
COMMUNICATION MANAGEMENT IN DISTRIBUTED
SENSOR INTERPRETATION

A Dissertation Presented

by

JIAYING SHEN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Computer Science

c© Copyright by Jiaying Shen 2007

All Rights Reserved

COMMUNICATION MANAGEMENT IN DISTRIBUTED
SENSOR INTERPRETATION

A Dissertation Presented

by

JIAYING SHEN

Approved as to style and content by:

Victor Lesser, Chair

Norman Carver, Member

Abhijit Deshmukh, Member

Sridhar Mahadevan, Member

Shlomo Zilberstein, Member

W. Bruce Croft, Department Chair
Computer Science

ABSTRACT

COMMUNICATION MANAGEMENT IN DISTRIBUTED
SENSOR INTERPRETATION

MAY 2007

JIAYING SHEN

B.E., SHANGHAI JIAO TONG UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

Distributed Sensor Interpretation (DSI) problems have been the subject of con-

siderable research within the cooperative MAS community. In a DSI system, data is

collected from different sensors and must be integrated to produce the best interpre-

tation. Distributed approaches to DSI emphasize not only distributed collecting of

data, but also distributed processing of data. However, in virtually all real-world DSI

systems the agents must exchange data, local results, and/or other information to

develop a solution with acceptable quality. Unless communication among the agents

is appropriately limited, the cost of communication may negate much of the benefit of

distributed processing. Unfortunately, the state-of-the-art in MAS is such that there

are not yet formal design methods that allow one to evaluate a potential DSI domain

and determine the optimal coordination strategy. I believe that this is a serious issue

that will hinder the deployment of many important applications of sensor networks.

iv

My work is one of the first attempts to address this issue. I formalized the commu-

nication problem in DSI with a Distributed Bayesian Network and solved the question

of what to communicate with a decentralized Markov Decision Process (DEC-MDP).

With this model, one is able to generate a communication strategy for a given DSI

problem such that only minimum communication cost is needed to achieve a required

confidence level in the interpretation task.

Though general communication can be naturally modeled with a DEC-MDP, tech-

niques need to be developed to address the complexity issue before the system can

be scaled up. I approach this problem from two perspectives. First, I proposed an

algorithm to automatically generate a set of abstract communication actions such

that when the abstract information is transferred between the agents, the goal of the

system is more likely to be reached. By allowing only abstract communication ac-

tions in certain states, both the expected communication cost required and the time

needed to solve the DEC-MDP are reduced. Second, I established that the interac-

tion present among the agents is the cause of the high complexity of a DEC-MDP.

This understanding is crucial to identifying new and more tractable models as well as

developing appropriate approximations to otherwise intractable problems. I proved

that deciding a distributed MDP whose interaction history contains information of

a size polynomial in the number of states is NP-complete, and that deciding a non-

polynomially encodable distributed MDP is harder than NP. This is the first time that

a well defined condition has been identified that can distinguish between multi-agent

problems in NP and those that are strictly harder than NP. It is an important step

in mapping out the complexity hierarchy of multi-agent systems. The significance

of this theoretical result also has a more practical side. Most multi-agent systems

are provably harder than NP and solving them optimally is not possible. This work

provides theoretical guidance in understanding how the approximations in a model

limit the search space and reduce the complexity.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES .viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Intellectual Contributions . 10

1.1.1 Formalized the communication minimization problem in the
DSI domain. 10

1.1.2 Developed some of the first algorithms to find approximate
solutions for general DEC-MDPs. 12

1.1.3 Formalized the use of abstraction in communication
minimization problems. 12

1.1.4 Established the relationship between the interactions among
agents and the complexity of a DEC-MDP. 13

2. MINIMIZING COMMUNICATION COST USING A
DECENTRALIZED MDP . 16

2.1 Problem Definition . 19
2.2 Decentralized MDP Model . 25
2.3 Solving the DEC-MDP . 29

2.3.1 Local MDP . 30
2.3.2 Iterative Algorithm . 35
2.3.3 Lookup Algorithm . 39
2.3.4 Experimental Results . 40

2.4 Complexity Results . 42
2.5 An example Application: SensEye . 45

vi

2.5.1 SensEye: Applications and System Model . 45
2.5.2 The Wakeup On Demand Problem . 48

2.6 Other work studying Distributed Sensor Networks 52
2.7 Conclusions . 54

3. THE USE OF ABSTRACTION . 60

3.1 Generating the Abstraction Layer . 63
3.2 Hierarchical Action Selection . 69
3.3 Multiple Levels of Abstraction . 72
3.4 More than Two Agents . 74
3.5 Conclusions . 78

4. AGENT INTERACTION IN DISTRIBUTED POMDPS AND
ITS IMPLICATIONS ON COMPLEXITY . 80

4.1 A Review of the Decision Theoretic Models . 83
4.2 Polynomially Encodable Interactions . 91
4.3 Examples of Protocols . 96

4.3.1 Reward Dependence . 96
4.3.2 Synchronizing Communication . 100

4.4 Examples of Approximations . 103

4.4.1 Constant Horizon . 103
4.4.2 Flat Representation . 104

4.5 Conclusions . 105

5. CONCLUSIONS . 107

5.1 Contributions . 107
5.2 Future Directions . 111

BIBLIOGRAPHY . 112

vii

LIST OF TABLES

Table Page

3.1 Performance compared to raw data action selection approach for
single abstraction layer in a 2-10 network. (a) Expected
communication cost improvement of all action selection. (b)
Expected communication cost improvement of hierarchical action
selection. (c) Time needed to solve the DEC-MDP for all action
selection normalized by that for raw data action selection. (d)
Time needed to solve the DEC-MDP for hierarchical action
selection normalized by that for raw data action selection. 70

3.2 Performance compared to the raw data action selection approach for
multiple abstraction layers in a 6-30 network. (a) Expected
communication cost improvement of all action selection. (b)
Expected communication cost improvement of hierarchical action
selection. (c) Time needed to solve the DEC-MDP for all action
selection normalized by that for raw data action selection. (d)
Time needed to solve the DEC-MDP for hierarchical action
selection normalized by that for raw data action selection. 73

3.3 Performance compared to single request approach for transferring
abstraction data that may span multiple agents in a 3-15 network.
(a) Expected communication cost improvement of multiple request
approach. (b) Expected communication cost improvement of
hierarchical request approach. (c) Time needed to solve the
DEC-MDP for multiple request approach normalized by that for
single request approach. (d) Time needed to solve the DEC-MDP
for hierarchical request approach normalized by that for single
request approach. 77

viii

LIST OF FIGURES

Figure Page

1.1 There are two events E1 and E2. Data D1, D2, ...D10 are distributed
to two agents. A1 has access to D1, ...D5 and is responsible for
solving E1, while A2 can only see D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1

and E2 are with required confidence and with minimum expected
communication cost . 4

1.2 SensEye hardware architecture. 5

1.3 The interpretation problem in SensEye modeled with a Bayesian
Network. 6

2.1 There are two events E1 and E2. Data D1, D2, ...D10 are distributed
to two agents. A1 has access to D1, ...D5 and is responsible for
solving E1, while A2 can only see D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1

and E2 are with required confidence and with minimum expected
communication cost . 21

2.2 The decentralized MDP generated for the problem in Figure 2.1. 28

2.3 A snapshot of the local belief MDP of A1 with the internal states. 31

2.4 A snapshot of the local MDP of A1 without the internal states 32

2.5 The comparison of the expected communication cost of the joint
policies generated by the two approximate algorithms and the
optimal solution. 41

2.6 The minimum expected communication cost required by two different
problem structures. 41

2.7 The comparison of the expected communication cost of the joint
policies generated by the exhaustive search algorithm using
complete history of communication and flat history. 44

ix

2.8 SensEye hardware architecture. 47

2.9 The interpretation problem in SensEye modeled with a Bayesian
Network. 49

2.10 There are two subnets in the system. Agent A4, as the overlapping
agent of the two subnets, serves as the gateway of the two
subnets. 58

3.1 An example of the abstraction layer. Remote data includes
{D6, · · · , D10}. The required confidence level is 75% 66

3.2 An example of the key step of Algorithm 5. 67

3.3 A comparison of the minimum expected communication cost given
different action selections . 69

3.4 The percentage of the problems tested that each approach was able
to finish solving within 2 hours. 72

3.5 A comparison of the minimum expected communication cost given
different abstraction action request approaches 76

4.1 The token collecting example . 92

4.2 The relationships and complexity between various distributed MDP
models. 96

x

CHAPTER 1

INTRODUCTION

Decision theoretic models have received considerable attention in recent years by

the artificial intelligence community. Markov Decision Processes (MDPs) [68, 7] and

Partially Observable Markov Decision Processes (POMDPs) [55, 48, 15] have been

adopted as a general framework for planning under uncertainty [21] and reinforcement

learning [1]. An MDP/POMDP describes a problem as a finite set of states and

solves the problem by finding the optimal action that maximizes the agent’s expected

cumulative reward. From a formal perspective, they are attractive because they

offer an extremely general framework and because they have been studied extensively

within operations research and control theory for many years. Building on earlier

work, AI researchers have developed attractive new techniques that can solve large

MDP/POMDPs using domain background knowledge and structure [9, 24, 30].

However, extending the decision theoretic models to the multi-agent systems is

not straightforward. The interactions among the agents and their limited knowledge

of the entire system increases the complexity of the system significantly. Therefore,

most traditional research in multi-agent systems is focusing on heuristic approaches.

Examples include the belief-desire-intention (BDI) architecture [18, 71], the Gener-

alized Partial Global Planning (GPGP) approach [42], and the STEAM model [77].

Though all of these approaches have been used in multi-agent coordination problems

successfully, they are largely heuristic and experimental. In order to understand the

behaviors and performance of a multi-agent system, we need to look at the problems

from a more formal perspective.

1

Recent work has extended the standard MDP/POMDP models to address the

problem of coordination and control of collaborative multi-agent systems [8, 66, 5].

Decentralized Markov decision process (DEC-MDP), a generalization of MDP, is pro-

posed in [5]. In a DEC-MDP, the decision process is controlled by multiple distributed

agents, each with possibly different information about the state. At each time step

the agents’ observations together uniquely determine the global state. Though solv-

ing DEC-MDP is an extremely hard problem, new techniques and algorithms have

been developed to solve it exactly or approximately [13, 4, 28, 75, 57, 32, 6]. This

makes it a suitable formal tool to model various multi-agent coordination problems.

Extensions to the DEC-MDP that explicitly model communication between agents

have been proposed and studied [69, 28]. However, most research is focused on the

type of communication that synchronizes the partial views of the global state [81, 28,

2, 3]. Whenever communication occurs in the system, all the agents inform the other

agents of their observations since the last time communication happened, such that

all the agents have the same view of the system. This type of communication is useful

when the communication cost for different messages are the same, but not suitable

for situations where different communication actions have different costs. Therefore,

a study of more general form of communication is needed.

In this work, I will look at a class of problems where the only actions in the

DEC-MDP are connected with deciding what and when to communicate and try to

understand from a formal perspective the characteristics of these problems that make

them hard to solve. I will study the problem of communication management in a

distributed sensor network. It is a realistic example problem that is indicative of

some of the issues that need to be solved in order to construct effective (though not

necessarily) optimal DEC-MDPs for the solution of this example problem.

Distributed Sensor Interpretation (DSI) has been the subject of considerable re-

search within the multi-agent systems (MAS) community because advances in sensor

2

technology are leading to the deployment of large networks of sophisticated sensors

[43]. Interest in getting robots and other computer systems to interact more au-

tonomously with their environments is also driving the introduction of sensors into a

wider array of environments. A key characteristic of large-scale networks of sensors is

that they are inherently distributed: the sensors will be spatially distributed, possibly

over large geographic areas.

An interpretation of a sensor data set is typically expressed as a set of events that

could have occurred in the environment and would explain the sensor data. Events

may be things like aircraft or other vehicle moving through the sensed region, the

detection of walls or other obstacles as a robot moves, or so forth. In most cases,

there are multiple possible interpretations for any reasonably sized set of data. The

algorithm used by an sensor interpretation system must not only identify possible

interpretations, it must also select the best of the possibilities to report as the solution.

In a DSI system, data is collected from different sensors and need to be integrated

to produce the best interpretation. This can be done either in a centralized fashion

or distributedly. In centralized approaches to such problems, the data from all of the

sensors is transmitted to a single agent that does all of the computation to interpret

the data [74]. Distributed approaches to DSI emphasize not only distributed pro-

cessing of data, but also decentralized/distributed control via a system of intelligent

agents. When a sensor network is distributed in nature, the distributed approach can

have many potential advantages over the centralized approach. The use of multiple

processors has the potential to speed up processing and/or reduce the cost of the

computing hardware. System costs can also be reduced if each agent/processor is

located in close physical proximity to its sensor(s), because local processing of data

will lower the bandwidth requirements of the communication elements of the network.

Local processing has the added benefit of improving real-time control over control-

3

E2E1

D10D9D8D7D6D5D4D3D2D1

‘s direct access
1
A

‘s direct access
2
A

‘s view of the BN
1
A

‘s local data
1
A ‘s local common data

1
A

‘s remote data
1
A

P(E1)

0.41

P(E2)

0.43

P(D1 | E1)

0.1975 1

0.0043 0

P(D2 | E1)

0.2903 1

0.0559 0

P(D9 | E2)

0.2486 1

0.3116 0

P(D10 | E2)

0.7990 1

0.0164 0

P(D3 | E1 E2)

0.8020 1 1

0.1000 1 0

0.7800 0 1

0 0 0

P(D4 | E1 E2)

0.5385 1 1

0.2900 1 0

0.3500 0 1

0 0 0

P(D5 | E1 E2)

0.1916 1 1

0.0600 1 0

0.1400 0 1

0 0 0

P(D6 | E1 E2)

0.4342 1 1

0.3100 1 0

0.1800 0 1

0 0 0

P(D7 | E1 E2)

0.1100 1 1

0. 1 0

0.1100 0 1

0 0 0

P(D8 | E1 E2)

0.7227 1 1

0.4100 1 0

0.5300 0 1

0 0 0

Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural

Figure 1.1. There are two events E1 and E2. Data D1, D2, ...D10 are distributed to
two agents. A1 has access to D1, ...D5 and is responsible for solving E1, while A2 can
only see D6, ...D10 and is responsible for solving E2. The objective is for A1 and A2 to
figure out what E1 and E2 are with required confidence and with minimum expected
communication cost

lable sensors. Finally, they can lead to more reliable systems, where performance

degrades gracefully if processors and/or communication links fail.

The distributed approach to DSI can often be represented in a Distributed Bayesian

Network (DBN). As a graphical representation, A Bayesian Network (BN) [65] cap-

tures both the quantitative and qualitative aspects of the causal relationships between

related events. A DBN is a BN whose nodes are distributed to different agents and

is a powerful probabilistic reasoning tool to represent the causal relationship between

the data collected by sensors and the events that may have occurred in the environ-

ment in the DSI problem. An example DSI problem represented in a DBN is shown

in Figure 1.1. The top level nodes are the events that are the possible causes of the

observed data, while the leaves are the observed data gathered by various agents.

There are two agents, each of whom has direct access to only a part of the observable

data. The interpretation task is distributed to the two agents as well. Each agent is

only responsible for its part of the overall problem and only has the knowledge of the

part of the network that is relevant to its task.

I use SensEye [41] as an example of a distributed sensor network structure and

show how an interpretation problem is represented in a Bayesian Network. SensEye is

a multi-tier network of heterogeneous wireless nodes and camera sensors. Resource-

4

Webcam

Mote

Stargate

Webcam

Mote

Stargate

Cmucam

Mini−ITX

Tier2

Tier1

Cmucam

Radio

 Mote Mote Mote Mote

CmucamCmucam

Tier3
Ethernet

PTZ Camera

Serial
Cable

USB

re 1: The multi-tier SensEye hardware architect

S21 S22

M21 M22

S11 S15 S16 S19

M11 M15 M16

M19

... ...

Figure 1.2. SensEye hardware architecture.

constrained, low power elements are employed to perform simpler application tasks,

while more capable, high-power elements take on more complex tasks. Doing so

results in more judicious use of precious energy resources. Only when necessary are

the higher level sensors woken up to perform the more complex tasks that the lower

level sensors cannot complete. Figure 1.2 shows an example of the SensEye hardware

architecture. For each camera sensor there is a mote associated with it that has

networking and processing abilities. The higher tier motes have considerably better

networking and processing capacities than the lower ones.

A distributed sensor network such as SensEye is often deployed in object tracking

applications. Since object detection is a relatively simple task to perform, it is carried

out by the tier 1 sensors in SensEye. The higher tier sensors are normally in sleeping

mode until woken up. Once an object is detected at Tier 1 by multiple sensors, a

localization algorithm is performed to decide the location of the object and decide

which Tier 2 sensor(s) to wake up in order to better track the target. If no Tier 2

sensor is in the appropriate location and point to the correct direction, a retargetable

Tier 3 sensor is woken up to properly track the target. When the target is moving,

5

Activity in area
covered by S21?

S11 S12 S13 S14 S17S16 S18 S19S15

M21 M22
Activity in area

covered by S22?

Figure 1.3. The interpretation problem in SensEye modeled with a Bayesian
Network.

the new data collected by the sensors can be used to predict the movement of the

target and decide which sensors to wake up the next.

In this setup, when an object is detected by tier 1 sensors, the sensor interpretation

problem is for the higher level motes to decide whether there is activity detected in

the areas covered by their associated camera sensors. Based on this interpretation

and other information such as availability and processing loads of the sensors, the

agents can then decide which sensors to wake up. Figure 1.3 shows the interpretation

problem for M21 and M22 in the SensEye setup illustrated in Figure 1.2. In this

setup, M21 has direct communication channels with M11 through M15. When any

of S11 through S15 detects something, the associated motes send the information

to M21. Additionally, M21 and M22 can also communicate with each other when

necessary, and are responsible for deciding whether there is activity in the area covered

by S21 and S22, respectively.

Though distributed approaches to DSI problems can have many advantages, the

existence of subproblem interactions means that the agents must communicate dur-

ing the problem-solving process to obtain information that is needed to solve their

subproblems optimally. A coordination strategy needs to be generated that specifies

how agents should interact. In the SensEye example, even though M21 does not

have direct access to S16 through S18, they do cover areas overlapping with S21.

Therefore, in order to decide whether there is activity in the area covered by S21,

6

M21 may need the data provided by S16 through S18, and communication between

M21 and M22 may become necessary.

As the number of sensors grows, the amount of communication among agents

required to guarantee global optimality may be significant. Unfortunately, in many

DSI applications communication cost is high. Communication cost can take on many

different forms. It can simply be bandwidth allocation or power consumption needed

to set up the channel and transfer the message. In a wireless network, one or both

of these resources can be limited. In some application such as distributed scheduling,

privacy arises as a key issue. Agents may be reluctant to share private information

with others and therefore communication incurs a privacy violation cost. Sensor

networks are also often deployed in an adversarial environment, where communication

is undesirable in fear of possible eavesdroppers. In such applications, communication

has a security cost.

“Satisficing” approaches have been developed that trade off optimality for reduced

communication [12]. One approach is for agents to exchange local data related to each

other’s subproblem until a sufficient level of credibility has been achieved among the

agents. An important characterization of such distributed protocols is how much

communication is required and the likelihood that the solution will be the same as

what would be generated by an optimal centralized algorithm which uses all available

information. Most approaches to managing communication trade off solution quality

for reduced communication, but only from a statistical view. The behavior of the

algorithms are often analyzed over a collection of problems to say that p percent

of the time they will get the required solution quality q with an average amount of

communication c [12].

I would like to take this satisficing approach to the next step by exploring whether

a parameterized communication management algorithm can be designed so that one

can determine the expected amount of communication the agents need to guarantee

7

actions have different costs depending on the bandwidth and power consumption for

the message, the possible violation of the privacy and the danger of broaching the

security. In contrast, other research studying communication in DEC-MDP focuses

on synchronizing communication where every communication action exchanges all

the state information among agents and leads to the same view of the system. While

the study of synchronizing communication tries to answer the question of when to

communicate, my work is trying to address both the questions of what and when

to communicate.

The size of the state space of the DEC-MDP I will build for the DSI problem

is exponential to the amount of data in the DBN, and so is the action space. It

is computationally infeasible to solve such a large DEC-MDP when the quantity of

observed data grows. In addition to developing algorithms to solve DEC-MDP, other

techniques are needed to generate a more compact DEC-MDP for such problems. One

approach I will look at is to transfer abstract information. Instead of transmitting

observed data directly, the agents can abstract the useful information contained in the

observed data and communicate them. Not only do we need algorithms to generate

appropriate abstract data to be transferred between the agents, we also need to de-

velop techniques to incorporate such abstract data in order to simplify the DEC-MDP.

Another benefit of transferring abstract information instead of the local observations

themselves is that it can potentially reduce the expected minimum communication

cost since the abstract data carries information more efficiently. However, how to

appropriately incorporate the transmission of abstract data is an important question.

By adding the abstract data, the solution quality of the DSI problem should not be

compromised, nor should the average necessary communication cost be increased.

One of the major reasons why decision theoretic models are not widely used in

multi-agent systems is the high complexity class. It has been proved that deciding the

DEC-MDP is NEXP-complete [5]. One class of DEC-MDP has been studied in detail

9

With this model, one will be able to generate a communication strategy for a given

DSI problem represented in a DBN such that only minimum communication cost is

needed to achieve the required confidence level in the interpretation task. This is

different from the previous work in this area. Previous work either focuses on finding

the globally optimal solution without taking into consideration the potentially signif-

icant communication cost [79], or studies the tradeoff between solution quality and

communication cost only from a statistical view [12]. In contrast, this work produces

a parameterized algorithm to determine the expected amount of communication the

agents need to guarantee a desired confidence level for any given DSI problem.

This work is not limited to the DSI domain, but can be extended to the Coop-

erative Distributed Problem Solving (CDPS) [44] in general if its global state does

not change in the communication process. In a CDSP system, a problem is decom-

posed into sub-problems and they are distributed to a group of agents. Each agent

often needs information from other agents to solve its local problem and communi-

cation is necessary to guarantee solution quality. Though the advances in networks

have made it possible to transfer reasonable amount of data between agents with-

out significant cost, there are applications where communication is extremely costly,

such as planetary rovers [78], and battlefield teamwork [77]. In the first example,

resource constraints such as battery power limit communication and in a battlefield

situation communication can be dangerous. In these domains, appropriate commu-

nication strategies are inevitably needed to minimize the communication cost while

still maintaining the required solution quality. If one can identify the information

(observations) accessible to each agent, the goal that the system tries to achieve and

how the information acquired is related to the progress towards the goal, then a DEC-

MDP similar to the one I build for the DSI problem can be generated for the problem

as well and be used to provide the required communication strategy. In the DSI

example, the information accessible to each agent is the local sensor data collected

11

and the goal of the system is the desired confidence level of the subproblems, which

is used to decide whether a state of the DEC-MDP is a final state. The relationship

between the two can be derived through the Bayesian Net inference.

1.1.2 Developed some of the first algorithms to find approximate

solutions for general DEC-MDPs.

The interaction between the agents makes it hard to construct algorithms that

are guaranteed to find the globally optimal solution for a DEC-MDP. I have designed

two algorithms to approximate the globally optimal solution [75]. One is an iterative

algorithm that is guaranteed to converge to a local optimal solution, but the quality of

the policy it generates largely depends on the starting policy of the iterative process.

The other approach is based on a lookup algorithm which is much less computationally

expensive and can be easily extended to more than 2 agents. Though there is no

guarantee that can be made about the solution either generates, experimental work

indicates that in the problems studied both approaches lead to policies that are of

good quality. This is some of the first work providing algorithms to approximate

optimal solution of communication problems in a complex problem solving setting

that are formulated in a decision-theoretic model.

1.1.3 Formalized the use of abstraction in communication minimization

problems.

Though general communication can be naturally modeled with a DEC-MDP, the

state space and action space grow exponentially with the data that needs to be trans-

ferred. Therefore techniques need to be developed to address this problem before

the system can be scaled up. I propose to generate a set of abstract communication

actions such that when such abstract information is transferred between the agents,

the goal of the system is more likely reached. By allowing only abstract communica-

tion actions in certain states, the expected communication cost required is shown by

12

experiments to be improved, and the time needed to solve the DEC-MDP is reduced

on average [73].

