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Abstract

When dealing with signals from complex environ-
ments, where multiple time-dependent signal signa-
tures can interfere with each other in stochastically un-
predictable ways, traditional perceptual systems tend
to fall back on a strategy of always performing finely-
detailed, costly analysis of the signal with a compre-
hensive front end set of signal processing algorithms
(SPAs), whether or not the current scenario requires
the extra detail. Approximate SPAs (ASPAs) - algo-
rithms whose processing time can be limited in order
to trade off precision in their outputs for reduced ex-
ecution time — can play a role in producing adaptive,
less-costly front ends, but their outputs tend to re-
quire context-dependent analysis for use as evidence
in interpretation. This paper examines the IPUS (In-
tegrated Processing and Understanding of Signals) ar-
chitecture’s ability to serve as a support framework for
applying ASPAs in interpretation problems. Specifi-
cally, our work shows that it is feasible to include an
approximate version of the Short-Time Fourier Trans-
form in an IPUS-based sound-understanding testbed.

Introduction!

Since the early 1980’s, many perceptual architectures
have incorporated the basic design shown in Figure 1.
This design scheme produces systems with a numeric-
oriented front end that is logically separated from a
symbolic-oriented interpretation component. The sig-
nal processing algorithms (SPAs) in the front end are
permitted only one pass over the incoming signal, and
the interpretation component is designed with the as-
sumption that the front end’s output is always an “ad-
equate” decomposition of the signal. The development
of this scheme can be attributed to several factors, in-
cluding the influence of Marr’s reconstructionist school
of thought in computer vision (Marr, 1982) and early
psychophysical research on human perception which
ignored the role of expectations in human interpreta-
tion of visual and auditory signals. Both influences led
to the view that symbolic interpretation follows and
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depends upon signal decomposition by the front end
through inversion of the physical processes that led to
the original signal (Draper, 1993).2

Since this design paradigm emphasizes one pass over
input data, there is a tendency to build perceptual sys-
tems with fixed front ends that are expensive because
they must provide detail for the most ambiguous in-
terpretation cases even when that detail is unneces-
sary. Dorken (Dorken et al., 1992) showed that, as
the complexity of an acoustic environment increases
(e.g. greater signal signature interference, more signal
sources emitting simultaneously, etc.), classic interpre-
tation systems can require front ends with a combi-
natorially explosive number of fixed SPAs with multi-
ple parameter settings to avoid ambiguous signal-to-
symbol mappings, with consequent front end process-
ing time costs. Tsotsos (Tsotsos 1989) also demon-
strated this property in the visual domain, through a
proof of the NP-completeness of the machine-vision in-
terpretation problem.
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Figure 1: Classic Signal Interpretation Architecture.

The Integrated Processing and Understanding of
Signals (IPUS) architecture (Klassner, 1996; Lesser
et al., 1995) was originally developed as a domain-
independent framework for structuring feedback be-
tween a blackboard-based perceptual system’s front
end and interpretation components. By representing
(1) reasons for uncertainty in interpretation hypothe-
ses, (2) theoretical relationships among input signal ap-
pearance, control parameter values, and SPA outputs’

ZThis is not the only view within the machine percep-
tion community. There is an alternative view (Ellis, 1996;
Draper, 1993; Strat 1991; Kohl et al., 1987) advocating
feedback between front end and interpretation components.
This paper’s research is complementary with this view.



appearance, (3) possibilities where SPAs were applied
with parameter values inappropriate to the combina-
tion of signal objects in the environment, and (4) the
processing contexts under which SPA outputs and in-
terpretations are created, IPUS implements perception
as the integration of search in a front-end-SPA space
with search in an interpretation space. Uncertainty in
one space’s current state triggers search in the other
space for an explanation and resolution of the ambigu-
ity or discrepancy. Front-end-SPA search involves the
(re)application of SPAs with control parameters chosen
on the basis of the theory behind their operation, and
is performed to find data that eliminates or reduces
uncertainty (e.g. missing support for expectations) in
the signal’s current interpretation.

Because IPUS has the ability to selectively reprocess
uncertain portions of a signal with specialized SPAs,
the framework can potentially play an additional archi-
tectural role: supporting the use of approzimate pro-
cessing techniques to reduce the complexity of front
ends by sacrificing precision in SPA output.

