an alternative-extension-sou is recorded. These SOUs are left unresolved until the

focusing heuristics deem its resolution appropriate to the current problem-solving context.
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Table 4.5. SUT Distortion Operators.

DISTORTION ASSOCIATED SPAS DESCRIPTION

frequency
resolution

STFT
QSTFT
LSTFT

Indicates that missing or unex-
pected tracks are caused by pa-
rameters providing inadequate fre-
quency resolution for scenario.

time
resolution

STFT
QSTFT
LSTFT

Indicates that missing chirps or
extra-long merged tracks or bands
are caused by parameters provid-
ing inadequate time resolution for
scenario.

frequency
thresholding

QSTFT
LSTFT

Indicates that spectral data is miss-
ing because the QSTFT or LSTFT
were not applied in the time-
frequency region under question.

energy
thresholding

MAX-PEAK
THRESH-PEAK

Indicates that the SPAs’ energy cut-
off precludes finding a low-energy
track.

peak
thresholding

THRESH-PEAK Indicates that a track is either miss-
ing or prematurely terminated be-
cause a new sound’s higher-energy
tracks keep the old sound’s track
peaks from being in the top �
peaks selected from a spectrum.

wide
neighborhood

THRESH-PEAK Indicates that peaks are not found
because they are sought for in
a wide neighborhood; another
nearby spectrum value was the lo-
cal maximum.

track
termination

CONTOUR
MAX-PEAK

THRESH-PEAK

Indicates that a track ends before
reaching maximum duration due
to the track’s sound having started
before the time the system started
processing the acoustic stream.
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The KS first compares the interpretation hypotheses to determine their overlapping regions.

Any observed evidence in these regions is labelled “ambiguous.” The KS then determines the

hypotheses’ discriminating regions (e.g., Sound1, and no other hypothesis, has a microstream

at 2000 Hz). For each discriminating region where no evidence was observed, the KS posits

an explanation for how the evidence could have gone undetected, assuming the hypothesized

source was actually present. Using these explanations as indices into a plan database, the KS

retrieves reprocessing plans and parameter values that should cause the missing evidence to

appear. At this point the ambiguous evidence is considered. The KS seeks for multiple signal

structures within each overlapping region (e.g., a region that contains data that could support

one microstream of a hypothesis or two microstreams of another hypothesis), and selects

processing plans to produce data with better structural resolution in the regions of overlap.

If the missing-evidence processing plan set and the ambiguous-evidence plan set intersect,

the intersection forms the third element of the output triple. If the intersection is empty,

the missing-evidence plan set forms the third element of the output triple. Finally, if the

missing-evidence plan set is empty, the ambiguous-evidence plan set is returned. The rationale

behind this hierarchy of plan set preference is that this ordering will return the most likely

plans for producing evidence that could eliminate interpretations from further consideration.

The region of mutual temporal overlap for the alternative hypotheses defines the reprocessing

time region in the output triple, and the ambiguous and missing data that is handled by the

reprocessing plan set defines the support evidence in the output triple. The output triple’s

reprocessing plan is then executed as in the reprocessing KS until either the parameter-value

limits are exceeded or at least one of the pieces in the support evidence set is found after a

reprocessing.

4.2.6 Reprocessing Strategies

For each distortion operator defined for the discrepancy diagnosis and differential diagnosis

KSs, there is a control plan implementing a sequence of generic SPAs (i.e. they are specified with

no predetermined control parameters) that will produce data at the level of abstraction at which
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the distortion is observed. For all of the operators, these are the levels at which the “associated

SPAs” in Table 4.5 produce output. In addition, there are reprocessing plans specified for the

plausible two-operator explanations that can be produced by the diagnosis KSs. Explanations

of three or more operators, while theoretically possible, have not been encountered during SUT

test runs, and therefore were not considered in this version of the SUT.

Reprocessing plans are supplied for the following diagnoses that could be returned from

either the discrepancy diagnosis and differential diagnosis KSs:

1. (end-of-data-boundary)

2. (energy-thresholding)

3. (frequency-resolution)

4. (time-resolution)

5. (peak-thresholding)

6. (source-termination)

7. (peak-thresholding energy-thresholding)

8. (time-resolution frequency-resolution)

Note that the last two possible explanations have no order imposed on their component

operators.

In the interest of space only one involved example of the signal theory incorporated in

the reprocessing plans is presented here. The discussion describes in detail one of the match

heuristics for the spectrogram-output SPAs, and one of the variable-focusing heuristics for

selecting reprocessing SPA control parameter values.

At points in reprocessing plans where more than one SPA could be used to produce

data at a particular level of abstraction (e.g. according to Table 4.3 there are four SPAs that

could produce output at the spectrogram level), match-focusing heuristics are defined to select
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SPAs based on a cost criterion. In the basic SUT evaluated in Section 5.2, reprocessing-plan

match heuristics favor the STFT SPA, unless a narrow frequency range of the spectrogram

is being reprocessed that will require at most � frequency channels to be calculated, where

� � FFT-Size. � includes not just the number of frequency channels for the current

microstream being reprocessed, but also at least three channels apiece for all other microstreams

with diagnosable SOUs in the current block. In those cases the LSTFT (see Table 4.3 is

selected. This preference is an attempt to minimize the total amount of multiplications and

additions performed by the SUT’s spectral analysis. It can be shown ([Oppenheim and Schafer,

1989], Chapter 9) that a partial spectrogram produced from repeated direct ( ���� � � complexity)

computation of the Discrete Fourier Transform at � channels will be faster than that produced

from the FFT ( �������	��
 ��� � � complexity) when fewer than ����
 �� � frequency channels are

required, with  	 FFT-Size. If at least 3 channels are necessary to determine whether a

reprocessed spectrum value is a local maximum for inclusion in a microstream, the focusing

heuristic conservatively estimates the number of frequency channels to be calculated for a block

during reprocessing, assuming that every microstream with a diagnosable SOU will result in

spectrogram reprocessing (an overly conservative assumption). This heuristic, therefore, can

reduce reprocessing costs in portions of acoustic scenarios with few microstreams. In the SUT

versions evaluated in Section 5.3, reprocessing-plan match-heuristics for one of the versions

favor the QSTFT, while those for the other favor the STFT.

The signal-processing theoretic rules relating values of the reprocessing SPAs’ control

variables to desired SPA outputs are represented in focusing heuristics for the reprocessing

plans. For example, there is a variable focusing heuristic for the STFT which selects a value

for the Window parameter based on the frequency separation � between a microstream being

reprocessed and its nearest neighbor in the current block. According to Fourier theory, an

STFT with analysis window of length
�

applied to data sampled at � Hz will resolve spectral

tracks no closer than ��� �
Hz. Thus, the focusing heuristic selects a value for Window

that is at least ����� . Further, since the FFT-Size parameter must be a power of 2, the
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Window-value heuristic selects as window length the lowest power of two � that is greater

than ����� and less than the FFT-Size value, if that value has already been determined. If

it has not been determined, simply the lowest power of two greater than � ��� is selected. A

variable-focusing heuristic for FFT-Size selects a power of two that is at at most twice the

value of the desired Window value.



C H A P T E R 5

EVALUATING THE SUT

This chapter presents three experiment suites to evaluate IPUS’ performance within the

sound understanding domain. The first section describes how the evaluation scenarios for the

first two experiment suites were generated and defines the basic statistics measured for each

experiment. The next three sections present the suites themselves. The first experiment suite

explores how the SUT defined in Chapter 4 behaves with and without the reprocessing-loop

components. The second suite examines the utility of approximate processing techniques in

IPUS. The third suite explores the relationship between the exhaustiveness of the parameter

search performed within the front end and the quality of the interpretation results. The final

section summarizes the experimental results.

5.1 Basic Experiment Design

The design of the experiment suites involves two phases, each of which in turn has two

library styles. This section first defines the experiment phases, and then discusses the library

styles. In the first phase a version of the SUT is applied to 40 acoustic scenarios generated from

the individual sounds in the SUT library, and in the second phase the same version of the SUT

is applied to 15 five-second random acoustic scenarios.

5.1.1 Phase I Experiments

Each Phase I scenario contains a “single” sound. The term “single” is qualified because in

some cases, such as clock-ticks or policecar sirens, the scenario will contain a script of several

related sound instances. The scenarios are generated by randomly choosing an instance of the

sound used to generate the acoustic models. � Regardless of content, each scenario signal is

�
At least 5 instances were used for each sound’s model. Appendix A provides more details on the construction

of the library.
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amplified so that all scenarios have the same average power. Phase 1 scenarios can range in

length from 1 to 5 seconds, and are always an integer number of seconds long. If a library

sound can last more than 5 seconds, the scenario for it is five seconds long, consisting entirely

of that sound. If a library sound is less than 5 seconds long, the scenario for it lasts as long as

the minimum integer number of seconds that spans the sound’s duration.

Results from the Phase I experiments provide a minimum level of competency for a SUT

version with respect to isolated sounds. This level of competency is useful for at least two

reasons. First, it verifies the adequacy of the sound models for isolated sounds for the testbed

version. Second, it establishes best-case recognition expectations for Phase II runs.

5.1.2 Phase II Experiments

Fifteen scenarios are generated once and used in the Phase II experiments for all suites.

These scenarios are intended to produce anecdotal results that indicate how well the testbed

version handles “complex environments.” For this thesis a complex acoustic environment is one

that has the potential for sounds that share some frequency content to be present at overlapping

time periods. Thus, the following 5-step method was used to generate the scenarios. First,

four “sounds” (scripts and/or isolated sounds) were randomly selected from the SUT library.

Second, a random instance of each sound was selected from the corpus of instances used in

the 40 single-source scenarios of Phase I. Third, start-times for each instance were randomly

selected with uniform distribution within a 7-second base timeframe. Fourth, a 5-second

window was randomly chosen within the base timeframe such that all four sound instances

were included for at least their length or 1 second, whichever was shorter. If the start times

precluded such a window, steps 3 and 4 were repeated until a 5-second window fitting this

criterion was obtainable. Fifth, as with the scenarios in the first phase, each scenario was

scaled so that all have the same average power. Figures 5.1 through 5.4 show the 15 scenarios

generated for Phase II. Each scenario has at least four sound instances.
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Figure 5.1. Phase II Scenarios, Part 1.

5.1.3 Library Styles

While the phases of each experiment suite help to illustrate a SUT version’s ability to

manipulate library models in simple and complex scenarios, the library styles for each phase

help to show how library content influences the SUT version’s interpretation search. There are

two library styles in each experiment suite: minimum and maximum. When a scenario is run

on a testbed version with a minimum-style library, the sound model library available to the

testbed contains only the models corresponding to the sounds in the scenario. When the scenario

is run with a maximum-style library, the library available to the testbed contains all 40 sound
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Figure 5.2. Phase II Scenarios, Part 2.

models. In both cases, the SUT version under study has no additional information about either

the total number of sounds in the scenario, or about any correlation between the number of

sound instances in the scenario and the models in the library.

5.1.4 Experiment Statistics

The hypothesis set taken as a scenario’s final interpretation for both experiment phases is

the set of all “answer” hypotheses (as defined in Section 4.2.2) whose summary ratings are at

least 0.2 (out of a possible 1.0) and are greater than their negative-evidence ratings. Based on

these final interpretations, each experiment suite reports the following statistics for the SUT

versions’ performance:
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Figure 5.3. Phase II Scenarios, Part 3.

Hit Rate: the ratio of the number of correctly-identified scenario sound instances to the total

number of sound instances in the entire run. An instance is considered identified if,

after the scenario run, it is temporally overlapped by some answer hypothesis of the same

type. If an answer hypothesis overlaps more than one instance, it is identified only with

the instance it overlaps the most.

False Alarm Rate: the ratio of the number of answer hypotheses that do not identify a sound

instance in the scenario to the total number of answer hypotheses (hits and false alarms)

given for the run.
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Figure 5.4. Phase II Scenarios, Part 4.

Track+ Rate: the ratio of the amount of time for which all “hit” sound instances were tracked

to the total amount of time for which all sound instances in all runs lasted. A “hit” sound

instance is considered to have been tracked for the amount of time its corresponding

answer hypothesis overlaps it.

Overshooting: the ratio of the amount of time for which all answer hypotheses do not overlap

their corresponding scenario sound instance to the total time covered by all answer

hypotheses (hits and false alarms) in all scenarios.

False Tracks: the ratio of the time covered by all false alarm answer hypotheses to the total

time covered by all answer hypotheses (hits and false alarms).

Track- Rate: Overshooting
�

False Tracks.
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Answers: the number of reported answer hypotheses (both false alarm and hits) over the

number of sound instances in all scenarios.

Nonanswers: the number of hypotheses from all scenarios considered but ultimately rejected

as answers by the SUT over the number of sound instances in all scenarios.

Total Hyps: Answers
�

Nonanswers. The total number of sound hypotheses considered over

the number of sounds in all scenarios.

Disc. Diag. Rate: the number of discrepancy diagnoses over all scenarios’ sounds.

Diff. Diag. Rate: the number of differential diagnoses over all scenarios’ sounds.

Param Contexts: for all blackboard hypothesis levels below microstream and noisebed, these

are the average number of distinct reprocessing parameter contexts per scenario. Only

focused contouring performed during a reprocessing plan’s execution is considered as an

instance of that SPA’s reprocessing.

5.2 Suite 1: Effects of Reprocessing Loop

The centerpiece of the IPUS framework is its reprocessing-loop. The components in

this loop and the signal processing knowledge they manipulate are what enable IPUS to

integrate front-end parameter search with interpretation search. It is important, therefore, to

evaluate what effect the reprocessing loop has on the quality of SUT interpretations, and what

relationships exist between scenario complexity and reprocessing frequency.

The experiment suite in this section uses two versions of the SUT to examine the influence

of the reprocessing loop on interpretations. The first version is the one described in Chapter 4,

and the second version is identical to the first except that

� the variable focusing heuristic for ?psm-sou of the Have-PSM-SOU-Resolved

subgoal at the PSM-contol-plan level (Figure 2.6) will not select uncertain answers

with negative evidence.
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� support-exclusion-sous are not selected by focusing-heuristics related to the Resolve-

Uncertain-Hypothesis plan hierarchy.

� the rough diagnostic tests performed by interpretation KSs are disabled; missing or

incomplete evidence is assumed to not be present.

� discrepancy-detection tests associated with the front-end SPAs are disabled.

Thus the second version does not have access to the signal processing theory in the reprocessing-

loop, nor can it mitigate the effect of possibly explainable negative evidence.

The two versions were run in all four phase/library-style combinations. All scenarios were

sampled at 16 KHz. Both versions started with the front end in Table 5.1. Refer to Tables 4.3

and 4.4 for a review of the parameters’ purposes.

Table 5.1. Suite 1 Front End.

SPA Parameter and Value

STFT Window: 1024 data points
Decimation: 128 data points
FFT-Size: 2048 data points

THRESH-PEAK Threshold: 0.03
Limit: 7 peaks

Neighborhood: 3 channels
BAND Threshold: 3 peaks

Max-Dead-Time: 0.08 seconds
ENV Order: 2
SHIFT Rel-Diff: 0.22

The particular default front end was chosen so as to give the no-reprocessing SUT version

the parameters and SPAs for determining microstream entropies (STFT) and for generating the

number of peaks necessary for tracking the sounds with the most tracks (THRESH-PEAK). No

single sound in the SUT library has more than 7 microstreams. No contouring parameters are

provided since the control strategy in all testbed versions uses focused contouring to generate
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support for microstreams. The 128-point decimation is provided so that the no-reprocessing

version will have the correct spectral support available for noisebeds. The scenarios are all

analyzed in 1-second blocks of data.

Table 5.2. Suite 1, Phase I: Results From 40 Isolated-Sound Runs.

Minimum Library Maximum Library
Suite: Reprocessing No Reprocessing Reprocessing No Reprocessing

Hit Rate: 0.79 (0.85) 0.73 (0.8) 0.79 (0.85) 0.63 (0.65)
False Alarm Rate: 0 0 0.38 0.32
Track+ Rate: 0.66 0.64 0.65 0.54
Track- Rate: 0.03 0.05 0.18 0.15

Overshooting: 0.03 0.05 0.03 0.05
False Alarms: 0 0 0.15 0.10

Total Hyps: 1.04 1.45 7.32 8.18
Answers: 0.79 0.73 1.26 0.93
Nonanswers: 0.22 0.72 6.06 7.25
Disc. Diag. Rate: 2.51 0 5.82 0
Diff. Diag Rate: 0 0 0.03 0
Param Contexts: 1.53 0.00 4.10 0.00

Spectrogram: 0.50 0.00 0.95 0.00
Peak: 0.50 0.00 0.85 0.00
Boundary: 0.15 0.00 0.15 0.00
Contour: 0.38 0.00 1.15 0.00

Table 5.2 summarizes the results for the first phase’s benchmarking runs. The data illustrate

the basic competence of the SUT and the reprocessing loop’s utility with respect to isolated

instances of the sounds in the library. We first address two apparent inconsistencies in Table 5.2

concerning hit rates and differential diagnosis rates before discussing the primary question of

the reprocessing loop’s utility and cost.