In the original Distributed Problem Solving work [23], abstraction was used as a

mechanism for controlling the information needing to be communicated. However,

the use of abstraction was not formalized. Nor was there a clear understanding of

when the lower level data needed to be transmitted. Carver and Lesser [11] stud-

ied the use of multiple levels of abstraction to reduce the necessary communication.

Like [23], the abstraction layers were predefined and the use of abstraction was not

formalized. In contrast, the algorithm I introduce allows the system to generate

appropriate abstraction data automatically without predefinition. My study of the

addition of transferring abstraction data as actions in the DEC-MDP provides us

with a formal view of the use of abstraction in the management of communication

cost in a distributed problem solving system.

1.1.4 Established the relationship between the interactions among agents

and the complexity of a DEC-MDP.

While communication management remains a key research problem in the MAS

community, previous research has demonstrated that interactions among a group of

agents may significantly increase the complexity of a DEC-MDP. A DEC-MDP with

independent transitions and observations [4] has minimum interactions between the

agents and is NP-complete, while a general DEC-MDP with general communication

[5, 69] is NEXP-complete. However, adding synchronizing communication to a DEC-

MDP with independent transitions and observations does not increase its complexity

class and it remains NP-complete [29]. The relationship between the complexity

class of a DEC-MDP and the amount of interaction between agents remains an open

question.

13

This work attempts to quantify the characteristics of a class of multi-agent coordi-

nation problems that determines its complexity. The key result is that the complexity

of the problem depends on the amount of important information each agent has about

the other agents, and whether this information can be represented in a succinct way.

Information is important if knowing it could allow the agents to achieve a higher

expected reward, and by succinct I mean that the set of all possible important in-

formation the agents could acquire is polynomial in the number of states. I prove

that this criteria is both sufficient and necessary for the class of problems to be

NP-complete [72].

One implication of this result is that it may start to change the way people view

interactions between agents in the context of distributed POMDPs. Multi-agent

researchers have long intuitively understood that the interaction between the agents is

the cause of their high complexity. The theoretical results of this paper are significant

in that they both formally justify this intuition as well as explain how the interaction

affects the complexity. This new understanding of interaction and its relationship to

complexity will help us to identify new classes of multi-agent systems with a lower

complexity.

The significance of this theoretical result also has a more practical side. Most

multi-agent systems are provably harder than NP and solving them optimally is very

difficult. Much work has been put into developing good algorithms for approximat-

ing these problems. This work provides theoretical guidance in understanding how

the approximations in a model limit the search space and reduce the complexity. I

demonstrate this on two problems that do not meet the condition by providing two

approximations that impose additional restrictions on the interactions among the

agents and reduce the complexity to no harder than NP.

The rest of the thesis is organized as follows. In Chapter 2, I first define the com-

munication management problem in Distributed Sensor Interpretation applications

14

and model it with a DEC-MDP. I present two algorithms to approximate its optimal

solution. Chapter 3 describes how abstraction data can be generated and transferred

in the DEC-MDP as communication actions to further reduce the communication

cost as well to improve the solution time of the DEC-MDP. Chapter 4 studies agent

interaction in distributed POMDPs and its implications on the complexity class. It

situates the type of DEC-MDP represented by the one built for the DSI problem

in the context of previous decision theoretic work studying communication in co-

operative distributed systems. The related work is discussed throughout the three

chapters where applicable. Chapter 5 concludes the thesis with a summary of the

main contributions and a discussion of possible future directions that this research

can be taken.

15

CHAPTER 2

MINIMIZING COMMUNICATION COST USING A
DECENTRALIZED MDP

Advances in sensor technology are leading to the deployment of large networks of

sophisticated sensors [43]. Interest in getting robots and other computer systems to

interact more autonomously with their environments is also driving the introduction

of sensors into a wider array of environments (involving distributed characteristics).

Typically, such large-scale sensor systems are inherently distributed because the sen-

sors are geographically distributed. As a result, Distributed Sensor Interpretation

(DSI) problem is of particular interest and related research becomes increasingly im-

portant. Sensor interpretation involves the fusion of data from one or more sensors,

over time, to determine the situation in the environment. An interpretation of a sen-

sor data set is typically expressed as a set of events that could have occurred in the

environment and would explain the sensor data. Events may be things like aircraft

or other vehicle moving through the sensed region, the detection of walls or other

obstacles as a robot moves, or so forth. Typically, there will be multiple possible

interpretations for any reasonably sized set of data. The algorithm used by an sensor

interpretation system must not only identify possible interpretations, it must also

select the best of the possibilities to report as the solution.

In a DSI system, data is collected from different sensors and need to be integrated

to produce the best interpretation. This can be done either in a centralized fashion

or distributedly. In centralized approaches to such problems, the data from all of the

sensors is transmitted to a single agent that does all of the computation to interpret

the data [74]. In distributed approaches, the interpretation task itself is decomposed

16

into subproblems and distributed to different agents. Each agent is responsible for

collecting the related data from local sensors and or other agents in order to solve its

local subproblem. Though distributed approaches to DSI problems can have many

advantages, the existence of subproblem interactions means that the agents must

communicate during the problem-solving process at least to insure that their local

solutions are globally consistent and perhaps also to obtain data or other information

that is needed to solve their subproblems optimally. A coordination strategy needs

to be generated that specifies how agents will interact: when and with whom they

will communicate, and what information they will send or request.

Unfortunately, as the number of sensors grows, the amount of communication

among agents required to guarantee global optimality or global consistency may be

very significant while in a lot of DSI applications communication cost is high or

sufficient communication bandwidth and reliable channel is not available. Thus,

“satisficing” approaches have been developed that trade off optimality for reduced

communication [12]. One approach is for agents to generate local solutions based on

their own data and then transmit these high level solutions to other agents. Based

on consistency and credibility of these local solutions, new local solutions may be

generated or more detailed data sent until a sufficient level of consistency and cred-

ibility has been achieved among the agents. An important characterization of such

distributed protocols is how much communication is required and the likelihood that

the solution will be the same as what would be generated by an optimal centralized

algorithm which uses all available information.

Most approaches to managing communication trade off solution quality for re-

duced communication, but only from a statistical view. The behavior of the algo-

rithms are often analyzed over a collection of problems to say that p percent of the

time they will get the required solution quality q with an average amount of commu-

nication c [12].

17

changes the other agent’s view. The local MDPs of the two agents are largely depen-

dent on each other. This makes it hard to construct algorithms that are guaranteed

to find the globally optimal solution. I have designed two algorithms to approximate

the globally optimal solution for the DEC-MDP. One is an iterative algorithm that

is guaranteed to converge to a local optimal solution, but the quality of the policy it

generates largely depends on the starting policy of the iterative process. The other

approach is based on a lookup algorithm which is much less computationally expen-

sive and can be easily extended to more than 2 agents. Though there is no guarantee

that can be made about the solution either generates, experimental work described in

Section 2.3.4 indicates that in the problems studied both approaches lead to policies

that are of good quality. To our knowledge, this is some of the first work providing

algorithms to approximate optimal solution of communication problems in a complex

problem solving setting that are formulated in a decision-theoretic model.

2.1 Problem Definition

Probabilistic reasoning with graphical models, also known as Bayesian Networks

(BNs) has become an active field of research and practice in artificial intelligence,

operations research, and statistics in the past two decades. A BN is a directed

acyclic graph whose arrows represent causal influences or class-property relationships

[65]. Because it is a compact graphic representation of independence relationship

between nodes, it is widely used as knowledge representation scheme in inference

systems. A lot of work has been done to study its properties and different algorithms

have been developed to propagate evidence and answer queries efficiently [65, 37].

The success of these techniques in modeling intelligence decision support systems

in centralized and single-agent applications has been striking. The natural causal

relationship between the events and sensor data makes it appropriate to represent

the DSI problem structures in a Bayesian Network [12].

19

Recent work on Multiply Sectioned Bayesian Networks (MSBN) extends the tra-

ditional BN to the distributed and multi-agent case [80]. This framework allows

distributed representation of uncertain knowledge on a large and complex environ-

ment in multi-agent systems and effective, exact and distributed probabilistic infer-

ence. Xiang [79] introduced an algorithm that can produce the same final solution

for a distributed interpretation problem modeled by a MSBN as is generated by a

centralized problem solving system. However, this approach can potentially require

significant communication.

In this work, the interpretation problem is represented in a two-layer Bayesian

Network (Figure 2.1). The top level nodes are the events that are the possible causes

of the observed data, while the leaves are the data gathered by various agents. It is

worth noting that the data nodes in this work are not the raw sensor output, but

rather the results of some initial processing to produce categorical/discrete values such

that they can be processed by the probabilistic model. There are two agents, each of

whom has direct access to only a part of the observable data. The interpretation task

is distributed to the two agents as well. Each agent is only responsible for its part

of the overall problem and only has the knowledge of the part of the network that

is relevant to its task. The agents can either request or send data. The objective is

to figure out the most likely interpretation of the causal events with a certain level

of confidence using as little communication as possible. For example, in Figure 2.1,

there are two agents A1 and A2. A1 is responsible for interpreting the event E1 and

therefore knows about the part of the causal network that is relevant to E1. Out of

the necessary data D1, ...D8, it can directly observe only D1 through D5.

Definition 1. Based on the nature of different parts of the relevant data to an inter-

pretation task, I divide them into three categories. Local data are the data that can

be directly observed by the agent and are relevant only to its local task. They do not

need to be transmitted to the remote agent at any time. Local common data are the

20

E2E1

D10D9D8D7D6D5D4D3D2D1

‘s direct access
1
A

‘s direct access
2
A

‘s view of the BN
1
A

‘s local data
1
A ‘s local common data

1
A

‘s remote data
1
A

P(E1)

0.41

P(E2)

0.43

P(D1 | E1)

0.1975 1

0.0043 0

P(D2 | E1)

0.2903 1

0.0559 0

P(D9 | E2)

0.2486 1

0.3116 0

P(D10 | E2)

0.7990 1

0.0164 0

P(D3 | E1 E2)

0.8020 1 1

0.1000 1 0

0.7800 0 1

0 0 0

P(D4 | E1 E2)

0.5385 1 1

0.2900 1 0

0.3500 0 1

0 0 0

P(D5 | E1 E2)

0.1916 1 1

0.0600 1 0

0.1400 0 1

0 0 0

P(D6 | E1 E2)

0.4342 1 1

0.3100 1 0

0.1800 0 1

0 0 0

P(D7 | E1 E2)

0.1100 1 1

0. 1 0

0.1100 0 1

0 0 0

P(D8 | E1 E2)

0.7227 1 1

0.4100 1 0

0.5300 0 1

0 0 0

Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural

Figure 2.1. There are two events E1 and E2. Data D1, D2, ...D10 are distributed to
two agents. A1 has access to D1, ...D5 and is responsible for solving E1, while A2 can
only see D6, ...D10 and is responsible for solving E2. The objective is for A1 and A2 to
figure out what E1 and E2 are with required confidence and with minimum expected
communication cost

rest of the data that are observable by the local agent. They not only are important

for the local task but also would help remote agents in their interpretation tasks. They

are the candidates to be sent in the local agent’s decision process. Remote data are

the ones that cannot be directly observed by the local agent, but knowing them would

be helpful in increasing the confidence of its local solution. When an agent is con-

sidering requesting data, remote data are the natural candidates. In Figure 2.1, A1’s

local data is D1 and D2. Its local common data is D3, . . . , D5, and its remote data is

D6, . . . , D8.

Definition 2. The evidence εAi
of an agent Ai are the values of the data that the

agent has collected so far. They can be the values that are observed directly by that

agent or acquired from the remote agent. The complete evidence ε∗Ai
of Ai are the

values of all the relevant data of the agent. ε∗ are the values of all the low level data in

the system. At any time, εAi
⊆ ε∗Ai

⊆ ε∗. In Figure 2.1, A1 initially can only observe

the data values of D1, . . . , D5, and εA1 can be one of the 32 possible configurations. As

communication goes on, an agent will gather more evidence from the remote agents,

and the set εAi
will grow. The relevant data of A1’s interpretation task is D1, . . . , D8.

Therefore, ε∗A1
is one of the 64 possible configurations.

21

Definition 3. Likelihood LAi
. Based on the evidence observed, an agent can cal-

culate the conditional probabilities of every possible interpretation of its local events

based on the current evidence, i.e., LAi
(EAi

) = P (EAi
|εAi

). e.g. in Figure 2.1, the

local event of A1 is E1. Therefore, LA1(E1) = P (E1|εA1). Specifically, before any

communication occurs, LA1(E1) = P (E1|D1, . . . , D5).

Definition 4. MAPI (Maximum A Posteriori Interpretation). Based on the

current evidence set available to an agent, there is a most likely interpretation of the

events. MAPI(εAi
) = argmaxhP (EAi

= h|εAi
).

The task of an agent Ai in the system is to find the most likely interpretation of the

local events given its current evidence set, i.e., MAPI(εAi
). Ideally the decentralized

system should generate the interpretation that a centralized system will generate

given the complete data values, i.e., MAPI(ε∗Ai
). Unfortunately, with only partial

knowledge of the relevant data values, an agent cannot always guarantee that the

current local MAPI is the global MAPI. On the other hand, with the conditional

probability table given by the BN, an agent can predict the probability of different

relevant data configurations given its current evidence, i.e., P (ε∗Ai
|εAi

). Hence we have

the following definition.

Definition 5. Confidence C(MAPI(εA)) is the likelihood of the local MAPI being

the global MAPI of EA given the current known evidence of A.

C(MAPI(εA)) = P (MAPI(εA) = MAPI(ε∗A))

=
∑

e∈{ε∗A|MAPI(εA)=MAPI(ε∗A)}
P (e|εA)

Confidence is not a novel idea, but the way I define it is different from previous

work. [12] defined it simply as the probability of an event being the local MAPI, i.e.,

22

P (EA = MAPI(εA)|εA). What we really care about is not the likelihood of an event

being the local MAPI, but whether the local MAPI agrees with the global MAPI,

i.e., whether the decentralized system will generate the same result as a centralized

system would. That is exactly what our definition of confidence achieves. Using

confidence as a measurement of the solution quality of a decentralized system as

compared to that of a centralized one, we can make a tradeoff between the quality

of the solution and the communication cost. Another interesting and useful property

of our definition of confidence is that it is guaranteed to reach 100% when the values

of all the relevant data are known. As a result, a given confidence level can always

be satisfied. One major drawback of the traditional definition of confidence is its

possible introduction of selection bias [34]. The selection bias is introduced when an

agent only acquires the part of evidence that raises the probability of an event, which

is not the global MAPI, being the local MAPI sufficiently high. The new confidence

measure addresses this problem by measuring the likelihood that the MAPI of the

known evidence set is correct, i.e. - it matches the MAPI of the actual complete

evidence set. The new confidence can be viewed as a measurement of the probability

of not inducing this selection bias given the known evidence set. A higher confidence

implies a lower likelihood of inducing the selection bias. Though this definition does

not fully exclude the introduction of the selection bias, it does provide a measure

of it. If the introduction of selection bias is highly undesirable in an interpretation

problem, then the confidence threshold needs to be set sufficiently high to prevent it.

Given a problem structure in a two level BN such as the one in Figure 2.1 and

a specified confidence threshold, we need to find a communication strategy. Such a

communication strategy should specify what communication action each agent should

take based on their current knowledge at each stage. In this work, I am only consid-

ering the case of synchronous communication. In other words, the two agents take

23

2.2 Decentralized MDP Model

The system I described in the last section is both decentralized and cooperative at

the same time. The communication actions of each agent are entirely dependent on its

current local evidence and the communication history. Based on these characteristics,

I model this problem as a decentralized MDP.

Unlike centralized MDPs, in a decentralized MDP, the process is controlled by

multiple agents, each with possibly different information about the global state. At

each time step the agents’ observations together will uniquely determine the global

state, though possibly none of them have the complete information of the global state.

A local policy for an agent is a mapping from its local histories of observations to an

action. The task of a decentralized MDP is normally to find an optimal joint policy

of all the agents that maximizes the expected total return.

First let me give a formal definition of decentralized MDP, adapted from [5]. I

only define the two agent case in this section, which can be easily extended to n agent

case.

Definition 7. A decentralized MDP is a tuple 〈S, Ac1, Ac2, P, R, Ω1, Ω2, O〉, where

• S is a finite set of global states, with distinguished initial state s0.

• Ac = Ac1×Ac2 is a finite set of joint actions. Ac1 and Ac2 are the local actions

for the two agents.

• P : S × A × S → < is the transition function. P (s′|s, a1, a2) is the probability

of the outcome state s′ when the joint action (a1, a2) is taken in state s.

• R : S×A×S → < is the reward function. R(s, a1, a2, s
′) is the reward obtained

from taking joint action (a1, a2) in state s and transitioning to state s′.

• Ω = Ω1 × Ω2 is a finite set of joint observations. Ωi is the set of observations

for agent i.

25

• O : S×Ac×S×Ω → < is the observation function. O(s, a1, a2, s
′, o1, o2) is the

probability of agents 1 and 2 seeing observations o1 and o2 after the sequence s,

(a1, a2), s′ occurs.

• Joint full observability: the pair of observations made by the agents together fully

determine the current state. If O(s, a1, a2, s
′, o1, o2) > 0 then P (s′|o1, o2) = 1.

Definition 8. A local policy πi : Ωi → Aci for agent Ai is a mapping from local

histories of observations oi to actions in Aci. A joint policy π = 〈π1, π2〉 is a pair

of local policies, one for each agent.

Definition 9. The value Vπ(s) of a state s following policy π = 〈π1, π2〉 is:

Vπ(s) =
∑

〈o1,o2〉

∑
q∈S

∑
s′∈S

Pπ(o1, o2, q|s) · P (s′|q, π1(o1), π2(o2)) ·R(q, π1(o1), π2(o2), s
′),

where Pπ(o1, o2, q|s) is the probability of observing o1, o2 and reach state q from state

s following policy π. The value of the initial state Vπ(s0) is the expected total reward

following the policy π from state s0. To solve a decentralized MDP is to find a joint

policy 〈π1, π2〉 to maximize Vπ(s0).

Definition 10. An underlying centralized MDP of a decentralized MDP

〈S, Ac1, Ac2, P, R, Ω1, Ω2, O〉 is a tuple 〈S, Ac1, Ac2, P, R〉, where S, Aci, P and R

are the same as its corresponding part in the DEC-MDP. A centralized policy

πc = 〈πc
1, π

c
2〉 for this MDP is a mapping from the global state s ∈ S to a pair of the

local actions 〈a1, a2〉 ∈ Ac1×Ac2. The value of the state is denoted as V c(s). Solving

an underlying centralized MDP is to find a centralized policy that maximizes the value

of the start state. We denote the value of a state for the optimal policy as V c∗(s).

The key difference between a decentralized MDP and its underlying centralized

MDP are their policies. The joint policy of a DEC-MDP is a pair of local policies each

26

of which is dependent on the local observation sequence of the corresponding agent,

while the centralized policy for the centralized MDP is itself dependent only on the

global state, and is not directly related to the local policies. When the two agents

have access to the global state at any time, a DEC-MDP is reduced to its underlying

centralized MDP. In this sense, an underlying centralized MDP is equivalent to a

MMDP.

My work is based on the DEC-MDP because it enables us to explicitly model

the partial observability of a multi-agent system and does not impose any specific

requirement on communication among the agents. The natural way to model the DSI

problem described in the last section is as follows:

• Every global state is in the form of s = 〈ε∗, i〉, where ε∗ is all of the low level

data values observed by the system, and i is an external feature that indicates

it is Ai’s turn to communicate. s0 is a dummy start state 〈∅, 0〉. When all the

sensors collect their data, the start state transitions to one of the possible real

global states 〈ε∗, 1〉 before any communication takes place.

• Ac1 and Ac2 are action sets of the two agents. Aci ∈ { NULL, SEND x,

REQUEST y}, where x is a subset of the local common data of Ai and y is a

subset of the remote data. When it is not Ai’s turn to communicate, its action

is the NULL action. A joint action 〈Ac1 6= NULL, NULL〉 transitions a state

〈ε∗, 1〉 to 〈ε∗, 2〉, and a joint action 〈NULL, Ac2 6= NULL〉 transitions a state

〈ε∗, 2〉 to 〈ε∗, 1〉. If at state s, both agents have reached confidence level t for

its local interpretation task, i.e., when C(MAPI(εAi
)) ≥ t, i = 1, 2, then s is a

final state.

• P is a transition probability table. P (s′|s, a1, a2) = P (〈ε∗, i〉|〈ε∗, j〉, a1, a2) = 1

iff i 6= j. Otherwise, P (s′|s, a1, a2) = 0. As a special case, the transition

27

0 ,0s =<∅ >

* {0,0,...,0},1ε< = > * {1,1,...,1},1ε< = >...

* {0,0,...,0}, 2ε< = > * {1,1,...,1}, 2ε< = >

65.735 10P −= ×0.226P =

1P = 1P =1P =1P =

1's turnA

2's turnA

Figure 2.2. The decentralized MDP generated for the problem in Figure 2.1.

probability from s0 to s = 〈ε∗, 1〉 after both agents execute NULL action is

P (s|s0, NULL, NULL) = P (ε∗). It can be calculated given the BN structure.

• R is a reward function. R(s, a1, a2, s
′) = R(a1, a2) = −c(a1)− c(a2), where c(ai)

is the cost of the communication action ai, i = 1, 2.

• Ω1 and Ω2 are the sets of observations for the two agents. An observation

oi ∈ Ωi is the data value just sent or received by Ai. As a special case, after

s0, each agent observes the values of its local data. An observation sequence

oi = 〈ε0
Ai

, H〉, where ε0
Ai

is the initial observation of Ai’s local data set before any

communication occurred in the system, and H is the communication history of

the system.

• O(s, a1, a2, s
′, o1, o2) = 1 iff o1 and o2 are the new data sent or received by the

agents after them taking actions a1 and a2 at state s. Otherwise it equals to 0.

For example, take the BN structure in Figure 2.1. A possible global state s might

be 〈{D1 = 1, D2 = 0, D3 = 0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =

0}, 1〉. The possible actions for A1 are NULL, SEND x, and REQUEST y, where

x ⊆ {D3 = 0, D4 = 1, D5 = 1} and y ⊆ {D6, D7, D8}. Since it is not A2’s turn

to communicate, its only action is NULL. If A1 chooses REQUEST {D7, D8}, then

the next state is 〈{D1 = 1, D2 = 0, D3 = 0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 =

28

1, D9 = 0, D10 = 0}, 2〉 and both agents observes {D7 = 1, D8 = 1}. Remembering

the entire communication history H for both agents have two purposes. First, it

includes the newly acquired evidence received from the other agent. Second, even for

the agent who just SEND part of its own data without receiving any new evidence,

it is important to remember this so that in the future it does not send the same

information unnecessarily.

Figure 2.2 is the DEC-MDP built for the problem in Figure 2.1. It is interesting

to note that the structure of the DEC-MDP is stochastic only in the first transition,

from s0. Once the sensors have collected their data, the remaining transitions of the

DEC-MDP are all deterministic. While here I use the DSI problem as an example to

build the DEC-MDP with only communication actions, other such DEC-MDPs have

the same structure. The only difference is the actual details of the state information,

observations and the probability tables. We will explore this point in detail later in

the chapter.

2.3 Solving the DEC-MDP

In this section I present two approximate algorithms to solve the DEC-MDP built

in the last section. Both of them can be used to solve a general DEC-MDP without

modification.

Though the DEC-MDP is a very hard problem, recently there has been various

work developing different algorithms to solve it. Hansen et al. [32] introduced an exact

dynamic programming algorithm, which uses pruning to eliminate dominated partial

policies to improve efficiency. However, it suffers from extensive memory use and its

usage is limited to small problems. Becker et al. [4] proposed an exact algorithm

called Coverage Set Algorithm to solve the DEC-MDP with independent transitions

and observations. Since the DEC-MDP has a complexity of NEXP-complete, more

work is focused on developing approximate algorithms. Peshkin et al. [66] studied

29

gradient descent based algorithms that converge on local optimal solutions. Nair et

al. [57] presented JESP, a class of algorithms that iteratively fix one agent’s policy

and maximize the value for the other agent. The iterative algorithm I introduce in

this work is very similar to JESP, but they were developed around the same time

independently. Ghavamzadeh and Mahadevan [27] applied reinforcement learning

techniques to solve the problem in their Hierarchical Reinforcement Learning algo-

rithm. Bernstein et al. [6] generalized the Bounded Policy Iteration algorithm for

POMDPs [67] to the multi-agent case. Policies are represented as joint stochastic

finite-state controllers, which consist of a local controller for each agent and a corre-

lation device that allows the agents to correlate their behavior without exchanging

information during execution. The algorithm uses a fixed amount of memory, and

each iteration is guaranteed to produce a controller at least as good as the previ-

ous one for all possible initial state distributions. For DEC-MDP with synchronizing

communication, algorithms based on myopic assumptions are developed [29, 3].

