
Integrating High-Level and Detailed Agent
Coordination into a Layered Architecture

�

Shelley XQ. Zhang, Victor Lesser, Anita Raja, and Thomas Wagner
Department of Computer Science

University of Massachusetts at Amherst
xqzhang@cs.umass.edu
phone: 413-545-0675

Abstract. Multi-agent coordination is an important and complicated process. This paper
proposes a layered approach to coordination in which low-level domain independent co-
ordination and scheduling modules deal with detailed temporal and resource constraints
and high-level controllers focus on domain issues and domain state. A general agent
architecture is described based on this agent control model. The integration of the low-
level controllers with high-level JIL process programming language is used to explore the
model. The possibility of integrating with other frameworks such as domain planners and
BDI-based controllers is also explored.

1 Introduction

Coordination, which is the process by which an agent reasons about its local actions
and the (anticipated) actions of others to try to ensure the community acts in a coherent
fashion [7], is an important issue in multi-agent systems. There are three main reasons
why coordination is necessary. First, there are dependencies between agents’ tasks; sec-
ond, there is a need to meet global constraints such as time and cost limits; and third, no
individual agent has sufficient competence, resources, or information to solve the entire
problem.

There are several frameworks, such as the BDI-based agent architecture [10, 1], the
JIL process programming language [16, 8], and the teamwork model [11], that deal
with high-level coordination issues. They logically reason about which task should be
performed collaborately or the resources required for certain tasks, but they do not
quantitatively reason about detailed coordination issues like the concurrent scheduling
and selection of multiple goals, the temporal sequencing of subtasks, hard/soft deadline
constraints, complicated resource constraints and utility differences between different
options for performing a goal, etc. We feel that a coordination and control module that
can provide these types of detailed quantitative reasoning would significantly augment
the capabilities of these higher-level frameworks.

�

Effort This material is based upon work supported by the National Science Foundation under
Grant No. IIS-9812755 and the Air Force Research Laboratory/IFTD and the Defense Ad-
vanced Research Projects Agency under Contract F30602-97-2-0032. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency, Air Force Research Laboratory/IFTD, National Science Foundation, or the U.S. Gov-
ernment.

Coordination is a complicated process that typically consists of several operations:
exchanging local information; detecting interactions; deciding whether or not to coordi-
nate; proposing, analyzing, refining and forming commitments; sharing results, and so
on. We argue that facets of these different operations can be separated and bundled into
two different layers, each relating to different classes of operations. In this view, the
lower-layer pertains to feasibility and implementation operations, i.e., the detailed anal-
ysis of candidate tasks and actions, the formation of detailed temporal/resource-specific
commitments between agents, and the balancing of non-local and local problem solv-
ing activities. In contrast, the upper-layer pertains to domain specific coordination tasks
such as the formation of high-level goals and objectives for the agent, and decisions
about whether or not to coordinate with other agents to achieve particular goals or bring
about particular objectives. Detail domain state is used at this level to make these high-
level coordination decisions. In contrast, decisions at the lower-level do not need to
reason about this detailed domain state. However, reasoning about detailed models of
the performance characteristics of activities, such as their temporal scope, quality, af-
fects of resource usage on performance, is necessary at this level. In this view, the layers
are interdependent activities that operate asynchronously. The upper-layer provides the
performance criteria and the set of candidate tasks for consideration by the lower-layer.
Whereas the lower-layer, as the result of its deliberation (in constructing the detailed
commitments and temporal sequencing necessary to implement the desired objectives)
may provide feedback to the upper-layer about the feasibility of certain tasks. In re-
sponse to this feedback, the upper-layer may alter the set of candidate tasks or the
performance objectives. This obviously can be a multi-step negotiation process.

The focus of our research is on a domain-independent low-level coordination mod-
ule that deals with the detailed analysis and sequencing aspects of agent coordination,
i.e., the “how to coordinate” issues. This coordination module includes the Design-to-
Criteria (DTC) [13] scheduler and the Generalized Partial global planning (GPGP) [5]
coordination system. By introducing this domain-independent coordination module into
an agent, the high-level agent controller’s coordination burden is significantly reduced
(and the agent designer’s task is simplified). Since the high-level agent controller does
not need to deal with the details of the coordination process, it can put more concen-
tration on domain-related coordination reasoning. Furthermore, because this coordina-
tion module is domain-independent, it can work with different high-level coordination
frameworks. We present a general agent architecture based on this coordination module,
so that agent developers need not do redundant work on detailed coordination actions.