At first glance one might expect the hit rates for the minimum library runs to be very close

to or equal to 1.00. However, as mentioned in Section 5.1.1 several of the “single-source”

scenarios actually contained more than one sound (e.g. the policecar siren note sequence, the

clock-ticking tick sequence, etc.), and not all of these sound-sequence instances were correctly
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matched to the sound models. In the 40 “single-source” scenarios there is in fact a total of

71 sound instances, and the total time duration of all instances is 110.45 seconds. If one

were to determine hit rate on the basis of whether at least one instance in a sound-sequence

was identified, the hit rate then becomes 0.85, accounting for 34 isolated sounds under

minimum library conditions. The parenthesized values in the other hit rate entries also show

this distinction in hit rate determination.

The remaining 6 sound instances that were not matched with their models under minimum

library conditions with reprocessing were not identified because there were mismatches between

observed contour energy levels and the microstream entropies specified for the sound models.

The testbed KS that searched for contour support compared these expected entropies with

those of any contours being considered as support for a microstream. Since the microstream

model entropies are based on an average over the entire microstream (see Section 4.1.2.1), it is

possible for local, short-time-duration contours that ought otherwise support the microstream

to have out-of-bounds entropies. Interestingly, although these sounds appeared in at least one

of the Phase II, minimum-library scenarios, at least one instance of each was recognized in the

15 complex scenarios because the low-energy, wideband frequency content of the other sounds

modified the entropy of the found support contours. This relationship between local contour

entropies and global microstream entropies is definitely a shortcoming in the modelling of

sounds in the SUT; a better representation of the dynamics of microstream entropy needs to be

developed. Under maximum library conditions, the entropy problem also holds for the same

6 sounds just discussed.

As expected, there is no differential diagnosis performed in the minimum library runs.

However, the differential diagnosis rate for the maximum library runs appears rather low. In

actuality this result shows the difference between implicit differential diagnosis occurring in

the testbed’s behavior and explicit executions of the differential diagnosis KS. Very few explicit

differential diagnosis executions are being performed because the SUT effectively prunes many

competing sounds in the course of performing discrepancy diagnosis and reprocessing for
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missing evidence. By the time the SUT’s behavior enters the fourth general control strategy

phase (Section 2.3) during which explicit differential diagnosis occurs, the few sets of sounds

in the current block that are still competing among themselves are ones whose microstream

frequencies overlap too much for differential diagnosis to suggest reprocessing for higher

frequency resolution or for entropy measuring.

With the two inconsistencies explained, an examination of the rest of Table 5.2 shows

that the results support the intuitions that reprocessing should enhance signal recognition and

tracking, and that increased library size should lead to more sounds being considered and more

reprocessing work in verifying the sounds. That is, search in the interpretation state space and

in the SPA parameter space increases in the face of library complexity. Between the minimum

and maximum library runs for the reprocessing SUT there is a threefold increase in the number

of reprocessing parameter contexts used. In addition, note that the overshoot tracking rate

is lower for the SUT version that uses reprocessing; the detection of sound-termination and

-onset times is improved.

However, there is a cost to the recognition and tracking improvements: an increase in

false alarms and in false-alarm tracking. The false-alarm recognition and tracking rates for

reprocessing translate to 34 additional sound instances tracked for a total of 12.7 seconds,

while the false-alarm recognition and tracking rates for the non-reprocessed data translate

to 21 additional sounds tracked for a total of 6.6 seconds. These higher false alarm rates

for reprocessing can be attributed both to the SUT’s sound-modelling framework and to the

heuristic test used in the SUT at the end of the third general control strategy phase (Section 2.3)

for determining the sufficiency of a data block’s interpretation. As can be seen from the spec-

trograms in Appendix A, several long-term (3–5 second minimum duration) sounds (notably,

Alarm Clock 1, Car Running, Hairdryer, Oven Buzzer, Razor, Truck

Motor, Vending Machine Hum, and Wind), have moderately significant wideband

spectral energy. Some of the spectrogram values in these sounds’ wideband regions were

labelled as narrowband peaks, and clustered into spectral bands. In the minimum-library runs,
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these “wideband bands” do not lead to the retrieval of any false-alarms from the library, but

in the maximum-library runs, they do. In fact, the long-term sounds just cited account for

15 of the reprocessing SUT’s false alarms, and 9 of the no-reprocessing SUT’s false alarms.

In both SUTs, the heuristic test used at the end of the third general control strategy phase

(Section 2.3) for determining the sufficiency of a data block’s interpretation is the same: at

least 70% of the energy in a block’s spectral bands should be explained, if possible. While the

no-reprocessing SUT accepts 9 sources because of extraneous spectral energy, the reprocessing

SUT accepts not only the same 9 sources but also extends them and “hallucinates” another

10 sound instances, because its reprocessing capability permits it and its sufficiency heuristic

and sound-models encourage it! Clearly the wideband energy of the cited sounds must be

accounted for in improvements in sound modelling.

Even when the sound hypotheses resulting from model shortcomings are taken into

account, the reprocessing SUT still produces 19 false alarms, 9 of which stem from the

entropy-matching problem described under minimum library conditions.
�

The remaining 10

false alarms are attributable to “hallucinations” induced by the sufficiency heuristic. These false

alarms, however, would probably not be removed by sound model improvements. They occur

because when the SUT is forced to reach a threshold, there is no mechanism to prevent it from

iterating this behavior over all sounds which overlap a few low-energy unexplained peaks:

� hypothesize a sound

� search for contour support and find none

� assume that support peaks are missing because they have (very) low energy

� perform discrepancy diagnosis

�

That is, when the 6 sound instances were not recognized due to lack of contour evidence with the desired
entropy, the testbed found 9 false alarms to account for their spectrograms.
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� if the discrepancy diagnosis KS reports that indeed some distortion such as energy-

thresholding or peak-thresholding is theoretically possible, reprocess with

extremely low peak energy thresholds.

Eventually some sound model’s relative microstream energies will permit such dogged repro-

cessing to “hallucinate” the presence of tracks.

Table 5.3. Suite 1, Phase II: Results From 15 Complex-Scenario Runs.

Minimum Library Maximum Library
Suite: Reprocessing No Reprocessing Reprocessing No Reprocessing

Hit Rate: 0.61 0.46 0.59 0.47
False Alarm Rate: 0.02 0.02 0.39 0.40
Track+ Rate: 0.68 0.47 0.67 0.44
Track- Rate: 0.06 0.09 0.19 0.27

Overshooting: 0.04 0.07 0.05 0.08
False Tracks: 0.02 0.02 0.14 0.19

Total Hyps: 1.21 1.14 8.14 8.53
Answers: 0.56 0.46 0.86 0.79
Nonanswers: 0.65 0.68 7.28 7.74
Disc. Diag. Rate: 3.66 0 12.63 0
Diff. Diag. Rate: 0.01 0 0.03 0
Param Contexts: 9.40 0.00 29.14 0.00

Spectrogram: 2.00 0.00 3.20 0.00
Peak: 4.40 0.00 14.47 0.00
Boundary: 0.07 0.00 0.07 0.00
Contour: 2.93 0.00 11.40 0.00

Table 5.3 summarizes the results for the experiment suite’s second phase: 15 complex-

scenario runs. There is a total of 110 sound instances over all scenarios, with a total duration

time of 114 seconds for all instances. As in the Phase I experiments the parameter context

counts show an observable trend in extra reprocessing work being done as the library size

increases, and the considered-hypotheses counts show a concomitant increase with library size.

The table’s tracking and recognition rates both show improvements due to the reprocessing

loop.



109

The observation that hit rates reported for the runs are low, but improve up to a 60%

threshold with reprocessing, might indicate that there is some interaction among sounds

in the scenarios that is not being handled well by either the reprocessing strategies or the

available testbed KSs. Inspection of the scenarios’ interpretation traces bears out the latter

culprit. Of the 110 total sound instances, 48 are impulsive (clock-tick sequences, etc.).

The SUT’s shift-detection SPA depends on relative-percent changes between points in the

waveform-envelope to identify energy shifts. In these runs the percent threshold was too high

for detecting shifts in the waveform envelope when they were superimposed on a narrowband

sound’s energy level. This leads to 25 impulsive sounds being missed because both the

time-domain and the frequency-domain front-end SPAs do not generate correlates that might

have indicated to discrepancy tests that signal information is being missed.

Since the complex scenarios were deliberately designed to have a greater incidence of sound

interactions that violate SPA parameter-setting assumptions than single-source scenarios, one

would expect that the interpretation of complex scenarios would benefit from reprocessing more

than would the interpretation of single-source scenarios. In Phase I, though, the reprocessing

loop improves the hit rate by � 	 � ����� � ��� � ��� � ��	 whereas in Phase II the improvement is

also � 	 � � 	�� � � �	� �
� � ��	 . This is only an apparent contradiction to the expectation, however,

once the tracking rate improvements are taken into consideration. In Phase I the reprocessing

loop improved the tracking rate by � 	�� ��� 	 � � 	 � ��� � ��� while in Phase II the reprocessing

loop improved tracking by � 	 � ����� � � ��� �� � 	�� . The justification for using tracking rate

improvement instead of hit rate improvement to verify the expectation is that a hit only

requires that some time-region of the sound be identified correctly. Thus, the SUT with no

reprocessing can attain a somewhat higher hit rate when sounds that might otherwise interfere

with each other’s spectral signatures do not completely overlap each other in time. The tracking

rate, on the other hand, indicates more reliably how much of each sound was correctly tracked

and identified, and therefore ought to be used to verify the expectation that reprocessing should

show greater benefit in complex scenarios.
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The false-alarm rates of the reprocessing and non-reprocessing SUT versions are nearly the

same in Phase II, while in Phase I’s runs the reprocessing SUT version had a false-alarm rate that

was marginally higher than that of the non-reprocessing version. In that case the claim was made

that the interpretation sufficiency heuristic forced the reprocessing SUT to “hallucinate” more

sounds in simple scenarios in an attempt to meet the heuristic’s minimum explained-energy

requirement. In the Phase II results the nearly equivalent false-alarm rates lend support to the

claim that in complex scenarios the sufficiency heuristic at the worst does not lead to a higher

incidence of “hallucination,” and at the best forces the system to consider hypotheses and to

reprocess for undistorted evidence that might otherwise be ignored. Although more complete

experimentation is necessary to fully substantiate the position, one could argue that these results

show the IPUS architecture is so strongly oriented toward handling complex signals that the

framework overanalyzes simple scenarios to the detriment of its performance.

5.3 Suite 2: Approximate Front Ends

As discussed in Chapter 1, approximate processing [Decker et al., 1990] refers to the

deliberate limitation of search processes in order to trade off certainty for reduced execution

time. Approximate SPAs are algorithms whose processing time can be limited in order to

trade off precision in their output correlates for reduced execution time. The availability of

approximate SPAs permits the formulation of SUT control strategies that first use approximate

SPAs to generate a rough picture of the environment that is refined only where the front-end

correlates’ interpretations are too uncertain. Refinement is achieved by reprocessing these

limited signal portions with SPAs that produce correlates having greater precision. These

non-approximate SPAs would ordinarily be quite expensive if applied to the entire signal, but

when they are applied only in restricted signal regions their costs become manageable. An issue

to address, however, is whether the reliance on an approximate front end significantly increases

the amount of interpretation search performed by the SUT.

This section explores how an approximate SPA such as the Quantized Short Time Fourier

Transform (QSTFT) [Nawab and Dorken, 1995] may be used within IPUS, and presents a
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limited answer concerning the nature of the relationship between reduced time in the front end

and the amount of interpretation search. The QSTFT is an SPA that can compute an estimate

of a signal’s STFT using an order of magnitude fewer addition-operations than the STFT and

no multiplication-operations. This performance is achieved in general by applying the O(�
�

)

version of the Fourier Transform algorithm with precomputed Fourier coefficients to a signal

quantized to the set (-1, 0, 1); the interested reader is referred to Nawab’s work [Nawab and

Dorken, 1995] for more details. When compared to STFTs with FFT-Size’s up to 256

points, the evaluation of the basic QSTFT for the entire frequency-domain spectrum takes

fewer additions, and no multiplications. A version of the QSTFT that only computes the

time-frequency spectrogram regions surrounding the estimated highest-energy frequency can

remain competitive with the complete-spectrogram STFT up to FFT-Sizes of 1024.

In this experiment suite, two versions of the SUT are compared. The first version (termed

the “precise” version) has the same front end as those explored in the first suite, except that the

STFT’s FFT-Size parameter is defaulted to 512 points, and the analysis Window parameter

is defaulted to 256 points.
�

The second version (the “approximate” version) replaces the STFT

SPA in the front end with a QSTFT whose FFT-Size parameter is defaulted to 512 and

whose computed frequency region over each waveform time slice covers 1000 Hz on either

side of the frequency with the estimated highest energy. This information is summarized in

Tables 5.4 and 5.5. This section only considers Phase II experiment evaluation, presented in

Table 5.6.

An examination of Table 5.6 shows that both reduced frequency-resolution systems

maintain recognition rates comparable to those obtained by the SUT from Section 5.2.

Indeed, the reduced-resolution SUTs obtained slightly higher recognition rates because they

did not use the entropy measures of instances of the six problematic sounds mentioned

earlier for verification. The reason for this is that the spectral evidence for the sounds came

from a context that did not match that required for verification of the entropies, and the

�

That is, this version’s front end produces spectrograms with one-quarter the frequency resolution capability
of the version in Section 5.2.
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Table 5.4. Suite 2 “Precise” Front End

SPA Parameter and Value

STFT Window: 256 data points
Decimation: 0 data points
FFT-Size: 512 data points

THRESH-PEAK Threshold: 0.03
Limit: 7 peaks

Neighborhood: 3 channels
BAND Threshold: 3 peaks

Max-Dead-Time: 0.08 seconds
ENV Order: 2
SHIFT Rel-Diff: 0.22

Table 5.5. Suite 2 “Approximate” Front End.

SPA Parameter and Value

QSTFT QWindow: 256 data points
QDecimation: 0 data points
QFFT-Size: 512 data points

Freq-Radius: 1000 Hz
THRESH-PEAK Threshold: 0.20

Limit: 7 peaks
Neighborhood: 3 channels

BAND Threshold: 3 peaks
Max-Dead-Time: 0.08 seconds

ENV Order: 2
SHIFT Rel-Diff: 0.22

CONTOUR-MICROSTREAM KS did not automatically verify the results during initial

contouring. However, one must note that the reduced front-end resolution did exact a toll in

the interpretation search space: a slight increase in the false-alarm rate and nearly double (for

the approximate SUT) the number of hypotheses considered per scenario. The effect of this

doubling on system execution time will be discussed later in the section.

The reduced-frequency resolution SUTs showed slight reductions in the amount of track

overshooting as compared with the higher-resolution SUT in Section 5.2. This is due to the
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Table 5.6. Suite 2, Phase II: Results for 15 Complex Scenario Runs with Low-Resolution Front End.

Minimum Library Maximum Library
Suite: Approximate Precise Approximate Precise

Hit Rate: 0.60 0.65 0.56 0.61
False Alarm Rate: 0.08 0.11 0.42 0.43
Track+ Rate: 0.72 0.77 0.67 0.65
Track- Rate: 0.06 0.08 0.24 0.22

Overshooting: 0.02 0.02 0.04 0.04
False Tracks: 0.04 0.06 0.20 0.18

Total Hyps: 2.23 1.66 16.48 14.10
Answers: 0.65 0.73 0.97 1.07
Nonanswers: 1.58 0.93 15.51 12.03
Disc. Diag. Rate: 7.90 4.46 35.30 23.16
Diff. Diag. Rate: 0 0 0.13 0.27
Param Contexts: 35.67 11.01 66.59 31.08

Spectrogram: 9.53 2.47 13.70 7.45
Peak: 22.87 5.27 33.42 12.33
Boundary: 0.07 0.07 0.07 0.07
Contour: 4.20 3.40 19.40 13.23

fact that, as predicted by Fourier theory, the SUTs in this suite had front ends with better time

resolution than that provided by the SUT in Section 5.2.