2.3.1 Local MDP

In a DEC-MDP, a local policy for an agent is entirely dependent on its observation

sequence so far, since the agent does not know exactly which global state it is in. In

this sense, when looked from a local agent’s perspective, a DEC-MDP is similar to a

POMDP. Unfortunately, in most cases, an agent’s observation function is dependent

on the other agent’s policy and therefore a DEC-MDP cannot be easily decoupled

into two local POMDPs to be solved separately. Any problem with communication

actions, whether they are implicit or explicit, falls into this category, because com-

munication actions have direct impact on the observation sequences of both agents.

Without assuming the other agent’s policy, it is impossible to build the transitional

probability table for the local MDP. However, if the remote agent’s policy is fixed,

one is able to build a local POMDP and its belief MDP for each agent. By solving

30

A

1o
M

(1)
2 2o o

()
2 2

n
o o

(1)
2 2 'o o

()
2 2 '
n

o o

(1)
1 1o o

()
1 1

no o

(1)
1 1 'o o

()
1 1 'no o

SEND x1a

2a

1()R a

2()R a

REQUEST y

(1)
2 1(|)P o o

(1)
2 1(|)P o o

()
2 1(|)
n

P o o

()
2 1(|)
n

P o o

(1)
22 2()o oπ
(1)
22 2(())R o oπ

()
22 2()
n

o oπ
()
22 2(())
n

R o oπ
(1)
22 2(')o oπ

(1)
22 2(('))R o oπ

()
22 2(')
n

o oπ
()
22 2(('))
n

R o oπ

M

M

Figure 3: A snapshot of the local belief MDP of A1

with the internal states.

For example, take the BN structure in Figure 1. A pos-
sible global state s might be ε∗ =< {D1 = 1, D2 = 0, D3 =
0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =
0}, ∅, 1 >. The possible actions for A1 are NULL, SEND x,
and REQUEST y, where x ⊆ {D3 = 0, D4 = 1, D5 = 1} and
y ⊆ {D6, D7, D8}. Since it is not A2’s turn to communicate,
its only action is NULL. If A1 chooses REQUEST {D7, D8},
then the next state is < ε∗, {D7 = 1, D8 = 1}, 2 > and both
agents observe {D7 = 1, D8 = 1}.

Figure 2 is a portion of a typical DEC-MDP built for our
problem. It is interesting to note that the structure of the
DEC-MDP is stochastic only in the first transition, from s0.
The remaining transitions are all deterministic. In future
work, we would like to exploit this structure to develop bet-
ter approximation algorithms or possibly a tractable optimal
algorithm.

4. SOLVING THE DEC-MDP

4.1 Local MDP
In a general DEC-MDP, there is one transition function,

reward function and observation function, and they are de-
fined over two global states and a joint action. This is
why a DEC-MDP cannot simply be treated as two separate
POMDPs, one for each agent. It also cannot be treated as
a single centralized POMDP. In the case of the DEC-MDP,
an agent must choose its action based only on the sequence
of observations it has seen. In the POMDP case, it chooses
its actions based on the sequence of pairs of observations
seen by both agents. It has a centralized view inside the
model instead of a distributed view. However, if the policy
of one of the agents is fixed, then the DEC-MDP reduces to
a POMDP, and the POMDP can be reduced to a belief MDP
(the belief state of the POMDP is the state of the MDP).
Since this MDP corresponds to the local decision problem
for one of the agents, we refer to it as the local MDP. By
solving the local MDP, we can find the optimal local policy
for one agent given the fixed local policy for the other.

The interesting element of such a local MDP is its transi-
tion probability table. To make it more understandable we
generate a group of internal states for each local state. Each
internal state represents the possible observation sequences
of the remote agent after the agent executes a certain ac-
tion at the current local state. Since the remote policy
is fixed for each local MDP, for each pair of current local
state and internal state there is one and only one next lo-
cal state. For example, Figure 3 shows a snapshot of A1’s
local MDP. Here, before A1 chooses its next action, its ob-
servation is o1 and A2 may have observation sequence of

1o

(1)
1 1o o

()
1 1

no o

(1)
1 1 'o o

()
1 1 'no o

SEND x1a

2a REQUEST y

(1)
2 1(|)P o o

(1)
2 1(|)P o o

()
2 1(|)
n

P o o

(1)
2 1(|)P o o

(1)
21 2 2() (())R a R o oπ+

()
21 2 2() (())
n

R a R o oπ+

(1)
22 2 2() (('))R a R o oπ+

()
22 2 2() (('))
n

R a R o oπ+

M

M

M

Figure 4: A snapshot of the local MDP of A1 without
the internal states

o
(1)
2 , . . . , o

(n)
2 which are dependent on A1’s current local evi-

dence εA1
and the past communication history of the system

H, which is exactly o1. Hence, the probabilities of A2 ob-

serving o
(1)
2 , . . . , o

(n)
2 are P (o

(1)
2 |o1), . . . , P (o

(n)
2 |o1) respec-

tively. If A1 sends data to A2, no matter what A2’s current
observation sequence is, it will have the same new obser-
vation o2, i.e., A1’s action a1 and the new data from A1.

This updates A2’s observation history to o
(1)
2 o2, . . . , o

(n)
2 o2,

which are the n internal states for the local state o1 af-
ter action a1. Since A2 has a fixed policy π2, A2’s action

when observing o
(1)
2 o2, . . . , o

(n)
2 o2 are determined, namely

π(o
(1)
2 o2), . . . , π(o

(n)
2 o2), which will change A1’s new obser-

vation sequence to be o1o
(1)
1 , . . . , o1o

(n)
1 . Therefore, the next

states of o1 after the action are o1o
(1)
1 , . . . , o1o

(n)
1 with the

transitional probability of P (o
(1)
2 |o1), . . . , P (o

(n)
2 |o1) respec-

tively. Similarly, we get the next states from o1 by execut-
ing REQUEST y actions. Figure 4 shows the corresponding
snapshot of the actual local MDP of A1 without the internal
states.

Since our system is a cooperative one, the goal of the
agents is to maximize the global utility instead of the local
one. This means that in a local MDP, when calculating the
reward received from an action, we not only need to include
the reward from the local action alone but also that gained
by the remote action. For example, in Figures 3 and 4, the
reward for executing action a1 at state o1 and reaching state

o1o
(1)
1 is R(o1, a1, o1o

(1)
1) = R(a1) + R(π2(o

(n)
2 o2)).

We can summarize the local MDP of an agent Ai when
fixing the other agent’s policy πj as follows:

• S is a finite local state set. Each state is the obser-
vation sequence of the local agent oi =< εAi , H >.
To resolve the uncertainty of the initial observation, a
dummy start state o0

i is added. When the confidence
level is reached at a state, it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of
which has been illustrated.

• R(s, a, s′) is the reward function. It is a sum of the
reward gained directly by Ai executing action a and
that gained by the remote agent’s action as a result of
a.

• V<πi,πj>(oi) is the value of the state oi for a local
policy πi of the local MDP. To solve the local MDP is
to find the policy πi that maximizes the state value of
the start state o0

i .

The CPT of the BN is used to calculate the transitional
probability tables and decide whether a local state is a final

Figure 2.3. A snapshot of the local belief MDP of A1 with the internal states.

such a local (belief) MDP, we can find the optimal local policy given a specific remote

local policy.

The interesting element of such a local MDP is its transition probability table.

To make it more understandable I generate a group of internal states for each local

state. Each internal state represents the possible observation sequences of the remote

agent after the agent executes a certain action at the current local state. Since the

remote policy is fixed for each local MDP, for each pair of current local state and

internal state there is one and only one next local state. For example, Figure 2.3

shows a snapshot of A1’s local MDP. Here, before A1 chooses its next action, its

observation is o1 and A2 may have observation sequence of either o2 or o′2 which are

dependent on A1’s current local evidence εA1 and the past communication history of

the system H, which is exactly o1. Hence, the probabilities of A2 observing o2 and o′2

are P (o2|o1) and P (o′2|o1) respectively. If A1 sends data to A2, no matter what A2’s

current observation sequence is, it will have the same new observation o2, i.e., A1’s

action and the new data from A1. This updates A2’s observation history to o2o2 and

o′2o2, which are the two internal states for the local state o1 after action a1. Since

A2 has a fixed policy π2, A2’s action when observing o2o2 and o′2o2 are determined,

namely π(o2o2) and π(o′2o2), which will change A1’s new observation sequence to be

o1o
(1)
1 and o1o

(2)
1 . Therefore, the next states of o1 after the action are o1o

(1)
1 and o1o

(2)
1

with the transitional probability of P (o2|o1) and P (o′2|o1) respectively. Similarly, we

31

A

1o
M

(1)
2 2o o

()
2 2

n
o o

(1)
2 2 'o o

()
2 2 '
n

o o

(1)
1 1o o

()
1 1

no o

(1)
1 1 'o o

()
1 1 'no o

SEND x1a

2a

1()R a

2()R a

REQUEST y

(1)
2 1(|)P o o

(1)
2 1(|)P o o

()
2 1(|)
n

P o o

()
2 1(|)
n

P o o

(1)
22 2()o oπ
(1)
22 2(())R o oπ

()
22 2()
n

o oπ
()
22 2(())
n

R o oπ
(1)
22 2(')o oπ

(1)
22 2(('))R o oπ

()
22 2(')
n

o oπ
()
22 2(('))
n

R o oπ

M

M

Figure 3: A snapshot of the local belief MDP of A1

with the internal states.

For example, take the BN structure in Figure 1. A pos-
sible global state s might be ε∗ =< {D1 = 1, D2 = 0, D3 =
0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =
0}, ∅, 1 >. The possible actions for A1 are NULL, SEND x,
and REQUEST y, where x ⊆ {D3 = 0, D4 = 1, D5 = 1} and
y ⊆ {D6, D7, D8}. Since it is not A2’s turn to communicate,
its only action is NULL. If A1 chooses REQUEST {D7, D8},
then the next state is < ε∗, {D7 = 1, D8 = 1}, 2 > and both
agents observe {D7 = 1, D8 = 1}.

Figure 2 is a portion of a typical DEC-MDP built for our
problem. It is interesting to note that the structure of the
DEC-MDP is stochastic only in the first transition, from s0.
The remaining transitions are all deterministic. In future
work, we would like to exploit this structure to develop bet-
ter approximation algorithms or possibly a tractable optimal
algorithm.

4. SOLVING THE DEC-MDP

4.1 Local MDP
In a general DEC-MDP, there is one transition function,

reward function and observation function, and they are de-
fined over two global states and a joint action. This is
why a DEC-MDP cannot simply be treated as two separate
POMDPs, one for each agent. It also cannot be treated as
a single centralized POMDP. In the case of the DEC-MDP,
an agent must choose its action based only on the sequence
of observations it has seen. In the POMDP case, it chooses
its actions based on the sequence of pairs of observations
seen by both agents. It has a centralized view inside the
model instead of a distributed view. However, if the policy
of one of the agents is fixed, then the DEC-MDP reduces to
a POMDP, and the POMDP can be reduced to a belief MDP
(the belief state of the POMDP is the state of the MDP).
Since this MDP corresponds to the local decision problem
for one of the agents, we refer to it as the local MDP. By
solving the local MDP, we can find the optimal local policy
for one agent given the fixed local policy for the other.

The interesting element of such a local MDP is its transi-
tion probability table. To make it more understandable we
generate a group of internal states for each local state. Each
internal state represents the possible observation sequences
of the remote agent after the agent executes a certain ac-
tion at the current local state. Since the remote policy
is fixed for each local MDP, for each pair of current local
state and internal state there is one and only one next lo-
cal state. For example, Figure 3 shows a snapshot of A1’s
local MDP. Here, before A1 chooses its next action, its ob-
servation is o1 and A2 may have observation sequence of

1o

(1)
1 1o o

()
1 1

no o

(1)
1 1 'o o

()
1 1 'no o

SEND x1a

2a REQUEST y

(1)
2 1(|)P o o

(1)
2 1(|)P o o

()
2 1(|)
n

P o o

(1)
2 1(|)P o o

(1)
21 2 2() (())R a R o oπ+

()
21 2 2() (())
n

R a R o oπ+

(1)
22 2 2() (('))R a R o oπ+

()
22 2 2() (('))
n

R a R o oπ+

M

M

M

Figure 4: A snapshot of the local MDP of A1 without
the internal states

o
(1)
2 , . . . , o

(n)
2 which are dependent on A1’s current local evi-

dence εA1
and the past communication history of the system

H, which is exactly o1. Hence, the probabilities of A2 ob-

serving o
(1)
2 , . . . , o

(n)
2 are P (o

(1)
2 |o1), . . . , P (o

(n)
2 |o1) respec-

tively. If A1 sends data to A2, no matter what A2’s current
observation sequence is, it will have the same new obser-
vation o2, i.e., A1’s action a1 and the new data from A1.

This updates A2’s observation history to o
(1)
2 o2, . . . , o

(n)
2 o2,

which are the n internal states for the local state o1 af-
ter action a1. Since A2 has a fixed policy π2, A2’s action

when observing o
(1)
2 o2, . . . , o

(n)
2 o2 are determined, namely

π(o
(1)
2 o2), . . . , π(o

(n)
2 o2), which will change A1’s new obser-

vation sequence to be o1o
(1)
1 , . . . , o1o

(n)
1 . Therefore, the next

states of o1 after the action are o1o
(1)
1 , . . . , o1o

(n)
1 with the

transitional probability of P (o
(1)
2 |o1), . . . , P (o

(n)
2 |o1) respec-

tively. Similarly, we get the next states from o1 by execut-
ing REQUEST y actions. Figure 4 shows the corresponding
snapshot of the actual local MDP of A1 without the internal
states.

Since our system is a cooperative one, the goal of the
agents is to maximize the global utility instead of the local
one. This means that in a local MDP, when calculating the
reward received from an action, we not only need to include
the reward from the local action alone but also that gained
by the remote action. For example, in Figures 3 and 4, the
reward for executing action a1 at state o1 and reaching state

o1o
(1)
1 is R(o1, a1, o1o

(1)
1) = R(a1) + R(π2(o

(n)
2 o2)).

We can summarize the local MDP of an agent Ai when
fixing the other agent’s policy πj as follows:

• S is a finite local state set. Each state is the obser-
vation sequence of the local agent oi =< εAi , H >.
To resolve the uncertainty of the initial observation, a
dummy start state o0

i is added. When the confidence
level is reached at a state, it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of
which has been illustrated.

• R(s, a, s′) is the reward function. It is a sum of the
reward gained directly by Ai executing action a and
that gained by the remote agent’s action as a result of
a.

• V<πi,πj>(oi) is the value of the state oi for a local
policy πi of the local MDP. To solve the local MDP is
to find the policy πi that maximizes the state value of
the start state o0

i .

The CPT of the BN is used to calculate the transitional
probability tables and decide whether a local state is a final

Figure 2.4. A snapshot of the local MDP of A1 without the internal states

get the next states from o1 by executing REQUEST actions. Figure 2.4 shows the

corresponding snapshot of the actual local MDP of A1 without the internal states.

Since the DSI system is a cooperative one, the goal of the agents is to maximize

the global utility instead of the local one. This means that in a local MDP, when

calculating the reward received from an action, we not only need to include the reward

from the local action alone but also that gained by the remote action. For example,

in Figures 2.3 and 2.4, the reward for executing action a1 at state o1 and reaching

state o1o
(1)
1 is R(o1, a1, o1o

(1)
1) = R(a1) + R(π2(o2o2)).

The local MDP of an agent Ai when fixing the other agent’s policy πj can be

summarized as follows:

• S is a finite local state set. Each state is the observation sequence of the local

agent oi = 〈εAi
, H〉. To resolve the uncertainty of the initial observation, a

dummy start state o0
i is added. When the confidence level is reached at a state,

it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of which has been illus-

trated.

32

• R(s, a, s′) is the reward function. It is a sum of the reward gained directly by

Ai executing action a and that gained by the remote agent’s action as a result

of a.

• V〈πi,πj〉(oi) is the value of the state oi for a local policy πi of the local MDP. To

solve the local MDP is to find the policy πi that maximizes the state value of

the start state o0
i .

The CPT of the BN is used to calculate the transitional probability tables and

decide whether a local state is a final state of the local MDP. By constructing such

an MDP, we are utilizing the information provided by the BN to model the local

agent’s belief in the current global state based on its local state. Its belief in the

observation sequence of the remote agent directly influence the transitional probability

of the states. Therefore, by finding an optimal policy for the local MDP, the agent is

implicitly using the knowledge obtained from both the current evidence set and the

communication history of the system.

In this DEC-MDP, the two agents interact through actions, which directly affect

each other’s local observations. The local MDPs of the two agents are tightly coupled.

The rewards, transitional probability table of the MDPs are both dependent on each

other. This means that it is very hard to solve such a DEC-MDP without exhaustive

search. In the next two subsections I will present two approximate algorithms which

utilize the property of the local MDPs as expressed by Theorem 1.

Theorem 1. Maximizing the utility of the local MDP of Ai maximizes the utility of

the decentralized MDP given πj is fixed.

Proof. The value function (9) of a DEC-MDP defined in Definition 9 can be simplified

due to the alternating action behavior of the decentralized MDP.

V〈π1,π2〉(s0)

33

=
∑

〈o1,o2〉

∑
q∈S

∑
S′∈S

P〈π1,π2〉(o1, o2, q|s)P (s′|q, π1(o1), π2(o2))R(q, π1(o1), π2(o2), s
′)

=
∑

〈o1,o2〉

∑
q∈S1

∑
S′∈S2

Pπ1,π2〉(o1, o2, q)P (s′|q, π1(o1))R(π1(o1))

+
∑

〈o1,o2〉

∑
q∈S2

∑
S′∈S1

Pπ1,π2〉(o1, o2, q)P (s′|q, π2(o2))R(π2(o2))

=
∑
o1

R(π1(o1))
∑
o2

∑
q∈S1

P〈π1,π2〉(q, o1, o2|s0)
∑

s′∈S2

P (s′|q, π1(o1))

+
∑
o2

R(π1(o2))
∑
o1

∑
q∈S2

P〈π1,π2〉(q, o1, o2|s0)
∑

s′∈S1

P (s′|q, π2(o2))

=
∑
o1

R(π1(o1))P〈π1,π2〉(o1) +
∑
o2

R(π2(o2))P〈π1,π2〉(o2)

Next, let us see what the global utility that the local MDP is trying to maximize is.

Here I am taking advantage of the independence relationships due to the MDP setup.

V〈π1,π2〉(o
0
1)

=
∑
o1

∑
o1

P〈π1,π2〉(o1|o0
1)P (o1|o1, π1(o1))R(o1, π1(o1), o1o1)

=
∑
o1

∑
o1

∑
o2

∑
o2

P〈π1,π2〉(o1)P (o2|o1)P (o2|o1, π1(o1))

P (o1|o2o2, π1(o1), π2(o2o2))(R(π(o1)) + R(π2(o2o2)))

=
∑
o1

∑
o2

∑
o2

P〈π1,π2〉(o1)P (o2|o1)P (o2|o1, π1(o1))R(π(o1))

+
∑
o1

∑
o2

∑
o2

P〈π1,π2〉(o1)P (o2|o1)P (o2|o1, π1(o1))R(π2(o2o2))

=
∑
o1

P〈π1,π2〉(o1)R(π1(o1))

+
∑
o1

P〈π1,π2〉(o1)
∑
o2

∑
o2

P〈π1,π2〉(o2|o1, π1(o1))P (o2|o1, π1(o1))R(π2(o2o2))

=
∑
o1

P〈π1,π2〉(o1)R(π1(o1))

+
∑
o1

P〈π1,π2〉(o1)
∑
o2

∑
o2

P〈π1,π2〉(o2o2|o1, π1(o1))R(π2(o2o2))

=
∑
o1

P〈π1,π2〉(o1)R(π1(o1)) +
∑
o2

R(π2(o2))
∑
o1

P〈π1,π2〉(o1)P〈π1,π2〉(o2|o1)

=
∑
o1

R(π1(o1))P〈π1,π2〉(o1) +
∑
o2

R(π2(o2))P〈π1,π2〉(o2)

Hence, we get

V〈π1,π2〉(o
0
1) = V〈π1,π2〉(s0) (2.1)

34

The same equation holds for o0
2.

2.3.2 Iterative Algorithm

The first approximate algorithm I present is called Iterative Algorithm (Algorithm

1). The basic idea behind it is to fix one agent’s local policy at each iteration and

maximize the value of the local MDP of the other agent. The process continues until

the value cannot be improved anymore.

Start from A1, choose a random policy π2 for A2 (the simplest being that1.1

A2 will not do any action at any state), generate the local MDP for A1.
Solve the MDP and get the local policy π1 for A1.
repeat1.2

Fix π1 for A1, generate the local MDP for A2. Generate the local
optimal policy π′

2 for A2. If V〈π1,π2〉(o
0
2) == V〈π1,π′

2〉(o
0
2), go to step 3;

else, update π2 to π′
2.

Fix π2 for A2, generate the local MDP for A1. Generate the local
optimal policy π′

1 for A1. If V〈π1,π2〉(o
0
1) == V〈π′

1,π2
(o0

1), go to step 3; else,
update π1 to π′

1

until false
Return 〈π1, π2〉.1.3

Algorithm 1: Iterative Algorithm

The following theorem states that the Iterative Algorithm converges to a local

optima.

Theorem 2. The Iterative Algorithm converges.

Proof. Let me first prove that the global utility of the local MDP’s is monotonically

increasing at each iteration, i.e., V〈π1,π′
2〉(o

0
2) ≥ V〈π1,π2〉(o

0
1) and

V〈π′
1,π2〉(o

0
1) ≥ V〈π1,π2〉(o

0
2).

Since π′
2 is the optimal policy of A2 when fixing A1’s policy as π1, we have

V〈π1,π′
2〉(o

0
2) ≥ V〈π1,π2〉(o

0
2). According to Theorem 1, V〈π1,π2〉(o

0
2) = V〈π1,π2〉(s0) =

V〈π1,π2〉(o
0
1). Therefore, we have V〈π1,π′

2〉(o
0
2) ≥ V〈π1,π2〉(o

0
1). Similarly we can prove

V〈π′
1,π2〉(o

0
1) ≥ V〈π1,π2〉(o

0
2).

35

On the other hand, since there is a finite joint policy space, there exists a globally

optimal solution. The iteration is bound to stop when the utility hits the upper

bound, i.e., that of the optimal solution if it does not stop before that. Therefore,

the algorithm converges.

A natural corollary of this theorem is that the global optimal solution is at one of

the local convergence points generated by the Iterative Algorithm. From the proof of

Theorem 2, we can see that for an iterative algorithm like ours, the sufficient condition

for it to converge to a local optimal solution is that the local MDP is maximizing

the same global utility as the decentralized MDP. Therefore, for any decentralized

MDP, if we can construct a local MDP for the local agents which maximizes the same

global utility as that of the DEC-MDP, an iterative algorithm will converge to a local

optimal solution. There is other work using the same general idea, such as described

in [13].

The Iterative Algorithm is a naturally anytime algorithm. The algorithm can stop

at any time and generate a policy and after each iteration the policy generated has

a better value than the last one. Although the Iterative Algorithm is guaranteed

to converge to a local optimal solution, it needs to dynamically regenerate the local

MDPs at each iteration. As a result, it is suitable to be run off-line. One variation that

can potentially reduce the time to converge is not to generate the local optimal policy

at each iteration. Instead, run only one iteration of the value iteration algorithm

to improve the local policy before switching between the agents. The other main

disadvantage is that it depends on the starting policy chosen; it may be stuck at

some fairly low quality local optimal solution without being able to reach the globally

optimal one. One solution to the later problem is to randomly restart with a new

initial policy and pick the best joint policy generated after a few time steps.