In this paper, we describe the layered coordination model and introduce a general
agent architecture based on the model (Section 2). In Section 3, we explore the layered
model by integrating the low-level domain-independent module with a high-level JIL
problem solver. We also explore the possibility of integrating the low-level module with
other frameworks such as domain planners and BDI-based controllers in Section 4.

2 Integrating Coordination Approaches

Figure 1 presents a general agent framework based on the layered model. Before we
explain how the agent performs the coordination process, we describe the functionality
of each component.

Design-To-Criteria Scheduler

.Responsible for evaluating local and non-local
 processes and determining a local course of action.

.Manages local agent control.
Design-To-Criteria Scheduler

.Responsible for evaluating local and non-local
 processes and determining a local course of action.

.Manages local agent control.

Agent A

Deatiled Domain Information

Establish/Revise High-Level
Goals and Objectives

Agent B

Commitment Formation

Exchange Local Information

.

.Manages state and domain view.

.Responsible for selection of agent’s high-level goals

Domain Problem Solver

feasibility result

Resource/Result Sharing

characteristics of
possible solution

subset problem
solving options

desired solution
characterization

TAEMS

Interface

commitments received
commitments proposed
non-local information

violated commitments
satisfied commitments
selected schedule

. Responsible for negotiation with other agents.
.Manages agent’s non-local view.

GPGP Coordination Module

Coordination/Scheduling Module

.

.Manages state and domain view.

.Responsible for selection of agent’s high-level goals

Domain Problem Solver

feasibility result

characteristics of
possible solution

subset problem
solving options

desired solution
characterization

TAEMS

Interface

commitments received
commitments proposed
non-local information

violated commitments
satisfied commitments
selected schedule

. Responsible for negotiation with other agents.
.Manages agent’s non-local view.

GPGP Coordination Module

Coordination/Scheduling Module

Contract Formation

Fig. 1. Integrating Coordination Agent Framework

2.1 Domain Problem Solver Layer

The Domain Problem Solver Layer is dedicated to solving domain related problems, in-
volving both local agent activities and collaborative activities with other agents. Differ-
ent domain problem solvers may use different description languages, modeling struc-
tures, reasoning and analyzing strategies to solve problems. For example, JIL [16, 8]
uses a process programming language perspective to describe the sequence of agent
activities whereas the BDI framework uses logical expression of beliefs, desires, inten-
tions to model domain problems and reasons about them. The domain problem solver
layer models the domain problem, manages the system state, reasons and plans on how
to solve problems, and establishes the performance criteria for the agent. The domain
problem solver may communicate with other agents in the generation of potential ac-
tivities.

2.2 TÆMS task modeling language and TÆMS interface

The TÆMS task modeling language [4] is a domain-independent framework used to
model the agent’s candidate activities. It is a hierarchical task representation language
that features the ability to express alternative ways of performing tasks, statistical char-
acterization of methods via discrete probability distributions in three dimensions (qual-
ity, cost and duration), and the explicit representation of interactions between tasks.
Figure 4 contains an example of a TÆMS task structure. The TÆMS framework serves
as a bridge that we use to connect the Domain Problem Solver Layer and the domain
independent Coordination/Scheduling Layer. As mentioned, Domain Problem Solvers
model processes using different languages, but the DTC scheduler and GPGP coor-
dination components reason on TÆMS models, thus a TÆMS translation interface is
needed between the domain problem solver and the coordination/scheduling module.