When interpreting scenarios with a minimum library, the approximate SUT required only

32% of the mathematical operations (additions and multiplications) that the precise SUT

required, and experienced a 5% loss in hit rate. When interpreting scenarios with a maximum

library, the approximate SUT required 41% of the mathematical operations that the precise

SUT required, with the same difference in hit rate. Additionally, under maximum-library

conditions the approximate SUT required 9% of the operations required by the SUT version

tested in Section 5.2 under the same conditions. These observations lend support to the

claim that the IPUS architecture can apply approximate SPAs effectively enough to reap

computational savings at moderate interpretation expense. An examination of the sounds that

were missed by the approximate SUT reveals that all of the sounds were missed because they

had only one or two microstreams and they fell outside the frequency window produced by
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the front-end QSTFT. These missed sounds indicate that the fault-discrepancy tests which

compare time-domain energy and frequency-domain energy of selected peaks might need to

incorporate heuristic tests with higher energy thresholds.

Note that although the number of spectrogram reprocessing parameter contexts executed

per sound instance for the approximate SUT is higher than that for the precise SUT, the majority

of those extra contexts were reapplications of the QSTFT in very narrow-band spectral regions

outside of the region originally produced by the front end. Hence, the computational cost of

the extra QSTFTs was minimal.

5.4 Suite 3: Effects of Front-End Complexity

One can define a continuum of practical signal interpretation systems based on the relative

complexities of their front ends and their interpretation components
�

. At one end of the

continuum are systems (Type I) with front ends that are designed to produce correlates that

are optimal in some sense in order to minimize the search complexity of their interpretation

component. At the other end of the continuum are systems (Type II) with high search-

complexity interpretation components that are designed to analyze correlates that are imprecise

in order to minimize the complexity of their front end.

The experiment in this section anecdotally compares the front-end complexity, interpreta-

tion search complexity, and recognition rates of the SUT version from Section 5.2 with those of

a Type I benchmark system. For this experiment a Type I version of the sound understanding

testbed (SUT-1) was designed, having an optimized SPA for spectral analysis in the front

end. SUT-1 also had its reprocessing disabled under the assumption that its front end would

produce “optimal” evidence. With respect to Tables 4.3 and 4.4, SUT-1’s full complement of

front-end SPAs includes the ENV, SHIFT, ATF, THRESH-PEAK, BAND, and CONTOUR

�

The continuum could have been generalized to a complexity plane with one axis representing front-end
complexity and the other representing interpretation complexity. This plane would include both systems with
complex interpretation components and complex front ends and systems with simple interpretation components
and simple front ends. However, the former class of systems tends not to handle complex environments well,
while the latter class of systems tends to have overall complexities that preclude online usage. Accordingly these
are not covered in the thesis.



115

SPAs with fixed parameters tuned to environmental constraints. We briefly digress to justify

the optimality of the ATF.

Jones and Parks [Jones and Parks, 1990] developed the ATF as an SPA that produces spec-

trograms (or, more generally, time-frequency representations) with maximum concentration of

signal energy in time-frequency. Such representations are desirable since,

“...concentrated components in general overlap or interfere with other nearby

components as little as possible, and yield a “sharp” representation. Maximum

concentration also implies that signals are confined as closely as possible to their

proper support in time-frequency, which gives the interpreter more confidence in

the time-frequency representation.”([Jones and Parks, 1990], p. 2129)

As mentioned previously in Section 1.2, the length of the analysis window used by a

time-frequency SPA such as the STFT determines a tradeoff between the time- and frequency-

resolution in its output spectrogram. Figures 5.5a and 5.5b show the patterns of the amount of

resolution (scale) offered by fixed-parameter instances of two commonly-used time-frequency

SPAs: the STFT and wavelet analysis (WA) [Rioul and Vetterli, 1991]. In these figures

the “scale” dimension represents resolution detail, or density of frequency sample points.

Figure 5.5a shows the uniform resolution usually obtained by the STFT, while Figure 5.5b

shows one possible nonuniform resolution that could be achieved by wavelet analysis.
�

In both

cases regions with higher scale values indicate that those portions of the SPA’s time-frequency

representation have energy values from more-finely sampled points along the time-frequency

plane.

The goal of the ATF SPA is to produce a composite spectrogram, or Generalized Short-Time

Fourier Transform, where each point in the time-frequency plane has the energy value produced

by an analysis window that maximizes the “peakiness,” as measured by 2-dimensional kurtosis,

�

The interested reader should note that Figure 5.5b shows the type of time-independent frequency resolution
pattern that the human auditory system exhibits. The arguments at the end of Section 1.2 refer to this pattern.
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Figure 5.5. Sample Frequency Resolution Patterns.

of the spectrogram in the region immediately around that point. Kurtosis is a measure used in

statistics to quantify how “pointy” a set of data values is, and is defined as

� � 	
� �

� � � � � �

where � � and � � are the second and fourth moments about the mean of the distribution.

The method by which the ATF SPA achieves this concentration can be summarized as follows.

The SPA performs an exhaustive search of a list of given STFT analysis window lengths,

generating each window’s associated spectrogram. For each point in a spectrogram, the SPA

then applies a Gaussian localizing window to the region around the point to weight the nearby

points more than the distant points, and generates a kurtosis measure of the point’s weighted

neighborhood. Finally, the SPA compares the local kurtosis measured at each point in each

window’s spectrogram, and reports the energy value associated with the maximum kurtosis

measure. Figure 5.5c shows the type of context-sensitive resolution attainable by the ATF

through exhaustive search of the STFT parameter space.
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Figure 5.6 shows an acoustic scenario whose interpretation can benefit from use of the ATF

SPA in the front end. Figures 5.7a and 5.7b show the spectrogram obtained from short-window

and long-window STFT analysis, respectively, of the acoustic scenario in Figure 5.6, while

Figure 5.7d shows the scenario’s sharper ATF spectrogram produced by adaptive use of the

window lengths shown in Figure 5.7c. Darker regions in the spectrograms indicate higher

energy, while in Figure 5.7c dark regions indicate 256-point analysis windows, grey regions

indicate 512-point analysis windows, and light regions indicate 1024-point analysis windows.

The 256-point window produces wide tracks that, in an environment where many of the

expected frequency ranges of sounds’ tracks could overlap each other, can have too much

ambiguity in sound-model matches. However, the same window is desirable for producing the

sharp evidence for the footsteps, pistol shot, and the time-varying doorcreak. The 1024-point

window produces narrow tracks necessary for minimizing match ambiguity among competing

narrowband sound hypotheses for the wind, the burglar alarm, and the steady behavior of the

door creak, but “smears out” the time-dependent features of the door creak, footsteps, and pistol

shot. The ATF spectrogram gathers sharp evidence for both the short-time and narrowband

features of the scenario sounds, minimizing the work that an interpretation component would

have to do to identify tracks of sounds.

Of course, there is a price for the ATF’s quality: the exhaustive parameter-space search

increases the front end’s complexity. Jones and Parks [Jones and Parks, 1990] show that the

number of real multiplications is of order ���
���������
	���
�������
	����

� � , where N is the length of the

signal being analyzed, M is the points taken in one FFT analysis step of the STFT, and S is the

maximum STFT analysis window length considered.

In comparing the performance of Section 5.2’s SUT with that of SUT-1, we note that

the ATF’s time requirements made it infeasible to apply SUT-1 to all of the 15 Phase 2

scenarios. Instead, we offer the following observations after applying it to four scenarios with

a full library. When interpreting scenarios containing low background noise sounds, such as

(K) and (L) in Figure 5.3, the SUT-1 produced better tracking results (0.00 overshooting,
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Figure 5.6. ATF Example Scenario.

0.04 false-alarm tracking) and higher hit rates (100% in this case, due to reduced confusion

from fewer frequency- and time- resolution problems) than the standard SUT, at the cost of

��� � � � � times more mathematical operations. However, when the ATF-based system analyzed

scenarios containing sounds with significant background wideband noise, such as (G) in

Figure 5.2 and (M) in Figure 5.3, it produced higher false-alarm rates (4 more sounds were

“hallucinated”) than the SUT from Section 5.2 because its emphasis on producing sharp

spectrograms created spurious peak tracks in the “noisier” wideband spectral regions around

the hairdryer, truck-motor, and foghorn in the scenarios.

5.5 Summary

The experimental results of Section 5.2 demonstrate (1) that the IPUS architecture can be

used to construct perceptual systems with reasonable interpretation performance in scenarios

in real-world complex environments, and (2) that reprocessing and signal-processing theory

can contribute to significant improvement in the interpretation of scenarios from complex

environments. In support of the first claim, we note that the SUT discussed in Section 5.2

achieved a 59% hit rate and 67% tracking rate when interpreting the Phase II complex scenarios
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with access to a full sound library (Table 5.3). The second claim is supported by the observation

that with a full library and complex scenarios, the SUT version with the reprocessing loop

enabled outperformed the SUT version with the reprocessing loop disabled. Specifically, the

reprocessing loop gained a 25% increase in hit rate and a 52% increase in tracking (Table 5.3).

The experimental results of Section 5.3 indicate the potential utility of using approximate

front ends in perceptual systems to reduce computation for complex environments. With

reduced cost in its front end, the approximate SUT version showed similar (though slightly

lower) performance to that of the SUT version that used only non-approximate SPAs. Although

more hypotheses were considered by the approximate SUT (Table 5.6) than by the “precise”

SUT, many of the alternatives were removed from consideration after search for only 1

supporting microstream was performed (i.e. minimal extra work was done). The conclusion

is tentative, however, because consistent timing of the interpretation search could not be

characterized beyond a count of considered hypotheses. Clock-time measures for the highlevel

interpretation work would be helpful in making the conclusion more definitive. However,

they could not be determined reliably in the thesis experiments because the experiments

were conducted on several computers with different load-sharing, and because the high-level

interpretation KS’s did not have optimal coding.

The results of Section 5.4 lend support to the claim that although it is possible for systems

with fixed front ends to outperform IPUS in interpretation quality, such systems can require

significantly greater front-end computational costs than IPUS-based systems and demand

greater effort in constructing object models to account for all the detail their front ends are

capable of producing.
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Figure 5.7. Comparison of ATF and STFT.



C H A P T E R 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter’s initial section first recapitulates the research issues and goals of the thesis

and then summarizes the results of the experiments in Chapter 5 with respect to their support

for the thesis contributions. The final section concludes with future research issues raised by

the work.

6.1 Conclusions and Contributions

Complex environments can produce signal-to-noise ratios that vary unpredictably over

time, can contain perceptual objects that mutually interfere with each others’ signal signature,

and can have perceptual objects that have arbitrary time-dependent behaviors. Within the

traditional paradigm for designing signal understanding systems, the approach for handling the

interactions created by these properties generally leads to exhaustive analysis of the environment

and intricate tailoring of front ends to each possible combination of perceptual objects in the

environment. While feasible for significantly constrained environments, this approach often

adds a combinatorially explosive set of SPAs to a system’s front end when used to build systems

for interpreting complex environments.

This thesis makes two major arguments. The first argument is that the processing of

signals from complex environments benefits from a new view of signal interpretation as the

product of two interacting search processes, where the first search process involves the dynamic,

context-dependent selection of signal features and interpretation hypotheses, and the second

search process involves the dynamic, context-dependent selection of appropriate SPAs for

extracting correlates to support the features. The second argument is that signal interpretation

architectures can use explicit representation of the theoretical relationships between SPA
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parameters and SPA outputs to effectively structure bidirectional interaction between these

dual searches. (See Chapter 1.)

The IPUS architecture was designed to demonstrate the feasibility of the approach

advocated in these arguments. In addition to showing how the basic components of the

architecture’s “reprocessing loop” (discrepancy detection, diagnosis, and reprocessing) provide

conceptual hooks for organizing and applying signal processing theory to the dual-search

interpretation paradigm, this thesis shows how the generic architecture exploits support

machinery such as (1) explicit representation of uncertainty in interpretations and SPA outputs,

and (2) processing-contexts and context-mapping to constrain both search processes and fuse

evidence from multiple front ends. It also shows how the generic architecture can support

effective application of specialized and approximate algorithms. (See Chapter 2.)

Most important to the evaluation of the architecture, however, this thesis shows through

the instantiation of the Sound Understanding Testbed (See Chapter 4.) that IPUS can in fact

be instantiated in a real-world problem domain (auditory scene analysis). The experimental

evaluation results of Chapter 5 show support for the claims:

� the knowledge represented by the signal processing theory of a domain can play a

significant role in improving the quality of interpretations of signals from complex

environments. Significantly, the utility of the reprocessing loop increases with increasing

scenario complexity. (See Section 5.2.)

� the IPUS architecture can effectively apply approximate processing techniques to trade

off reductions in front-end and reprocessing complexity for moderate increases in

interpretation search. (See Section 5.3.)

Though admittedly anecdotal and incomplete, the results of Section 5.4 indicate that although it

is possible to produce systems with fixed front ends that can outperform IPUS in interpretation

quality, such systems can require significantly greater front end computational costs than

IPUS-based systems and demand greater effort in constructing object models to account for all

the detail their front ends produce.
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To summarize, this thesis makes the following research contributions:

� a generic architecture for designing perceptual systems for complex environments that

represents a significant departure from conventional systems,

� the context-mapping and processing-context support mechanisms in Chapter 2 provides

a framework for fusing correlates obtained from disparate front ends’ analysis,

� through demonstrating the IPUS architecture’s applicability in the real-world problem

of auditory scene analysis in Chapter 5:

– a demonstration of the role of reprocessing in improving the quality of interpreta-

tions, as shown by the relative performance improvements in Section 5.2.

– a demonstration of the applicability and potential role of approximate processing

techniques in IPUS, as shown by the tradeoffs between front-end complexity and

interpretation search in Section 5.3.

� as will be seen in Section 6.2, a platform for future exploration of how to computationally

approximate theories of auditory perception.

6.2 Future Research

The research program in this thesis points to several areas where new issues need to be

explored. These issues arise from both the abstract interpretation approach developed in IPUS

as well as the application domain studied in the validation of the architecture:

� Preventative Front-End Adaptation. The IPUS architecture has the ability to adapt

front ends in anticipation of potential distortions among the signal signatures of objects.

Such adaptation would have reduced the amount of reprocessing seen in the Phase 2

experiments of Chapter 5 by preventing the SUT from repeating preventable distortions

along multi-block sounds. Since predicted distortions can quickly require a combina-

torial set of conflicting adaptations (e.g. a need for better time resolution for sound A
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requires a shorter STFT analysis window, while a need for better frequency resolution for

co-occuring sounds B and C requires a longer window), however, a nontrivial framework

for identifying the most probable and the most damaging subset of predictable distortions

to be handled at the expense of others will be needed.

� Memory Management. The issue of memory management of reprocessed data and old

data in the blackboard is important to long-term operation of IPUS-based systems. After

a typical run on five seconds of data, the SUT’s blackboard database often contained in

excess of 7000 hypotheses, consuming 30 megabytes of memory. The IPUS reprocessing

component currently saves all reprocessing results, and only the waveform level’s contents

are purged of data from 3 seconds before the current block’s time. Clearly a continuously

running interpretation system based on IPUS must eventually purge its blackboard

database, or else available system memory would soon be exhausted. The issues to

be explored include determining what levels of data should be considered for purging,

how often the blackboard level should be purged, and how references made during

interpretation or during reprocessing to purged data should be handled: should attempts

be made to reconstruct purged evidence, or should the purged evidence be treated like

any other missing evidence in IPUS and represented with Support-Exclusion

SOUs?

� Architectural Concerns. The false-alarm results and their explanations from Section 5.2

indicate that either the IPUS architecture’s reliance on an interpretation- sufficiency

heuristic or the particular heuristic itself in the SUT instantiation might predispose a

system to “hallucinate” in simple scenarios. Although the fixed-threshold nature of the

heuristic makes it more likely that merely a more adaptive heuristic is needed, more work

needs to be done on deciding this architectural question.

� Sound Modelling. The experiments of Chapter 5 show that the sound modelling

framework does not adequately represent enough facets of acoustic environments, such
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as wideband, longterm noisebeds. Work needs to be done on developing a compact, time-

varying representation of the longterm wideband components of sounds that supports

detection of situations where two or more sounds are superimposed.

� Exploration of Acoustic Interpretation Strategies. The combination of PSM SOU-

selection heuristics and hypothesis SOU-selection heuristics defined in Chapter 4 repre-

sent only one of many possible control strategies that could be evaluated for the SUT.