The Iterative Algorithm can be extended to more than two agents fairly easily. The

most natural extension is a Flat Iterative Algorithm (Algorithm 2). In this algorithm,

36

put back to the end of the queue. The second method is a random selection method,

where a random agent (except the one who has just finished the process) is selected

for the next iteration. However, there is a potential issue for both methods that is

related to the halting criteria. The criteria for the two agent version of the algorithm

is for the agent at the current iteration to simply compare the value of its new policy

to that of the old one. The algorithm halts if they are the same. This criteria does

not work with either the round robin method or the random selection method without

modification. In order for the algorithm to work properly, i.e., it halts when and only

when the process has converged, we need to take extra steps before deciding whether

the convergence has been reached. Once an agent discovers that the new policy after

its iteration has the same value as the old policy, it initiates a process during which

each agent takes turn to run another iteration. If and only if none of the agents

changes the value of the joint policy as a result of its iteration will the algorithm halt.

Input: n agents {Ak}, 1 ≤ k ≤ n;3.1

m threads/computing resources {Ri}, 1 ≤ i ≤ m, each with computing
capacity of ci, where

∑
1≤i≤m ci = n;

t: fixed length for each episode.
Output: Policies {πk} for all the agents.3.2

Initiate policies for all the agents to {πk}. Denote the value of the start3.3

state for these policies as V .
For each computing resource Ri(1 ≤ i ≤ m), select ci agents,3.4

Ai = {Ai1, Ai2, . . . , Aici
} ⊆ A.

For each computing resource Ri, run Iterative algorithm for the agents Ai3.5

for a maximum time of t, fixing the policies of the agents {Ak} − Ai to
{πk} − {πi1, πi2, . . . , πici

}. At the end of the episode, the algorithm
generates a new set of policies for agents Ai: {π′

i1, π
′
i2, . . . , π

′
ici
} with a value

of Vi.
If ∀i, Vi = V , then terminate the algorithm. Return {πk}.3.6

Otherwise, for j = argmaxiVi, replace all the policies for agents Ai, i.e.,3.7

πj1 ⇐ π′
j1, . . . , πjcj

⇐ π′
jcj

. Replace V with Vj. Goto 3.4.

Algorithm 3: Parallel Iterative Algorithm

There is an alterative to the Flat Iterative Algorithm, the Parallel Iterative Al-

gorithm (Algorithm 3). The basic idea is to divide the agents to subgroups and run

38

value of the states in the decentralized MDP given a joint policy. The Lookup Algo-

rithm (Algorithm 4) is an attempt to take advantage of Theorem 3 to approximate

the values of the local MDP without knowing the remote policy.

Solve the underlying centralized MDP of the DEC-MDP, build a lookup4.1

table of the optimal state value of each state V c∗(s) (see Definition 10).
When reaching a new observation sequence oi, choose the action according4.2

to the following equation, where s′ is the next state of s in the decentralized
MDP after taking action a.

πi(oi) = argmaxa(R(a) +
∑
s∈S

P (s|oi)V
c∗(s′)) (2.2)

Algorithm 4: Lookup Algorithm

This algorithm makes use of the simple structure of the decentralized MDP. The

mostly deterministic nature of the DEC-MDPs makes the underlying centralized MDP

very easy to solve. The Lookup Algorithm utilizes the optimal state values of the un-

derlying centralized MDP as a guidance to approximate the globally optimal solution.

According to Theorem 3, (2.2) is trying to maximize a very optimistic approximation

of V〈π1,π2〉∗(oi), since V c∗(s′) is an optimistic estimate of V〈π1,π2〉∗(s
′). Nevertheless,

without knowing what the optimal solution is, it is still a fairly good estimate. The

main merit of the algorithm is the simplicity of the heuristic. If along with the state

value lookup table, we also store the prior probability of each value combination of

the data set, then even P (s|oi) can be easily calculated without resorting back to

the original BN. This algorithm can be executed online efficiently after the lookup

table is constructed. A simple algorithm described in [47] uses the same idea to solve

POMDP.

2.3.4 Experimental Results

I implemented both both the Iterative Algorithm and the Lookup Algorithm de-

scribed above. I have run experiments on 100 problem structures with 2 agents, 2

high level events and 10 low level data (5 local to each agent) for different confidence

40

It is interesting to observe how the minimum expected communication cost changes

when the required confidence level increases. At first, increasing the confidence does

not require much increase in the communication cost, while later the same amount

of improvement in the confidence needs a lot more communication. When the confi-

dence reaches a certain level, no further communication is required for improvement.

This is understandable because the critical data are chosen to be transferred first,

which has the most impact on increasing the confidence. Later, more non-critical

data needs to be communicated to gain the same amount of improvement. Finally,

the comparatively irrelevant data will not contribute a lot to improving the solution

quality.

The framework I have presented can also be used to analyze the suitability of

a problem to be solved by a distributed system. Figure 2.6 shows the minimum

expected communication cost curve of two different problems. Problem structure 1

is much more suitable for a distributed solution since it needs comparatively little

communication to achieve high confidence level. Further experiments and theoretic

work need to be done to help design suitable systems for different problems with

different communication properties.

2.4 Complexity Results

The general finite state DEC-MDP assumes that its horizon T = O(|S|). However,

the horizon of our problem is much shorter. Since each agent can at most request

all the other agent’s data and send all its own data, the horizon of the DEC-MDP

is therefore T = O(|D|) = O(log|S|), where |D| is the number of sensor data in the

network. As a result, we have the following complexity result.

Theorem 4. Deciding a communication management problem in Distributed Sensor

Interpretation is in NEXP in the number of sensor data.

42

Proof. In order to prove the theorem, we need to prove that there is a verifier that is

exponential in the number of sensor data.

A joint policy in a DEC-MDP can be evaluated by representing it as a belief state

graph. Each node in the graph is composed of the state, the sequence of observations

for agent i and for agent j. Each node has a single joint action, which is defined by

the joint policy. The transitions between the nodes depends only on the transition

and observation functions, and each transition has a reward defined by the reward

function. The belief state graph can be evaluated using the standard MDP recursive

value function and policy evaluation, which runs in time polynomial in the size of

the graph. For a DEC-MDP, this size is |Ωi|T × |Ωj|T . Since T = O(|D|), the policy

evaluation takes O(|Ωi||D| × |Ω|D|
j , which is exponential in the number of the sensor

data |D|. Therefore, the communication management problem ∈ NEXP|D|.

Since the size of the state space is exponential to the number of sensor data in

the network, i.e., |D| = log|S|, the communication management problem is NEXP in

log|S|, which is of lower complexity than a general DEC-MDP. However, we have the

following theorem.

Theorem 5. Deciding a communication management problem in Distributed Sensor

Interpretation is harder than NP in the size of the state space.

Proof. I prove this theorem by contradiction. Assume that the problem is in NP.

This means that there exists a polynomial time verifier for any policy in the DEC-

MDP built for it. If a policy can be verified in polynomial time, then it must have a

polynomial sized representation. On the other hand, the policy of our DEC-MDP is

in the form of Ωi×Ωj → Ai×Aj. We have |Ωi×Ωj| = |Ωi|T ×|Ωj|T = |Ωi×Ωj||D| =

|Ωi × Ωj|log|S|, which is not polynomial in the size of the state space. Contradiction.

Therefore, the communication management problem is harder than NP in the size of

the state space.

43

0

1

2

3

4

5

6

7

8

60% 65% 70% 75% 80% 85% 90% 95% 100%
Required confidence level

Ex
pe

ct
ed

 m
in

im
um

 c
om

m
un

ic
at

io
n

co
st

Complete history Flat history

Figure 2.7. The comparison of the expected communication cost of the joint policies
generated by the exhaustive search algorithm using complete history of communica-
tion and flat history.

The theorem tells us that while the communication management is easier than

the general DEC-MDP, it is still hard to solve. If we can build an approximate model

of the problem that has a lower complexity and yet generate a near optimal policy,

then the problem is easier to scale.

One way to approximate the optimal solution to this problem is that instead of

remembering the entire observation history Ω, each agent only remembers the values

of the data exchanged so far without remembering the order in which they were

transferred. This is a reasonable approximation since to calculate the confidence

level of the local interpretations, only the sensor data values are needed. In this

approximation, the policy is of the form Ei × Ej → Ai × Aj, where Ei and Ej are

the flat observation history of agent i and agent j. If we assume that each sensor

data has at most m possible values, then |Ei| = O((m + 1)|D|) = O((m + 1)log|S|) =

O(|S|logm(m+1)). Since m is independent of |S|, Ei is in the size polynomial in the

state space. Therefore, there exists a polynomial verifier for this approximation. As

a result, this approximation is no harder than NP in the size of the state space.

44

Figure 2.7 shows the comparison of the average expected communication cost of

the joint policies generated by the exhaustive search algorithm using complete history

of communication and flat history for 100 networks of 2 agents with 1 higher level

hypothesis and 5 lower level data each. While the flat history approximation did

not lose considerable performance, it did show at least 70% time savings to solve the

DEC-MDP.

2.5 An example Application: SensEye

This section is to illustrate how we can model the sensor wake up on demand

problem in a multi-tier sensor network [41] with a distributed Bayesian Network.

The DEC-MDP based approach introduced in previous sections can then be taken to

manage the communication among agents in order to decide which high level sensors

to wake up based on the available sensor data and each sensor’s capabilities.

2.5.1 SensEye: Applications and System Model

Technological growth has led to a variety of sensors and networked sensor plat-

forms with different cost, form-factor, resolution, and functionality. For example,

camera sensor products range from expensive pan-tilt-zoom cameras to inexpensive

webcams and cell-phoneclass cameras to even cheaper, tiny cameras such as Cy-

clops [70]. Similarly, a set of options become available for sensor platforms, with

choices ranging from embedded PCs and PDA-class Stargates [76], to low-power

Motes [20, 35] and even lower power systems-on-a-chip [39].

Due to these advances, the design and deployment of camera sensor networks -

wireless networks of sensor nodes equipped with cameras - is now feasible in a variety

of application scenarios, especially in target tracking and monitoring applications.

Examples include environmental monitoring, where a camera sensor network is used

to monitor wild-life habitats, rare species in remote locations being disturbed by hu-

45

mans, and adhoc surveillance, where camera sensors are used in disaster management

scenarios like fire and floods.

A well designed sensor network should have the desired quality of low cost, high

coverage, high functionality, and high reliability. However, a flat, single tier network

of homogeneous sensor nodes invariably leads to the achievement of some of these

properties at the sacrifice of the others. For example, low cost can be achieved by

using a single tier of inexpensive sensors but at the expense of functionality. High

functionality can be achieved by employing high fidelity sensors but at the expense of

sacrificing coverage due to the high cost. Kulkarni et. al [41] demonstrated that by

employing camera sensors with different power consumption and capabilities to per-

form tasks with different requirements, multi-tier networks provide a better balance

of cost, coverage, functionality, and reliability. SensEye [41], a multi tier network of

heterogeneous wireless nodes and cameras, can potentially achieve an order of mag-

nitude reduction in energy usage while providing comparable system performance as

the more traditional single tier network.

In this approach, resource-constrained, low power elements are employed to per-

form simpler application tasks, while more capable, high-power elements take on more

complex tasks. Doing so results in more judicious use of precious energy resources.

Only when necessary are the higher level sensors woken up to perform the more

complex tasks that the lower level sensors cannot complete.

SensEye assumes a three-tier architecture (see Figure 2.8). The lowest tier in

SensEye comprises Mote nodes equipped with 900MHz radios and low-fidelity Cyclops

or CMUcam camera sensors. The second SensEye tier comprises Stargate nodes

equipped with web-cams. Each Stargate is equipped with an embedded 400MHz

XScale processor that runs Linux and a web-cam that can capture higher fidelity

images than Tier 1 cameras. Each Tier 2 node also consists of two radiosa 802.11

radio that is used by Stargate nodes to communicate with each other, and a 900MHz

46

Webcam

Mote

Stargate

Webcam

Mote

Stargate

Cmucam

Mini−ITX

Tier2

Tier1

Cmucam

Radio

 Mote Mote Mote Mote

CmucamCmucam

Tier3
Ethernet

PTZ Camera

Serial
Cable

USB

re 1: The multi-tier SensEye hardware architect

S21 S22

M21 M22

S11 S15 S16 S19

M11 M15 M16

M19

... ...

Figure 2.8. SensEye hardware architecture.

radio that is used to communicate with Motes in Tier 1. The third tier of SensEye

contains a sparse deployment of high-resolution pan-tilt-zoom cameras connected to

embedded PCs. The camera sensors at this tier are retargetable and can be utilized to

fill small gaps in coverage provided by Tier 2 and to provide additional redundancy

for tasks such as localization. Nodes in each tier and across tiers are assumed to

communicate using their wireless radios in ad-hoc mode and no base-stations are

assumed in this environment.

I use a standard object tracking environment as an example. Since object detection

is a relatively simple task to perform, it is carried out by the tier 1 sensors in SensEye,

and the higher tier sensors are normally in sleeping mode until woken up. Once an

object is detected at Tier 1 by multiple sensors, localization algorithm is performed

to decide the location of the object and decide which Tier 2 sensor to wake up in

order to better track the target. If no Tier 2 sensor is at an appropriate location and

pointed in the correct direction, a retargetable Tier 3 sensor is woken up to properly

track the target. When the target is moving, the new data collected by the sensors

can be used to predict the movement of the target and decide which sensors to wake

up the next.

47

Low energy consumption and low latency are two important performance mea-

surements of a sensor network such as SensEye. Wakeup On Demand task is a crucial

problem from both perspectives. From the energy perspective, there should be no

wasteful wakeups of the higher tier nodes. The localization algorithm plays a key

part in this issue. It requires information from more than one sensor nodes, and

therefore communication is necessary. From the latency perspective, the separation

of detection and tracking tasks across two different tiers introduces latency between

the execution of the two tasks. The delay includes the time needed for communi-

cation that is involved in localization of the target and the receiving of any wakeup

packets that are transferred if the command is issued by agents other than the pro-

cessor controlling the sensor that is being woken up. Additionally, communication

requires considerable power consumption and should be limited in a sensor network in

general. Therefore, minimizing communication becomes an important issue in order

to advance the system performance in SensEye.

2.5.2 The Wakeup On Demand Problem

The wakeup on demand problem can be broken down to two stages. At the

first stage, the higher level mote needs to decide whether there is activity in the

area covered by the sensor associated with it. At the second stage, armed with the

localization knowledge from the last stage and other information such as the high

level sensors’ availability and work load, the high level motes can then in turn decide

which sensor is the best to assign the task to and wake up. Stage two is essentially a

task allocation problem, and can employ well studied techniques such as distributed

constraint optimization algorithms [54, 51]. I will focus on discussing the first stage

of the problem.

In the current prototype, upon detecting a new target, the tier 1 node broadcasts a

wakeup trigger for the higher tier including the location parameters, and each wakeup

48

Activity in area
covered by S21?

S11 S12 S13 S14 S17S16 S18 S19S15

M21 M22
Activity in area

covered by S22?

Figure 2.9. The interpretation problem in SensEye modeled with a Bayesian Net-
work.

mote at the higher tier uses the localization algorithm to decide whether to wake up

the sensor associated with it. This broadcasting method can be disadvantageous in

certain environments. For example, if there are multiple objects detected around the

same time, the communication traffic can be too crowded and it may lead to lost or

garbled packets. Additionally, in certain applications, broadcasting should be used

at caution if not totally avoided because of privacy issues. In such environment, I

propose the following approach.

Instead of broadcasting the wakeup trigger upon object detection, each Tier 1

mote is assigned one Tier 2 wakeup mote to communicate with at the initialization

stage. Once a new object is detected, the Teir 1 mote sends the necessary information

to the Tier 2 mote assigned. The Tier 2 mote then can choose to communicate with

other Tier 2 motes to acquire additional localization data if necessary, in order to

decide whether there is activity in the area covered by the sensor associated with it.

The assignment of Tier 2 motes to Tier 1 motes should take into consideration whether

the two motes have overlapping coverage to lessen unnecessary communication. In

addition, load balancing should be considered as well so that no Tier 2 mote is

overburdened with packets from a large number of Tier 1 motes.

We can model this approach with a standard Distributed Sensor Interpretation

problem using a Bayesian Network. Figure 2.9 shows the interpretation problem

for M21 and M22 in the SensEye setup illustrated in Figure 2.8. In this setup,

49

M21 has direct communication channels with M11 through M15. When any of S11

through S15 detects something, the associated motes send the information to M21.

Additionally, M21 and M22 can also communicate with each other when necessary,

and are responsible for deciding whether there is activity in the area covered by S21

and S22, respectively.

Though distributed approaches to DSI problems can have many advantages, the

existence of subproblem interactions means that the agents must communicate dur-

ing the problem-solving process to obtain information that is needed to solve their

subproblems optimally. A coordination strategy needs to be generated that specifies

how agents should interact. In the SensEye example, even though M21 does not

have direct access to S16 through S18, they do cover areas overlapping with S21.

Therefore, in order to decide whether there is activity in the area covered by S21,

M21 may need the data provided by S16 through S18, and communication between

M21 and M22 may become necessary.

After formulating the first stage of the wakeup on demand problem in SensEye,

we can further formulate its communication management problem with a DEC-MDP

as discussed in previous sections. With this approach, we can generate a communi-

cation policy such that when followed, each Tier 2 mote needs to only transfer the

least amount of information to and from the other Tier 2 motes in order to decide

whether to wake up its associated camera sensor with the required confidence. Since

in SensEye, we assume that each mote knows the location and direction of the other

sensors, the BN can be pre-generated and is fixed until the sensor network topology is

changed. As a result, the communication policy can be generated off-line beforehand

and stored at each mote.

There are several questions that need to be answered before this approach can

be employed effectively. First, the data that is collected by Tier 1 sensors are the

location data of the object, and are continuous numbers. In order for the BN to be

50

practical, they need to be discretized. This is reasonable since most times we do not

need the accurate location to decide whether to wake up a Tier 2 sensor. As long as

the new target is within the effective coverage of the sensor, it can perform the task

satisfactorily.

The second problem to be addressed is to build a good cost model for the commu-

nication actions. There are several factors to be considered: the packet cost, which is

related to both the initialization cost and the packet length, and the possible stages

that may be required depending on the data on hand and the previous data received.

Intuitively, large number of cycles should be avoided since it increases the latency

caused by communication.

The last problem is how to decide the proper setting of the required confidence

level. Ideally, the confidence level should be set as high as possible such that it

is still achievable within the communication channel limit. This can be achieved by

solving DEC-MDPs with different levels of required confidence and generating a graph

that shows the relationship between the confidence level and the minimum expected

communication cost needed. Such a graph can then be used to decide the proper

confidence setting given the current communication channel limit.

There is a potentially interesting issue of the wakeup on demand problem if both

stages are to be implemented and connected. During the second stage when the

higher level motes are trying to decide which sensor is the best to wake up, they

may discover that for various reasons the initial required confidence level set for the

stage one interpretation is too low for the cost of waking up / reassigning any of the

high level sensors. In other words, with the initial confidence level in the location

of the new activity, it is not worth the cost for waking up / reassigning a sensor

for monitoring it. Under such circumstances the motes may decide to set a higher

confidence requirement and revisit the interpretation problem.

51

There are two different ways in which this can be done. Suppose that the ini-

tial required confidence level is X%, and the new required confidence level is Y %,

where X < Y . In the first approach, initially the motes follow the communication

policy generated for the DEC-MDP with the X% confidence. When a higher confi-

dence level Y % needs to be reached at a later time, it will then start from the local

observation sequence at which it halted during the first process, but now following

the policy generated for the DEC-MDP with the new Y % confidence instead. While

the complete policy to the DEC-MDP for Y % includes policies for all the possible

local observation sequences, including the terminal sequences of the X% DEC-MDP,

we would ordinarily only store the policies for the reachable sequences in the motes’

memory to save space. As a result, in order to be able to start a communication

process from where was left off at the first stage, the motes need to remember the

policies for the terminal observation sequences of the X% DEC-MDP as well.

The second approach differs from the first one in that at the first stage, the policies

followed by the motes are those generated by the Y % DEC-MDPs instead of those by

the X% DEC-MDPs. The communication continues until the X% confidence level is

reached. When later it is discovered that the confidence level needs to be increased

to Y %, the motes can simply pick up where the communication was left off. We

notice that the policy the motes follow to reach Y % confidence is not optimal for X%

DEC-MDP. As a result, the first approach is more suitable for the situation where it

is unlikely that at a later stage the confidence needs to be raised to Y %, while the

second approach works better when it is more likely that the confidence has to be

increased.

2.6 Other work studying Distributed Sensor Networks

Large scale sensor networks are a useful technology for a wide range of applica-

tion. Therefore there has been an increasing interest in the networks and artificial

52

intelligence community to study various aspects of employing distributed scale sen-

sor networks, including the placement of sensors, representation of the interpretation

problem and communication problem among the sensors.

Graphical models are widely used in the study of sensor networks. Huang and

Russell [38] are the first to represent the interpretation problem in a sensor network as

a Bayesian Network. They formulate the raw sensory data as evidence and the object

identification, i.e., how an object can be expected to appear at subsequent observa-

tions given its current appearance as appearance probability. With this formulation,

they are able to achieve high levels of performance in the task of recognizing cars

observed by cameras at widely separated sites in a freeway network. Krause et al

[40] use a non-parametric probabilistic models called Gaussian Processes to study the

best sensor placement in a network both for the spatial phenomena of interest and

for the spatial variability of link qualities. We choose Bayesian Networks in our work

to represent the interpretation problem because it captures the causal relationship

both qualitatively and quantitatively between the observable data and the events

that cause them.

The study of communication management in Distributed Sensor Networks can be

largely divided into two categories: all the relevant data are collected by a central

agent who processes them and find the best interpretation; or the data are inter-

changed among the agents such that the processing is distributed and there is no

central node to collect all the data. In the first category, much work has focused

on how to route the data through the network from the data observing agents to

the central node that is collecting and processing all the data. Deshpande et al [22]

and Meliou et al [53] both study this query routing problem where the communi-

cation cost is based on the communication distance between the sink node and the

data observing agent. Cristescu et al [19] study a similar problem but the network is

composed of a sink node and a tree communication structure. Li et al [46] propose

53

a routing protocol that minimizes the communication time and therefore minimizes

delay involved in transmitting the data. In the second category where the data pro-

cessing and communication happen distributedly, the research has been focused on a

higher level than the network routing problem. Krause et al [40] study the problem of

sensor placement such that the communication is minimized while the sensing qual-

ity of the sensors is maximized. In their work, the communication is assumed to be

potentially unreliable and the communication cost is associated with the reliability

of the communication channel between nodes. However, the communication cost of

a network’s organization is averaged among all the possible routes existing in the

network and is not associated with the quality of the interpretation yielded by the

data communication and processing. Paskin et al [63, 64] study the communication

problem in a very similar setting to that of this thesis work where the goal is to min-

imize communication cost in a distributed sensor network represented by a Bayesian

Network. However, in their work the communication cost is only minimized for the

accurate interpretation of the network data, while in this work, it is minimized for

any given confidence level in the interpretation required by the problem.

2.7 Conclusions

There is beginning to be research applying the decision-theoretic framework to

multi-agent systems. The Multi-agent Markov decision process (MMDP) defined in

[8] is a centralized multi-agent extension of an MDP. In that work, each agent observes

the global state directly and takes an joint action. Xuan and Lesser [81] proposed a

decentralized extension, in which an agent has its local state in addition to the global

state. When an agent has ambiguity over which action it should take based on its

local state, it needs to communicate with the other agent to synchronize the global

view. Similarly, researchers studying communication in multi-agent systems focus

their attention on the type of communication that forces the agents to exchange their

54

observations whenever they communicate and therefore synchronizes each agent’s par-

tial view of the system. My work is unique in the way that the agents cannot simply

observe the global state directly or even synchronize to it occasionally. In fact, this

inability to observe the global state at any time is the key factor that leads to the

difficulty of the problem. Instead of trying to answer the question of “when” to com-

municate as most other researchers do, this work is addressing the issue of “what”

to communicate instead. Pynadath and Tambe [69] proposes a general framework

(COM-MTDP) which extends the DEC-MDP to incorporate communication actions

as well as domain actions. This framework provides an excellent foundation for theo-

retical analysis of different coordination strategies in the teamwork context, but does

not provide a practical algorithm for approximate or optimal solutions. In contrast,

my framework is designed for the distributed systems whose connection between its

communication cost and the progress of the collective problem solving progress can

be identified. Additionally, I am modeling only the communication actions of the

system. This enables us to find the optimal or near-optimal solutions for a given

problem.