2.3 Coordination/Scheduling Layer

The coordination/scheduling layer evaluates the feasibility of performing goals/subgoals
recommended by the domain problem solver layer, and, based on detailed resource con-
straint analysis, sets up the detailed temporal sequence and choice of local activities so

that the multi-agent system meets its performance objectives. It provides the following
functions for the domain problem solver:

– Reasoning about the feasibility of activities The domain problem solver has a plan to fulfill
an objective, the coordination/scheduling module reasons about if it is feasible to accomplish
the goal given the targeted performance criteria (duration limits, cost requirements, etc.). If
the goal is a joint goal, the coordination/scheduling module should communicate with other
collaborative agents and consider their activities in its plan.

– Choosing from and sequencing possible activities There may be multiple possible methods
to accomplish the objective, the coordination/scheduling module chooses one solution that
meets the criteria requirement. There also may be multiple activities the agent need to do, the
coordination/scheduling module sequences them considering the task priority, the resource
limitations and the interactions with other agents’ activities.

– Assisting the task allocation The domain problem solver may have an intention to share
a plan with other agents; the coordination/scheduling module will communicate with other
agents and find a feasible task allocation pattern that meets the criteria requirement consid-
ering other agents’ capabilities and current commitments.

– Assisting the resource allocation Resource sharing is a common issue in a multi agent
system. By carefully arranging local activities, some resource conflicts can be avoided. The
coordination/scheduling module will reason about local agent’s resource requirement, com-
municate with other agent and help to allocate resources to avoid, or minimize the effects of,
resource conflicts.

The coordination/scheduling module includes the Design-To-Criteria Scheduler and
the GPGP Coordination system. The Design-To-Criteria scheduler [13] uses a domain-
independent real-time, flexible computation approach to task scheduling. DTC effi-
ciently reasons about the quality, cost, duration of interrelated methods, and constructs
a set of satisfying schedules for achieving high-level goals. Resource requirements and
proposed commitments are also taken into account when the scheduler selects a sched-
ule. The scheduler provides the agent with ability to reason about the trade-offs of
different possible activities while respecting the criteria requirement. The GPGP co-
ordination module is a domain independent coordination framework that is based on
Decker’s original GPGP ([5]) and our recent extensions (GPGP2) [12]. It communi-
cates with other agents, it also communicates with DTC scheduler, but these two kinds
of communication are transparent to the domain problem solver. The main functions of
the GPGP system include:

– Exchange Non-Local Viewpoints Agents exchange information about the activities that
they are planning to perform and information about candidate activities that may be per-
formed sometime in the future. In some domains (e.g., the interpretation domain as described
in Section 4.3) this enables the local agent to determine which of its local tasks interact with
other agents’ non-local tasks. In other domains (e.g., the JIL process program as described
in Section 3), the interactions of tasks are determined by the domain problem solver.

– Contracting Mechanisms and Commitment Formation/Negotiation If the domain prob-
lem solver want to assign tasks to other agents, the GPGP coordination module will com-
municate with other agent to verify the feasibility and finally accomplish the task allocation
by establishing commitments with other collaborative agents. Different coordinate proto-
cols are built in this coordination module, and the agent can select one appropriate protocol
for the current problem solving context. The proposed commitment is analyzed given the

agent’s current set of commitments and current set of scheduled actions, then a decision is
made whether to accept/reject this commitment or refine it. Thus this commitment formation
process is also a negotiation process.

– Resource Acquisition If certain resources are required for a task, the GPGP coordination
module will communicate with the resource manager or coordinate with other agents to make
sure the resource is available when the task is executed.

– Results Sharing Often commitments originate with the need to share results between agents.
When results are produced, the producer agent must convey the required information to the
consumer agent.

This agent framework works as follows: the domain problem solver analyzes its
current problem solving situation and establish high level goals it want to achieve; also
through the communication with other agents, it may decide some tasks need to be
cooperatively performed. The coordination/scheduling module reasons about possible
solutions to achieve the goal and sequences local activities. In this reasoning process,
the criteria requirements such as the balance between achieving a good result quickly
versus achieving a high quality result in a longer time, resource requirement and in-
teraction with other agents are all been considered. The communication and reasoning
process in the coordination/scheduling module are transparent to the domain problem
solver. The GPGP coordination module communicates with other potential participant
agents and builds proposed commitments for the common goal. The DTC scheduler rea-
sons about local activities and these proposal commitments and verifies the feasibility
of these commitments. If the proposed commitments are not suited for current objec-
tive, the GPGP module refines the commitments after negotiating with other agents. The
GPGP module may also receive requests from other agents to establish commitments to
achieve a particular result. The DTC scheduler also reasons about these requests given
the current scheduled activities and find if these commitments are feasible. The sched-
uled activities and established commitments are returned to the domain problem solver
for execution. In conclusion, the idea is that the domain problem solver decides what to
do, the coordination/scheduling module decides how to do it and when to do it.