Furthermore, the decision to execute the complete reprocessing loop to confirm diagnoses

is only one possible system behavior. More work needs to be done on finding cues for

indicating how reliable the SUT diagnoses are, and on the utility of deferring actual

reprocessing when highly reliable diagnoses are considered. Strategies where only part of

the region covered by a hypothesis SOU is reprocessed also need to be explored, as they

can lead to significant computational cost reductions for the reprocessing component.
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THE SUT SOUND LIBRARY

The sound models in this library were derived from at least five instances for each sound;

in the case of impulsive sounds the number of instances is often more. Each sound instance was

captured in a signal stream at most 5 seconds long and sampled at 16 KHz. With the exception

of the impulsive sounds “Knock,” and “Clap,” all sounds were extracted from a commercial

tape provided by Auditec of St. Louis, Incorporated [Auditec 1989]. Note that relative energies

for each sound’s tracks are represented as ranges defining the highest and lowest steady-state

simultaneous energy ratio measured between the a track and the selected baseline track for the

source. Only if a sound was strictly a decaying one (e.g. a gong or chime) was the relative

energy range determined from a non-steady region.
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A.1 Alarm Clock 1
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Figure A.1. Alarm Clock 1’s Spectrogram.

Table A.1. Alarm Clock 1’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 6297—6367 [1.00, 1.00] � 64.9, 13.5 � � 4.7, 1.4 �
2 6093—6157 [0.05, 0.95] � 78.1, 17.8 � � 4.4, 1.3 �
3 4397—4439 [0.25, 0.80] � 68.3, 23.5 � � 4.5, 1.1 �
4 4093—4141 [0.15, 0.80] � 65.9, 14.3 � � 4.6, 0.9 �
5 2585—2602 [0.20, 0.80] � 81.1, 21.2 � � 4.8, 1.1 �
6 2453—2477 [0.80, 0.93] � 58.8, 9.31 � � 5.7, 1.2 �
7 929— 953 [0.04, 0.35] � 71.6, 11.9 � � 11.0, 2.1 �

notes: This is an analog, bell
�

ringer clock. There is a lot of variability in the strikes of the

ringer on the bell, as seen in the amplitude entropies. The sound’s range of durations is

arbitrarily set to [1.5, 10.0] seconds in the IPUS library.
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A.2 Alarm Clock 2
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Figure A.2. Alarm Clock 2’s Spectrogram.

Table A.2. Alarm Clock 2’s Track Information.
Track Freq. Range Rel. Energy

1 2450—2510 [1.00, 1.00]
2 4190—4240 [0.22, 0.45]
3 2800—2850 [0.18, 0.32]
4 1110—1140 [0.09, 0.35]
5 3300—3330 [0.13, 0.20]
6 1510—1530 [0.01, 0.10]
7 3950—3990 [0.06, 0.09]

notes: This is an electronic alarm clock with each “ring” being a 1.6-second 7-track stream.

Energies are higher at the start of the stream, and drop 50% (linearly) by the end of the

stream. The sound’s range of durations is arbitrarily set to [3.2, 10] seconds. In the SUT

library this sound is represented as a script containing a sequence of rings abutting each

other in time.
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A.3 Bell Toll
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Figure A.3. Bell Toll’s Spectrogram.

Table A.3. Bell Toll’s Track Information.
Track Freq. Range Rel. Energy Duration

1 765— 790 [0.05, 0.40] [0.32, 0.45]
2 1120—1150 [0.06, 0.52] [0.80, 0.94]
3 1555—1575 [1.00, 1.00] [0.71, 0.80]
4 2010—2040 [0.03, 0.17] [0.70, 0.83]
5 2500—2540 [0.05, 0.19] [0.12, 0.22]

notes: Each toll stream is a harmonic set with ��� � � � � Hz. The tracks listed are the most

prominent harmonics. In order of decreasing energy, the harmonics represented here are

14, 10, 7, 18, and 22. Each toll is [0.8 1.0] seconds long, measured from strike time to

when signal energy decays to the background energy level just prior to the strike. The

start and end times for each track are relative to the start of a bell toll. Most of the time

Track 1 has the maximum energy of all tracks; however, around 0.2 seconds after the

start of a toll Track 2’s energy grows to 5 times tk1’s energy, and then decays similarly

to all other tracks.
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A.4 Bicycle Bell
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Figure A.4. Bicycle Bell’s Spectrogram.

Table A.4. Bicycle Bell’s Track Information.

Track Freq. Range Rel. Energy

1 4310—4390 [1.00, 1.00]
2 1640—1690 [0.06, 0.27]

notes: There are two phases in this source. The first phase, called the “active” phase, covers the

period over which the bell is being struck, and can last an indeterminate period of time.

From wideband analysis, each strike (vertical bar in the spectrogram) is 0.08 second long

and is separated from the next strike by a minimum of 0.05 seconds. The second phase

in the source is the “decay” phase, where the reverberations of the bell exponentially

decay to background energy levels. This phase’s length depends on the intensity of the

last strike, but in the collected data this length has been found to be approximately 1.0

second.
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A.5 Bugle
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Figure A.5. Bugle’s Spectrogram.

Table A.5. Bugle Note-1’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 700— 734 [0.01, 0.04] � 7.3, 0.3 � � 8.9, 1.7 �
2 1420—1453 [1.00, 1.00] � 18.1, 7.4 � � 9.8, 0.5 �
3 2148—2164 [0.05, 0.44] � 37.4, 13.7 � � 5.2, 0.6 �
4 2859—2875 [0.11, 0.57] � 82.2, 21.7 � � 3.1, 0.2 �

Table A.6. Bugle Note-2’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 929— 977 [1.00, 1.00] � 10.8, 2.2 � � 3.4, 3.2 �
2 1906—1930 [0.28, 0.61] � 11.3, 2.7 � � 6.2, 0.5 �
3 2867—2883 [0.04, 0.37] � 32.1, 23.6 � � 3.1, 0.2 �
4 3828—3844 [0.01, 0.19] � 32.0, 21.4 � � 2.7, 0.5 �

notes: These bugle notes are referred to as “coach horn” in the Auditec tape index. The figures

are for the highest-energy tracks in the two longest notes in the sequence pictured above.

Note 1 occurs in the 0.3–1.3 time range and again in the 2.5–3.15 time range in the

spectrogram shown above. Note 2 occurs in the 3.3–5.0 time range. Other tracks shown
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in the figure have only 1% of the energy of those for which data is given, and since they

do not overlap other sounds’ tracks, it was decided not to include them in the sound

model.
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A.6 Burglar Alarm
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Figure A.6. Burglar Alarm’s Spectrogram.

Table A.7. Burglar Alarm’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 6413—6468 [0.03, 0.40] � 49.9, 9.4 � � 4.8, 0.9 �
2 4875—5023 [0.04, 0.90] � 74.8, 15.0 � � 7.1, 2.3 �
3 3625—3665 [0.38, 0.77] � 67.6, 12.1 � � 5.4, 1.1 �
4 2445—2485 [0.42, 0.90] � 80.4, 12.8 � � 5.2, 1.2 �
5 1414—1446 [1.00, 1.00] � 69.3, 15.6 � � 6.3, 3.0 �
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A.7 Car Engine
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Figure A.7. Car Engine’s Spectrogram.

Table A.8. Car Engine’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 249—283 [0.02, 0.09] � 30.8, 5.2 � � 27.5, 10.1 �
2 187—219 [0.04, 0.10] � 29.3, 5.0 � � 46.8, 5.7 �
3 117—140 [1.00, 1.00] � 7.9, 2.7 � � 3.2, 3.8 �
4 61— 70 [0.10, 0.40] � 20.4, 3.3 � � 154.1, 3.2 �

notes: This is the sound of a car’s engine from inside the car.
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A.8 Car Horn
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Figure A.8. Car Horn’s Spectrogram.

Table A.9. Car Horn’s Track Information.
Track Freq. Range Rel. Energy

1 445— 460 (
�

�� ) [1.00, 1.00]
2 1780—1805 ( �

�
�� ) [0.10, 0.35]

3 735— 750 ( �
� �

� ) [0.02, 0.10]
4 1100—1125 ( �

� �

� ) [0.02, 0.10]
5 360— 382 (

� �

� ) [0.08, 0.25]
6 1470—1500 ( �

� �

� ) [0.08, 0.16]

notes: The observed beep durations fall in the range [0.2, 0.50] seconds. The source has

approximately 20 significant tracks that come from 2 harmonic sets. The first set has

� �� � � 	 � Hz, and contributes its first and fourth harmonics to the source. The second

set has � �

� � ��� � Hz, and contributes its first 4 harmonics to the source.
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A.9 Chicken
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Figure A.9. Chicken’s Spectrogram.

Table A.10. Chicken’s Track Information.
Track Freq. Range Rel. Energy

1 chirp 670— 610 [1.00, 1.00]
2 chirp 1350—1220 [0.10, 0.30]

notes: The five chicken clucks used to generate this model have durations lying in the range

[0.13, 0.20] seconds.
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A.10 Chime
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Figure A.10. Chime’s Spectrogram.

Table A.11. Chime’s Track Information.
Track Freq. Range Energy Duration

1 560— 590 [0.01, 0.12] [1.4, 1.6]
2 900— 935 [1.00, 1.00] [1.4, 1.6]
3 1300—1340 [0.05, 0.53] [0.9, 1.0]
4 1780—1820 [0.01, 0.17] [0.5, 0.6]
5 2275—2324 [0.01, 0.24] [0.2, 0.25]

notes: Each chime note is the result of a single strike followed by [1.2 2.5] seconds of

reverberation. The tracks shown in the table are for the first note.
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A.11 Clap
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Figure A.11. Clap’s Spectrogram.

noisebed 1: mean: [2.1933, 0.4440, 0.2067, 0.2268]

cov:

����
�

� � 	 � � ��� 	 � 	 � � � � � ��� 	 � 	� � ��� ����� 	 � 	 � � ��� � ��� 	 �
	 � � � � ����� 	 � � ��� ��� ��� 	 � � � ��� � ��� 	 � � ��� ������� 	 �
	� � ��� ���	� 	 � � � � � � ��� 	 � � � 	�� � ��� 	 � � � � � ����� 	 �
	 � � � �	� ��� 	 � � ��� ��� ��� 	 � � ����� ����� 	 � � � � � � ��� 	 �
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notes: The feature values are listed in the order they are described at the beginning of this

section. Ten isolated claps were used to generate these feature values.
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A.12 Clock Chime
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Figure A.12. Clock Chime’s Spectrogram.

Table A.12. Clock Chime’s Track Information.
Track Freq. Range Rel. Energy Duration

1 5650—5685 [1.00, 1.00] [0.5, 0.55]
2 1920—1950 [0.03, 0.31] [1.9, 2.0]
3 1040—1065 [0.03, 0.22] [1.4, 1.5]
4 2290—3025 [0.05, 0.29] [0.9, 1.0]
5 4240—4280 [0.08, 0.25] [0.4, 0.5]

notes: Each isolated chime’s reverberations last approximately 2.0 seconds, with Track 2

lasting the longest of the harmonic set. The track with greatest energy is Track 1;

however, the other tracks last longer and have slight rises in energy as Track 1 decays.
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A.13 Clock Ticks
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Figure A.13. Clock Tick’s Spectrogram.

track 1: 1730—1770 Hz

noisebed 1: mean: [2.3224, 0.3689, 0.1056, 0.1299]

cov:

����
�
� � ��� ���	� 	 � 	�� � 	 � � ��� 	 � 	 � ����� � ��� 	 � 	 � � 	 � 	���� 	 �
	� � 	 � ����� 	 � � � � ��� ��� 	 � 	 � � ��� � � � 	 	 � � 	 � � ��� 	 �
	 � � ��� � ��� 	 � 	 � ��� ��� � � 	 	 � � � � � ��� 	 � � � � ��	 ��� 	 �
	 � � 	 � 	���� 	 � � � 	 � � ��� 	 � � � ��� 	 ��� 	 � � � � � � ��� 	 �
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notes: Each tick is 0.1 seconds long (practically no variation), and there is 0.15 seconds

between ticks. There is a significant noisebed throughout the narrow time-slice that each

tick lasts. However, over all examined ticks, there was a consistent peak at the “track”

frequencies noted above. Twenty clock ticks were used to generate the noisebed feature

values.
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A.14 Cuckoo Clock (Cuckoo
�

Hour Chime)
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Figure A.14. Cuckoo Clock’s Spectrogram.

Table A.13. Cuckoo Clock’s Track Information.
Track Freq. Range Rel. Energy

1 960—1020 [0.05, 0.35]
2 750— 800 [0.25, 0.75]
3 495— 525 [1.00, 1.00]
4 2000—2050 [0.02, 0.13]
5 2740—2790 [0.01, 0.19]

notes: This sound is actually the result of two simultaneous sources. Track 1 and Track

2 are produced by the cuckoo-call, while Track 3, Track 4, and Track 5 are

produced by a clock-chime. Each “cuckoo-chime” combination lasts [0.56, 0.63] seconds

(i.e. time between successive strikes to the clock-chime). The final chime’s reverberations

last 0.3 seconds beyond the 0.6-second chime-length. This model was developed from

12 “cuckoo-chime” instances.
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A.15 Doorbell Chime
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Figure A.15. Doorbell Chime’s Spectrogram.

Table A.14. Doorbell Chime’s Track Information.
Track Freq. Range Rel. Energy Start Time

1 740— 767 [1.00, 1.00] [0.00, 0.00]
2 615— 649 [0.21, 0.90] [0.20, 0.25]

notes: The short “tracks” above Track 1’s frequency have extremely low energy and ap-

pear prominent only because of the image-enhancement process used to generate the

spectrogram shown here. They are not included in the sound model.
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A.16 Door Creak
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Figure A.16. Door Creak’s Spectrogram.

Table A.15. Door Creak’s Track Information.

Track Freq. Range Rel. Energy

1 300— 680— 330 [0.80, 1.20]
2 625—1350— 670 [0.80, 1.20]
3 870—2030—1000 [0.80, 1.20]
4 1100—2600—1400 [0.80, 1.20]
5 1400—3375—1800 [0.80, 1.20]
6 1600—4050—2000 [1.00, 1.00]

notes: All attack lengths fall in the range [0.3, 0.4] seconds, while all decay lengths fall into

the range [0.3, 0.4] seconds. The frequencies shown are derived from the “knee” in the

first 1.5 seconds of spectrogram data.
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A.17 Firengine Bell
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Figure A.17. Firengine Bell’s Spectrogram.

Table A.16. Firengine Bell’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 3070—3149 [0.50, 1.00] � 80.1, 22.9 � � 5.0, 1.5 �
2 2242—2266 [0.06, 0.53] � 80.7, 16.3 � � 6.4, 1.2 �
3 1945—1969 [0.30, 0.82] � 84.9, 25.6 � � 5.7, 0.8 �
4 1719—1750 [1.00, 1.00] � 72.2, 23.1 � � 6.6, 1.8 �
5 3304—3329 [0.02, 0.33] � 92.0, 14.4 � � 6.5, 0.6 �
6 4210—4235 [0.01, 0.20] � 84.9, 18.3 � � 4.9, 0.5 �

notes: This sound is produced by a bell being struck. Track 1 is the most energetic track.

The source has no natural duration bounds; for the purposes of this database the bounds

on active duration are set to be [3.0, 6.0] seconds. The reverberation decay ranges from

0.5 to 1.0 seconds.
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A.18 Firehouse Alarm
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Figure A.18. Firehouse Alarm’s Spectrogram.

Table A.17. Firehouse Alarm’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 601— 618 [0.07, 0.49] � 78.4, 12.5 � � 15.8, 2.8 �
2 1515—1539 [0.08, 0.52] � 65.6, 12.5 � � 11.7, 2.4 �
3 2617—2633 [1.00, 1.00] � 75.7, 15.9 � � 5.1, 0.8 �
4 3882—3907 [0.37, 0.90] � 78.7, 17.8 � � 4.5, 0.9 �
5 5312—5352 [0.20, 0.73] � 65.6, 13.3 � � 4.8, 1.0 �
6 6914—6954 [0.18, 0.82] � 75.2, 23.3 � � 4.0, 1.1 �

notes: The source’s tracks have too much variability in energy to determine useful rel. energy

ratios. Track 1 generally is the lowest-energy track. The tracks form the following

harmonics from a harmonic set with � � 	 [186, 188] Hz: 3, 8, 14, 21, 28, and 37. The

sound’s range of durations is nominally set to [3.0, 10.0] seconds.



146

A.19 Foghorn
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Figure A.19. Foghorn’s Spectrogram.