Modeling the problem structure as a BN is also unique. By utilizing the in-

formation provided by the BN structure, I am able to build a complete model of

the DEC-MDP and calculate the local agent’s belief in the global state and the other

agent’s local state. In this respect, my model of the local MDPs resembles a POMDP.

In fact, the techniques of solving a DEC-MDP presented in this paper can be used

for general DEC-MDPs as long as they have a complete model. That is exactly what

the BN representation achieves. The DEC-MDP framework I presented for the DSI

problem can be easily extended to minimize communication cost in the more gen-

eral Cooperative Distributed Problem Solving context, such as distributed scheduling

problems. The only required condition is that one can identify the information (ob-

servations) accessible to each agent, the goal that the system tries to achieve, the cost

55

for sharing information among the agents, and how the content of the observations

affect the achievement of the goal. In the DSI example, the information accessible

to each agent is the local sensor data collected and the goal of the system is the

desired confidence level of the subproblems, which is used to decide whether a state

of the DEC-MDP is a final state. The Distributed BN structure is used to update

the new observations and calculate whether the final state is reached. Similarly, for

the distributed scheduling problem, the information accessible to each agent is the

scheduling constraints of the agent itself, and any constraints the other agents are

willing to share with it. The goal of the problem is whether the task(s) can be suc-

cessfully scheduled and how satisfied the agents concerned are about the schedule.

The cost of sharing local constraints with other agents may involve both the com-

munication cost and how much the agents want to keep the information secret from

the others, i.e., the privacy cost. If we can establish the relationship between the

amount and content of local constraints shared among the agents and the probability

of successfully scheduling the task(s), then the techniques introduced in this chapter

can be applied to the distributed scheduling problem to decide what local constraints

to share with other agents.

What makes my problem more difficult than some of the others [4] is its tightly

coupled nature. An agent’s communication action directly changes the other agent’s

view. The local MDPs of the two agents are largely dependent on each other. This

makes it hard to construct algorithms that are guaranteed to find the globally optimal

solution. My complexity result shows that even though our problem is of a lower

complexity class than the general DEC-MDP, it is still harder than NP. I have designed

two algorithms to approximate the globally optimal solution for our DEC-MDP. One

is an iterative algorithm that is guaranteed to converge to a local optimal solution,

but the quality of the policy it generates largely depends on the starting policy of the

iterative process. The other approach is based on a lookup algorithm which is much

56

less computationally expensive and can be easily extended to more than two agents.

Though there is no guarantee that can be made about the solution either generates,

experimental work indicates that in the problems studied both approaches lead to

policies that are of very good quality. To my knowledge, this is some of the first

work providing algorithms that approximate the optimal solution for communication

problems in a complex problem solving setting that are formulated in a decision-

theoretic model.

There are different ways that my framework can be used. First, it can be used as

described in this chapter to find the optimal communication policy for a given goal.

In the DSI problems, this goal is a required confidence level. Conversely, in certain

applications, there is a known fixed communication constraint. For such applications,

it is often useful to estimate the expected best confidence level that can be achieved

under the given constraint. Our framework can be used for this purpose. For a prob-

lem structure, we first solve the communication management problem for different

confidence levels. A confidence–communication cost graph such as the one in Figure

2.6 can be generated. It is then trivial to look up the maximum expected confidence

level for a given communication constraint. The third way to use this framework is

to view the expected minimum communication cost generated as a measurement of

decomposability of a distributed problem or as a measurement of privacy. For exam-

ple, Figure 2.6 shows that problem structure 1 requires more communication cost to

achieve the same confidence level than problem structure 2, and therefore problem

structure 2 is more decomposable. This is particularly useful when we need to dis-

tribute sensor data to different agents. We can generate confidence–communication

cost curves for different network configurations, and choose the one that requires the

least communication cost.

The main problem with using a decision theoretic model such as DEC-MDP in

multi-agent applications is its high complexity class. It makes the problem hard to

57

1A
4A

2A

3A

5A

8A

7A

6A

Figure 2.10. There are two subnets in the system. Agent A4, as the overlapping
agent of the two subnets, serves as the gateway of the two subnets.

scale up. For example, the current BN structure I work with for the DSI problem is

comparatively small and simple. To effectively model real world applications I will

need to scale it along several dimensions: the number of agents, the number of events,

the number of sensor data elements, and the layers of intermediate results between

the events and the data.

One of the easiest ways to extend the approach to handle multiple agents is for

every agent to treat the external network as a virtual agent and model the problem

the same way I discussed in this chapter. As the number of agents in the system

increases, there is a need to divide the agents into nearly decomposable groups such

that there is little overlap between different groups (Figure 2.10). Since each agent

only has a partial view of the network that is relevant to its problem, the entire

system is composed of multiple nearly disjoint sub-networks. The agents that are in

the overlapping areas will serve as gateways between sections (e.g., in Figure 2.10,

A4 serves as the gateway between the two subnets). The other agents do not know

of the existence of the subnets that they are not members of. This enables us to use

our current scheme and scale up the network to include a large number of agents.

58

The effectiveness of this scheme for scaling up the system depends to a degree on

being able to partition the events and data so that fairly limited communication will

be required between agent groups. While this may not be possible in all domains,

[14] have done experiments with a simulation framework built for the DBN structure

I study in this work and the results are encouraging. For the the vast majority of

domain models they have studied, events can be pursued independently of one another

(i.e., determining their correct values, such as true/false). Where significant data from

another group is required for determining the correct value of an event with the desired

confidence, they have been quite successful at limiting communication by identifying

“markers” in the data/results that indicate the need for additional evidence.

Increasing the number of sensor data elements will inevitably increase the state

and action space of the DEC-MDP under the current mapping, and therefore makes

it almost impossible to solve the problem exactly. There are several ways to address

the scalability issue. One is to design approximate algorithms that tradeoff solution

quality for lower complexity. Another way to handle scaling is to change the way we

map the original communication problem to DEC-MDP. For example, in the current

mapping, the state space and action space of the DEC-MDP are exponential to the

amount of data in the BN. It is computationally infeasible to generate a large DEC-

MDP when the quantity of data grows. One approach is to extend the BN to multiple

layers, where the intermediate nodes represent the intermediate causes. Instead of

transmitting the observed data directly, the agents can abstract the information con-

tained in the data into the intermediate nodes and communicate them. The next

chapter discusses this approach that utilizes abstraction communication actions.

59

CHAPTER 3

THE USE OF ABSTRACTION

If the DEC-MDP allows general communication and the communication actions

have different cost, the number of actions allowed is exponential to the number of

local observations. For example, the size of the state space of the DEC-MDP I built

for the DSI problem in the last chapter is exponential to the amount of data in the

BN, and so is the action space. This means that such a DEC-MDP is very hard to

solve when the BN grows in the number of sensor data. If we have techniques that can

efficiently reduce the size of the DEC-MDP, then it is possible to find an approximate

solution in reasonable amount of time.

The technique that I present in this chapter uses the idea of transferring abstract

information between the agents instead of the part of the observations themselves.

Abstract layers are introduced into the Bayesian Network as a way of carrying more

useful information in one piece of transmitted data to further reduce the number of

messages that need to be sent. Initially the abstract information is generated locally

by each agent such that its observations can be encoded more efficiently. However,

this efficiency is not without loss, since part of the necessary information may be

missing from the abstract data transferred between the agents. Therefore, when the

agents discover that transferring the abstract information alone cannot enable them

to reach the final states, they fall back to transmitting the less abstract information.

This process continues until a final state is reached.

In order to effectively use the abstraction technique, there are two questions that

need to be answered: How to generate the abstract information to be transferred, and

60

When to transfer the abstract information. To answer the first question, I present an

algorithm that automatically generates appropriate abstraction data, which reduces

the expected communication cost necessary to achieve the required confidence level.

This is a greedy approach since the abstraction data enables the agent to immediately

reach the desired confidence level. I chose this type of abstraction data because it is

intuitive and straightforward to generate, yet it enables us to study the concept of

abstraction and its use in reducing communication cost from a formal perspective.

There are other forms of abstraction that can be potentially useful. For example,

some abstraction data may contain useful information but is not sufficient to reach the

confidence by itself. Other abstraction may be an intermediate interpretation result

that can be incorporated into the local result. I plan to look into these different

types of abstraction in future work. Another simplification I use in the algorithm

and examples is that all the data are binary valued as multi-valued. There are two

motivations behind this. First, a multi-valued data can be broken down into multiple

binary valued data and the same techniques discussed can be applied, though this may

drastically increase the number of data present in the network. The second reason is

that as discussed before, the data nodes in this work are not the raw sensor output,

but rather the results of some initial processing to produce categorical/discrete values.

In many applications, these data nodes are binary feature nodes that denote whether

certain characteristics are present [49, 52].

To answer the second question, I examine three different approaches to incorpo-

rate the new abstract communication actions to the existing DEC-MDP. The all data

action selection approach allows abstract communication actions as well as the nor-

mal communication actions in all the states. The abstraction data action selection

approach allows only the abstract communication actions in all the states. In the hier-

archical action selection approach, before an agent has acquired all of the abstraction

data, the agents are not allowed to transfer any of the observed data. Experimen-

61

tal work demonstrates that the hierarchial approach, simplifies the DEC-MDP while

still reducing the expected communication cost. Furthermore, experiments on larger

networks with multiple abstraction layers show that the hierarchical approach is able

to solve more and larger networks than the other approaches and therefore is more

suitable for scaling up the approach.

Abstraction has often been used in hierarchical planning community to represent

abstract plans that can be further refined into specific actions. In particular, Clement

and Durfee [17] used summary conditions, a form of abstraction, to coordinate the

concurrent interactions of plans at different levels of abstraction between agents. Ab-

straction has also been used in distributed diagnosis research to identify the sources

of problem. Chung and Barrett [16] demonstrated how Boolean expressions can fa-

cilitate finding minimal cost diagnoses in linear time. However, neither work studies

the tradeoff between abstraction and communication. In the original Distributed

Problem Solving work [23], abstraction was used as a mechanism for controlling the

information needing to be communicated. However, the use of abstraction was not

formalized. Nor was there a clear understanding of when the lower level data needed

to be transmitted. Carver and Lesser [11] studied the use of multiple levels of abstrac-

tion to reduce the necessary communication. Like [23], the abstraction layers were

predefined and the use of abstraction was not formalized. In contrast, the algorithm

I introduce allows the system to generate appropriate abstraction data automatically

without predefinition. My study of the addition of transferring abstraction data as

actions in the DEC-MDP provides us with a formal view of the use of abstraction in

the management of communication cost in a distributed problem solving system. As

the sensor network gets larger and sensor technologies advance, “high fan-in” archi-

tectures are being developed. Such an architecture consists of a network of widely

distributed sensors that are receptors. Their readings then will be aggregated locally

with data from other nearby devices, and then further aggregated within a larger area,

62

and so on. Franklin et al [25] discuss the key characteristics and data management

challenges presented by high fan-in systems, and argue for a uniform, query-based

approach towards addressing them. The techniques developed in this chapter can be

seen as an implementation of the query-based approach proposed in their work. The

abstraction layer generated by my algorithm is composed of the queries that guide

the aggregation of the lower level data and these queries are not formulated randomly

but motivated by the desire to minimize the communication cost in the system.

The previous chapter formally defined the problem I study and summarized the

DEC-MDP model I developed to generate the communication strategy. In this chapter

I first introduce the algorithm that automatically generates the abstraction data that

when transmitted can greatly facilitate the achievement of the confidence level. The

following section discusses how the abstraction data can be incorporated to improve

the system performance. Finally I extend the different approaches discussed so far to

larger networks with multiple abstraction layers and more than two agents.

3.1 Generating the Abstraction Layer

In the DSI example presented in the last chapter, I discussed two layer networks,

which means that there are no intermediate abstraction data. Many domains, how-

ever, have structures that can be exploited to improve the performance of both local

processing and inter-agent merging of evidence. Domain structure can result from a

number of factors such as independencies among subsets of events or between events

and certain data subsets and cases where only a fraction of the combinations of some

data are informative. Many of these situations are best captured by using BNs that

include intermediate nodes that lie between the event and data levels.

Research on learning Bayesian Networks from data [10, 33] focuses on finding the

BN structure that best matches the collected data. These techniques are important

in constructing the BN structure that represents the problem I am trying to solve.

63

Input: agent A’s view of BN, the values of the local data, the5.1

required confidence
Output: a set of logic expressions of the remote data that, if true,5.2

put the local confidence above the required confidence
Set DataList = all the remote data of A, potential = null5.3

Initialize LogicTree5.4

while DataList.next is not null do5.5

currentLeaf = DataList.next
add currentLeaf and ¬currentLeaf as new children to
LogicTree.root
if confidence given currentLeaf ≥ required confidence then

mark currentLeaf
continue

if confidence given ¬currentLeaf ≥ required confidence then
mark ¬currentLeaf
continue

if potential == null then
potential.add(currentLeaf)
potential.add(¬currentLeaf)
continue

for each p in potential do
potential.add(addChildren (currentLeaf, p), addChildren
(¬currentLeaf, p))

convert the marked part of LogicTree to a set of logic expressions5.6

and return it

addChildren (currentLeaf, p)5.7

begin
Add p to LogicTree as a child of currentLeaf in a depth first
fashion, check the confidence at every step. If confidence ≥
required confidence, stop going deeper into this branch and
mark it.
Output: the unmarked subtree of LogicTree starting from
currentLeaf

end

Algorithm 5: The algorithm for generating the abstraction layer

64

However, we need other methods to find an appropriate abstraction layer from the ex-

isting BN that, when transmitted from the remote agent, more efficiently conveys the

necessary information to facilitate the local problem solving. In other words, this ab-

straction layer, when acquired, should be able to reduce the expected communication

necessary to achieve the required confidence level.

I achieve this goal by developing an algorithm (Algorithm 5) that automatically

generates an abstraction layer given a value combination of an agent’s local data

and the desired confidence level. The basic idea behind the algorithm is to find a

set of logic expressions consisting of the remote data such that if at least one of the

expressions is true the required confidence is reached. For example, an agent has

5 pieces of remote data {D6, · · · , D10} and needs to achieve a confidence level of

75%. In the original system, the only possible actions are to transfer some or all of

these observed data. I will call this approach raw data action selection. However,

if one or more of D6, ¬D7 ∧ ¬D6, ¬D8 ∧ ¬D7 and D10 ∧ ¬D9 are true, then the

agent immediately has a local solution with a confidence level of 75%. These data

carry more abstract information than the observed data themselves and therefore

are more efficient, though the information is not as refined. If these data values

can be acquired as well as the observed data, it can potentially yield huge savings

on the communication cost. Additionally, the values of the abstraction data also

give valuable information about what the values the observed data may have. For

example, if the value of ¬D7 ∧ ¬D6 is transferred and is true, then the process can

immediately terminate because the confidence level of 75% has been reached. If the

value is false, even though the desired confidence level is not immediately achieved

the agent does now have the knowledge that D6 and D7 cannot be false at the same

time. This information can be retained by updating the BN. Figure 3.1(a) shows the

action options of the raw data action selection approach for this example while Figure

3.1(b) shows the action options if the abstraction data can also be transferred.

65

D6 D7 D8 D9 D10

¬D7∧¬D6 D10∧¬D9¬D8∧D7D6

D6 D7 D8 D9 D10

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

Abstraction Level

Raw data level

(a) The action options for the raw
data action selection approach

D6 D7 D8 D9 D10

¬D7∧¬D6 D10∧¬D9¬D8∧D7D6

D6 D7 D8 D9 D10

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

Abstraction layer

Raw data layer

(b) The action options for the all action selection ap-
proach. The data that can be transferred are divided
into two categories.

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

(a)

D6∨(¬D7∧¬D6)∨(¬D8∧D7)∨(D10∧¬D9)

D6∨(¬D7∧¬D6)∨(¬D8∧D7) D10∧¬D9

(b)

(c) The corresponding LogicTree
to the abstraction data.

Figure 3.1. An example of the abstraction layer. Remote data includes
{D6, · · · , D10}. The required confidence level is 75%

The desired set of logic expressions can be generated by simply enumerating all of

the possible combinations of the remote data values and selecting those that will en-

able the agent to reach its desired confidence level. Our algorithm improves efficiency

by a logarithmic factor over the exponential brute force enumeration by reusing the

subgraphs of logic expressions.

Figure 3.2 gives an illustration of an episode showing how the algorithm is run for

the example in Figure 3.1. I use a tree, which I call a LogicTree, to keep track of

all the data values examined so far. The nodes along the same path are connected

by the ∧ operator, and the different branches represent different value assignments.

The marked branches are the ones that pass the confidence test, i.e., if true, the

desired confidence level is reached. The set potential is used to keep track of the

subtrees examined so far that did not pass the confidence test. Only the members

of potential should be examined as a subgraph of longer expressions. Figure 3.1(c)

shows the final LogicTree for this example.

If the values of all the remote data are acquired, the local confidence is guaranteed

to reach 100%. Therefore, I limit the depth of the LogicTree to be less than the

66

D6 ¬D6 D7 ¬ D7

¬D6 ¬D6

¬D6, D7, ¬ D7

¬D6

potential:

D8 ¬ D8D6 ¬D6 D7 ¬ D7

¬D6 ¬D6 ¬D6 D7 ¬ D7

¬D6

¬D6 D7 ¬ D7

¬D6, D7, ¬ D7,

¬D6

new potetial:

D8, ¬ D8

¬D6 D7 ¬ D7

¬D6

¬D6 ¬ D7

(a) LogicTree and potential before adding
D8,¬D8 to LogicTree.

D6 ¬D6 D7 ¬ D7

¬D6 ¬D6

¬D6, D7, ¬ D7

¬D6

potential:

D8 ¬ D8D6 ¬D6 D7 ¬ D7

¬D6 ¬D6 ¬D6 D7 ¬ D7

¬D6

¬D6 D7 ¬ D7

¬D6, D7, ¬ D7,

¬D6

new potetial:

D8, ¬ D8

¬D6 D7 ¬ D7

¬D6

¬D6 ¬ D7

(b) LogicTree and potential after adding D8,¬D8 to
LogicTree.

Figure 3.2. An example of the key step of Algorithm 5.

number of remote data. When the maximum depth is the number of remote data

minus 1, the algorithm generates all of the expressions that have the desired property.

Reducing the depth of the LogicTree results in a smaller number of abstraction nodes

generated and therefore a smaller DEC-MDP. This tradeoff will be further discussed

in the next section. In general, the number of abstraction data generated should be

no more than the number of observed data. For each path in the LogicTree, we

record the likelihood of the abstraction data represented by the branch being true,

and we choose the n abstraction data with the highest likelihood of being true to

incorporate into the DEC-MDP, where n < the number of observed data.

When given a BN and a desired confidence level, the agent generates an abstrac-

tion layer for each observed data value combination and adds them to its action

options for the states that have the corresponding observed data values. The ex-

panded DEC-MDP can be solved to generate a communication strategy. I call this

67

approach the all data action selection approach. Since the observed data communica-

tion actions are competing with the abstraction actions, an agent chooses to transfer

an abstraction data if and only if it will result in a lower expected communication cost

than transferring any of the observed data. Therefore, the new system performance

should be no worse than the original system in terms of the expected communication

cost.

I compared the performance of the all action selection approach and the raw data

action selection approach. The cost of sending a piece of abstraction data was equal

to the cost of sending observed data. I used the Iterative Algorithm introduced in [75]

to solve the DEC-MDP. I ran experiments on 100 problem structures with 2 high level

events and 10 observed data (5 local to each agent) for different confidence levels. All

of the networks were fully connected, which means that for both agents to have the

complete evidence, 10 pieces of data needed to be transmitted. The corresponding

curves in Figure 3.3 shows a comparison of the minimum expected communication

cost generated by both systems. Column (a) in Table 3.1 shows the percent im-

provement in the expected communication cost when transmitting abstraction data

in addition to the observed data. As shown, the all data action selection has a notice-

able improvement over the raw data action selection approach. This illustrates that

the addition of the abstraction data does help reduce the communication cost. The

improvement is most significant when the required confidence is between 70% and

80%. When the confidence level is low, the expected communication cost is already

low so that it is difficult to achieve a significant improvement. On the other hand,

when the required confidence level is high, there are much fewer abstraction data

generated resulting in a smaller improvement.

68

0

1

2

3

4

5

6

7

8

60% 65% 70% 75% 80% 85% 90% 95% 100%

Required confidence level

M
i
n
i
m
u
m

e
x
p
e
c
t
e
d

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

Raw data action selection All data action selection

Abstraction data action selection Hierarchical action selection

Figure 3.3. A comparison of the minimum expected communication cost given
different action selections

3.2 Hierarchical Action Selection

Introducing the communication actions that transmit the values of the new ab-

straction data leads to both a larger state space and a larger action space for the

generated DEC-MDP. As a result, the time needed to solve the new DEC-MDP can

be significantly greater than the original DEC-MDP, which only has the observed

data transmission as its actions. Column (c) in Table 3.1 shows the average time the

all data action selection approach took to solve the DEC-MDP, where the average

time needed for the raw data action selection approach equals 1.00. In this section, I

introduce techniques that address this problem.

First I examine the case where the agents only transfer the abstraction data be-

tween them. I call this approach the abstraction data action selection approach. While

the size of the DEC-MDP generated is often much smaller than that of the original

DEC-MDP, one major drawback of this approach is that we can no longer guarantee

that the required confidence level can be reached. Only when at least one of the

abstraction data is true will the desired confidence level be reached. The correspond-

ing curve in Figure 3.3 shows the expected communication cost achieved for the cases

where the desired confidence level can be reached. When the required confidence level

69

required
confidence (a) (b) (c) (d)

60% 1.66% 0.55% 1.25 0.89
65% 9.22% 7.28% 1.53 0.77
70% 14.95% 8.31% 1.49 0.69
75% 11.76% 8.47% 1.52 0.63
80% 16.22% 9.53% 1.61 0.59
85% 8.27% 4.56% 1.41 0.65
90% 7.52% 3.40% 1.21 0.77
95% 6.80% 2.41% 1.10 0.82
100% 6.21% 2.40% 1.09 0.87

Table 3.1. Performance compared to raw data action selection approach for single
abstraction layer in a 2-10 network. (a) Expected communication cost improvement
of all action selection. (b) Expected communication cost improvement of hierarchical
action selection. (c) Time needed to solve the DEC-MDP for all action selection
normalized by that for raw data action selection. (d) Time needed to solve the
DEC-MDP for hierarchical action selection normalized by that for raw data action
selection.

is high, there are fewer abstraction data generated, and therefore the expected cost

is much lower than those of the two approaches I discussed in the previous section.

Notice, however, that this is a false savings as the desired confidence level cannot

always be reached, which is not reflected in the figure.

I seek to combine the advantages of the all data action selection approach and the

raw data action selection approach so that we can save time on solving the DEC-MDP

as well as guarantee the required confidence level. I achieve this by restricting legal

actions for different states. Before an agent has acquired all of the abstraction data,

the agents are not allowed to transfer any of the observed data. I call this approach

the hierarchical action selection approach. An agent prefers to transfer abstraction

data because it abstracts from multiple pieces of observed data and thus is a more

efficient information carrier. Only when the acquisition of all of the abstraction data

cannot achieve the desired confidence level will an agent start to acquire the observed

data in order to get the necessary information.

70

Percent of the experiements finished within 2
hours

100%

81%

52%

100%

67%

37%

100% 100%

78%

0%

20%

40%

60%

80%

100%

120%

4-20 6-30 8-40
The size of the network

Pe
rc

en
t f

in
sh

ed
raw data action selection all data action selection
hierarchical action selection

Figure 3.4. The percentage of the problems tested that each approach was able to
finish solving within 2 hours.

will explore this tradeoff between computation time and communication cost as the

depth is varied.

3.3 Multiple Levels of Abstraction

The idea of varying the depth of the LogicTree leads to an interesting way of

generating a hierarchy of abstraction data. We can modify Algorithm 5 to generate a

set of abstraction data of different lengths. The more literals in the abstraction data,

the more abstract it is, the more efficiently it carries information, and the less refined

the information is.