Approximate processing (Lesser et al., 1988) refers
to deliberate limitation of search processes in order to
trade off certainty for reduced execution time. Ap-
proximate SPAs (ASPAs) are SPAs whose processing
time can be limited in order to trade off their outputs’
precision for reduced execution time. The availability
of such SPAs permits formulation of perceptual con-
trol strategies that first use ASPAs to create a rough
picture of the environment that is refined only where
the front end outputs’ interpretations are too uncer-
tain. Refinement involves reprocessing these limited
signal portions with SPAs that produce outputs hav-
ing greater precision. These non-approximate and po-
tentially highly specialized SPAs would be expensive if
applied to the entire signal, but if applied only in re-
stricted signal regions their costs become manageable.

This paper examines IPUS’ feasibility as a frame-
work for supporting ASPAs within the auditory scene
analysis problem (Bregman 1990), which involves the
segregation and identification of sounds in an acous-
tic signal. Specifically, our test application focuses
on showing that an IPUS-based sound-understanding
testbed (SUT) can use ASPAs to adaptively generate
spectrograms that provide sufficient detail in the time-
frequency domain for recognizing the sources respon-
sible for generating the input signal.

Two key questions must be addressed in evaluating
the suitability of IPUS (or, for that matter, any other
framework) for ASPAs: (1) whether the framework
provides enough structured support for the context-
dependent nature of ASPAs’ outputs, and (2) whether
front-end ASPAs’ time gains are overwhelmed by in-
terpretation search and reprocessing due to increased
uncertainty in the ASPAs’ output. This paper consid-
ers the first question in IPUS and ASPAs, and the
second question in Performance Evaluation. The
paper ends with Analysis and Conclusions.

IPUS and ASPAs

The first subsection describes how IPUS supports
principled, efficient, selective (re)application of SPAs.
The next subsection shows why this benefits ASPAs,
using the Quantized Short-Time Fourier Transform
(QSTFT) (Nawab and Dorken, 1995) as a specific ex-
ample. The last subsection gives an abstract trace of
an IPUS-based system to unify the section’s concepts.

IPUS Architecture

IPUS is instantiated by a domain’s formal signal pro-
cessing theory, and has four components for organiz-
ing and applying signal processing theory: discrepancy
detection, discrepancy diagnosis, differential diagno-
sis, and signal reprocessing. (Lesser et al., 1995) These
components have the following functionality:

e detect discrepancies between data expectations and
actual data observations,

e diagnose these discrepancies and ascribe reasons for
observational uncertainty,

e determine reprocessing strategies for uncertain data
and expected scenario changes, based on the results
of the diagnosis, and

e determine differential diagnosis strategies to disam-
biguate data with several alternative interpretations.

The architecture follows an iterative process of “dis-
crepancy detection, diagnosis, reprocessing” for con-
verging on the appropriate SPAs and interpretations.
Convergence is driven by the goal of eliminating or re-
ducing various categories of interpretation uncertainty.

IPUS implements perception as the integration of
search in a front-end-SPA space with search in an in-
terpretation space. Uncertainty in the current state in
one space triggers search for an explanation and res-
olution of the ambiguity or discrepancy in the other
space. In general, the search process whose current
state produces the lower uncertainty serves as the stan-
dard against which progress toward a complete inter-
pretation or adequate front end is measured in the
other. Within the interpretation search process “un-
certainty” refers to the portion of the signal® explained
by the current interpretation state and the strength
of the negative (i.e. missing or incomplete) evidence
against each hypothesis in the interpretation. Within
the front-end search process “uncertainty” refers to the
degree of inconsistency found among the results from
SPAs whose outputs are supposed to be related accord-
ing to their domain signal processing theory.

Each time an SPA is executed within IPUS, the hy-
potheses representing the execution’s results are an-
notated with the name of the SPA and the control
parameter values used in the execution. This annota-
tion is the outputs’ paremeter contezt. In addition to

3In the SUT, percent of input signal energy accounted
for by the current interpretation.



the parameter context, each SPA output is annotated
with a processing contezt, or a data structure listing
the SPA sequence that generated the hypothesis from
the input signal.