Table A.18. Foghorn’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 257— 336 [1.00, 1.00] � 12.4, 6.7 � � 9.7, 13.2 �
2 171— 235 [0.50, 0.60] � 13.6, 7.5 � � 5.3, 12 �
3 492— 516 [0.10, 0.30] � 32.1, 9.4 � � 14.3, 5.5 �
4 593— 610 [0.20, 0.40] � 32.8, 8.1 � � 14.9, 2.4 �
5 687— 711 [0.03, 1.00] � 46.2, 24.7 � � 13.8, 1.6 �
6 789— 805 [0.03, 1.00] � 32.9, 6.2 � � 11.9, 2.0 �

notes: Each horn blast lasts 3.8 seconds. A horn blast is a harmonic stream with � � 	 ���

Hz. The energy ratios are quite stable; there is a slow rise in energy in Track 5 and

Track 6 as the horn finishes sounding, which accounts for their wide energy ranges.

The tracks indicated here represent the following harmonics: 2, 3, 5, 6, 7, and 8.
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A.20 Footsteps
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Figure A.20. Footstep’s Spectrogram.

noisebed 1: mean: [1.2753, 0.2762, 0.1619, 0.2129]

cov:

����
�

� � 	 � ����� � � � �
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notes: Each footstep is at most 0.3 seconds in duration. In the IPUS sound library we use the

source model “footfall” to represent a single footstep. The library uses the acoustic script

“footsteps” to represent the concept of a sequence of footfalls. Eight footfalls were used

to generate the noisebed feature values.
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A.21 Glass Clink
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Figure A.21. Glass Clink’s Spectrogram.

Table A.19. Glass Clink’s Track Information.
Track Freq. Range Rel. Energy

1 2225—2243 [1.0, 1.0]
2 4960—4990 [0.5, 1.0]

noisebed 1: mean: [4.9140, 0.06986, 0.03265, 0.02894]

cov:

����
�
� � ��� ����� � � � � � ��� � � � � � � � � � � � ��� � � � � � �
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notes: Each glass-clink is [0.15, 0.2] seconds in duration. Ten isolated glass clinks were used

to generate the feature values. The spectrogram tracks not listed had low and highly

variable energies.
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A.22 Gong
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Figure A.22. Gong’s Spectrogram.

Table A.20. Gong’s Track Information.

Track Freq. Range Rel. Energy Duration

1 743— 757 [1.00, 1.00] [6.30, 7.00]
2 251— 273 [0.30, 0.40] [6.30, 7.00]
3 1375—1390 [0.002, 0.01] [1.20, 1.43]

notes: The majority of the sound’s spectral energy is in the first two tracks listed. However,

Track 3 is included in the model because its energy is strong enough to interfere with

the energy measurement of other sounds’ tracks that overlap its frequency region. The

sound’s duration range is [6.3, 7.1] seconds.
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A.23 Hairdryer
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Figure A.23. Hairdryer’s Spectrogram.

Table A.21. Hairdryer’s Track Information.

Track Freq. Range Rel. Energy

1 980—1015 [1.00, 1.00]
2 1475—1510 [0.33, 0.54]
3 1810—1840 [0.05, 0.20]

notes: The hairdryer displays distinct phases of activity corresponding to it being turned-on,

running and being turned-off. They are known as the attack or onset, steady and decay

phases. Onset behavior is visible in Track 1, where the frequency rises from 210 Hz

to 1015 Hz over a period of 0.5 seconds. Track 1 similarly displays decay behavior,

characterized by a slowly decaying exponential, starting at 1015 Hz and ending at 210

Hz. In the IPUS database this sound’s overall range of durations (encompassing attack,

steady, and decay behaviors) is set to [3.0, 10.0] seconds.
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A.24 Knock
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Figure A.24. Knock’s Spectrogram.

noisebed 1: mean: [1.2257, 0.2551, 0.2364, 0.3248]

cov:
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notes: Ten instances of the knock sound were used to generate the noisebed feature values.
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A.25 Oven Buzzer
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Figure A.25. Oven Buzzer’s Spectrogram.

Table A.22. Oven Buzzer’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 116— 133 [1.00, 1.00] � 9.0, 3.3 � � 0.1, 0.1 �
2 593— 602 [0.02, 0.09] � 44.5, 11.8 � � 10.5, 3.4 �
3 1000—1016 [0.02, 0.06] � 55.8, 11.4 � � 14.8, 1.9 �

notes: This sound’s expected duration range in the SUT library is arbitrarily set to [3.0, 10.0].
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A.26 Owl
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Figure A.26. Owl’s Spectrogram.

Table A.23. Owl Track Information.
Track Freq. Range Rel. Energy

1 780— 880 [1.00, 1.00]
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A.27 Pistol Shot
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Figure A.27. Pistol Shot’s Spectrogram.

noisebed 1: mean: [1.6869, 0.5350, 0.04049, 0.04070]

cov:

����
�
� � � � � � � � � � �

� � � � ��� � � � � �

	� � � � � ��� � � � �

	 � � � � � ��� � � � �

� � � � � � � � � � � � � ����	 � � � � � � � � � � ��� � � � � � � � ��� � � � � � � �

	� � ��� � ��� � � � �

� ��� � � � � � � � � � ��� ��� ��� � � � � � � � � ��� � � � � �

	 � � � � � ��� � � � � � � ����� � � � � � � � � � ������� � � � � � � � � ��� � � � � �


 ���
�

notes: This sound has extreme wide-band energy, with each shot stream including a frequency

decay of approximately 0.3 seconds. Five isolated pistol-shot instances were used to

generate the noisebed feature values shown here.
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A.28 Policecar Siren
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Figure A.28. Policecar Siren’s Spectrogram.

Table A.24. Policecar Siren Note-1’s Track Information.
Track Freq. Range Rel. Energy

1 555— 570 [0.05, 0.33]
2 1110—1150 [0.001, 0.03]
3 1674—1710 [0.07, 0.35]
4 2250—2281 [1.00, 1.00]
5 2813—2851 [0.08, 0.30]
6 3375—3414 [0.06, 0.32]

Table A.25. Policecar Siren Note-2’s Track Information.
Track Freq. Range Rel. Energy

1 446— 468 [0.11, 0.34]
2 907— 947 [0.78, 1.10]
3 1360—1406 [0.10, 0.32]
4 1821—1843 [1.00, 1.00]
5 2274—2304 [0.25, 0.60]
6 3180—3210 [0.19, 0.57]
7 3634—3680 [0.07, 0.61]
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notes: This sound has two alternating streams (notes). One is defined by a harmonic set with

� � � � ��� , and the other is defined by a harmonic set with � � � 	 ��� . Both notes have

durations of [0.45 0.50] seconds. Each note is represented as a separate sound model in

the SUT library, and a script defines the repetitive behavior of the overall sound.
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A.29 Razor
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Figure A.29. Razor’s Spectrogram.

Table A.26. Razor’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 1890—1910 [1.00, 1.00] � 27.0, 20.3 � 4.8, 0.6 �
2 2090—2110 [0.60, 0.64 � 35.6, 21.9 � � 2.3, 1.8 �
3 1790—1810 [0.56, 0.60] � 30.8, 21.2 � � 5.1, 0.4 �
4 1690—1710 [0.42, 0.46] � 32.4, 17.6 � � 4.3, 1.1 �
5 1590—1610 [0.38, 0.42] � 32.0, 20.1 � � 2.2, 2.2 �
6 1390—1410 [0.38, 0.42] � 22.6, 19.3 � � 5.6, 1.8 �

notes: The attack and decay durations are [0.5, 0.6] seconds long. The signal is best described

as a harmonic set with � � 	 � � � Hz. The signal has very steady relative energy ratios

among its tracks. However, wideband (short-time) analysis reveals that the tracks all

have sinusoidal amplitude modulation. The range of durations for the overall length of

a razor sound is arbitrarily set to [5.0, 11.0] seconds in the SUT library.
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A.30 Smoke Alarm 1
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Figure A.30. Smoke Alarm-1’s Spectrogram.

Table A.27. Smoke Alarm-1’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 3336—3352 [1.00, 1.00] � 39.6, 23.7 � � 3.5, 1.2 �
2 6660—6710 [0.003, 0.01] — —

notes: Track 1’s narrow peak widens in sideband energy every 0.25 seconds. At the same

time, Track 2’s energy dips to a local minimum. This sound’s duration range is

nominally set to [3.0, 10.0] seconds. No entropy ranges are included for Track 2

because its low energy and high variability led to entropy ranges that were so wide as to

be useless.
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A.31 Smoke Alarm 2
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Figure A.31. Smoke Alarm-2’s Spectrogram.

Table A.28. Smoke Alarm-2’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 3125—3133 [1.00, 1.00] � 58.9, 6.4 � � 2.3, 0.8 �
2 6227—6280 [0.02, 0.20] � 51.2, 16.1 � � 4.5, 1.1 �

notes: According to short-time analysis, every 0.7 seconds, the total signal energy drops. At

these times, Track 1’s energy drops by a factor of 10, while Track 2’s energy drops

by a factor of 2. The high relative energy of Track 2 occurs at this point. The

low-energy dip lasts for 0.05 seconds. This sound’s duration range is nominally set to

[3.0, 10.0] seconds.
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A.32 Telephone Dial
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Figure A.32. Telephone Dial’s Spectrogram.

Table A.29. Telephone Dial’s Track Information.

Track Freq. Range Rel. Energy

1 630— 690 [1.00, 1.00]
2 1930—2000 [0.02, 0.38]

noisebed 1: start-time = [0.25, 0.3]

mean: [1.5481, 0.2088, 0.06939, 0.07352]

covariance:
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noisebed 2: start-time = 0.1 seconds before the end of the dial,[0.25, 0.3]

mean: [1.2605, 0.2114, 0.08285, 0.08847]

covariance:
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notes: This is the sound of a rotary phone being dialed. The sound has two impulses: the

first representing the impact of the finger and the stopper at the end of the clockwise
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dial rotation, and the second at the end of the sound, representing the end of the

counterclockwise dial rotation. The dial sounds range in duration from 0.5 seconds for

dials from the digit 1 to 2.5 seconds for dials from the digit 0.
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A.33 Telephone Ring
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Figure A.33. Telephone Ring’s Spectrogram.

Table A.30. Telephone Ring’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 585— 649 [0.005 0.04] � 44.9, 7.5 � � 89.5, 6.7 �
2 1351—1367 [0.04 0.26] � 50.1, 13.0 � � 8.7, 2.1 �
3 1633—1656 [1.00 1.00] � 76.5, 15.6 � � 8.2, 1.5 �

notes: For each ring, the striker actively hits the bell for 1.7 seconds; reverberations last 3.3

seconds after that. Track 1 is the highest-energy track. Track 3 has energy diffused

throughout its range.
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A.34 Telephone Tone
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Figure A.34. Telephone Tone’s Spectrogram.

Table A.31. Telephone Tone’s Track Information.

Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 391— 414 [1.00 1.00] � 13.6, 0.8 � � 17.4, 4.7 �
2 469— 492 [0.19 0.42] � 13.1, 1.1 � � 16.7, 4.6 �
3 1270—1290 [0.01 0.30]

notes: The sound’s range of durations is [0.8, 2.0] seconds in the SUT library.
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A.35 Triangle
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Figure A.35. Triangle’s Spectrogram.

Table A.32. Triangle’s Track Information.

Track Freq. Range Rel. Energy

1 4415—4440 [1.00, 1.00]
2 7297—7320 [0.10, 0.20]
3 4047—4085 [0.20, 0.40]
4 5571—5609 [0.15, 0.40]

notes: The above model was generated from five isolated triangle-strike instances. The

durations all fall in the range [1.0,1.2] seconds.
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A.36 Truck Motor
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Figure A.36. Truck Motor’s Spectrogram.

Table A.33. Truck Motor’s Track Information.
Track Freq. Range Rel. Energy

1 1970—2010 [1.00, 1.00]
2 475— 507 [0.03, 0.26]

notes: Track 1 is really a series of discontinuous frequency spikes. Wideband analysis

shows that each burst on the spectrogram shown here is a double spike with 0.02 seconds

between each spike in the pair, and with each spike lasting approximately 0.01 seconds.

The distance between the last spike of one pair and the first spike of the next is 0.05

seconds. The three time values yield a pair period of approximately 0.1 seconds. The

sound’s range of durations is arbitrarily set to [5.0, 30.0] seconds.
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A.37 Vending Machine Hum
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Figure A.37. Vending Machine Hum’s Spectrogram.

Table A.34. Vending Machine Hum’s Track Information

Track Freq. Range Rel. Energy

1 282— 328 [1.00 1.00]
2 1672—1728 [0.29 0.83]
3 3560—3601 [0.05 0.32]

notes: Although the narrowband tracks are well-defined, note that this source has a significant

noisebed from 0 to 8000 Hz. The sound’s range of durations is arbitrarily set to [5.0,

30.0] seconds.
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A.38 Viola

8000

7000

6000

5000

4000

3000

2000

1000

0

1 2 3 4 5

Figure A.38. Viola’s Spectrogram.

Table A.35. Viola’s Track Information.
Track Freq. Range Rel. Energy Ampl. Entropy Freq. Entropy

1 242— 275 [0.78 1.10] � 25.9, 3.9 � � 14.6, 12.0 �
2 491— 525 [0.70 1.06] � 52.9, 14.8 � � 22.5, 3.5 �
3 749— 783 [1.00 1.00] � 51.0, 6.7 � � 18.5, 2.5 �
4 991—1033 [0.61 0.90] � 26.6, 7.7 � � 19.3, 1.4 �

notes: The signal has the harmonic set � � � ��� � Hz. Its duration range in the IPUS database

is [2.4, 3.0] seconds.
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A.39 Wind
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Figure A.39. Wind’s Spectrogram.

Table A.36. Wind’s Track Information.
Track Freq. Range Ampl. Entropy Freq. Entropy

1 625— 766 � 71.8, 14.6 � � 46.9, 12.6 �

notes: The spectral energy in Track 1 meanders throughout the track’s frequency region.

The range of durations for the overall length of this sound is arbitrarily set to [5.0, 30.0]

seconds in the IPUS database.



A P P E N D I X B

SUT TRACE

To provide a concrete example of how the IPUS SUT behaves when processing data, this

appendix presents a trace of the SUT during one of its experiment runs reported in Chapter 5.

The run’s scenario is shown in Figure B.1, and contains three types of sounds: two notes of a

policecar siren and a firengine bell. For this run the testbed’s sound library contained all 40

sounds reported in Appendix A, and the testbed’s default front end was the one used in Suite

1 (see Section 5.2).
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Figure B.1. Trace Scenario.

The major distortion processes that are expected to require reprocessing in the scenario

are (1) time-resolution problems in determining the endpoints of the policecar siren notes

and the firengine bell’s start-time, (2) peak-thresholding problems in picking enough peaks to

track all the sounds’ microstreams, and (3) frequency-resolution problems in separating the

microstreams of the firengine bell and the policecar siren notes. The trace shows that for some of

the low-energy tracks of POLICECAR-SIREN-STREAM1, an energy-thresholding problem

was also assumed by the SUT. Note that diagnosis and reprocessing are local with respect to
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the individual notes in the policecar siren script; no similarities across script components are

exploited in generating diagnoses or in searching for support.

The following conventions were adopted in selecting what details to show and in formatting

the trace output. The trace only reports

1. decisions about what sound hypotheses are selected for consideration on the basis of

observed spectral bands,

2. initial attempts at searching for contour support for sounds’ microstream hypotheses,

and their results, including discrepancies

3. violation discrepancies involving detection of time-domain events at block edges.

4. attempts at diagnosing missing evidence,

5. reprocessing efforts at uncovering missing evidence, and

6. when sound hypotheses are disbelieved.

The start of each of these events is labelled with four asterisks. The OBJECT message in

the diagnosis alerts indicates the microstream whose negative-evidence SOU is being diagnosed,

and the REGION message indicates where in time and frequency the SOU exists.

The table at the end of the trace shows all answer and nonanswer hypotheses, their rating,

their negative evidence rating, their proposed time-periods of existence, and the number of

processing contexts that were used to support or disconfirm them.

To aid in following the trace, a screen dump of the SUT’s status report window is shown at

the end of each data block’s analysis. As shown in Figure B.2, the panes on the window show

blackboard hypotheses for each testbed abstraction level except the waveform, spectrogram,

and script levels. For most time-frequency items such as peaks and microstreams, the display

representation should be self-explanatory, although note that for peaks and spectral bands lighter

object colors indicate greater spectral energy. On the Time-Domain Events pane, boundary

events appear as stylized steps indicating a step-up or step-down in waveform envelope energy,
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while impulses appear as “lollipops” indicating spikes in waveform envelope energy. Between

block traces, the updated window will show the previously-analyzed waveform envelope, plus

the envelope of the next waveform block to be analyzed.
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Figure B.2. Trace Start.
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Started Scenario 2 at 30 Jun 1996 12:44:00

**** Processing of [0.000 1.000} time period started.
Explained energy ratio from previous block: 0.0S0
1.000 seconds of new data read

**** Violation discrepancy: BOUNDARY-DETECTION output.
<BOUNDARY-EXT.0003> at block edge.
Discrepancy Explanation proposed:

(END-OF-DATA-BOUNDARY)
---Reprocessing Postponed until data in time

[0.96 1.96] is available.