Just like in the single abstraction layer case, there are different ways of incorpo-

rating multiple layers of abstraction data into the action space of the DEC-MDP. I

did experiments on the all data action selection approach and the hierarchical action

selection approach, and compared their performance to that of the raw data action

selection approach. In the all data action selection approach, all the abstraction data

of various length are added to the action space to compete with the observed data. In

the hierarchical action selection approach, the agents transfer the most abstract data

72

required
confidence (a) (b) (c) (d)

60% 3.87% 2.14% 1.33 0.91
65% 10.42% 8.19% 1.49 0.79
70% 16.01% 12.34% 1.52 0.62
75% 19.84% 15.62% 1.59 0.56
80% 18.26% 13.43% 1.71 0.49
85% 12.22% 9.53% 1.59 0.58
90% 8.49% 6.72% 1.39 0.68
95% 5.71% 4.43% 1.19 0.76
100% 4.23% 3.12% 1.10 0.78

Table 3.2. Performance compared to the raw data action selection approach for
multiple abstraction layers in a 6-30 network. (a) Expected communication cost
improvement of all action selection. (b) Expected communication cost improvement
of hierarchical action selection. (c) Time needed to solve the DEC-MDP for all action
selection normalized by that for raw data action selection. (d) Time needed to solve
the DEC-MDP for hierarchical action selection normalized by that for raw data action
selection.

first. If the confidence level is not achieved, then the agents start transferring the

next level of abstract data. This process goes on until the confidence level is reached.

I tested these approaches on networks of different sizes: 4 high level events and

20 low level data (4-20 networks); 6 high level events and 30 low level data (6-30

networks); 8 high level events and 40 low level data (8-40 networks). I generated

two abstraction layers for each of the networks. Figure 3.4 shows the percentage of

the networks I tested on that each of the three approaches was able to finish within

two hours. It shows that hierarchical action selection approach was able to finish the

policy search better than either of the two other approaches. The larger the network,

the bigger an advantage the hierarchical approach has over the other two. Table

3.2 shows the performance comparison of the all data action selection approach and

hierarchical action selection approach over the raw data action selection approach.

The data is shown only for the 6-30 networks for which all of the three approaches

finished searching for the optimal policy. The first abstraction layer is composed of

73

the abstraction data with no more than 5 literals, and the second layer is composed

of the abstraction data with no more than 10 literals and greater than 5 literals. The

results show a similar pattern as those of the single abstraction layer experiments. The

all data approach is not practical for large networks or more than a few abstraction

layers, since it substantially expands both of the state space and action space of the

DEC-MDP. However, it does give a lower expected communication cost than the raw

data action selection approach when it can solve the problem. On the other hand,

the hierarchical approach proves to be more effective than both the raw data action

selection approach and the all data action selection approach. It is able to solve

more and larger networks, and on average it takes much less time. Furthermore,

for the networks that both approaches were able to finish the policy search, the

solution generated by the hierarchical action selection approach has a lower expected

communication cost on average than that generated by the raw data action selection

approach.

3.4 More than Two Agents

This section extends the techniques of transferring abstraction data discussed so

far to more than two agents. In order to extend the abstraction generation algorithm,

we need to answer the following question first: Do we restrict each abstraction to data

from one single agent or do we allow it to span across data from several agents? If

we only allow abstraction to have data from one single agent, then we run the same

abstraction generation algorithm for every neighbor of the current agent and the

abstraction generated can be directly put to the action space for the DEC-MDP as

a possible request from that neighbor. However, this approach can be limiting in the

abstraction that is allowed to be generated, especially if we do not allow less greedy

abstraction (i.e., the abstractions that only increase a certain amount of confidence

instead of enable an immediate realization of the required confidence).

74

If we do allow a piece of abstraction to span across several agents, then when

running the abstraction generation algorithm for a specific agent, all the other agents

are seen as a virtual agent. Every remote common data that does not belong to the

current agent is a part of the DataList. The algorithm remains unchanged, though

there are two points worth noting. First, the observed data in DataList needs to be

grouped by the agents they belong to. The reason is that in the abstraction data

generated, if the data from each agent is grouped together, then the portion of the

abstraction can be isolated from the rest and request from the agent as one entity

regardless of the rest of the abstraction. For example, suppose we have four agents,

A1, . . . , A4. Each of them have five pieces of data. A valid abstraction generated for

agent A4 would be (D1∧D2)∨(6 D7∧D9)∧(D13∨D15), while D1∧D2∨D7∧D5∨D15∧D9

is not valid. For the same reason, I bring up the second point. When calculating the

confidence given the currentLeaf, the data along the path are grouped together by

parentheses according to the agents they belong, like the example I have just shown.

There are two ways for an agent to request a piece of abstraction that consists

of data from multiple agents. In the first approach, requesting the abstraction is

seen as a single action. The agent breaks the abstraction down to parts belonging

to different agents and sends a request message to all the neighbors whose data is a

part of the abstraction. The neighbors then send their part of the abstraction back as

response to the request. The cost of this REQUEST action includes the cost for all

the request messages and that of every response message. I call this approach single

request approach.

In the second approach, requesting the abstraction that involves multiple agents is

seen as multiple actions. I call it multiple request approach. In the previous example,

agent A4 is requesting the abstraction (D1 ∧ D2) ∨ (6 D7 ∧ D9) ∧ (D13 ∨ D15) from

the other agents. In the single request approach, A4 will request (D1 ∧D2) from A1,

(6 D7 ∧ D9) from A2, and (D13 ∨ D15) from A3 simultaneously, and it is seen as one

75

0

5

10

15

20

25

60% 65% 70% 75% 80% 85% 90% 95% 100%
Required confidence levelM

in
im

um
 e

xp
ec

te
d

co
m

m
un

ic
at

io
n

co
st

Single request approach Multiple request approach
Hierarchical request approach

Figure 3.5. A comparison of the minimum expected communication cost given
different abstraction action request approaches

single action in the DEC-MDP. In contrast, the multiple approach will see them as

three separate actions in the planning space. The difference is that in the multiple

request approach, A4 can choose to only request part of the abstraction at one time

and request the other parts at a later time or even never again. The reason why the

multiple request approach may generate plans with lower expected communication

cost is that sometimes it may be beneficial to only acquire part of the abstraction

instead of the entire abstraction all at once. There are two situations that this is the

case. First, acquiring part of the abstraction may be enough for the agent to deduce

the value of the entire abstraction and therefore there is no need to acquire the rest.

In the second situation, even though the acquired part does not tell the value of the

entire abstraction, it does give enough information such that acquiring or sending

information other than the rest of the abstraction has a higher expected value than

immediately acquiring the rest of the abstraction.

I ran experiments on 50 problem structures with 3 agents. Each agent has 1

local high level event and 5 observed data. All of the networks were fully connected.

The corresponding curves in Figure 3.5 show a comparison of the minimum expected

communication cost generated by the single request approach and the multiple request

76

required
confidence (a) (b) (c) (d)

60% 4.12% 1.82% 1.21 1.01
65% 6.92% 3.24% 1.61 1.02
70% 11.75% 4.21% 1.78 1.01
75% 13.42% 5.71% 1.84 1.01
80% 11.01% 6.15% 1.89 1.02
85% 10.55% 4.72% 1.81 1.02
90% 5.19% 3.76% 1.75 1.01
95% 5.04% 1.51% 1.59 1.01
100% 2.53% 1.36% 1.23 1.01

Table 3.3. Performance compared to single request approach for transferring ab-
straction data that may span multiple agents in a 3-15 network. (a) Expected com-
munication cost improvement of multiple request approach. (b) Expected communi-
cation cost improvement of hierarchical request approach. (c) Time needed to solve
the DEC-MDP for multiple request approach normalized by that for single request
approach. (d) Time needed to solve the DEC-MDP for hierarchical request approach
normalized by that for single request approach.

approach. Column (a) in Table 3.3 shows the percent improvement in the expected

communication cost when using multiple request approach over the single request

approach. Column (c) shows the average time the multiple request approach needed

to solve the DEC-MDP normalized by the time needed for the single request approach.

As shown, the multiple request approach has a noticeable improvement over the single

request approach. However, since the action space action space of the multiple request

approach is considerably larger than that of the single request approach, it takes

significantly longer time to solve.

The next approach I introduce, i.e., the hierarchical request approach, finds a mid-

dle ground between the previous two approaches. Like in the single request approach,

when first solving the DEC-MDP, the abstraction request action is seen as one single

action. However, when an agent needs to execute the abstraction request action, it

breaks it down to multiple actions, just like in the multiple request approach. A

small MDP with the new request actions as its action space is then solved to decide

77

whether and in what order to request the individual parts of the abstraction from

their sources. Since the hierarchical request approach does not allow transferring

other data between transferring different parts of the same abstraction, it does not

account for the second situation where multiple request approach is more advanta-

geous than the single request approach. However, it does take the first situation into

account and combines the strengths of both approaches together. Figure 3.5 and

Table 3.3 (b) show that while it does not perform as well as the multiple request

approach, it outperforms the single request approach in terms of the expected min-

imum communication cost achieved. On the other hand, Table 3.3 (d) shows that

the hierarchical request approach takes only slightly longer than the single request

approach to solve the DEC-MDP and that it is much faster than the multiple request

approach.

3.5 Conclusions

In this chapter I investigated the techniques of transferring abstraction data in

addition to observed data in Distributed Bayesian Networks to reduce the required

communication cost. I introduced an algorithm that automatically generates appro-

priate abstraction data that facilitates the achievement of the required confidence

level and reduces the necessary communication cost. I also discussed approaches

to incorporate the new abstraction data into the DEC-MDP framework effectively.

Both the improvement in the minimum expected communication cost and the time

savings in solving the DEC-MDP make the hierarchical action selection an attrac-

tive approach, especially for the systems which require a mid-ranged confidence level.

I further extended the different action selection approaches to larger networks and

multiple abstraction layers. The hierarchical action selection approach was shown to

be able to solve problems with larger networks than the other approaches. When ex-

tending the problems to more than two agents, different ways to transfer abstractions

78

that span multiple agents were examined along with their advantages and disadvan-

tages. The hierarchical request approach proves to be a reasonable tradeoff between

the solution quality and time needed to solve the problem.

This work allows us to look at the use of abstraction to reduce communication

cost from a formal perspective. The hierarchical action selection approach defines

when and how the abstraction data and the observed data should be transferred in

the communication process. The addition of transferring abstraction data to the

communication actions can be extended to reduce the communication cost of other

Cooperative Distributed Problem Solving (CDPS) applications as well. Though the

algorithm that I used to generate the abstraction data is specific to the DBN used

to represent the DI problems, given a CDPS problem with specific semantics, there

often is abstraction data that can be generated and used to transfer information more

efficiently. The hierarchical action selection approach then can be used to incorporate

this abstraction data to further minimize the communication cost.

I predict that the savings of the hierarchical action selection approach shown in this

paper will be more significant for larger networks. The influence of different depths

of LogicTree in Algorithm 5 on the system performance will also be investigated.

In this work, I looked at one particular type of abstraction. There are other forms of

abstraction that can be potentially useful. For example, some abstraction data may

contain useful information but is not sufficient to reach the confidence by itself. Other

abstraction may be an intermediate interpretation result that can be incorporated into

the local data. I plan to look into these different types of abstraction in future work. I

also intend to investigate other techniques in generating multiple layers of abstraction

data, such as different levels of intermediate interpretation results.

79

CHAPTER 4

AGENT INTERACTION IN DISTRIBUTED POMDPS
AND ITS IMPLICATIONS ON COMPLEXITY

The objective of this thesis work is to formally study the communication man-

agement in Cooperative Distributed Problem Solving applications. While commu-

nication management remains a key research problem in the Multi-Agent Systems

(MAS) community, the type of communication problem I study is different from pre-

vious research. Though several general decision theoretic models, i.e., distributed

POMDP models, have been proposed [69, 29], most research in this field focuses on

the type of communication that synchronizes the agents’ partial views of the global

state and has a constant message cost, [82, 81, 28, 3]. Very little research has been

done studying transferring only partial observation history between agents. However,

some researchers have studied the case where the agents send their policies or actions

to each other [45, 27]. In a sense, exchanging actions or policies between the agents

accomplishes the same goal as transferring partial observation history. Both of them

change each agent’s belief of the global state and/or the other agent’s local view

of the global state without completely synchronizing the global views. The type of

DEC-MDPs I study in this work deals with general communication where the agents

choose to transfer part of its own observation and the messages have different costs

depending on their sizes and contents. One objective of this chapter is to understand

how my work relates to the rest of the field.

Another difference between the way I model communication in DEC-MDP and

previous study of communication using DEC-MDP framework is that previously com-

munication actions are mostly modeled as special actions that are different from other

80

actions and therefore frameworks were proposed to extend DEC-MDP to explicitly

represent communication actions. In contrast, this work models communication ac-

tions directly with DEC-MDP framework. Though there are several advantages to

explicitly distinguish between communication actions and other types of actions, this

distinction is artificial. Consider the type of actions of an agent that affects the other

agents’ view of the world and their decision making without explicit communication.

Such actions incur interactions among the agents and transfer information without

”communication actions” in the common sense. If we treat both types of interactions

among the agents similarly, then the DEC-MDP framework itself is general enough

to model them both.

Distributed POMDP frameworks assume that the agents have partial or noisy

observations about the current global state, and that communication between the

agents may have a cost. This partial observability of the global state leads to an in-

creased complexity of NEXP-complete [5, 69]. However, two subclasses of distributed

POMDPs have been identified whose complexity is much more tractable than the gen-

eral case. First is the Transition Independent Decentralized MDP (TI-DEC-MDP),

which is a class of distributed POMDPs where the agents interact with each other only

through a global reward function while their local transitions and observations remain

independent [4]. The other class is the TI-DEC-MDP extended with Synchronizing

Communication, in which the agents are allowed to communicate but when they do

they are required to transmit sufficient information such that all agents know the

global state [28, 3]. Both subclasses have been proven to be NP-complete [29, 4].

The relationship between the complexity class of a DEC-MDP and the amount of

interaction (whether explicit or implicit) between agents remains an open question.

If we can identify the type of interaction that allows the DEC-MDP to remain at a

lower complexity class, then it may enable us to design appropriate communication

actions for a more tractable solution.

81

The focus of this chapter is to quantify the characteristics of a class of multi-

agent coordination problems that determines its complexity. The key result is that

the complexity of the problem depends on the amount of important information each

agent has about the other agents, and whether this information can be represented

in a succinct way. Information is important if knowing it could allow the agents to

achieve a higher expected reward, and by succinct I mean that the set of all possible

important information the agents could acquire is polynomial in the number of states.

I prove that this criteria is both sufficient and necessary for the class of problems to

be NP-complete. I illustrate this idea with two examples from the literature and

prove that both have this property.

My goal in this chapter is not to introduce new models or algorithms, but to

change the way people view interactions between agents in the context of distributed

POMDPs. Multi-agent researchers have long intuitively understood that the interac-

tion between the agents is the cause of their high complexity. The theoretical results

of this paper are significant in that they both formally justify this intuition as well

as explain how the interaction affects the complexity. This new understanding of

interaction and its relationship to complexity will help us to identify new classes of

multi-agent systems with a lower complexity.

The significance of this theoretical result also has a more practical side. Most

multi-agent systems are provably harder than NP and solving them optimally is very

difficult. Much work has been put into developing good algorithms for approximat-

ing these problems. This work provides theoretical guidance in understanding how

the approximations in a model limit the search space and reduce the complexity. I

demonstrate this on two problems that do not meet our condition by providing two

approximations that impose additional restrictions on the interactions among the

agents and reduce the complexity to no harder than NP.

82

This chapter first gives an overview of various distributed POMDP models in-

cluding those with explicit communication. I prove the equivalence of these different

models and present the related complexity results. Then I discuss different types of

interactions between agents and present the condition that determines the complex-

ity of a distributed MDP. Two examples of NP-complete interaction protocols are

discussed as well as two examples of how harder problems can be approximated.

4.1 A Review of the Decision Theoretic Models

In the context of single agent control and learning, Markov Decision Processes

(MDPs) have been widely used to model sequential decision making under uncertainty

[68, 7]. The basic idea is to describe the problem as a finite set of distinct states. Each

state is fully observable, i.e., it includes all the necessary information for the agent

to make the best possible decision. The optimal action is the action that maximizes

the agent’s expected cumulative reward. This is a P-Complete problem for both the

finite horizon and the discounted infinite horizon cases [62].

While the MDP can handle a large variety of single agent problems, the Partially

Observable MDP (POMDP) is suitable for situations where the states cannot be

fully observed [55, 48, 15]. The basic idea is that at each step, the agent makes an

observation that changes the belief the agent has about its current state. The agent’s

policy is a mapping from a sequence of observations to an action. This introduces an

exponential increase in the size of the policy, and therefore is a much harder problem

to solve. The finite horizon POMDP is PSPACE-complete [62, 56] and the infinite

horizon case is undecidable [50].

Recently, multi-agent coordination problems have started to receive more atten-

tion from the decision theory community. Traditionally, multi-agent decision prob-

lems are modeled directly using POMDPs by focusing on individual agent’s decision

making and viewing the rest of the agents as a part of the partially observable en-

83

vironment. This approach ignores the fact that all the agents have their own states,

observations and action decisions. Furthermore, the actions of the agents interact

with each other and have impacts on the observations and rewards received by the

other agents. This is very different from the passiveness of an environment. Therefore,

models specifically designed for multi-agent decision problems are needed.

The first decision theoretic model that explicitly represent multiple agents is the

Multi-agent Markov Decision Process (MMDP) [8]. It is a centralized multi-agent

extension of an MDP. The only change is to factor the action space into actions for

each agent. Each agent observes the global state directly and takes an joint action.

The MMDP is equivalent to the MDP, and therefore it has the same polynomial

complexity. However the action space of the MMDP is exponential in the num-

ber of agents. Other researchers have also used this view of multi-agent systems.

Guestrin et al. focused on the interactions between agents through the reward focus

and their observation model resembles the full observability of the MMDP [30, 31].

Ghavamzadeh and Mahadevan [26] developed a reinforcement learning algorithm for

the fully observable multi-agent setting.

The major disadvantage of the MMDP model is that it assumes that the agents can

fully observe the global state. This assumption is often not the case for multi-agent

systems. Instead, each agent often has a different partial view of the environment.

Only when each agent can freely communicate its observations with every other agent

at every time step can most multi-agent systems be mapped into an MMDP. Xuan

and Lesser [81] proposes a decentralized extension to the MDP, in which an agent

has its local state in addition to the global state. When an agent has ambiguity over

which action it should take based on its local state, it needs to communicate with

the other agent to synchronize the global view. As a variation, Ooi and Wornell [59]

studied the case where all the agents synchronize their views of the global state every

k time steps. The dynamic programming algorithm developed for such a system is

84

doubly exponential in terms of k. Hsu and Marcus [36] introduced a more tractable

algorithm but assumed that the agents share state information every time step. The

common problem with these models is that they all require the agents to share state

information periodically without considering the communication cost associated with

such state synchronization.

Several more general multi-agent decision theoretic models have been indepen-

dently developed to overcome this problem, among which are the Partially Observ-

able Identical Payoff Stochastic Game (POIPSG) [66] and Decentralized Partially

Observable Markov Decision Processes (DEC-POMDP) [5]. These models explicitly

represent the partial observability of the world state for each agent. Take DEC-

POMDP for example. Like the MMDP, the action space is factored into actions for

each agent. Moreover, the observations are factored into separate observations for

each agent as well, and each agent observes only a potentially different part of the

global state. This is a key difference between POMDP and DEC-POMDP and leads

to the increased complexity class of the DEC-POMDP. In the DEC-POMDP, each

agent maintains the belief about the current global state just as in the POMDP case.

Additionally, it also maintains the belief about the beliefs of the other agents in the

system. This belief of beliefs gives the problem a complexity of NEXP-complete [5].

Similar to the fact that a POMDP can be reduced to an equivalent MDP with an

exponential increase in the state space, a DEC-POMDP can be reduced to an MDP

with a doubly exponential increase in the state space.

Bernstein et al. also formalized a variation of the DEC-POMDP known as the

Decentralized Markov Decision Process (DEC-MDP) [5]. The difference between the

two models is whether the system has joint full observability (as in DEC-MDP) or joint

partial observability (as in DEC-POMDP), i.e., whether combining the observations

of all the agents can fully determine the current global state. This distinction turns

out to be fairly minor. One can convert a DEC-MDP to an equivalent DEC-POMDP

85

by adding a random variable to every state that no agent observes, but that does

not have any effect on the problem. This makes the problem now only joint partially

observable. Similarly, one can convert an arbitrary DEC-POMDP into an equivalent

DEC-MDP by adding an all-seeing agent that observes everything and does nothing.

This means that these two models are equivalent to each other, and for the rest of

the proposal, I will only discuss in terms of DEC-MDP.

The formal definition of DEC-MDP was given in Chapter 2. It is repeated here

for ease of reference.

Definition 11 (adapted from [5]). A decentralized MDP is a tuple

〈S, Ai, Aj, P, R, Ω1, Ω2, O〉, where

• S is a finite set of global states, with distinguished initial state s0.

• A = Ai ×Aj is a finite set of joint actions. Ai are the local actions for agent i.

• P : S × A × S → < is the transition function. P (s′|s, ai, aj) is the probability

of the outcome state s′ when the joint action (ai, aj) is taken in state s.

• R : S×A×S → < is the reward function. R(s, ai, aj, s
′) is the reward obtained

from taking joint action (ai, aj) in state s and transitioning to state s′.

• Ω = Ωi × Ωj is a finite set of joint observations. Ωi is the set of observations

for agent i.

• O : S × A× S × Ω → < is the observation function. O(s, ai, aj, s
′, oi, oj) is the

probability of agents i and j seeing observations oi and oj after the sequence s,

(ai, aj), s′ occurs.

• Joint full observability: the pair of observations made by the agents together fully

determine the current state. If O(s, ai, aj, s
′, oi, oj) > 0 then P (s′|oi, oj) = 1.

86

Definition 12. A local policy πi : Ωi → Ai for agent Ai is a mapping from local

histories of observations oi to actions in Ai. A joint policy π = 〈π1, π2〉 is a pair of

local policies, one for each agent. The goal for a DEC-MDP is to find a joint policy

π = 〈πi, πj〉 that maximizes the expected value.

The basic idea of the definition is that the state, now known as the global state,

encompasses all of the necessary information about the state of each agent (local

state) and the environment. Each agent has its own set of actions it takes and

observations it makes. The transition function is from world states to world states

given the actions taken by each agent, the joint action. Bernstein et al. proved the

following complexity result:

Theorem 6 ([5]). Deciding a DEC-MDP is NEXP-complete.

The reason that the DEC-MDP is harder than the POMDP is that the agents are

all receiving different observations, and only together could they identify the current

global state. To predict what action agent i will take requires agent j to maintain not

only a belief about the global state (similar to a POMDP) but also a belief about the

belief agent i has. Interactions between the agents are built into the transition and

observation functions. The likelihood that agent i will see a particular observation

depends directly on the actions of both agents as well as the new global state, which

in turn depends on the actions of both agents.

The DEC-MDP stops there in its definition. However, two formal models have

been proposed to explicitly represent another form of interaction, explicit commu-

nication, between agents: COM-MTDP [69] and DEC-MDP-Com [28]. They make

explicit distinction between a domain level action and an explicit communication ac-

tion. Here I give a formal definition of DEC-MDP-Com because it uses the same

notation system as DEC-MDP introduced before and COM-MTDP is equivalent to

DEC-MDP-Com.

87

Definition 13 (adapted from [29]). A DEC-MDP-Com is a tuple: 〈S, A, Σ, CΣ, P, R, Ω, O〉,

where:

• S is a finite set of global states, with a distinguished initial state s0.

• A = Ai ×Aj is a finite set of joint actions. Ai are the local actions for agent i.

• Σ = Σi × Σj is the alphabet of messages. σi ∈ Σi denotes an atomic message

sent by agent i. σi is a sequence of atomic messages sent by agent i. εσ ∈ Σi

denotes not sending a message to the other agent.

• CΣ → < is the cost of transmitting an atomic message.

• P : S × A× S → < is the transition function.

P (s′|s, ai, aj) is the probability of the outcome state s′ when the joint action

(ai, aj) is taken in state s.

• R : S×A×S → < is the reward function. R(s, ai, aj, s
′) is the reward obtained

from taking joint action (ai, aj) in state s and transitioning to state s′.

• Ω = Ωi × Ωj is a finite set of joint observations. Ωi is the set of observations

for agent i.