3 Coordination in JIL

3.1 Description of JIl Language

JIL [16, 8] is a process-programming language that is used to describe software devel-
opment process and other processes. JIL represents processes as compositions of steps,
which may be divided into substeps. The specification of a step is defined in terms of
a number of elements. Each element defines a specific aspect of step semantics, such
as data, control, resource usage, or consistency requirements. Briefly, the elements of a
step specification are as follows:

– Objects and declarations: Parameters and local data used by the step.
– Resources: Specifications of resources needed by the step, including agent, soft-

ware, hardware.
– Steps: Identification of the substeps of a step (which are themselves steps).
– Step execution constraints: Restrictions on relative execution order of substeps.

Agent:Traverller

Agent:TraverlAgent

HyattReserved

NotWithCar

HyattReserved

WithCar

InBudget

Agent:Secertary Agent:Secertary

���������������������
���������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
������������������� ���������������������

���������������������
�������������������
��������������������������������������

�������������������
�������������������
�������������������

	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���������������������
���������������������
�������������������
�������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���

���

���������������������
���������������������
�������������������
�������������������

���������������������
���������������������
���������������������
�������������������
�������������������
�������������������

���������������������
���������������������
�������������������
������������������� �������������������

�������������������
�������������������
�������������������

 � � � � � � � � � �
 � � � � � � � � � �
!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"�"�"
#�#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#�#�#

$�$�$%�%
&�&'�'

(�(�()�)
��*+�+�+,�,-.�./

0�0�0�01�1�1

2�2�23�3

4�456�67
8�89�9

Parallel
Choice
Try
Sequential

PlaneReservation

UnitedReservation USAir Reservation

TransportPlan

HotelReservation

DaysInnReservation HyattReservation

SelfDrive

CarReservation

AvisReservation HertzReservation

HyattCarReservation

CarAndHotelReservation

PlanTrip

GroundTransport

BusReservation

NotTightBudget

Fig. 2. Trip Plan Example

– Preconditions, constraints, postconditions: Consistency conditions that must be
satisfied (respectively) prior to, throughout, and subsequent to the execution of the
step.

– Handlers: Identification of handlers for local exceptions. Handlers can invoke sub-
steps, thus exception handlers can use the full power of JIL to recover from errors.

Figure 2 contains an example of a “PlanTrip” process in JIL. To plan a trip(PlanTrip),
the traveler needs to do two things in sequence: first plan the transportation (Transport-
Plan), then reserve a car and a hotel (CarAndHotelReserveration). To plan the trans-
portation, the traveler has two choices, either ask a travel agent make the plane reser-
vation (PlaneReservation) or plan the ground transport by himself. To reserve a car
and a hotel, the traveler may ask a secretary to do both the car reservation and the ho-
tel reservation, or assign these two steps to two secretaries so these two tasks can be
processed in parallel. To make the plane reservation, the travel agent will try United
Airline(UnitedReserveration) first, if it fails, then try USAir (USAirReserveration). To
plan the ground transportation, the traveler has two choices, either take a bus (Bus-
Reservation) or drive a car (SelfDrive). Similarly, there are two choices to reserve the
hotel - DaysInnReservation or HyattReservation; there are three ways to reserve car -
AvisReservation, HertzReservation, and HyattCarReservation.