Within IPUS, three sets of information (in addition
to SPA code) used to define SPAs are important for
supporting selective SPA (re)application. The first is a
set of rules defining how individual SPA control param-
eters should be modified to eliminate or reduce various
classes of distortions that could be manifested in the al-
gorithm’s outputs. The second key definition element
is a list of “supercontext methods” that take as input a
parameter-context and an optional “information cate-
gory” label. These methods return context patterns in-
dicating the range of values for each control-parameter
in an SPA parameter-context that would permit the
SPA to produce correlates having the same or greater
detail in the specified “information category” as found
in the specified parameter context. As a simple ex-
ample, assume an SPA that selects local maxima from
a spectrogram on the basis of whether their energy
values are greater than a threshold control-parameter.
The supercontext method for this SPA would, when
supplied with a particular parameter context and the
information category “peaks,” return a pattern indi-
cating that any execution of the SPA with a parame-
ter context having threshold values below that of the
given parameter context would provide at least the
same number of peaks as were produced by the given
parameter context. The third key SPA definition ele-
ment is a mapping function that takes as input two pa-
rameter contexts and the output hypotheses produced
from the first context (i.e. execution of an SPA), and
returns a list of the hypotheses modified to reflect how
they would appear had they been produced by the sec-
ond context.

Together, processing contexts and SPAs’ mapping
functions enable IPUS-based systems to examine their
reprocessing history for processing contexts that would
provide SPA outputs that were at least as detailed
as those required by a current reprocessing request.
This process is called contezt mapping, and, along with
IPUS’ diagnostic support, will be shown by the next
subsection to be important for efficient ASPA usage.

ASPA Illustration

The  discrete  Short-Time  Fourier Transform
(STFT) (Nawab and Quatieri, 1988)
X[n, k] = Z z[nL + M + mw[m]e 7 2™mk/N

0<k<N-1,0<M<L

is a common tool for representing the time-dependent
frequency content of a discrete signal z[n]. Figure 2
shows how its matrix representation can be viewed as a
picture of time-dependent frequency tracks indicating
the presence of some signal-producing sources.
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Figure 2: Abstract “Tracks” in a STFT Spectrogram.

An STFT instance has particular values for its pa-
rameters: analysis window length (number of signal
points L analyzed at a time to produce a column in
Figure 2’s matrix), frequency-sampling rate (number of
points N computed per column in Figure 2’s matrix),
and decimation interval (signal points M between con-
secutive analysis window positions). For values of N
that are powers of 2, there is an efficient algorithm
for the STFT based on the Fast Fourier Transform
(FFT), which requires O(nlogn) real multiplications
and O(nlogn) real additions. Conceptually, the algo-
rithm computes a series of FFTs on successive blocks
of L data points in the signal. Though commonly used,
this version of the STFT has the drawback of comput-
ing values for all points within the spectrogram matrix,
whether or not they are needed for interpretation.

The Quantized Short-Time Fourier Transform
(QSTFT) (Nawab and Dorken, 1995) was developed
for approximating a signal’s STFT using an order of
magnitude fewer additions than the FFT-based STFT
and no multiplications. This performance is achieved
through first quantizing each L-point block in the sig-
nal to the set (-1,0,1), backward-differencing the quan-
tized signal, and then applying an O(n?) implementa-
tion of the Fourier Transform (i.e. the summation of
the x[]w[]e’ terms) to each block. When compared
to STFTs with N’s up to 256, evaluation of the ba-
sic QSTFT for the entire frequency-domain spectrum
takes fewer additions, and no multiplications, due to
the increased number of zeros in the modified signal.
A band-limited QSTFT that computes only a limited
region surrounding the estimated highest-energy fre-
quency generally requires fewer mathematical opera-
tions than the complete-spectrogram STFT for N'’s up
to 1024.