• O : S × A× S × Ω → < is the observation function. O(s, ai, aj, s
′, oi, oj) is the

probability of agents i and j seeing observations oi and oj after the sequence s,

(ai, aj), s′ occurs.

• Joint full observability: the pair of observations made by the agents together fully

determine the current state. If O(s, ai, aj, s
′, oi, oj) > 0 then P (s′|oi, oj) = 1.

The policy for an agent is a mapping from all of the available information to a

domain action and a communication action. Even though the global state is Markov,

the agents base their decisions on the history of observations just like in a POMDP.

88

However, if the agents ever communicate such that they both know the global state,

i.e., they exchange their most recent observation, then they do not need to remember

the prior history due to the Markov property. In effect, this synchronization resets

the problem but with a new starting state.

Definition 14. The local policy for agent i, πi, is a mapping from the history of

observations Ωi, the history of messages sent Σi, and the history of messages received

Σj since the last synchronized world state S to a domain action and a communication

action.

πi : S × Ωi × Σi × Σj → Ai × Σi.

The goal for a DEC-MDP-Com is to find a joint policy π = 〈πi, πj〉 that maximizes

the expected value.

Definition 14 is different from the original definitions of the local policies of a DEC-

MDP-Com in [28, 29]. The policies defined here are a mapping from the complete

message exchange history, which includes the messages sent as well as those received,

instead of from only the messages received.

An important question is whether or not the communication explicitly represented

in the DEC-MDP-Com increases the expressiveness of the model. It turns out that

it does not – the communication actions are just special types of domain actions and

the message received are just special types of observations.

Theorem 7. DEC-MDP-Com is equivalent to DEC-MDP.

Proof.

• DEC-MDP ≤p DEC-MDP-Com.

This reduction is trivial. To any DEC-MDP, we add Σ = CΣ = ∅ and we get an

equivalent DEC-MDP-Com.

• DEC-MDP-Com ≤p DEC-MDP.

89

We reduce a DEC-MDP-Com 〈S, A, Σ, CΣ, P, R, Ω, O〉 to an equivalent DEC-MDP

〈Ŝ, Â, P̂ , R̂, Ω̂, Ô〉.

The basic idea is to introduce the two step process of the DEC-MDP-Com into

the DEC-MDP by doubling the state space: Ŝ = S × {0, 1}. The states ŝ = [s, 0]

are for taking domain actions Ai and receiving observations Ωi. The states ŝ = [s, 1]

are for taking communication actions Σi and receiving communications Σj. The total

space of actions is therefore Âi = Ai ∪ Σi. The observations that agent i receives

include both the messages sent by agent i and the messages received from agent j,

i.e., Ω̂i = Ωi×Σi×Σj. When taking domain actions nothing changes in the functions

P̂ , R̂ and Ô:

P̂ ([s, 0], a1, a2, [s
′, 1]) = P (s, a1, a2, s

′).

R̂([s, 0], a1, a2, [s
′, 1]) = R(s, a1, a2, s

′).

Ô([s, 0], a1, a2, [s
′, 1], o1, o2) = O(s, a1, a2, s

′, o1, o2).

When taking the communication actions, they do change:

P̂ ([s, 1], σ1, σ2, [s, 0]) = 1.

R̂([s, 1], σ1, σ2, [s, 0]) = CΣ(σ1) + CΣ(σ2).

Ô([s, 1], σ1, σ2, [s, 0], σ1σ2, σ2σ1) = 1.

Therefore, the DEC-MDP-Com is equivalent to the DEC-MDP.

Theorem 7 states that DEC-MDP-Com and DEC-MDP have the same expressive-

ness. However, the distinction between the communication actions and the domain

actions can be very useful, as I will show in the next section.

90

4.2 Polynomially Encodable Interactions

The DEC-MDP-Com and related models allow for a very general form of inter-

action between the agents. The complexity for those problems has been proven to

be NEXP-complete [5, 29]. At the other end of the spectrum would be to disallow

all interactions between the agents. In effect, each agent would be independently

solving a local MDP that represents its part of the system. MDPs are P-complete,

so there is something about the interactions between the agents which is the cause of

the complexity. As additional evidence, Becker et al [4] defined a class of multi-agent

problems in which the agents were almost completely independent. Each agent had

a local MDP that described its part of the system. The agents could not communi-

cate in any way nor could they take an action that would influence another agent.

However, the system received a reward that depended on the local states and actions

of all of the agents, and the goal was to find a joint policy that maximized the sum

of the expected local and global rewards. This class of problems in which the agents

can only interact through the reward function proved to be NP-complete. Goldman

and Zilberstein [29] also showed that by following certain communication protocols

the agents from the previous example could communicate with each other and the

problem remained at NP-complete.

This section will examine different types of interactions between agents and pro-

vide theoretical results to explain how and why the interactions affect the complexity

of finding optimal solutions. The next section will elaborate on the two NP-complete

examples introduced above and prove that they meet this condition.

I classify the actions agents can take into two groups: non-interacting (or indepen-

dent) actions and interacting (or dependent) actions. Independent actions are those

that do not affect the other agent and neither agent receives any information about

the other. Dependent actions are those that affect the other agent in some way. For

example, robot i could pick up robot j and move it, which would affect the local

91

Figure 4.1. The token collecting example

state of robot j. Communication is another example: agent i could send a message

to agent j, which would change the knowledge agent j has. We can further subdi-

vide dependent actions into explicit and implicit communication. Normally when one

thinks about communication, i.e., sending a message, one is talking about explicit

communication. This is the communication part of the DEC-MDP-Com. Implicit

communication is the information an agent receives by a domain action, like the ex-

ample of a robot picking up and moving another robot. The robot being picked up

gains information about the local state and belief of the other robot through interac-

tion with it, namely the location of the other robot and the fact that the other robot

felt this was a useful action to take.

I will illustrate these interactions with a token collecting example (Figure 4.1).

There is a n × n grid world, which is populated by two agents and a number of

tokens. The agents can observe their own locations and the locations of the tokens.

When an agent picks up a token, the system gets a positive reward. The goal of the

system is to maximize the total reward within time T . This problem can be modeled

as a DEC-MDP. The world state includes the locations of both agents, the locations

of the tokens and the time left. The agents’ observations at each time step include the

agents’ own location, the location of the tokens, and the time left. At every time step,

92

each agent can either move to an adjacent square or pick up a token at its current

location. If an agent moves, its action does not affect the other agent’s observations,

and therefore the movement actions are independent actions. However, if agent i picks

up a token, agent j can observe the fact that one of the tokens just disappeared. By

comparing its current observation and the observation at the last time step, agent j

can infer the exact location of agent i and therefore has the complete knowledge of

the current world state. As a result, the token collecting action is a dependent action

even though there is no explicit communication in the system.

I defined a dependent action as an action that affects the observations of the other

agent and therefore changes its belief about the global state. If a dependent action is

explicitly modeled in a transition and observation independent DEC-MDP-Com, its

effect is recorded by the communication action σi itself. On the other hand, if it is

not explicitly modeled in a DEC-MDP-Com, its effect is recorded by the observations

of the agents. The observation history Ωi records the interaction history of agent i

in the DEC-MDP, including all the actions taken, i.e., A. Consequently, in a DEC-

MDP-Com where there are communication actions explicitly modeled, the interaction

history of agent i is Ωi × Σi × Σj.

Definition 15. I call Ei an encoding of the interaction history of agent i, if a joint

policy π̃ = 〈π̃1, π̃2〉 is sufficient to maximize the global value, where π̃i is of the form

S × Ei → Ai × Σi for a DEC-MDP-Com, or of the form Ei → Ai for a DEC-MDP.

The encoding represents removing all elements from the interaction history that

are unnecessary to generate an optimal policy. Please note that the encoding at

any time in the history needs to be able to incorporate the information contained in

the encoding of the previous moment plus the new observation at the current time.

The important characteristic is the size of the smallest encoding. The interaction

history is normally considered to be exponential in |S| because the length of the

93

observation sequence is O(|S|). In some problems, however, the smallest encoding is

only polynomial in |S|.

Definition 16. The interaction history of a subclass of DEC-MDP/ DEC-MDP-

Com is polynomially encodable if there exists an encoding Ei for each interaction

history Ωi and a constant ci, such that |Ei| = O(|S|ci).

The criteria that determines the complexity of a multi-agent system is whether

the interaction history can be polynomially encoded. If it can, then the problem is

in NP. If it cannot be polynomially encoded, then it is provably harder than NP.

The following two theorems prove this relationship between the encoding and the

complexity.

Theorem 8. Deciding a polynomially encodable DEC-MDP/DEC-MDP-Com is NP-

complete.

Proof. Here I prove the DEC-MDP case, the DEC-MDP-Com is essentially the same.

To prove NP-completeness, I (1) provide a polynomial time verifier and (2) show

a reduction from an NP-Complete problem to this one.

(1) A joint policy in a DEC-MDP can be evaluated by representing it as a belief

state graph. Each node in the graph is composed of the state, the sequence of ob-

servations for agent i and for agent j. Each node has a single joint action, which is

defined by the joint policy. The transitions between the nodes depends only on the

transition and observation functions, and each transition has a reward defined by the

reward function. The belief state graph can be evaluated using the standard MDP

recursive value function and policy evaluation, which runs in time polynomial in the

size of the graph. For a DEC-MDP, this size is |S|× |Ωi|T ×|Ωj|T , where T = O(|S|).

However, since there exists a polynomial encoding Ei for each observation sequence

Ωi, the size of the graph is only |S| × |Ei| × |Ej| and the policy evaluation takes

94

O((|S|ci+cj+1)c), which is polynomial in the size of the state space for constants ci, cj

and c.

(2) To prove the lower bound I will reduce the NP-complete problem DTEAM

[60, 61] to this problem. DTEAM is a single-step discrete team decision problem

with two agents. Agent i observes a random integer ki, 1 ≤ ki ≤ N , and takes

an action γi(ki) ∈ {1, ... , M}. Their actions incur cost c(ki, kj, γi(ki), γj(kj)). The

problem is to find policies γi and γj that minimize the expected cost:

N∑
ki=1

N∑
kj=1

c(ki, kj, γi(ki), γj(kj)).

The reduction is quite straightforward. In the initial state, the agents take a null

action and transition to one of N2 intermediate states that correspond to the random

integers ki and kj. Agent i observes ki and takes its action to reach the final state.

The reward is negative the cost, R(·) = −c(·). The size of the observation sequence

|Ωi| = N = O(|S|) is polynomial in the size of the state space.

Given the polynomial time verifier and the reduction, a DEC-MDP with a poly-

nomially encodable interaction history is NP-complete.

Theorem 9. Deciding a non-polynomially encodable DEC-MDP/DEC-MDP-Com is

harder than NP.

Proof. I prove this by contradiction. Assume that an arbitrary DEC-MDP without

a polynomial encoding is in NP. This means that there exists a polynomial time

verifier for any policy in the DEC-MDP. If a policy can be verified in polynomial time

then it must have a polynomial sized representation. Since a policy is a mapping

from Ei → Ai, this polynomial sized representation is the encoding of the interaction

history. Contradiction. Therefore, the DEC-MDP without a polynomial encoding is

not in NP.

The proof for DEC-MDP-Com is similar.

95

P-complete

NP-complete

NP-complete

NP-complete

NEXP-complete

Figure 4.2. The relationships and complexity between various distributed MDP
models.

Figure 4.2 illustrates the relationship and complexity between the models dis-

cussed in this paper. Polynomially Encodable interaction histories are an NP-complete

subset of DEC-MDPs. Other models, like the synchronizing communication are NP-

complete subsets of polynomially encodable problems. No interaction between the

agents is a P-complete class of problems.

4.3 Examples of Protocols

In this section, I present two interaction protocols known to be NP-complete, and

demonstrate how to prove the existence of a polynomial encodings.

4.3.1 Reward Dependence

The first example is a DEC-MDP in which the agents are mostly independent of

each other. All of their actions are independent actions. The dependence between

the agents comes from the reward function which depends on the world state and

joint action. Becker et al. [4] formally defined this class of problems as a Transition

Independent DEC-MDP (TI-DEC-MDP). It is a DEC-MDP with a factored state

space, which means that there is a local state for each agent and the global state is

the product of all of the local states, S = Si×Sj. The transition from one local state

to the next depends only on the actions of that agent. Similarly, the observations

96

of agent i depends only on i’s local states and actions. We call these properties

transition and observation independent.

Definition 17 ([4]). A factored DEC-MDP is said to be transition independent

if the new local state of each agent depends only on its previous local state and the

action taken by that agent:

P (s′i|(si, sj), (ai, aj), s
′
j) = Pi(s

′
i|si, ai).

Definition 18 ([4]). A factored DEC-MDP is said to be observation independent

if the observation an agent sees depends only on that agent’s current and next local

state and current action: ∀oi ∈ Ωi

P (oi|(si, sj), (ai, aj), (s
′
i, s

′
j), oj) = P (oi|si, ai, s

′
i).

At each step each agent fully observes its local state, and observes no information

about the local state of the other agent.

Definition 19 ([4]). A factored DEC-MDP is said to be locally fully observable if

each agent fully observes its own local state at each step., i.e., ∀oi ∃si : P (si|oi) = 1.

The interaction history of the DEC-MDP is the sequence of local observations,

which in this problem translates into the sequence of local states. However, due to

the limited interaction, the most recent local state and the time step is sufficient to

maximize the global value. Proving that this encoding is sufficient is the primary

component in proving that this class of problems is polynomially encodable.

Theorem 10. The interaction history of a DEC-MDP with independent transitions

and independent observations is polynomially encodable.

97

Proof. The interaction history of a transition independent and observation indepen-

dent DEC-MDP is a sequence of local states si with an upper bound on the length

being T = O(|S|). I will prove that there exists an encoding of the interaction his-

tory composed of the last state in the sequence and the length of the sequence. This

encoding Ei = Si × T is polynomial: |Si × T | = O(|S|2).

The Q value of the belief state graph (see Theorem 8) is the Q value of taking

the given action in the current state sequence and then following the given optimal

policy π∗ = 〈π∗
1, π

∗
2〉, where π∗

i : Si → Ai.

Qπ∗(s1s1, s2s2, a1a2) =
∑
s′1s′2

P (s′1s
′
2|s1s1, s2s2, a1a2)×

[R(s1s1, s2s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)].

If for all possible histories s′1, s
′
2 of length T that led to the current state, the Q

value is the same, then the history of states is irrelevant and can be replaced in the

policy by just the length of the sequence T.

To prove Qπ∗(s1s1, s2s2, a1a2) = Qπ∗(s′1s1, s
′
2s2, a1a2), I have to show three things:

1. P (s′1s
′
2|s1s1, s2s2, a1a2) = P (s′1s

′
2|s′1s1, s

′
2s2, a1a2).

From the definition of Markov,

P (s′1s
′
2|s1s1, s2s2, a1a2) = P (s′1s

′
2|s1s2, a1a2). (4.1)

2. R(s1s1, s2s2, a1a2, s
′
1s

′
2) = R(s′1s1, s

′
2s2, a1a2, s

′
1s

′
2).

From the definition of reward,

R(s1s1, s2s2, a1a2, s
′
1s

′
2) = R(s1s2, a1a2, s

′
1s

′
2). (4.2)

3. Vπ∗(s1s1s
′
1, s2s2s

′
2) = Vπ∗(s′1s1s

′
1, s

′
2s2s

′
2)

98

I show Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2) by induction.

Base case: s1 and s2 are final states and their values are always zero. Vπ∗(s1s1, s2s2) =

0, Vπ∗(s′1s1, s
′
2s2) = 0.

Inductive case: We assume it is true for

Vπ∗(s1s1s
′
1, s2s2s

′
2) = Vπ∗(s′1s1s

′
1, s

′
2s2s

′
2), (4.3)

I need to show that it is true for

Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2).

The value function is very similar to the Q function, except the current action is

chosen from the policy.

Vπ∗(s1s1, s2s2)

=
∑
s′1s′2

P (s′1s
′
2|s1s1, s2s2, a1a2)×

[R(s1s1, s2s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)]

(4.1),(4.2)
=

∑
s′1s′2

P (s′1s
′
2|s1s2, a1a2)×

[R(s1s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)]

(4.1),(4.2),(4.3)
=

∑
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a1a2)×

[R(s′1s1, s
′
2s2, a1a2, s

′
1s

′
2) + γVπ∗(s′1s1s

′
1, s

′
2s2s

′
2)]

Since a′
1 and a′

2 are optimal actions, we have:

∑
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a1a2)[R(s′1s1, s

′
2s2, a1a2, s

′
1s

′
2)

+γVπ∗(s′1s1s
′
1, s

′
2s2s

′
2)]

99

≤
∑
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a

′
1a

′
2)[R(s′1s1, s

′
2s2, a

′
1a

′
2, s

′
1s

′
2)

+γVπ∗(s′1s1s
′
1, s

′
2s2s

′
2)]

= Vπ∗(s′1s1, s
′
2s2)

As a result, we have Vπ∗(s1s1, s2s2) ≤ Vπ∗(s′1s1, s
′
2s2). Due to symmetry, we can also

show that Vπ∗(s′1s1, s
′
2s2) ≤

Vπ∗(s1s1, s2s2). Therefore Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2).

Since the value of taking a joint action while following the optimal policy does

not depend on the history, the same joint action is optimal for all histories and the

policy need not include it. The interaction history can be summarized by the current

state and time.

Theorem 10 implies that a DEC-MDP with independent transitions and observa-

tions can be decomposed into two independent MDPs, with local states only affected

by the local actions. The policies are standard policies for MDPs with the addition

of time, and the goal is to maximize the expected reward received from a global value

function.

4.3.2 Synchronizing Communication

In the DEC-MDP with independent transitions and observations presented above,

the agents interact only through reward function. This highly restricted form of inter-

action does not reveal any information about other agent’s local state or observations.

In this section, I look at a less restricted form of interaction, which I call synchro-

nizing communication. I will define it in the context of DEC-MDP-Com, since

the explicit modeling of communication allows it to remain distinct from the domain

actions.

Definition 20. A communication protocol is said to be a synchronizing commu-

nication protocol if whenever any agent communicates, all agents send sufficient

100

information to all other agents to unify their world views. Such an exchange is viewed

as a single communication action with a single cost, even though there are potentially

many messages sent.

In a DEC-MDP-Com with a synchronizing communication protocol, whenever

there is communication, each agent has the same view of the world. Since the world

state is jointly fully observable, each agent has a complete view of the world state,

and knows that the other agent has a complete view as well. The DEC-MDP-Com is

essentially reset to an identical problem with a different start state, and the agents are

safe to forget their past observation histories and communication histories. The com-

munication actions essentially divide the DEC-MDP-Com into individual episodes,

each of which is a DEC-MDP with no communication actions. The length of each

episode varies depending on when it is optimal to communicate.

There are many applications in which synchronizing communication is an appro-

priate protocol. In certain problems, the communication setup cost is so high that

it does not matter how much actual information is transferred. In other systems,

the minimum packet size sent over the network may be larger than the messages

the agents send, giving them a constant cost per message. For applications such as

these, the amount of information contained in each message does not change its cost.

A communication protocol is said to have constant cost if all the communication

actions have the same cost. Specifically, a synchronizing communication action has

the same cost as any other communication actions, no matter how many messages are

actually exchanged to synchronize their partial views of the world state. Goldman

and Zilberstein [29] proved that given a DEC-MDP-Com with constant communi-

cation cost, there is an optimal communication policy such that whenever there is

communication, the agents exchange their last observations. Since a DEC-MDP-Com

is jointly fully observable, when the agents exchange their last observations, they syn-

chronize their views of the global state. As a result, if a DEC-MDP-Com has constant

101

communication cost, there is an optimal communication policy such that whenever

there is communication between the agents, it is synchronizing communication.

The second example of a polynomially encodable interaction protocol is the syn-

chronizing communication in a DEC-MDP-Com with independent transitions and

observations and a constant communication cost. This protocol has been studied in

other work [29, 3].

Theorem 11. The interaction history of a DEC-MDP-Com with independent tran-

sitions and observations and constant communication cost is polynomially encodable.

Proof. From Definition 14, a local policy for a DEC-MDP-Com is of the form πi :

S×Ωi×Σi×Σj → Ai×Σi, where S is the last synchronized state, and Ωi, Σi and Σj

are the observation history and communication history since S. Since the DEC-MDP-

Com has a constant communication cost, a synchronizing communication protocol is

optimal. As a result, whenever there is communication the last synchronized global

state S is updated to the newly synchronized state, and Ωi is set to ∅. When there

is no communication, the observation is appended to Ωi. Neither Σi nor Σj are

used. Therefore, between communications the DEC-MDP-Com is equivalent to a

DEC-MDP with independent transitions and observations, which is polynomially

encodable (from Theorem 10). Since the interaction history between communications

is polynomially encodable and communication resets the interaction history to ∅, the

problem is polynomially encodable.

Even though a DEC-MDP-Com with independent transitions and observations

and constant communication cost has considerably more communication than a DEC-

MDP with only reward dependence, Theorem 11 shows that its interaction protocol

is still polynomially encodable, and therefore it remains in NP.

102

4.4 Examples of Approximations

For applications where communication cost is constant, one can find an optimal

policy that periodically synchronizes the world views of the agents. However, there

are many other applications where the cost of message depends on its contents, and

it may be beneficial to send less information than would synchronize the agents’

world views. Unfortunately, most such interactions do not seem to be polynomially

encodable because each piece of information changes an agent’s belief about the local

state of the other agent. A good guideline is that an agent needs to keep track of both

the other agent’s local state as well as the other agent’s knowledge. However, we may

still be able to design approximate encodings that are polynomial for such problems.

The purpose of these encodings is to put extra restrictions on the interactions so that

the complexity of approximating the optimal policy is reduced to at most NP. In this

section, I show two examples of such approximations.

4.4.1 Constant Horizon

Consider the token collecting example. While there is no explicit communication

between the agents, both of the agents observe the location of all available tokens.

When agent i picks up a token at time t, agent j observes the fact that a token

disappeared and can infer the location of agent i. With this observation, agent j

knows the global state but agent i does not, so the interaction is not synchronizing

but what I call asymmetric synchronizing. Asymmetric synchronization is where an

agent either gains no information about the other agent’s local state or complete

information, giving it a belief of 1.0 about the current global state. The difference

between synchronization and asymmetric synchronization is in the asymmetric case

the agents do not necessarily both synchronize at the same time.

This difference precludes a polynomial encoding. In the token collecting example

when agent i picks up a token both agents i and j know that i picked it up as well

103

as both know the other knows, and so on. Agent i, then, must keep track of the

information j has collected about i to best predict what j will do at least until j

picks up a token itself and i learns where j is located. Remembering this sequence of

information is exponential in the size of the state space in the worst case.

While the problem itself is harder than NP, it can be approximated by making

assumptions that allow the interaction history to be polynomially encoded. For ex-

ample, instead of keeping track of the entire history of interaction, one could assume

that the last c interactions, for some constant c, was sufficient. The interaction his-

tory is now of size |S|c, which is polynomial in the size of the state space. In the token

collecting example this could correspond to agent i remembering the last 5 tokens it

collected.

4.4.2 Flat Representation

Now let us look at the communication optimization problem in a Distributed Sen-

sor Interpretation (DSI) system as studied in this thesis. I modeled this problem

with a DEC-MDP where every action is explicit communication. Instead of explicitly

modeling it as Σ in a DEC-MDP-Com, these actions are implicitly modeled in the

DEC-MDP framework itself. The observation history Ω records the interaction his-

tory of the system. Since every observation at every time step is needed to calculate

the confidence level achieved, it is necessary for the agents to remember all the data

values transferred between the agents in the past. Furthermore, remembering the

order in which the data are exchanged is valuable because it carries useful informa-

tion. An agent can infer why the other agent chose to transfer this piece of data

before the other piece. Therefore, remembering the entire Ω is essential to generat-

ing the optimal policy. We write the number of local sensor data as n, and assume

that each sensor data has at most m possible values. As a result, |S| = mn, and

104

|Ω| = O(n! ·mn) = O(nn) = O(|S|log2 n). Since n is not independent of |S|, Ω is not

polynomially encodable and therefore the DEC-MDP is harder than NP.

As discussed in Chapter 2, one way to approximate the optimal solution to this

problem is that, instead of remembering the entire Ω, each agent only remembers

the values of the data exchanged so far without remembering the order in which

they were transferred. This is a reasonable approximation since to calculate the

confidence level of the local interpretations, only the sensor data values are needed.