3.2 Our Work With JIL

JIL language provides a high level description of a process. It describes control flows,
data flows, resource requirements of a process, this information constructs an overview
of what this process should do, but there is not enough detailed information about how
to perform this task to meet certain objective functions. For example, how the traveler
could make a trip plan to meet his quality, cost, duration requirements? This problem
is more difficult when this process is distributed among multiple agents, agents need
to coordinate with each other to find a solution that meets the global criteria function.
Furthermore, there are interactions among steps that need agents to coordinate over
them, but JIL language does not represent them explicitly (which poses problems for
multi-agent coordination). For example, if the traveler chooses to drive a car to the

JIL Editor

JIL Interperter

TAEMS translator

JIL unwinder

JIL Editor

JIL Interperter

TAEMS translator

JIL unwinder

Schedule

Paramter/Dataflow

TAEMS task StructureResource

Assignment
Task

Specification

Agent A

Execution State

JIL process program

Coordination / Negotiation
Commitment Formation

Exchange Local Information

JIL Step

Execuation Results

DTC scheduler

Schedule

Assignment
Task

Specification
Resource

TAEMS task Structure

Agent B

JIL process program

Execution State

DTC scheduler

GPGP Module GPGP Module

Fig. 3. JIL Agent Architecture

destination, there is no need for the secretary to reserve a car. Another example is the
hyatt car could be reserved only if the hyatt hotel has been reserved.

Our solution to these problems is to integrate our coordination module with the JIL
process problem solver. Figure 3 describes the infrastructure of an agent that works on
a JIL process program. The JIL process program is generated by the JIL editor or is
received from another agent(task assignment). The JIL interpreter should execute this
process program. As we discuss above, the JIL interpreter can not reason about quan-
titative issues nor interactions among steps. This JIL process program is sent to the
JIL unwinder, which opens this process program, discovers those interactions among
agents, and extracts the resource requirement information. In the unwinding process,
some steps are detected as non-local tasks (for example, the PlaneReservation step
should be executed by a TravelerAgent), these non-local tasks are treated as virtual
tasks: they will be analyzed but not executed locally. The TÆMS translator takes this
progress program and the information provided by the JIL unwinder, generates a TÆMS

USAir

Subtasks of
PlaneReservation

Unite
Reservation

NoMoreChoice
NoplaneThrower

Seq_Sum

virtual method

virtual task

Reservation

Subtasks of

NoMoreChoice
NoTransportThrower

IncludeSaturdayStayover

PlanTrip Ref. Step

Bus
Reservation

Seq_Sum

TransportPlan

TransportPlan

Seq_Sum

Max

Q: 9 0.8 7 0.2
D:30min

GroundReservation

C: $200 0.6 $250 0.4

task

method

GroundTransport

NoMoreChoice
NoGroundThrower

Max

SelfDrive_Node

Seq_Sum

Withcar!

Seq_Sum

SelfDrive

Inbudget??
CarAndHotelReservation

Reservation

Min

Hyatt

HyattReservation

HyattReserved

Seq_Sum

CarReserv.Node

NotWithCar? Car
Reservation

Max

Avis
Hertz

HyattCarHyattCar

HyattCar_Node

HyattReserved?

Seq_Sum

Hotel

Max

DaysInn

NotTightBudget

Inbudget??

Seq_Sum

Seq_Sum

PlanTrip

PlaneReservation

disable

enable

Fig. 4. TÆMS Task Structure for PlanTrap Example

task structure, as shown in Figure 4. The Design-To-Criteria scheduler works on this
TÆMS structure and generates a schedule to meet the global criteria requirement. The
schedule includes a set of methods with starting time, expected quality, cost and dura-
tion. Table 1 provides three schedule examples for different criteria requirements. Based
on this first round scheduling, the agent tries to find appropriate agents to perform those
non-local tasks though GPGP module. This task allocation process is a negotiation pro-
cess because the agent which is assigned the non-local task may not be able to perform
the task as the local scheduler specified, re-scheduling or re-assignment may be needed
to achieve a satisfactory task assignment pattern. In this negotiation process, the agent
also should take the resource requirements into consideration, making sure resources
are available when they are needed. Resource acquisition is also a function built into
the GPGP module. The “final” schedule with task assignments and resource specifi-
cations are returned to the JIL interpreter and the process is executed as scheduled.
If, during the execution process, something unexpected causes the current schedule to
be no longer valid, e.g., a step failing or over-running its costs or time expectations,
the agent must communicate with other agents and/or reschedule its future activities
through the GPGP module and the DTC scheduler.