Interpretation of an STFT’s (or, any other SPA’s)
output depends on the appropriateness of the algo-
rithm’s parameter values to the current scenario. It
can be shown through analysis of Fourier theory that
a fixed STFT with a long analysis windows will pro-
vide fine frequency resolution for scenarios containing
sources with time-invariant frequency tracks, but at
the cost of poor time resolution for sources with time-
varying components. Conversely, a fixed STFT with
short window lengths will provide fine time resolu-
tion for scenarios containing sources with time-varying
components such as chirps or reverberatory decays, but



at the cost of poor frequency resolution for sources
with close frequency components. The band-limited
QSTFT (and ASPAs in general) suffers from these
same context-dependent issues, but its approximate
nature introduces even more uncertainty issues. For
example, the termination of a track in a QSTFT spec-
trogram can result not only from the actual signal ces-
sation of a source or STFT-related resolution distor-
tions, but also from the appearance of new sources with
frequency content that shifts the estimated maximum-
energy frequency so that the computed spectrogram
region does not include the track.

Thus, as signal sources change and interact in com-
plex scenarios, perceptual systems must be carefully
designed to ensure that these changes can be inter-
preted at “face value” and are not the result of a dis-
tortion introduced by SPA parameter values no longer
appropriate to the current context. This issue be-
comes particularly important for ASPAs because of the
greater number of assumptions involved in their design
(e.g- frequency region with maximum energy remains
stable, for QSTFT). The IPUS framework’s diagnostic
component and SPA theory representation address this
problem by supporting the focused (re)application of
front-end SPAs in regions of the signal where SPAs’ sig-
nal processing theory indicates the possibility of distor-
tions from inappropriate SPA parameter values. These
(re)applied SPAs are executed with control parame-
ters chosen to provide more precise data that will con-
firm or disconfirm the distortion hypothesis. In addi-
tion, the IPUS reprocessing component’s ability to use
context-mapping (e.g. using earlier reprocessing results
from a non-approximate STFT instance or an expen-
sive QSTFT instance with very high frequency resolu-
tion to eliminate search for newly hypothesized sources
with frequency tracks that theoretically should have
been present in the earlier results) helps to preserve
ASPAS’ front-end time gains.

Summary

We conclude with an abstract trace of an IPUS-system
execution that unifies the concepts in this section. Fig-
ure 3 shows a hypothetical interleaving of progress in
the two IPUS search spaces.

The system behavior can be summarized as follows.
Initially, the interpretation system uses front end A
with ASPA SPA1 to collect evidence, and hypothe-
sizes that one perceptual object of type H1 is present.
Attempting to account for more signal energy, the sys-
tem then explores the interpretation state {H1, H3}
and finds that A’s SPA sequence has also already pro-
duced evidence to support the interpretation. When
attempting to explain the remaining signal energy, the
system finds that an additional single object of either
type H1, H2, or H5 could be hypothesized. Choosing
H2 first (i.e. state {H1,H2,H3}), the system’s dis-
crepancy detection finds that A does not provide evi-
dence for the H2 instance. When discrepancy diagnosis

Success!
HI} & (HLH3}
Failure!
{H1,H2,H3)

SPAI(P1,P2)
SPA2(QI)

A

SPAI(P1.P3) SPAI(P1,P2
SPA2(QI)
B

SPAI(P1,P2) Success!
SPA3(P1) {H1,HI1,H3} &
K C {H1,HI1,H3,H4)}

J
B. FRONT-END SPACE

Failure!
{H1,H2,H3},
{H1,H3,HS5},
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A. INTERPRETATION SPACE

Figure 3: Figure 3A shows a system’s progress within its
interpretation space. Labels outside each state indicate the
front end(s) being used to find support evidence for the
state’s interpretation (set of object instances Hn). Fig-
ure 3B shows the front ends ezplored by the system. La-
bels outside each state indicate the interpretation expected
for the front end’s outputs and whether the outputs actually
supported it.

shows that SPA1’s current parameters do not provide
enough detail for the interpretation, the system’s re-
processing component generates and applies front end
B’s SPAs to selected regions of the signal, and this
time finds negative evidence for H2’s instance, causing
it to abandon interpretation state {H1,H2,H3} and
proceed to explore {H1,H3,H5}. The SPAs in front
end B fortuitously served as a supercontext of a front-
end that provided, via context mapping, indisputable
negative evidence for any instance of H5, leading the
system to explore interpretation state {H1,H1,H3}.
This time discrepancy detection shows that B did not
provide positive evidence for the second instance of
type H1; however, the system’s discrepancy diagnosis
component finds that B was inappropriate to the inter-
pretation. The system’s reprocessing component then
uses SPA theoretic constraints to determine that front
end C, by using non-approximate SPA3 in a limited
portion of the signal, should be appropriate for sup-
porting or disproving the existence of the extra HI.
According to Figure 3B the outputs produced by the
new front end do in fact support the second H1 hy-
pothesis, and ultimately support the creation of a fi-
nal H4 hypothesis. The final interpretation state is
{H1,H1,H3,H4}, and because it accounts for enough
signal energy, interpretation search stops.