**** Out of the possible explanations:
WIND,POLICECAR-SIREN-STREAM1
POLICECAR-SIREN-STREAM2,

for unexplained spectral bands in time [0.00 1.00],
the following were initially selected:

POLICECAR-SIREN-STREAM2, POLICECAR-SIREN-STREAM1
to initially create
<POLICECAR-SIREN-STREAM1#001>
<POLICECAR-SIREN-STREAM2#001>

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [2250 2281] Hz in time [0.00 0.50].
Contours found: <contour.0005> <contour.0004>

<contour.0003> <contour.0002>

4 contours confirm
<policecar-siren.st1.mst4.0020 [2250 2281] Hz>
in time ([0.05 0.40})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [2813 2851] Hz in time [0.00 0.50].
Contours found: <contour.0017> <contour.0016>

<contour.0015> <contour.0014>

4 contours confirm
<policecar-siren.st1.mst5.0025 [2813 2851] Hz>
in time ([0.00 0.45})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
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mstream at [3375 3414] Hz in time [0.00 0.50].
Contours found: <contour.0024> <contour.0023>

<contour.0022>

3 contours confirm
<policecar-siren.st1.mst6.0031 [3375 3414] Hz>
in time ([0.00 0.45})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [550 580] Hz in time [0.00 0.42].
Contours found: <contour.0030> <contour.0029>

<contour.0028>

3 contours confirm
<policecar-siren.st1.mst1.0036 [550 580] Hz>
in time ([0.00 0.48})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [1674 1710] Hz in time [0.00 0.50].
Contours found: <contour.0036> <contour.0035>

<contour.0034>

3 contours confirm
<policecar-siren.st1.mst3.0038 [1674 1710] Hz>
in time ([0.00 0.45})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [1110 1150] Hz in time [0.08 0.35].
Contours found: <contour.0041> <contour.0040>

2 contours confirm
<policecar-siren.st1.mst2.0041 [1110 1150] Hz>
in time ([0.08 0.42})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#001’s
mstream at [1110 1150] Hz in time [0 0.08] [0.42 0.50].
---> mstream at [1110 1150] Hz unconfirmed

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [907 947] Hz in time [0.41 0.97].
Contours found: <contour.0046> <contour.0045>

<contour.0044>

3 contours confirm
<policecar-siren.st2.mst2.0072 [907 947] Hz>
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in time ([0.45 0.94})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [1821 1843] Hz in time [0.44 0.93].
Contours found: <contour.0052> <contour.0051>

<contour.0050>

3 contours confirm
<policecar-siren.st2.mst4.0074 [1821 1843] Hz>
in time ([0.45 0.88})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [2274 2304] Hz in time [0.44 0.93].
Contours found: <contour.0060> <contour.0059>

<contour.0058> <contour.0057>
<contour.0056>

5 contours confirm
<policecar-siren.st2.mst5.0083 [2274 2304] Hz>
in time ([0.46 0.91})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [3180 3210] Hz in time [0.44 0.82].
Contours found: <contour.0069> <contour.0068>

<contour.0067> <contour.0066>

4 contours confirm
<policecar-siren.st2.mst6.0087 [3180 3210] Hz>
in time ([0.46 0.88})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [3634 3680] Hz in time [0.44 0.82].
Contours found: <contour.0075>

<contour.0074>

2 contours confirm
<policecar-siren.st2.mst7.0094 [3634 3680] Hz>
in time ([0.54 0.77})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [446 468] Hz in time [0.45 0.78].
Contour found: <contour.0078>

1 contour confirms
<policecar-siren.st2.mst1.0097 [446 468] Hz>
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in time ([0.45 0.85})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [1360 1406] Hz in time [0.44 0.97].
Contours found: <contour.0083> <contour.0082>

<contour.0081> <contour.0080>

4 contours confirm
<policecar-siren.st2.mst3.0099 [1360 1406] Hz>
in time ([0.45 0.75} [0.80 0.91})

**** Trying to solve negative evidence in
<policecar-siren.st2.mst7.0095 [3634 3680] Hz>

Performing Discrepancy Diagnosis.
OBJECT: <policecar-siren.st2.mst7.0095 [3634 3680] Hz>)
REGION: T:[0.43 0.56] F:[3610 3704] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
<EXPLANATION (MS-ENERGY-THRESHOLDING)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st2.mst7.0095 [3634 3680] Hz>)))

**** Reprocessing started in frequency [3610 3704]
during time period [0.44 0.54] for Discr. Diag.
<FRONT-END.0002> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.0258209S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (46 . 46)
*STFT-CONTOUR-ENERGY-RADIUS* = (0.5 . 0.5)
*PEAK-NEIGHBOURHOOD* = 1
in effect.
No microstreams found.
Reprocessing completed. Global context restored.

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [3634 3680] Hz in time [0.82 0.97].
---> mstream at [3634 3680] Hz unconfirmed
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**** Explaining <POLICECAR-SIREN-STREAM2#001 0024 (0.83)> of
<POLICECAR-SIREN-STREAM2#001> as
#<POLICECAR-SIREN#001 (SCRIPTEXT.0001)>

**** Trying to solve negative evidence in
<policecar-siren.st1.mst2.0043 [1110 1150] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st1.mst2.0043 [1110 1150] Hz>)
REGION: T:[0.40 0.52] F:[1086 1174] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Explaining <POLICECAR-SIREN-STREAM1#001 0021 (0.84)> of
<POLICECAR-SIREN-STREAM1#001> as
#<POLICECAR-SIREN#001 (SCRIPTEXT.0002)>
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Figure B.3. Post Block-1 Status.
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**** Processing of [1.000 2.000} time period started.
Explained energy ratio from previous block: 0.78S0
1.000 seconds of new data read

**** Creating Script Expectations
<POLICECAR-SIREN-STREAM1#002>
<POLICECAR-SIREN-STREAM2#002>

**** Searching for reprocessing plans for
<EXPLANATION (END-OF-DATA-BOUNDARY)> with the goals
((HAVE-HYPOTHESES-SUPPORT (<BOUNDARY-EXT.0003>)))

**** Reprocessing started in frequency [0 8000]
during time period [0.87 1.04] for Violation Discr.
<FRONT-END.0003> with
*MINIMUM-RELATIVE-DIFF* = 0.2
in effect.

Synthesizing confirmed BOUNDARY:
<BOUNDARY-EXT.0004>
Reprocessing completed. Global context restored.

**** Trying to solve negative evidence in
<policecar-siren.st2.mst7.0102 [3634 3680] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st2.mst7.0102 [3634 3680] Hz>)
REGION: T:[0.80 0.99] F:[3610 3704] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
<EXPLANATION (MS-ENERGY-THRESHOLDING)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st2.mst7.0102 [3634 3680] Hz>)))

**** Reprocessing started in frequency [3610 3704]
during time period [0.82 0.97] for Discr. Diag.
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<FRONT-END.0004> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.0258209S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (46 . 46)
*STFT-CONTOUR-ENERGY-RADIUS* = (0.5 . 0.5)
*PEAK-NEIGHBOURHOOD* = 4
in effect.
No microstreams found.
Reprocessing completed. Global context restored.

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [446 468] Hz in time [0.85 0.97].
Contours found: <contour.0089>

1 contour confirms
<policecar-siren.st2.mst1.0103 [446 468] Hz>
in time ([0.85 0.93})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [2274 2304] Hz in time [0.91 0.97].
---> mstream at [2274 2304] Hz unconfirmed

**** Attempting to confirm POLICECAR-SIREN-STREAM2#001’s
mstream at [3180 3210] Hz in time [0.88 0.97].
---> mstream at [3180 3210] Hz unconfirmed

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [2250 2281] Hz in time [0.92 1.43].
Contours found: <contour.0095> <contour.0094>

<contour.0093> <contour.0092>

<contour.0095> <contour.0094> have incorrect energy

<contour.0093> <contour.0092>
confirm
<policecar-siren.st1.mst4.0132 [2250 2281] Hz>
in time ([1.13 1.34})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [2813 2851] Hz in time [0.92 1.37].
Contours found: <contour.0103> <contour.0102>

<contour.0101>

3 contours confirm
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<policecar-siren.st1.mst5.0150 [2813 2851] Hz>
in time ([0.93 1.18} [1.13 1.38})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [3375 3414] Hz in time [0.92 1.37].
Contour found: <contour.0107>

1 contour confirms
<policecar-siren.st1.mst6.0156 [3375 3414] Hz>
in time ([0.93 1.38})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [550 580] Hz in time [0.92 1.37].
Contours found: <contour.0114> <contour.0113>

<contour.0112> <contour.0111>
<contour.0110> <contour.0109>

<contour.0114>: limitation due to length.

<contour.0113> <contour.0112>
<contour.0111> <contour.0110>
<contour.0109> confirm
<policecar-siren.st1.mst1.0161 [550 580] Hz>
in time ([0.93 1.35})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [1674 1710] Hz in time [0.92 1.37].
Contours found: <contour.0124> <contour.0123>

<contour.0122> <contour.0121>
<contour.0120>

<contour.0124>: limitation due to length.

<contour.0123> <contour.0122>
<contour.0121> <contour.0120>
confirm
<policecar-siren.st1.mst3.0165 [1674 1710] Hz>
in time ([0.93 1.35})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#002’s
mstream at [1110 1150] Hz in time [0.92 1.37].
Contours found: <contour.0130> <contour.0129>

2 contours confirm
<policecar-siren.st1.mst2.0170 [1110 1150] Hz>
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in time ([1.02 1.13} [1.16 1.37})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [907 947] Hz in time [1.39 1.89].
Contours found: <contour.0136> <contour.0135>

<contour.0134> <contour.0133>

4 contours confirm
<policecar-siren.st2.mst2.0209 [907 947] Hz>
in time ([1.40 1.69} [1.64 1.88})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [1821 1843] Hz in time [1.39 1.89].
Contours found: <contour.0143> <contour.0142>

<contour.0141>

3 contours confirm
<policecar-siren.st2.mst4.0211 [1821 1843] Hz>
in time ([1.40 1.62} [1.58 1.83})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [2274 2304] Hz in time [1.39 1.89].
Contours found: <contour.0150> <contour.0149>

<contour.0148> <contour.0147>

4 contours confirm
<policecar-siren.st2.mst5.0220 [2274 2304] Hz>
in time ([1.40 1.67} [1.62 1.85})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [3180 3210] Hz in time [1.39 1.89].
Contours found: <contour.0158> <contour.0157>

<contour.0156> <contour.0155>

4 contours confirm
<policecar-siren.st2.mst6.0226 [3180 3210] Hz>
in time ([1.40 1.51} [1.54 1.82})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [3634 3680] Hz in time [1.39 1.89].
Contours found: <contour.0164> <contour.0163>

2 contours confirm
<policecar-siren.st2.mst7.0233 [3634 3680] Hz>
in time ([1.50 1.70})
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**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [446 468] Hz in time [1.39 1.89].
Contour found: <contour.0167>

1 contour confirms
<policecar-siren.st2.mst1.0238 [446 468] Hz>
in time ([1.40 1.86})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#002’s
mstream at [1360 1406] Hz in time [1.39 1.89].
Contours found: <contour.0172> <contour.0171>

<contour.0170> <contour.0169>

4 contours confirm
<policecar-siren.st2.mst3.0240 [1360 1406] Hz>
in time ([1.40 1.85})

**** Trying to solve negative evidence in
<policecar-siren.st1.mst2.0173 [1110 1150] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st1.mst2.0173 [1110 1150] Hz>)
REGION: T:[0.90 1.03] F:[1086 1174] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Out of the possible explanations:
WIND,

for unexplained spectral bands in time [1.00 2.00],
the following were initially selected:

WIND
to initially create

<WIND#001>

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [1.70 2.00].
Contour found: <contour.0177>

1 contour confirms
<wind.st1.mst1.0245 [525 766] Hz>
in time ([1.70 1.99})



184

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [1.40 1.70].
---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0246 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0246 [525 766] Hz>)
REGION: T:[1.38 1.72] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [1.10 1.40].
Contour found: <contour.0179>

1 contour confirms
<wind.st1.mst1.0246 [525 766] Hz>
in time ([1.11 1.46})

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [0.80 1.10].
Contour found: <contour.0181>

1 contour confirms
<wind.st1.mst1.0247 [525 766] Hz>
in time ([0.90 1.16})

**** Trying to solve negative evidence in
<wind.st1.mst1.0248 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0248 [525 766] Hz>)
REGION: T:[0.78 0.91] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [0.47 0.80].



185

---> mstream at [525 766] Hz unconfirmed
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Figure B.4. Post Block-2 Status.
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**** Processing of [2.000 3.000} time period started.
Explained energy ratio from previous block: 0.82S0

1.000 seconds of new data read

**** Creating Script Expectations
<POLICECAR-SIREN-STREAM1#003>
<POLICECAR-SIREN-STREAM2#003>

**** Attempting to confirm WIND#001’s
mstream at [525 766] Hz in time [1.99 3.00].
Contours found: <contour.0184> <contour.0183>

2 contours confirm
<wind.st1.mst1.0249 [525 766] Hz>
in time ([2.00 2.35} [2.78 2.99})

**** Trying to solve negative evidence in
<wind.st1.mst1.0250 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0250 [525 766] Hz>)
REGION: T:[2.34 2.80] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

Source WIND#001 is now disbelieved.

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [2250 2281] Hz in time [1.86 2.37].
Contours found: <contour.0188> <contour.0187>

2 contours confirm
<policecar-siren.st1.mst4.0270 [2250 2281] Hz>
in time ([2.06 2.29})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [2813 2851] Hz in time [1.86 2.31].
Contours found: <contour.0201> <contour.0200>

<contour.0199> <contour.0198>
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4 contours confirm
<policecar-siren.st1.mst5.0288 [2813 2851] Hz>
in time ([1.86 2.13} [2.08 2.32})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [3375 3414] Hz in time [1.86 2.31].
Contour found: <contour.0206>

1 contour confirms
<policecar-siren.st1.mst6.0294 [3375 3414] Hz>
in time ([1.86 2.32})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [550 580] Hz in time [1.86 2.31].
Contours found: <contour.0210> <contour.0209>

<contour.0208>

<contour.0210>: limitation due to length.