1 2 3

Quality Requirement 800 300 600
Cost Constraint($) 1000 400 700

Duration Constraint(Hours) 4 10 20
Transportation UnitedResrvation Self Drive BusReserv.

Hotel HyattReserv. DaysInnReserv. HyattReserv.
Car HyattCar HyattCar

Expected Quality 720 350 630
Expected Cost 820 309 618

Expected Duration 4 9 14
Table 1. schedule examples

3.3 Benefits

The first benefit we gain from this organization is the reduction of the communication
at the domain problem solver layer because the lower layer will automatically handle
many issues. Coordination communication such as exchanging local information about
execution state, building non-local commitments, are handled by the GPGP module, so
the JIL problem solver does not have to deal with these issues.

The second benefit is that agents have global quantitative view of the process. Fig-
ure 5 shows a possible task assignment pattern for the PlanTrip process. Based on Fig-
ure 5, if the traveler wants to make a low cost trip plan, the schedule C is selected to
meet the requirement. Secretary A will know the CarReservation is not necessary be-
cause of the disable relationship from the “SelfDrive” node to the “CarReservation”
node (See Figure 4). Also secretary B will be informed that it is better to reserve the
DaysInn hotel to meet the global criteria requirement.

The third benefit is that agents coordinate their actions and solve their conflicts eas-
ily though GPGP/DTC. Because we have discovered those inter-relationships among

DTC Scheduler

GPGP Module

Traveller

PlanTrip

DTC Scheduler

GPGP Module

Secretary B

HotelReservation

DTC Scheduler

GPGP Module

Secretary A

Coordination Communication

CarReservation

DTC Scheduler

GPGP Module

TravelAgent

PlaneReservation

Meta level Communication

Fig. 5. Task Allocation for PlanTrip Example

steps and explicitly represented the non-local-effect (NLE) edges such as enables, dis-
ables, in TÆMS task structure, the GPGP/DTC module can handle these NLEs. For
example, there is a disable edge from the GroundTransport to the PlaneReservation
node, so once the traveler chooses SelfDrive, the TravelAgent will not have to do the
PlaneReservation since it has been disabled.

4 Other High-Level Views of Agent Coordination

4.1 BDI Frameworks

The beliefs-desires-intentions (or BDI) model has been proposed as an agent architec-
ture for quite a long time [10, 1]. Using this architecture, an agent has certain mental
attitudes of belief, desire, and intention, respectively, the information, motivational, and
deliberative states. The belief component represents the agent’s information about the
environment state, the desire component represents the objectives to be accomplished,
and the intention component represents the currently chosen course of action, it is the
deliberative component of the agent. These mental attitudes determine the agent’s be-
havior. Usually, these mental states and their properties are formally defined using log-
ical frameworks that allow agents to reason about them.

Some research work has been done to make BDI-agents behavior as social agents.
GRATE* ([6]), was the first implemented BDI architecture treating joint mental states.
It utilizes the concepts of joint intentions and joint responsibility to establish a col-
laborative activity and monitor the execution of joint activity. However, there is a gap
both between the underlying descriptive theory and the architecture and between the
functional and the implementation architecture. As Jennings himself points out: “ ...
the architecture does not specify how intentions are represented, how commitment is
described, what circumstances are used to obtain agreements nor how to develop the
common solution.” The architecture of GRATE* does not sketch the details of the co-
ordination such as how an agent can choose from multiple candidate goals or how the
agent decides which action to perform at a given time. Our GPGP/DTC coordination
module complements to this architecture on the lower level, it provides the ability to
reason about the value of actions associated with the goals, to choose from alternatives,
to work on the goals concurrently by interleaving actions and so forth.