Performance Evaluation

The first subsection describes the environment in
which TPUS SUTs are evaluated, the next section de-
scribes the three SUT versions evaluated, and the final
section lists the experimental results.

Evaluation Domain

For the evaluation experiments presented in this pa-
per the SUT was supplied with a sound-model library
containing 40 common sound-sources. The sounds
were specifically selected to provide a reasonably com-



plex subset of the acoustic behaviors (e.g. impulsive,
harmonic, periodic, chirping) and sound interactions
(e.g. masking, start/end time blurring, overlapping fre-
quency content) that can arise in random real-world
auditory scenarios. (Klassner, 1996) provides a full
catalogue of the library sounds and their models. The
sounds’ durations ranged from 0.2 to 30.0 seconds.

As an indication of the potential for interactions
among sounds randomly selected from the library and
placed in scenarios with random start times, it should
be noted that the expected frequency range of each
narrowband track (e.g. < 100 Hz wide) of each library
sound overlaps a track of at least one other sound. For
each track of a given sound, on average another 4.2
sounds have overlapping frequency content. Note that
the greater the number of overlapping tracks there can
be in a spectral region, the greater the amount of in-
terpretation search that must be done to determine (1)
whether in fact overlapping tracks are present in a sce-
nario, and (2) which subset of the tracks that could be
in the region of overlap are actually present.

Experiment Design

The goal of the experiments in this paper is to indicate
indicate how well ASPA- and non-ASPA-based IPUS
SUTs handle complex environments, and with what
types of costs for front-end search and interpretation
search. For this paper, “complex environments” are
those having three or more sounds that share some
frequency content occur at overlapping time periods.

The following 5-step method was used to gener-
ate 15 complex acoustic scenarios. First, four sounds
were randomly selected from the SUT library. Sec-
ond, a random instance of each sound was selected
(each sound had at least 5 instances, sampled at 16
KHz). Third, start-times for each instance were ran-
domly selected with uniform distribution within a 7-
second base timeframe. Fourth, a 5-second window
was randomly chosen within the base timeframe such
that all four sounds were included for at least their
length or 1 second, whichever was shorter. When
start times precluded such a window, steps 3 and 4
were repeated until this criterion was met. Fifth, each
scenario was scaled so that all had the same average
power. Since some sound-creation events, such as foot-
steps and phone ring sequences, are really composed of
several instances, the average number of instances in
each scenario is 7.3 rather than four, as might have
been expected.

Two primary experiment runs were perfomed on the
same 15 scenarios. The first (LoRes) used a version of
the IPUS SUT whose default front end (i.e. the SPAs
routinely applied in the first analysis of the signal)
contained a non-approximate STFT, with N = 512,
L = 256, and M = 0. It was directed to use non-
approximate STFTs in limited signal regions during
reprocessing. The second (Appr) was identical to the
first, except that the default front end contained a

[ || Front End: | Appr LoRes HiRes ||
SPA

Search Param Cntxt | 13.70 7.45 3.20
Cost Total Ops 2.5e6 6.1e6 5.5e7
Interp. Total Hyps 16.48 14.10 8.14
Search Answers 0.97 1.07 0.86
Cost Nonanswers 15.51 12.03 7.28
Hit Rate 0.56 0.61 0.60

System FAlarm Rate | 0.42 0.43 0.39
Perform. Track+ Rate 0.67 0.65 0.67
Track- Rate 0.24 0.22 0.19

Table 1: Ezperiment Results. SPA-search cost is aver-
aged per scenario, while interpretation-search cost and sys-
tem performance are averaged per scenario sound instances.
Note that “Total Ops” includes both additions and multi-
plications performed during both initial front-end analysis
and reprocessing.

band-limited QSTFT SPA with N = 512, L = 2586,
M = 0, and a 1000-Hz band radius. This second ver-
sion was directed to use band-limited QSTFT’s in re-
stricted signal regions during reprocessing. A third
reference experiment (HiRes) was performed on the 15
scenarios with a SUT having a default front end that
contained a non-approximate STFT with N = 2048,
L = 1024, and M = 128. All SUT versions mod-
elled STFT-induced time- and frequency- resolution
and QSTFT-induced windowing distortions in their di-
agnostic components, as well as distortions for other
front-end SPAs applied to spectrogram results.