In this approximation, the approximate encoding Ei of Ω is of the size O((m+1)n) =

O(|S|logm(m+1)). Since m is independent of |S|, Ei is a polynomial encoding, and

therefore this approximation is no harder than NP.

4.5 Conclusions

Distributed POMDPs have been developed and employed to model various multi-

agent coordination problems. Understanding the source of their high complexity is

crucial to identifying new and more tractable models as well as developing appropriate

approximations to otherwise intractable problems. This paper establishes that the in-

teractions present among the agents is the cause of the high complexity of distributed

POMDPs. I proved that deciding a distributed POMDP whose interaction history

contains information of a size polynomial in the number of states is NP-complete, and

that deciding a non-polynomially encodable distributed POMDP is harder than NP. I

demonstrated how two subclasses of distributed POMDPs known to be NP-complete

can be polynomially encoded. This is the first time that a well-defined condition

has been identified that can distinguish between multi-agent problems in NP and

those that are strictly harder than NP. It is an important step in mapping out the

complexity hierarchy of multi-agent systems.

My goal in this chapter was not to introduce new models or algorithms, but to

change the way people view interactions between agents in the context of distributed

105

POMDPs. Multi-agent researchers have long intuitively understood that the interac-

tion between the agents is the cause of their high complexity. The theoretical results

of this paper are significant in that they both formally justify this intuition as well

as explain how the interaction affects the complexity. This new understanding of

interaction and its relationship to complexity will help us to identify new classes of

multi-agent systems with a lower complexity.

The significance of this theoretical result also has a more practical side. Most

multi-agent systems are provably harder than NP and solving them optimally is not

possible. Much work has been put into developing good algorithms for approximat-

ing these problems. This work provides theoretical guidance in understanding how

the approximations in a model limit the search space and reduce the complexity. I

demonstrated this on two non-polynomially encodable problems by providing two as-

sumptions that reduce the complexity to no harder than NP. One of them is to put

bound on the length of the history that an agent can remember, and the other puts

constraint on the history information that an agent retains. There are other types of

approximation techniques that can potentially used to reduce the complexity of the

problem. For example, we can restrict the agents to remember only a number of key

features in the communication history, similar to the techniques used by Xuan and

Lesser [81]. Abstraction techniques that allows agents to retain an abstract commu-

nication history that is of a constant size may also reduce the problem’s complexity.

106

CHAPTER 5

CONCLUSIONS

Distributed Sensor Interpretation (DSI) problems have been the subject of con-

siderable research within the cooperative MAS community. In a DSI system, data is

collected from different sensors and must be integrated to produce the best interpre-

tation. Distributed approaches to DSI emphasize not only distributed collecting of

data, but also distributed processing of data. However, in virtually all real-world DSI

systems the agents must exchange data, local results, and/or other information to

develop a solution with acceptable quality. Unless communication among the agents

is appropriately limited, the cost of communication may negate much of the benefit of

distributed processing. Unfortunately, the state-of-the-art in MAS is such that there

are not yet formal design methods that allow one to evaluate a potential DSI domain

and determine the optimal coordination strategy. I believe that this is a serious issue

that will hinder the deployment of many important applications of sensor networks.

My work is one of the first attempts to address this issue.

5.1 Contributions

1. Formally understand the tradeoff between communication cost and solution cost

in DSI problems.

I formalized the communication problem in DSI with a Distributed Bayesian

Network and solved the question of what to communicate with a decentralized

Markov Decision Process (DEC-MDP). With this model, one is able to gener-

ate a communication strategy for a given DSI problem such that only minimum

107

communication cost is needed to achieve a required confidence level in the in-

terpretation task. This is a new way to study the satisficing approach to the

communication management in DSI problems. The DEC-MDP model and the

communication strategy derived from it enables us to study the tradeoff between

the communication cost and the solution quality formally.

Such a DEC-MDP is different from the DEC-MDPs with communication that

most researchers have studied. Once the sensor data are collected by the agents,

the global state is not changed. The only actions that an agent may choose

to execute are to request part of the other agent’s observations or to send

part of its own observations in order to get a better view of the global state.

The communication actions have different costs depending on the bandwidth

and power consumption for the message, the possible violation of the privacy

and the danger of broaching the security. In contrast, other research studying

communication in DEC-MDP focuses on synchronizing communication where

every communication action exchanges all the state information among agents

and leads to the same view of the system. While the study of synchronizing

communication tries to answer the question of when to communicate, my work

is trying to address the question of what to communicate.

2. Developed some of the first algorithms to find approximate solutions for general

DEC-MDPs.

In the problem I study, an agent’s communication action directly changes the

other agent’s view. The local MDPs of the two agents are largely dependent

on each other. This makes it hard to construct algorithms that are guaranteed

to find the globally optimal solution. My complexity result shows that even

though my problem is of a lower complexity class than the general DEC-MDP,

it is still harder than NP. I have designed two algorithms to approximate the

108

globally optimal solution for our DEC-MDP. One is an iterative algorithm that

is guaranteed to converge to a local optimal solution, but the quality of the pol-

icy it generates largely depends on the starting policy of the iterative process.

The other approach is based on a lookup algorithm which is much less computa-

tionally expensive and can be easily extended to more than two agents. Though

there is no guarantee that can be made about the solution either generates, ex-

perimental work indicates that in the problems studied both approaches lead

to policies that are of very good quality. To my knowledge, this is some of the

first work providing algorithms that approximate the optimal solution for com-

munication problems in a complex problem solving setting that are formulated

in a decision-theoretic model.

3. Understand the use of abstraction in communication management.

Though general communication can be naturally modeled with a DEC-MDP,

techniques need to be developed to address the complexity issue before the sys-

tem can be scaled up. I approached this problem from two perspectives. First,

I investigated the techniques of transferring abstraction data in addition to ob-

served data in Distributed Bayesian Networks to reduce the required communi-

cation cost. I introduced an algorithm that automatically generates appropriate

abstraction data that facilitates the achievement of the required confidence level

and reduces the necessary communication cost. I also discussed approaches to

incorporate the new abstraction data into the DEC-MDP framework effectively.

Both the improvement in the minimum expected communication cost and the

time savings in solving the DEC-MDP make the hierarchical action selection

an attractive approach, especially for the systems which require a mid-ranged

confidence level. I further extended the different action selection approaches

to larger networks and multiple abstraction layers. The hierarchical action se-

lection approach was shown to be able to solve problems with larger networks

109

is not possible. Much work has been put into developing good algorithms for

approximating these problems. This work provides theoretical guidance in un-

derstanding how the approximations in a model limit the search space and

reduce the complexity. I demonstrated this on two non-polynomially encodable

problems by providing two assumptions that reduce the complexity to no harder

than NP.

5.2 Future Directions

There are several direction in which I would like to extend this work. First, I would

like to look at other forms of abstraction that can be potentially useful. For example,

some abstraction data may contain useful information of the rest of the network but

is not sufficient to reach the confidence by itself. Other abstraction may be an inter-

mediate interpretation result that can be incorporated into the local data. Control

information can also be used as a type of abstraction. I also intend to investigate

other techniques in generating multiple layers of abstraction data, such as different

levels of intermediate interpretation results. Even though I have proposed techniques

and algorithms to extend this work to more than two agents, it is still difficult to scale

up the problems we can solve without developing more sophisticated methods. We al-

ready started investigating the possibility of partitioning a large network into smaller

subnets that are connected through small number of gateway agents. Abstraction

then can be used to carry information between the subnets in order to divide the

entire problem into smaller sub-problems with more manageable sizes. Finally, I am

searching for new examples of polynomially encodable interaction protocols, as well

as common protocols that we can prove are not polynomially encodable. I am also

trying to find new NP approximations appropriate to the protocols that we can prove

to be harder than NP.

111

BIBLIOGRAPHY

[1] Barto, A.G., Bradtke, S.J., and Singh, S.P. Learning to act using real-time
dynamic programming. Artificial Intelligence 72 (1995), 81–138.

[2] Becker, Raphen, Lesser, Victor, and Zilberstein, Shlomo. Decentralized Markov
decision processes with event-driven interactions. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi Agent Systems
(2004), vol. 1, IEEE Computer Society, pp. 302–309.

[3] Becker, Raphen, Lesser, Victor, and Zilberstein, Shlomo. Analyzing my-
opic approaches for multi-agent communication. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(Compiegne, France, September 2005), IEEE Computer Society, pp. 550–557.

[4] Becker, Raphen, Zilberstein, Shlomo, Lesser, Victor, and Goldman, Claudia V.
Solving transition independent decentralized MDPs. Journal of Artificial Intel-
ligence Research 22 (2004), 423–455.

[5] Bernstein, Daniel S., Givan, Robert, Immerman, Neil, and Zilberstein, Shlomo.
The complexity of decentralized control of Markov decision processes. Mathe-
matics of Operations Research 27, 4 (November 2002), 819–840.

[6] Bernstein, Daniel S., Hansen, Eric A., and Zilberstein, Shlomo. Bounded policy
iteration for decentralized POMDPs. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI) (Edinburgh, Scotland, July
2005).

[7] Bertsekas, Dimitri P. Dynamic Programming and Optimal Control, Vols. I and
II. Athena Scientific, Belmont, MA, 1995.

[8] Boutilier, Craig. Sequential optimality and coordination in multiagent systems.
In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (1999), pp. 478–485.

[9] Boutilier, Craig, Dearden, Richard, and Goldszmidt, Moise’s. Exploiting struc-
ture in policy construction. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (San Francisco, 1995), Chris Mellish, Ed.,
Morgan Kaufmann, pp. 1104–1111.

[10] Buntine, Wray. A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering 8, 2 (1996), 195–
210.

112

[11] Carver, Norman, and Lesser, Victor. The DRESUN testbed for research in FA/C
distributed situation assessment: Extensions to the model of external evidence.
In Proceedings of the First International Conference on Multi-Agent Systems
(January 1995), AAAI Press, pp. 33–40.

[12] Carver, Norman, and Lesser, Victor. Domain monotonicity and the performance
of local solutions strategies for CDPS-based distributed sensor interpretation and
distributed diagnosis. International Journal of Autonomous Agents and Multi-
Agent Systems 6 (2003), 35–76.

[13] Chades, Iadine, Scherrer, Bruno, and Charpillet, Francois. A heuristic ap-
proach for solving decentralized-POMDP: Assessment on the pursuit problem.
In Proceedings of the 17th ACM Symposium on Applied Computing (SAC 2002)
(Madrid, 2002), pp. 57–62.

[14] Chakravarthi, Muralidar. Decomposability in distributed sensor interpretation.
Master’s thesis, Computer Science Department, Southern Illinois University,
2003.

[15] Chelsea C. White, III. A survey of solution techniques for the partially observed
Markov decision processes. Annals of Operations Research 32 (1991), 215–230.

[16] Chung, Seung H., and Barrett, Anthony. Distributed real-time model-based
diagnosis. In Proceedings of the 2003 IEEE Aerospace Conference (2003).

[17] Clement, Bradley J., and Durfee, Edmund H. Theory for coordinating concurrent
hierarchical planning agents using summary information. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence (1999), pp. 495–502.

[18] Cohen, Philip R., and Levesque, Hector J. Intention is choice with commitment.
Artificial Intelligence (1990), 213–261.

[19] Cristescu, Razvan, Beferull-Lozano, Baltasar, Vetterli, Martin, Ganesan,
Deepak, and Acimovic, Jugoslava. On the interaction of data representation and
routing in sensor networks. In Proceedings of the 30th IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP 2005) (Philadelphia,
PA, 2005).

[20] Crossbow Wireless Sensor Platform. http://www.xbow.com/Products/Wireless
Sensor Networks.htm.

[21] Dean, T., Kaelbling, L.P., Kirman, J., and Nicholson, A. Planning under time
constraints in stochastic domains. Artificial Intelligence 76 (1995), 35–74.

[22] Deshpande, Amol, Guestrin, Carlos, Madden, Sam, Hellerstein, Joseph, and
Hong, Wei. Model-based approximate querying in sensor networks. International
Journal on Very Large Data Bases (2005).

113

[23] Erman, Lee D., Hayes-Roth, Frederick, Lesser, Victor R., and Reddy, D. Raj. The
HEARSAY-II speech understanding system: Integrating knowledge to resolve
uncertainty. Computing Surveys 12, 2 (June 1980), 213–253.

[24] Feng, Zhengzhu, and Hansen, Eric. Approximate planning for factored POMDPs.
In Proceedings of the Sixth European Conference on Planning (2001).

[25] Franklin, Michael J., Jeffery, Shawn R., Krishnamurthy, Sailesh, Reiss, Frederick,
Rizvi, Shariq, Wu, Eugene, Cooper, Owen, Edakkunni, Anil, and Hong, Wei.

[26] Ghavamzadeh, Mohammad, and Mahadevan, Sridhar. A multiagent reinforce-
ment learning algorithm by dynamically merging Markov decision processes. In
Proceedings of the First International Joint Conference on Autonomous Agents
and Multi Agent Systems (Bologna, Italy, 2002), ACM Press.

[27] Ghavamzadeh, Mohammad, and Mahadevan, Sridhar. Learning to communicate
and act using hierarchical reinforcement learning. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2004) (New York City, New York, July 2004), pp. 1114–1121.

[28] Goldman, Claudia V., and Zilberstein, Shlomo. Optimizing information exchange
in cooperative multi-agent systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi Agent Systems (Melbourne,
Australia, July 2003), ACM Press, pp. 137–144.

[29] Goldman, Claudia V., and Zilberstein, Shlomo. Decentralized control of coop-
erative systems: Categorization and complexity analysis. Journal of Artificial
Intelligence Research 22 (2004), 143–174.

[30] Guestrin, Carlos, Koller, Daphne, and Parr, Ronald. Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems 14 (Cam-
bridge, MA, 2002), T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., MIT
Press, pp. 1523–1530.

[31] Guestrin, Carlos, Venkataraman, Shobha, and Koller, Daphne. Context specific
multiagent coordination and planning with factored MDPs. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence (2002), pp. 253–259.

[32] Hansen, Eric A., Bernstein, Daniel S., and Zilberstein, Shlomo. Dynamic pro-
gramming for partially observable stochastic games. In Proceedings of the 19th
National Conference on Artificial Intelligence (AAAI) (San Jose, California, July
2004), pp. 709–715.

[33] Heckerman, David. A tutorial on learning with bayesian networks. In Learning
in Graphical Models, Michale Jordan, Ed. MIT Press, Cambridge, MA, 1999.

[34] Heckman, James J. Sample selection bias as a specification error. Econometrica
47, 1 (January 1979), 153–162.

114

[35] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, Kr. System
architecture directions for networked sensors. In Proceedings of ASPLOS (2000),
pp. 93–104.

[36] Hsu, Kai, and Marcus, Steven I. Decentralized control of finite state Markov
processes. IEEE Transactions on Automatic Control 27, 2 (1982), 426–431.

[37] Huang, Cecil, and Darwiche, Adnan. Inference in belief networks: A procedural
guide. International Journal of Approximate Reasoning 11 (1994), 1–158.

[38] Huang, Timothy, and Russell, Stuart J. Object identification in a bayesian
context. In IJCAI (1997), pp. 1276–1283.

[39] Kahn, J. M., Katz, R. H., and Pister, K. S. J. Mobile networking for Smart
Dust. In Proceedings of ACM MOBICOM (1999), pp. 271–278.

[40] Krause, Andreas, Guestrin, Carlos, Gupta, Anupam, and Kleinberg, Jon. Near-
optimal sensor placements: Maximizing information while minimizing commu-
nication cost. In Proceedings of Fifth International Conference on Information
Processing in Sensor Networks (IPSN’06) (April 2006).

[41] Kulkarni, Purushottam, Ganesan, Deepak, Shenoy, Prashant, and Lu, Qifeng.
SensEye: A multi-tier camera sensor network. In Proceedings of ACM Multimedia
(2005).

[42] Lesser, Victor, Decker, Keith, Wagner, Thomas, Carver, Norman, Garvey, Alan,
Horling, Bryan, Neiman, Daniel, Podorozhny, Rodion, Prasad, M. Nagendra,
Raja, Anita, Vincent, Regis, Xuan, Ping, and Zhang, Xiaoqin. Evolution of
the GPGP/TAEMS domain-independent coordination framework. Autonomous
Agents and Multi-Agent Systems 9, 1 (July 2004), 87–143.

[43] Lesser, Victor, Ortiz, Charles, and Tambe, Milind, Eds. Distributed Sensor
Networks: A multiagent perspective. Kluwer Academic Publishers, 2003.

[44] Lesser, V.R., and Erman, L.D. Distributed interpretation: A model and an ex-
periment. IEEE Transactions on Computers, Special Issue on Distributed Pro-
cessing C-29, 12 (December 1980), 1144–1163.

[45] Li, Haksun, Durfee, Edmund H., and Shin, Kang G. Multiagent planning for
agents with internal execution resource constraints. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems
(July 2003), pp. 560–567.

[46] Li, Huan, Shenoy, Prashant, and Ramamritham, Krithi. Scheduling communi-
cation in real-time sensor applications. In Proceedings of the Tenth IEEE Real-
Time/Embedded Technology and Applications Symposium (RTAS04) (Toronto,
Canada, May 2004).

115

[47] Littman, Michael, Cassandra, Anthony, and Kaelbling, Leslie. Learning policies
for partially observable environments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning (San Francisco, CA, 1995), Ar-
mand Prieditis and Stuart Russell, Eds., Morgan Kaufmann, pp. 362–370.

[48] Lovejoy, W. S. A survey of algorithmic methods for partially observed markov
decision processes. Annals of Operations Research 28 (1991), 47–66.

[49] Lowe, David G. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision 60, 2 (November 2004), 91 – 110.

[50] Madani, Omid, Hanks, Steve, and Condon, Anne. On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov decision
problems. In Proceedings of the Sixteenth National Conference on Artificial In-
telligence (1999), pp. 541–548.

[51] Mailler, Roger, and Lesser, Victor. Solving distributed constraint optimization
problems using cooperative mediation. Proceedings of the Third International
Joint Conference on Autonomous Agents and Multi Agent Systems (2004), 438–
445.

[52] Mattar, M., Hanson, A., and Learned-Miller, E. Sign classification using local
and meta-features. In Proceedings of IEEE Workshop on Computer Vision Ap-
plications for the Visually Impaired (in conjunction with CVPR) (San Diego,
California, 2005).

[53] Meliou, Alexandra, Chu, David, Guestrin, Carlos, Hellerstein, Joseph, and Hong,
Wei. Data gathering tours in sensor networks. In Proceedings of the Fifth Inter-
national Conference on Information Processing in Sensor Networks (IPSN’06)
(April 2006).

[54] Modi, Pragnesh Jay, Shen, Wei-Min, Tambe, Milind, and Yokoo, Makoto. An
asynchronous complete method for distributed constraint optimization. In Pro-
ceedings of the Second International Joint Conference on Autonomous Agents
and Multi Agent Systems (2003), pp. 161–168.

[55] Monahan, George E. A survey of partially observable Markov decision processes:
Theory, models, and algoritms. Management Science 28 (1982), 1–16.

[56] Mundhen, Martin, Goldsmith, Judy, Lusena, Christopher, and Allender, Eric.
Complexity of finite-horizon Markov decision process problems. Journal of the
ACM 47, 4 (2000), 681–720.

[57] Nair, R., Tambe, M., Yokoo, M., Pynadath, D., and Marsella, S. Taming decen-
tralized POMDPs: Towards efficient policy computation for multiagent settings.
In Proceedings of the International Joint conference on Artificial Intelligence
(IJCAI) (2003).

116

[58] Nair, Ranjit, Varakantham, Pradeep, Tambe, Milind, and Yokoo, Makoto. Net-
worked distributed pomdps: A synthesis of distributed constraint optimization
and pomdps. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05) (2005).

[59] Ooi, James M., and Wornell, Gregory W. Decentralized control of a multiple
access broadcast channel: Performance bounds. In Proceedings of the 35th Con-
ference on Decision and Control (1996), pp. 293–298.

[60] Papadimitriou, Christos H., and Tsitsiklis, John. On the complexity of designing
distributed protocols. Information and Control 53 (1982), 211–218.

[61] Papadimitriou, Christos H., and Tsitsiklis, John. Intractable problems in control
theory. SIAM Journal on Control and Optimization 24, 4 (1986), 639–654.

[62] Papadimitriou, Christos H., and Tsitsiklis, John. The complexity of Markov
decision processes. Mathematics of Operations Research 12, 3 (1987), 441–450.

[63] Paskin, Mark, and Guestrin, Carlos. Robust probabilistic inference in distributed
systems. In Proceedings of Twentieth Conference on Uncertainty in Artificial
Intelligence (UAI 2004) (Banff, Canada, July 2004).

[64] Paskin, Mark, Guestrin, Carlos, and McFadden, Jim. A robust architecture
for distributed inference in sensor networks. In Proceedings of Fourth Inter-
national Conference on Information Processing in Sensor Networks (IPSN’05)
(April 2005).

[65] Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, Inc., 1988.

[66] Peshkin, Leonid, Kim, Kee-Eung, Meuleau, Nicolas, and Kaelbling, Leslie P.
Learning to cooperate via policy search. In Proceedings of the Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence (San Francisco, CA, 2000), Morgan
Kaufmann, pp. 489–496.

[67] Poupart, Pascal, and Boutilier, Craig. Bounded finite state controllers. In Ad-
vances in Neural Information Processing Systems 16, Sebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, Eds. MIT Press, Cambridge, MA, 2004.

[68] Puterman, Martin L. Markov Decision Problems. Wiley, New York, 1994.

[69] Pynadath, David V., and Tambe, Milind. The communicative multiagent team
decision problem: Analyzing teamwork theories and models. Journal of Artificial
Intelligence Research 16 (2002), 389–423.

[70] Rahimi, M., Baer, R., Warrior, J., Estrin, D., and Srivastava, M. Cyclops: In
situ image sensing and interpretation in wireless sensor networks. In Proceedings
of ACM SENSYS (2005).

117

[71] Rao, Anand S., and Georgeff, Michael P. Modeling rational agents within a BDI-
architecture. In Proceedings of the Second International Conference on Principles
of Knowledge Representation and Reasoning (1991).

[72] Shen, Jiaying, Becker, Raphen, and Lesser, Victor. Agent Interaction in Dis-
tributed MDPs and its Implications on Complexity. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(Hakodate, Japan, May 2006).

[73] Shen, Jiaying, and Lesser, Victor. Communication Management Using Abstrac-
tion in Distributed Bayesian Networks. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multi-Agent Systems (Hakodate,
Japan, May 2006).

[74] Shen, Jiaying, Lesser, Victor, and Carver, Norman. Controlling information
exchange in distributed bayesian networks. Tech. Rep. 02-22, University of Mas-
sachusetts, 2002.

[75] Shen, Jiaying, Lesser, Victor, and Carver, Norman. Minimizing Communication
Cost in a Distributed Bayesian Network using a Decentralized MDP. In Proceed-
ings of Second International Joint Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS 2003) (Melbourne, AUS, July 2003), vol. AAMAS03,
ACM Press, pp. 678–685.

[76] Stargate Platform. http://www.xbow.com/Products/XScale.htm.

[77] Tambe, Milind. Towards flexible teamwork. Journal of Artificial Intelligence
Research 7 (1997), 83–124.

[78] Washington, Rich, Golden, K., Bresina, J., Smith, D., Anderson, C., and Smith,
T. Autonomous rovers for mars exploration. In Proceedings of the IEEE
Aerospace Conference (1999).

[79] Xiang, Yang. A probabilistic framework for multi-agent distributed interpreta-
tion and optimization of communication. Artificial Intelligence 87, 1–2 (1996),
295–342.

[80] Xiang, Yang. Probabilistic Reasoning in Multiagent Systems, A graphical models
approach. Cambridge University Press, 2002.

[81] Xuan, Ping, and Lesser, Victor. Multi-agent policies: from centralized ones to
decentralized ones. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-02) (Bologna, Italy,
2002).

[82] Xuan, Ping, Lesser, Victor, and Zilberstein, Shlomo. Formal modeling of com-
munication decisions in cooperative multi-agent systems. In Proceedings of the
Second Workshop on Game Theoretic and Decision Theoretic Agents (GTDT
2000) (2000).

118