<contour.0209> <contour.0208>
confirm <policecar-siren.st1.mst1.0299 [550 580] Hz>
in time ([1.86 2.27})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [1674 1710] Hz in time [1.86 2.31].
Contours found: <contour.0216> <contour.0215>

<contour.0214> <contour.0213>

4 contours confirm
<policecar-siren.st1.mst3.0303 [1674 1710] Hz>
in time ([1.88 2.16} [2.11 2.34})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#003’s
mstream at [1110 1150] Hz in time [1.86 2.31].
Contour found: <contour.0223> <contour.0222>

<contour.0221>

3 contours confirm
<policecar-siren.st1.mst2.0308 [1110 1150] Hz>
in time ([2.00 2.06} [2.03 2.30})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [907 947] Hz in time [2.33 2.83].
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Contours found: <contour.0230> <contour.0229>
<contour.0228> <contour.0227>

4 contours confirm
<policecar-siren.st2.mst2.0345 [907 947] Hz>
in time ([2.34 2.69} [2.64 2.82})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [1821 1843] Hz in time [2.33 2.83].
Contours found: <contour.0237> <contour.0236>

<contour.0235>

3 contours confirm
<policecar-siren.st2.mst4.0347 [1821 1843] Hz>
in time ([2.34 2.56} [2.51 2.77})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [2274 2304] Hz in time [2.33 2.83].
Contours found: <contour.0245> <contour.0244>

<contour.0243> <contour.0242>
<contour.0241>

5 contours confirm
<policecar-siren.st2.mst5.0356 [2274 2304] Hz>
in time ([2.34 2.78})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [3180 3210] Hz in time [2.33 2.83].
Contours found: <contour.0253> <contour.0252>

<contour.0251>

3 contours confirm
<policecar-siren.st2.mst6.0362 [3180 3210] Hz>
in time ([2.35 2.72})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [3634 3680] Hz in time [2.33 2.83].
Contours found: <contour.0259> <contour.0258>

<contour.0257>

3 contours confirm
<policecar-siren.st2.mst7.0369 [3634 3680] Hz>
in time ([2.43 2.75})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
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mstream at [446 468] Hz in time [2.33 2.83].
Contour found: <contour.0266> <contour.0265>

<contour.0264> <contour.0263>

4 contours confirm
<policecar-siren.st2.mst1.0374 [446 468] Hz>
in time ([2.34 2.74})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#003’s
mstream at [1360 1406] Hz in time [2.33 2.83].
Contours found: <contour.0275> <contour.0274>

<contour.0273> <contour.0272>

4 contours confirm
<policecar-siren.st2.mst3.0376 [1360 1406] Hz>
in time ([2.34 2.80})

**** Out of the possible explanations:
WIND,FIRENGINE-BELL

for unexplained spectral bands in time [2.00 3.00],
the following were initially selected:

FIRENGINE-BELL
to initially create
<FIRENGINE-BELL#001>

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3070 3149] Hz in time [2.58 2.93].
Contour found: <contour.0280>

1 contour confirms
<firengine-bell.st1.mst3.0397 [3070 3149] Hz>
in time ([2.58 2.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1719 1750] Hz in time [2.58 2.93].
Contour found: <contour.0282>

1 contour confirms
<firengine-bell.st1.mst6.0405 [1719 1750] Hz>
in time ([2.58 2.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1945 1969] Hz in time [2.58 2.93].
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Contour found: <contour.0284>

1 contour confirms
<firengine-bell.st1.mst5.0410 [1945 1969] Hz>
in time ([2.58 2.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [2242 2266] Hz in time [2.00 2.93].
Contours found: <contour.0291> <contour.0290>

<contour.0289> <contour.0288>

<contour.0291> <contour.0290>
<contour.0289> have incorrect energy

<contour.0288> confirms
<firengine-bell.st1.mst4.0417 [2242 2266] Hz>
in time ([2.26 2.86})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [2.58 2.93].
Contour found: <contour.0293>

<contour.0293> has incorrect energy

---> mstream at [3304 3329] Hz unconfirmed

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [4210 4235] Hz in time [2.70 3.00].
Contour found: <contour.0294>

1 contour confirms
<firengine-bell.st1.mst1.0422 [4210 4235] Hz>
in time ([2.70 2.99})

**** Trying to solve negative evidence in
<firengine-bell.st1.mst2.0423 [3304 3329] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst2.0423 [3304 3329] Hz>)
REGION: T:[2.56 2.94] F:[3288 3345] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL
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**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [2.28 2.58].
Contours found: <contour.0297> <contour.0296>

<contour.0297> <contour.0296>
have incorrect energy

---> mstream at [3304 3329] Hz unconfirmed

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0420 [2242 2266] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0420 [2242 2266] Hz>)
REGION: T:[1.98 2.27] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [4210 4235] Hz in time [2.40 2.70].
Contour found: <contour.0298>

1 contour confirms
<firengine-bell.st1.mst1.0426 [4210 4235] Hz>
in time ([2.51 2.75})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3070 3149] Hz in time [2.28 2.58].
Contour found: <contour.0300>

1 contour confirms
<firengine-bell.st1.mst3.0432 [3070 3149] Hz>
in time ([2.53 2.64})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1945 1969] Hz in time [2.28 2.58].
Contour found: <contour.0302>

1 contour confirms
<firengine-bell.st1.mst5.0435 [1945 1969] Hz>
in time ([2.50 2.64})

**** Attempting to confirm FIRENGINE-BELL#001’s
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mstream at [1719 1750] Hz in time [2.28 2.58].
Contour found: <contour.0304>

<contour.0304> has incorrect energy
---> mstream at [1719 1750] Hz unconfirmed

**** Trying to solve negative evidence in
<firengine-bell.st1.mst2.0436 [3304 3329] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst2.0436 [3304 3329] Hz>)
REGION: T:[2.26 2.59] F:[3288 3345] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [1.98 2.28].
Contour found: <contour.0305>

<contour.0305> has incorrect energy
---> mstream at [3304 3329] Hz unconfirmed

**** Trying to solve negative evidence in
<firengine-bell.st1.mst5.0440 [1945 1969] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst5.0440 [1945 1969] Hz>)
REGION: T:[2.26 2.51] F:[1929 1985] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst1.0439 [4210 4235] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst1.0439 [4210 4235] Hz>)
REGION: T:[2.38 2.53] F:[4194 4251] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL
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**** Trying to solve negative evidence in
<firengine-bell.st1.mst3.0434 [3070 3149] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst3.0434 [3070 3149] Hz>)
REGION: T:[2.26 2.54] F:[3054 3165] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst6.0441 [1719 1750] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst6.0441 [1719 1750] Hz>)
REGION: T:[2.26 2.59] F:[1703 1766] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst2.0436 [3304 3329] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst2.0436 [3304 3329] Hz>)
REGION: T:[1.96 2.29] F:[3288 3345] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [1.68 1.98].
Contour found: <contour.0310>

<contour.0310> has incorrect energy
---> mstream at [3304 3329] Hz unconfirmed

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0438 [2242 2266] Hz>
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Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0438 [2242 2266] Hz>)
REGION: T:[1.68 2.02] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-FREQUENCY-RESOLUTION)

**** Searching for reprocessing plans for
(MS-FREQUENCY-RESOLUTION) with the goals
((HAVE-HYPOTHESES-SUPPORT

(<firengine-bell.st1.mst4.0438 [2242 2266] Hz>
<policecar-siren.st2.mst5.0224 [2274 2304] Hz>)))

**** Reprocessing started in frequency [2234 2305]
during time period [1.34 2.36] for Discr. Diag.
Attempt to assign 16384 to *FFT-SIZE*
[constraint violation, reprocessing fails]
Reprocessing completed. Global context restored.

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1719 1750] Hz in time [2.00 2.28].
---> mstream at [1719 1750] Hz unconfirmed

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3070 3149] Hz in time [2.00 2.28].
---> mstream at [3070 3149] Hz unconfirmed

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1945 1969] Hz in time [2.00 2.28].
---> mstream at [1945 1969] Hz unconfirmed

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [4210 4235] Hz in time [2.00 2.40].
Contour found: <contour.0312>

<contour.0312> has incorrect energy
---> mstream at [4210 4235] Hz unconfirmed
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**** Trying to solve negative evidence in
<firengine-bell.st1.mst6.0445 [1719 1750] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst6.0445 [1719 1750] Hz>)
REGION: T:[1.98 2.29] F:[1703 1766] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst5.0447 [1945 1969] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst5.0447 [1945 1969] Hz>)
REGION: T:[1.98 2.29] F:[1929 1985] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst1.0446 [4210 4235] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst1.0446 [4210 4235] Hz>)
REGION: T:[1.98 2.42] F:[4194 4251] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst3.0443 [3070 3149] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst3.0443 [3070 3149] Hz>)
REGION: T:[1.98 2.29] F:[3054 3165] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [2242 2266] Hz in time [0.47 1.70].
Contours found: <contour.0316> <contour.0313>
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<contour.0316> <contour.0313>
have incorrect energy

---> mstream at [2242 2266] Hz unconfirmed

**** Out of the possible explanations:
WIND,

for unexplained spectral bands in time [1.00 2.00],
the following were initially selected:

WIND
to initially create
<WIND#002>

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [2.78 2.93].
Contour found: <contour.0318>

1 contour confirms
<wind.st1.mst1.0448 [525 766] Hz>
in time ([2.78 2.93})

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [2.48 2.78].

---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0449 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0449 [525 766] Hz>)
REGION: T:[2.47 2.80] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [2.18 2.48].
Contour found: <contour.0321>

1 contour confirms
<wind.st1.mst1.0449 [525 766] Hz>
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in time ([2.19 2.35})

**** Trying to solve negative evidence in
<wind.st1.mst1.0450 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0450 [525 766] Hz>)
REGION: T:[2.34 2.50] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [1.88 2.18].
Contour found: <contour.0323>

1 contour confirms
<wind.st1.mst1.0450 [525 766] Hz>
in time ([1.90 2.24})

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [1.58 1.88].
1 short contours found
---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0451 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0451 [525 766] Hz>)
REGION: T:[1.57 1.90] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [0.47 1.58].
Contour found: <contour.0326>

<contour.0326> has incorrect energy
---> mstream at [525 766] Hz unconfirmed
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Figure B.5. Post Block-3 Status.
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**** Processing of [3.000 4.000} time period started.
Explained energy ratio from previous block: 0.79S0
1.000 seconds of new data read

**** Creating Script Expectations
<POLICECAR-SIREN-STREAM1#004>
<POLICECAR-SIREN-STREAM2#004>

**** Attempting to confirm WIND#002’s
mstream at [525 766] Hz in time [2.93 4.00].
Contours found: <contour.0328> <contour.0327>

2 contours confirm
<wind.st1.mst1.0452 [525 766] Hz>
in times ([2.93 3.30} [3.72 3.99})

**** Trying to solve negative evidence in
<wind.st1.mst1.0453 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0453 [525 766] Hz>)
REGION: T:[3.29 3.74] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

Source WIND#002 is now disbelieved.

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [2.93 4.00].
Contour found: <contour.0331>

---> mstream at [3304 3329] Hz unconfirmed

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1719 1750] Hz in time [2.99 4.00].
Contour found: <contour.0332>

1 contour confirms
<firengine-bell.st1.mst6.0445 [1719 1750] Hz>
in time ([3.00 3.99})
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**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3070 3149] Hz in time [2.99 4.00].
Contours found: <contour.0336> <contour.0335>

<contour.0334>

3 contours confirm
<firengine-bell.st1.mst3.0458 [3070 3149] Hz>
in time ([3.46 3.99} [3.00 3.35})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [4210 4235] Hz in time [2.99 4.00].
Contours found: <contour.0341> <contour.0340>

2 contours confirm
<firengine-bell.st1.mst1.0463 [4210 4235] Hz>
in time ([3.00 3.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1945 1969] Hz in time [2.99 4.00].
Contour found: <contour.0344>

1 contour confirms
<firengine-bell.st1.mst5.0464 [1945 1969] Hz>
in time ([3.00 3.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [2242 2266] Hz in time [2.93 4.00].
Contours found: <contour.0353> <contour.0352>

<contour.0351> <contour.0349>

<contour.0353> <contour.0352>
have incorrect energy

<contour.0351> <contour.0349>
confirm
<firengine-bell.st1.mst4.0461 [2242 2266] Hz>
in time ([3.11 3.24} [3.32 3.69})

**** Trying to solve negative evidence in
<firengine-bell.st1.mst3.0460 [3070 3149] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst3.0460 [3070 3149] Hz>)
REGION: T:[3.34 3.48] F:[3054 3165] E:[0 10000.00]
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Discrepancy Explanation Proposed: NIL

**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [2250 2281] Hz in time [2.80 3.31].
Contours found: <contour.0365> <contour.0364>

<contour.0365> has incorrect energy

<contour.0364> confirms
<policecar-siren.st1.mst4.0488 [2250 2281] Hz>
in time ([3.11 3.22})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [2813 2851] Hz in time [2.80 3.25].
Contours found: <contour.0374> <contour.0373>

<contour.0372>

3 contours confirm
<policecar-siren.st1.mst5.0505 [2813 2851] Hz>
in time ([2.80 2.93} [2.91 3.26})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [3375 3414] Hz in time [2.80 3.25].
Contours found: <contour.0381> <contour.0380>

<contour.0379> <contour.0378>

4 contours confirm
<policecar-siren.st1.mst6.0511 [3375 3414] Hz>
in time ([2.80 2.99} [3.00 3.24})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [550 580] Hz in time [2.80 3.25].
Contours found: <contour.0388> <contour.0387>

<contour.0386>

<contour.0388>: limitation due to length.

<contour.0387> <contour.0386>
confirm
<policecar-siren.st1.mst1.0516 [550 580] Hz>
in time ([2.80 3.21})
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**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [1674 1710] Hz in time [2.80 3.25].
Contours found: <contour.0393> <contour.0392>

<contour.0391>

3 contours confirm
<policecar-siren.st1.mst3.0520 [1674 1710] Hz>
in time ([3.02 3.16} [3.18 3.27})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#004’s
mstream at [1110 1150] Hz in time [2.80 3.25].
Contour found: <contour.0399> <contour.0398>

<contour.0397>

3 contours confirm
<policecar-siren.st1.mst2.0525 [1110 1150] Hz>
in time ([2.91 2.99} [3.06 3.27})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [907 947] Hz in time [3.27 3.77].
Contours found: <contour.0406> <contour.0405>

<contour.0404> <contour.0403>

4 contours confirm
<policecar-siren.st2.mst2.0562 [907 947] Hz>
in time ([3.27 3.62} [3.58 3.77})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [1821 1843] Hz in time [3.27 3.77].
Contours found: <contour.0413> <contour.0412>

<contour.0411>

3 contours confirm
<policecar-siren.st2.mst4.0564 [1821 1843] Hz>
in time ([3.27 3.50} [3.45 3.70})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [2274 2304] Hz in time [3.27 3.77].
Contours found: <contour.0421> <contour.0420>

<contour.0419> <contour.0418>
<contour.0417>

5 contours confirm
<policecar-siren.st2.mst5.0573 [2274 2304] Hz>
in time ([3.29 3.53} [3.50 3.74})
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**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [3180 3210] Hz in time [3.27 3.77].
Contour found: <contour.0429> <contour.0428>

<contour.0427>

3 contours confirm
<policecar-siren.st2.mst6.0579 [3180 3210] Hz>
in time ([3.30 3.40} [3.42 3.66})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [3634 3680] Hz in time [3.27 3.77].
Contours found: <contour.0435> <contour.0434>

<contour.0433>

3 contours confirm
<policecar-siren.st2.mst7.0586 [3634 3680] Hz>
in time ([3.37 3.48} [3.43 3.64})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [446 468] Hz in time [3.27 3.77].
Contours found: <contour.0442> <contour.0441>

<contour.0440> <contour.0439>

4 contours confirm
<policecar-siren.st2.mst1.0584 [446 468] Hz>
in time ([3.27 3.53} [3.53 3.67})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#004’s
mstream at [1360 1406] Hz in time [3.27 3.77].
Contours found: <contour.0450> <contour.0449>

<contour.0448> <contour.0447>

4 contours confirm
<policecar-siren.st2.mst3.0585 [1360 1406] Hz>
in time ([3.27 3.61} [3.62 3.74})

**** Trying to solve negative evidence in
<policecar-siren.st1.mst3.0523 [1674 1710] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st1.mst3.0523 [1674 1710] Hz>)
REGION: T:[2.78 3.03] F:[1650 1734] E:[0 10000.00]

Discrepancy Explanation Proposed:
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(MS-FREQUENCY-RESOLUTION)

**** Searching for reprocessing plans for
<EXPLANATION (MS-FREQUENCY-RESOLUTION)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st1.mst3.0523 [1674 1710] Hz>
<firengine-bell.st1.mst6.0465 [1719 1750] Hz>)))

**** Reprocessing started in frequency [1671 1750]
during time period [2.40 3.42] for Discr. Diag.
Attempt to assign 16384 to *FFT-SIZE*
[constraint violation, reprocessing fails]
Reprocessing completed. Global context restored.

**** Trying to solve negative evidence in
<policecar-siren.st1.mst2.0528 [1110 1150] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st1.mst2.0528 [1110 1150] Hz>)
REGION: T:[2.78 2.93] F:[1086 1174] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-PEAK-THRESHOLDING MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
(MS-PEAK-THRESHOLDING MS-ENERGY-THRESHOLDING)
with the goals
((HAVE-HYPOTHESES-SUPPORT
(<policecar-siren.st1.mst2.0528 [1110 1150] Hz>)))

**** Reprocessing started in frequency [1086 1174]
during time period [2.80 2.91] for Discr. Diag.
<FRONT-END.0005> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.001408428S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (40 . 40)
*PEAK-NEIGHBOURHOOD* = 3
in effect.
Contours Found!
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Synthesizing the following mstreams: {
(<policecar-siren.st1.mst2.0528 [1110 1150] Hz>)}
Reprocessing completed. Global context restored.