Results

Table 1 reports statistics for the SUT versions’ perfor-
mance in three evaluation categories:

SPA-search cost: the number of time-frequency-
SPA reprocessing parameter contexts per scenario
(Param Cntzt) and total number (first-pass + re-
processing) of spectrogram-based mathematical opera-
tions (additions and multiplications) per scenario (To-
tal Ops) are reported.

Interpretation-search cost: the average number
of answer hypotheses (both false alarm and hits), and
the average number of considered but rejected sound-
source hypotheses are reported.

System Performance: hit rate and false-alarm
rate are reported, as well as the duration for which
“hit” sound instances were tracked relative to the to-
tal amount of time for which all sound instances lasted
(Track+ Rate) and the duration covered by all false
alarm answer hypotheses relative to the total time cov-
ered by all answer hypotheses (Track- Rate).

Analysis and Conclusions

With the understanding that the scope of the experi-
ments is limited, two basic conclusions can be drawn
from the experiment results:



1. the Appr and LoRes columns of Table 1 indicate that
it is reasonable to consider using ASPAs in IPUS-
based acoustic interpretation systems to trade off
front-end complexity for moderate increases in in-
terpretation search, and

2. the system performance rate in Table 1’s HiRes col-
umn, when compared with that found in the Appr
and LoRes columns, shows that while commitment
to detailed initial front-end processing can save inter-
pretation search, it is not guaranteed to outperform
ASPA-based strategies, even in complex scenarios.

The first conclusion is based on the observation that
the Appr SUT achieved system performance similar
to the LoRes SUT, and took only 41% of the front-
end mathematical operations that the LoRes SUT re-
quired. This is significant given that both systems have
the same initial resolving power. Examination of the
sounds missed by the Appr SUT shows that the hit
rate difference is due solely to sounds whose entire fre-
quency content fell outside the QSTFT’s spectrogram
window. All SUT versions included a simple threshold-
based SPA that tracked time-domain signal energy rel-
ative to explained time-frequency energy, and triggered
reprocessing when the ratio dropped below a threshold.
We believe that a moderately more sophisticated, low-
cost SPA could be designed to cause the Appr SUT
to increase interpretation search and find the missed
sounds. We also note that the Appr’s increased number
(15% greater) of considered interpretation hypotheses
relative to the LoRes’s did not adversely affect overall
system time because the verification process for many
of the extra sounds involved either context resuse or
verification of only one narrowband track of a hypoth-
esis that was then disbelieved.

The second conclusion is based on the similar system
performance rates between the Appr and LoRes sys-
tems as a group and the HiRes system. Note that Appr
took only 5% of the total spectrogram-oriented opera-
tions required by the HiRes system. The fourfold fre-
quency resolution gain afforded by the HiRes system’s
default front end did not significantly improve its per-
formance over either of the lower-resolution systems.
Since the experiment scenarios represent rather acous-
tically overloaded environments (i.e. several simulta-
neous sources having rapid changes in time-frequency
characteristics), this result further encourages consid-
eration of ASPAs for use in interpretation problems.

Even though the result of using ASPAs in our ex-
ample application is promising, it is important to tem-
per our hopes and conclude this paper with the un-
derstanding that different perceptual domains and ap-
plications can have widely differing balances between
front-end and interpretation costs. For example, in
some domains a reduction in overall front-end costs
by as little as 10% could be very valuable if high-level
interpretation costs are small, and there is not signifi-
cant additional interpretation search caused by uncer-
tainty introduced by approximate front-end process-

ing. In other situations, however, where interpretation
costs are extremely high, a reduction of front-end costs
through use of ASPAs even by 80% may not be advan-
tageous, if it engenders a slight increase in interpreta-
tion search.
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