Figure 6 shows a BDI agent architecture as implemented in GRATE* integrated
with our coordination module. Events occurring as a result of local problem solving or
change in the environment in addition to the events occurring elsewhere in the com-
munity, are monitored by the monitor events process. Events signify a potential need
for a fresh activity and therefore a new objective. When a new objective is established

Desires

Monitor Events

Identify potential
participants

Means-End
Analysis

Intentions
Joint

TAEMS Task Assesser

Capabilities
of others

Define
Individual Act

Design-To-Criteria Scheduler

Recipe
Library

Inconsistency
Resolver

Process

Control

Data Store

Input Data

Infeasible Intentions

GPGP Coordination Module

Intentions

Community Events

New Objectives

Local Events

Other Agents

Updated Non-Local View

Task Structure
Criteria Function

selected schedule

violated commitments
satisfied commitmentscommitments received

proposed commitments
non-local information

domain level system

New Local Objective

Consistent Scheduled
New Intentions

Key

Objective
New Collaborative

Potential Participants

Fig. 6. BDI Agent Architecture with coordination module

for consideration, the mean-end analyzer refers to the recipe library to find appropri-
ate plans to fulfill the objective. These plans indicated whether the objective should be
satisfied locally, collaboratively or make a choice between the two. If the decision is to
fulfill the objective collaboratively, a collaborative objective is established, and those
agents in the community who are potentially interested in being involved are identified
as potential members. The TÆMS task assessor takes the new local objective or the new
collaborative objective, potential participants and possible alternative plans to achieve
the objective as input information and builds a TÆMS task structure with potential
task assignments and criteria requirements. The DTC scheduler schedules on this task
structure and select an appropriated schedule. The GPGP coordination module commu-
nicates with other agents to determine if they can meet the collaborative objective as
scheduled. If this is true, social commitments are built; otherwise, new proposed com-
mitments are send back to the scheduler and a re-scheduling process is performed to
find a proper schedule based on these new commitments. The scheduling-coordination
process may be iterately refined to find a solution to fulfill the objective. If such a solu-
tion is found, the intention data store will be updated with a set of consistent scheduled
local activities and the joint intentions will be updated with a set of social commitments;
otherwise, infeasible intentions are detected, the inconsistency resolver attempts to ei-
ther modify the existing commitments or alter the objective to remove the infeasible
intention.

4.2 Organizational Experts

The integration path used to combine GPGP/DTC with high-level controllers, such as
JIL, can also be used to expand and extend agent capabilities. Consider an organiza-
tional context expert of the form [15, 14] that views the agent as a socially situated
problem solving entity. In this world view, agents belong to multiple different organi-
zations, have multiple different roles, have different relationships with different agents,
and interact in cooperative and self-interested styles.

Figure 7 shows a network of organized interacting information agents (in the WAR-
REN style [3]). While a complete description of the network is beyond the scope of
this paper, the agents in the network are associated with different corporate entities and
interact in a way that reflects their different associations. Additionally, within a given
organization, relationships may differ due to power relationships or differences in or-
ganizational structure, e.g., certain divisions may work closely together and cooperate
freely while others may require intercompany transactions or payables to motivate co-
operative activity. Agent control in such open environments, characterized by dynamic
and complex agent relationships, requires reasoning about the different motivations for
coordination and cooperative action with other agents.

This class of reasoning is inherently different than the type of detailed, temporal
analysis performed by the DTC/GPGP feasibility experts. At this level, tasks are char-
acterized in terms of motivational quantities (��� s) that are consumed or produced
through task performance. Each agent has a set of ��� s and agent utility is defined in
terms of the ��� set held by the agent at any given point in time. Agents thus reason
at this level about tasks from a utility perspective, but the temporal component is min-
imal (pertaining to opportunity costs) and detailed inter-agent interactions (and chains
thereof) are not represented nor evaluated.

Integrating this social/organizational selection of high-level tasks and actions may
take place using a vehicle similar to that used to integrate JIL and other high-level con-
trollers. As with the other integration scenarios, the interface must be two-way as the
organizational-view of the world is incomplete and the controller may select a set of
candidate tasks that are difficult to implement in any desirable fashion. This compo-
nent, however, differs in that the utility computations used to select high-level tasks

Personal Info Agent
Company K

Personal Info Agent
Company B

Low Priority User

Personal Info Agent
Company B

High Priority User

IG Specialist
Company A

IG Specialist
Company B

IG Specialist
Microsoft

DB Manager #1
Company X

DB Manager #2
Company X

DB Manager
Company Y

DB Manager
Company Z10 | 10 8 | 8

6 | 6

8 | 8

1 | 16 | 6

Z views MS as 0
MS views Z as 1

9 | 9

10 = Treat other as self.
8 = Cooperative
6 = Professional friend, no fee/smaller fee.
5 = Charge fee.
3 = Disinterested 3rd party.
1 = Price gouge.
0 = Refuse work.
X = Don't care condition, no direct interaction.