**** Out of the possible explanations:
WIND,

for unexplained spectral bands in
time [3.00 4.00], the following
were initially selected:

WIND
to initially create:

<WIND#003> <WIND#004>

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [3.70 4.00].
Contour found: <contour.0457>

1 contour confirms
<wind.st1.mst1.0599 [525 766] Hz>
in time ([3.70 3.99})

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [3.40 3.70].
---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0600 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0600 [525 766] Hz>)
REGION: T:[3.38 3.72] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [3.10 3.40].
Contour found: <contour.0459>

1 contour confirms
<wind.st1.mst1.0600 [525 766] Hz>
in time ([3.11 3.30})
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**** Trying to solve negative evidence in
<wind.st1.mst1.0601 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0601 [525 766] Hz>)
REGION: T:[3.29 3.42] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [2.80 3.10].
Contour found: <contour.0461>

1 contour confirms
<wind.st1.mst1.0601 [525 766] Hz>
in time ([2.82 3.10})

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [2.50 2.80].
---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0602 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0602 [525 766] Hz>)
REGION: T:[2.48 2.82] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [0.47 2.50].
Contours found: <contour.0468> <contour.0467>

<contour.0468> <contour.0467>
have incorrect energy

---> mstream at [525 766] Hz unconfirmed
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Figure B.6. Post Block-4 Status.
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**** Processing of [4.000 5.000} time period started.
Explained energy ratio from previous block: 0.71S0
1.000 seconds of new data read

**** Creating Script Expectations
<POLICECAR-SIREN-STREAM1#005>
<POLICECAR-SIREN-STREAM2#005>

**** Trying to solve negative evidence in
<firengine-bell.st1.mst2.0462 [3304 3329] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst2.0462 [3304 3329] Hz>)
REGION: T:[2.91 4.02] F:[3288 3345] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0468 [2242 2266] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0468 [2242 2266] Hz>)
REGION: T:[3.67 4.02] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0468 [2242 2266] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0468 [2242 2266] Hz>)
REGION: T:[2.91 3.13] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3304 3329] Hz in time [4.00 5.00].
Contour found: <contour-ext.0469>
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1 contour confirms
<firengine-bell.st1.mst2.0469 [3304 3329] Hz>
in time ([4.00 4.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [2242 2266] Hz in time [4.00 5.00].
Contours found: <contour-ext.0477> <contour-ext.0476>

<contour-ext.0475> <contour-ext.0474>
<contour-ext.0473>

<contour-ext.0473> has incorrect energy

<contour-ext.0477> <contour-ext.0476>
<contour-ext.0475> <contour-ext.0474>
confirm
<firengine-bell.st1.mst4.0606 [2242 2266] Hz>
in time ([4.00 4.43} [4.64 4.75} [4.88 4.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [3070 3149] Hz in time [3.99 5.00].
Contour found: <contour-ext.0482>

1 contour confirms
<firengine-bell.st1.mst3.0607 [3070 3149] Hz>
in time ([4.00 4.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [4210 4235] Hz in time [3.99 5.00].
Contour found: <contour-ext.0484>

1 contour confirms
<firengine-bell.st1.mst1.0614 [4210 4235] Hz>
in time ([4.00 4.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
mstream at [1719 1750] Hz in time [3.99 5.00].
Contours found: <contour-ext.0488> <contour-ext.0487>

<contour-ext.0486>

3 contours confirm
<firengine-bell.st1.mst6.0616 [1719 1750] Hz>
in time ([4.30 4.51} [4.00 4.14} [4.56 4.99})

**** Attempting to confirm FIRENGINE-BELL#001’s
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mstream at [1945 1969] Hz in time [3.99 5.00].
Contours found: <contour-ext.0494> <contour-ext.0493>

<contour-ext.0492>

3 contours confirm
<firengine-bell.st1.mst5.0615 [1945 1969] Hz>
in time ([4.50 4.69} [4.00 4.29} [4.74 4.99})

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0617 [2242 2266] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0617 [2242 2266] Hz>)
REGION: T:[4.42 4.66] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst4.0617 [2242 2266] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst4.0617 [2242 2266] Hz>)
REGION: T:[4.74 4.90] F:[2226 2282] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst6.0619 [1719 1750] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst6.0619 [1719 1750] Hz>)
REGION: T:[4.13 4.32] F:[1703 1766] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Trying to solve negative evidence in
<firengine-bell.st1.mst5.0620 [1945 1969] Hz>
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Performing Discrepancy Diagnosis.
OBJECT: (<firengine-bell.st1.mst5.0620 [1945 1969] Hz>)
REGION: T:[4.27 4.51] F:[1929 1985] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

**** Attempting to confirm WIND#004’s
mstream at [525 766] Hz in time [3.99 5.00].
Contours found: <contour.0470>

<contour.0469>

2 contours confirm
<wind.st1.mst1.0603 [525 766] Hz>
in time ([4.00 4.24} [4.66 4.99})

**** Trying to solve negative evidence in
<wind.st1.mst1.0604 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0604 [525 766] Hz>)
REGION: T:[4.22 4.67] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL

Source WIND#004 is now disbelieved.

**** Attempting to confirm WIND#003’s
mstream at [525 766] Hz in time [3.72 3.93].

---> mstream at [525 766] Hz unconfirmed

Source WIND#003 is now disbelieved.

**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [2250 2281] Hz in time [3.74 4.25].
Contours found: <contour.0477> <contour.0476>

2 contours confirm
<policecar-siren.st1.mst4.0625 [2250 2281] Hz>
in time ([4.00 4.16})
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**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [2813 2851] Hz in time [3.74 4.19].
Contours found: <contour.0488> <contour.0487>

2 contours confirm
<policecar-siren.st1.mst5.0636 [2813 2851] Hz>
in time ([3.75 4.19})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [3375 3414] Hz in time [3.74 4.19].
Contours found: <contour.0494> <contour.0493>

<contour.0492> <contour.0491>

4 contours confirm
<policecar-siren.st1.mst6.0641 [3375 3414] Hz>
in time ([3.75 4.18})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [550 580] Hz in time [3.74 4.19].
Contours found: <contour.0500> <contour.0499>

<contour.0500>: limitation due to length.

<contour.0499> confirms
<policecar-siren.st1.mst1.0645 [550 580] Hz>
in time ([3.75 4.14})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [1674 1710] Hz in time [3.74 4.19].
Contours found: <contour.0505> <contour.0504>

<contour.0503> <contour.0502>

<contour.0505>: limitation due to length.

<contour.0504> <contour.0503>
<contour.0502>
confirm
<policecar-siren.st1.mst3.0652 [1674 1710] Hz>
in time ([3.75 4.11})

**** Attempting to confirm POLICECAR-SIREN-STREAM1#005’s
mstream at [1110 1150] Hz in time [3.74 4.19].
Contours found: <contour.0511> <contour.0510>

<contour.0509>
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3 contours confirm
<policecar-siren.st1.mst2.0656 [1110 1150] Hz>
in time ([3.85 3.93} [4.00 4.21})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [907 947] Hz in time [4.21 4.71].
Contours found: <contour.0516> <contour.0515>

2 contours confirm
<policecar-siren.st2.mst2.0695 [907 947] Hz>
in time ([4.21 4.70})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [1821 1843] Hz in time [4.21 4.71].
Contours found: <contour.0521> <contour.0520>

<contour.0519>

3 contours confirm
<policecar-siren.st2.mst4.0697 [1821 1843] Hz>
in time ([4.21 4.64})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [2274 2304] Hz in time [4.21 4.71].
Contours found: <contour.0528> <contour.0527>

<contour.0526> <contour.0525>

4 contours confirm
<policecar-siren.st2.mst5.0706 [2274 2304] Hz>
in time ([4.22 4.67})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [3180 3210] Hz in time [4.21 4.71].
Contours found: <contour.0535> <contour.0534>

<contour.0533>

3 contours confirm
<policecar-siren.st2.mst6.0712 [3180 3210] Hz>
in time ([4.22 4.59})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [3634 3680] Hz in time [4.21 4.71].
Contours found: <contour.0540> <contour.0539>

2 contours confirm
<policecar-siren.st2.mst7.0719 [3634 3680] Hz>
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in time ([4.32 4.53})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [446 468] Hz in time [4.21 4.71].
Contours found: <contour.0545> <contour.0544>

<contour.0543> <contour.0542>
<contour.0541>

5 contours confirm
<policecar-siren.st2.mst1.0724 [446 468] Hz>
in time ([4.21 4.64})

**** Attempting to confirm POLICECAR-SIREN-STREAM2#005’s
mstream at [1360 1406] Hz in time [4.21 4.71].
Contour found: <contour.0556> <contour.0555>

<contour.0554>

3 contours confirm
<policecar-siren.st2.mst3.0726 [1360 1406] Hz>
in time ([4.21 4.51} [4.58 4.67})

**** Trying to solve negative evidence in
<policecar-siren.st1.mst2.0659 [1110 1150] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st1.mst2.0659 [1110 1150] Hz>)
REGION: T:[3.72 3.86] F:[1086 1174] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-PEAK-THRESHOLDING MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
(MS-PEAK-THRESHOLDING MS-ENERGY-THRESHOLDING)
with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st1.mst2.0659 [1110 1150] Hz>)))

**** Reprocessing started in frequency [1086 1174]
during time period [3.74 3.85] for Discr. Diag.
<FRONT-END.0006> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.00162363S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
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*STFT-CONTOUR-FREQ-RADIUS* = (40 . 40)
*PEAK-NEIGHBOURHOOD* = 3
in effect.
Contours found!
Synthesizing the following mstreams: {
(<policecar-siren.st1.mst2.0659 [1110 1150] Hz>)}
Reprocessing completed. Global context restored.

**** Trying to solve negative evidence in
<policecar-siren.st2.mst7.0721 [3634 3680] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st2.mst7.0721 [3634 3680] Hz>)
REGION: T:[4.51 4.72] F:[3610 3704] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
<EXPLANATION (MS-ENERGY-THRESHOLDING)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st2.mst7.0721 [3634 3680] Hz>)))

**** Reprocessing started in frequency [3610 3704]
during time period [4.53 4.71] for Discr. Diag.
<FRONT-END.0007> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.0261603S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (46 . 46)
*STFT-CONTOUR-ENERGY-RADIUS* = (0.5 . 0.5)
*PEAK-NEIGHBOURHOOD* = 4
in effect.
No microstreams found.
Reprocessing completed. Global context restored.

**** Trying to solve negative evidence in
<policecar-siren.st2.mst6.0745 [3180 3210] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st2.mst6.0745 [3180 3210] Hz>)
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REGION: T:[4.58 4.72] F:[3156 3234] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-PEAK-THRESHOLDING)

**** Searching for reprocessing plans for
<EXPLANATION (MS-PEAK-THRESHOLDING)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st2.mst6.0745 [3180 3210] Hz>)))

**** Reprocessing started in frequency [3156 3234]
during time period [4.58 4.72] for Discr. Diag.
<FRONT-END.0008> with
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (30 . 30)
*PEAK-NEIGHBOURHOOD* = 3
in effect.
Contours found! due to
Synthesizing the following mstreams: {
(<policecar-siren.st2.mst6.0745 [3180 3210] Hz>)}
Reprocessing completed. Global context restored.

**** Trying to solve negative evidence in
<policecar-siren.st2.mst7.0736 [3634 3680] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<policecar-siren.st2.mst7.0736 [3634 3680] Hz>)
REGION: T:[4.19 4.34] F:[3610 3704] E:[0 10000.00]

Discrepancy Explanation Proposed:
(MS-ENERGY-THRESHOLDING)

**** Searching for reprocessing plans for
<EXPLANATION (MS-ENERGY-THRESHOLDING)> with the goals
((HAVE-HYPOTHESES-SUPPORT

(<policecar-siren.st2.mst7.0736 [3634 3680] Hz>)))

**** Reprocessing started in frequency [3610 3704]
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during time period [4.21 4.32] for Discr. Diag.
<FRONT-END.0009> with
*STFT-ABSOLUTE-NOISE-THRESHOLD* = 0.0261603S0
*NUM-PEAKS-STFT-SPECTRUM* = 1
*STFT-CONTOUR-FREQ-RADIUS* = (46 . 46)
*STFT-CONTOUR-ENERGY-RADIUS* = (0.5 . 0.5)
*PEAK-NEIGHBOURHOOD* = 4
in effect.
Contours found!
Synthesizing the following mstreams: {
(<policecar-siren.st2.mst7.0736 [3634 3680] Hz>)}
Reprocessing completed. Global context restored.

**** Out of the possible explanations:
WIND

for unexplained spectral bands in time [4.00 5.00],
the following were initially selected:

WIND
to initially create

<WIND#005>

**** Attempting to confirm WIND#005’s
mstream at [525 766] Hz in time [4.67 4.93].
Contour found: <contour.0613>

1 contour confirms
<wind.st1.mst1.0860 [525 766] Hz>
in time ([4.67 4.93})

**** Attempting to confirm WIND#005’s
mstream at [525 766] Hz in time [4.37 4.67].
---> mstream at [525 766] Hz unconfirmed

**** Trying to solve negative evidence in
<wind.st1.mst1.0861 [525 766] Hz>

Performing Discrepancy Diagnosis.
OBJECT: (<wind.st1.mst1.0861 [525 766] Hz>)
REGION: T:[4.36 4.69] F:[509 782] E:[0 10000.00]

Discrepancy Explanation Proposed: NIL



219

**** Attempting to confirm WIND#005’s
mstream at [525 766] Hz in time [0.47 4.37].
Contours found: <contour.0621> <contour.0620>

<contour.0618> <contour.0617>

Contours have incorrect energy
---> mstream at [525 766] Hz unconfirmed

**** Processing of [5.000 6.000} time period started.
Explained energy ratio from previous block: 0.50S0

DATA STREAM EXHAUSTED.

<WIND#005> dropped as answer
due to low (< 0.2) final rating.

Results from top-level plan SOLVE-PROBLEM:
PS-ANSWERS: (<FIRENGINE-BELL#002>

<POLICECAR-SIREN-STREAM1#005> <POLICECAR-SIREN-STREAM2#005>
<POLICECAR-SIREN-STREAM1#004> <POLICECAR-SIREN-STREAM2#004>
<POLICECAR-SIREN-STREAM1#003> <POLICECAR-SIREN-STREAM2#003>
<POLICECAR-SIREN-STREAM1#002> <POLICECAR-SIREN-STREAM2#002>
<POLICECAR-SIREN-STREAM2#001> <POLICECAR-SIREN-STREAM1#001>)

user time = 557.609
system time = 3.410
Elapsed time = 0:09:36
Allocation = 973282704 bytes
0 Page faults
; SCENARIO:2 (S02)

;**********************************************************
; START: 30 Jun 1996 12:44:00 FINISH: 30 Jun 1996 12:53:40
;********************TEST15-max-RUN-2.TEXT*****************
;SOURCES: 12 in scenario, 41 in library
;HR:0.92 MR:0.08 FA:0 T+:0.95 T-:0.04 (Over:0.04 FA:0.0)
;TOTAL-HYPS: 16 NONANSWERS: 5 ANSWERS: 11
;spec:F+=_13291520 R+=________0 (__13291520)
;spec:Fx=_26583040 Rx=________0 (__26583040)
;REPROCESSING CONTEXTS: spec=1 peak=6 bound=1 cont=3
;DISTINCT DISCREPANCY DIAGNOSES: 6
; NIL: 34
; (end-of-data-boundary): 1 (S:1 F:0)
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; (ms-energy-thresholding): 4 (S:1 F:3)
; (ms-frequency-resolution): 2 (S:0 F:2)
; (ms-peak-thresholding): 1 (S:1 F:0)
; (ms-peak-thresholding ms-energy-thresholding):2 (S:2 F:0)
;DISTINCT DIFFERENTIAL DIAGNOSES: 0 (NIL = 0)
;**********************************************************
;* INSTANCE NAME RAT- NEG. TIME supp.*
;* ING EV. SPAN cntxt*
;**********************************************************
;*POLICECAR-SIREN-STREAM2#004 .841 .040 [3.27 3.77] 4 *
;*POLICECAR-SIREN-STREAM1#001 .839 .066 [0.00 0.48] 6 *
;*POLICECAR-SIREN-STREAM2#003 .835 .047 [2.34 2.82] 4 *
;*POLICECAR-SIREN-STREAM2#002 .822 .033 [1.40 1.88] 4 *
;*POLICECAR-SIREN-STREAM2#005 .810 .087 [4.21 4.70] 6 *
;*POLICECAR-SIREN-STREAM2#001 .776 .126 [0.45 0.94] 4 *
;*POLICECAR-SIREN-STREAM1#003 .766 .107 [1.86 2.34] 6 *
;*POLICECAR-SIREN-STREAM1#002 .750 .134 [0.93 1.38] 6 *
;*POLICECAR-SIREN-STREAM1#005 .737 .163 [3.75 4.21] 7 *
;*FIRENGINE-BELL#001 .640 .023 ([2.26 4.99]) 20 *
;*POLICECAR-SIREN-STREAM1#004 .636 .267 [2.80 3.27] 7 *
;*WIND#001 .156 .596 ([0.90 2.99]) 4 *
;*WIND#004 .098 .702 ([2.82 4.99]) 2 *
;*WIND#002 .118 .724 ([1.90 3.99]) 2 *
;*WIND#005 .007 .000 ([4.67 4.93]) 2 *
;*WIND#003 .000 .500 ([3.72 3.99]) 1 *
;**********************************************************
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Figure B.7. Post Block-5 Status.
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