1 | 1

1 | 1

Y | Z Denotes relationship pair.

Standard 3|3 disinterested
3rd party relationship.

Non standard relationship edge,
annotated with relationships.

Fig. 7. An Organized Network of Interacting Agents

must also be reflected in the quality, cost, and duration characteristics of the primi-
tive actions represented in TÆMS and reasoned about by DTC/GPGP. In this scenario,
organizational context must influence the statistical characterization of tasks and meth-
ods. In contrast, in the JIL integration, the characteristics of task and methods are part
of the domain model and thus the high-level selection process is independent from the
characterizations of primitive actions. The question of what level of influence the orga-
nizational component should have on the inherent properties of tasks and actions is a
current research issue.

4.3 Interpretation Problem Solvers

Still another example of this integration approach is the combination of interpretation-
style (blackboard) domain problem solving experts with the feasibility and detailed
agent control tools. Integrating problem solvers like RESUN [2] with the lower-level
agent control tools gives the problem solvers the ability to meet real-time deadlines and
to perform detailed analysis of their problem solving process. However, the integration
is slightly more complicated than it is in the JIL case as blackboard-based problem
solvers typically employ an opportunistic control mechanism; problem solving is both
top-down (expectation driven) and bottom-up (data driven). In contrast to the JIL view
of the world, there is no high-level scenario or global view of the process and pre-
dictability is, by definition, difficult. It is important to note, however, that this problem
solving model is well suited to distribution as communication from other agents resem-
bles, in some sense, the same bottom-up processing that occurs locally, i.e., interactions
are data driven. The added complexity takes the form of communications and process-
ing overhead and the possibility of the local agent being distracted by the additional
hypothesis and information.

The reactive / opportunistic problem solving style, however, complicates integration
and requires that the problem solvers be able to constrain their opportunism for windows
or intervals of some temporal scope, enabling agents to coordinate and schedule. The
interface requires a careful balance as these islands of stability constrain or limit the
strength of opportunistic problem solving. One solution, used in the BIG information
gathering agent [9] is to schedule from a certain level of abstraction, i.e., the primitive
actions modeled in TÆMS are not actually primitives to the agent’s problem solver, but
are instead black boxes during which it will perform a particular class of operations.
The scheduling/coordination tools thus operate from a coarse temporal view and the
problem solver remains free during these intervals to perform opportunistically. As with
the other integration examples, this example too requires that the components have a
two-way interface, enabling major changes in problem solving to drive rescheduling
and recoordination as well as feasibility analysis affecting or changing the goals of the
problem solver.

5 Conclusion

Coordination is a complicated process. We propose to extract the domain-independent
coordination issues and solve them through our lower-level, domain-independent,GPGP/DTC
coordination module. We have done some work on the integration of the JIL problem

solver, and an interpretation problem solver (Section 4.3), with the lower-level tools as
a first step in the verification of this idea. We have also considered the possibility of
integrating the low-level tools with other higher-level agent control frameworks. Our
goal is to establish a domain-independent, powerful, easy-to-use, plug-in coordination
module that solves the generalizable aspects of the coordination problem in an efficient
way.

References
1. M.E. Bratman. Intention Plans and Practical Reason. Harvard University Press, Cambridge,

MA, 1987.
2. Norman Carver, Zarko Cvetanovic, and Victor Lesser. Sophisticated cooperation in FA/C

distributed problem solving systems. In Proc. of the 9th National Conf. on AI, pages 191–
198, Anaheim, July 1991.

3. K. Decker, M. Williamson, and K. Sycara. Intelligent adaptive information agents. Journal
of Intelligent Information Systems, 9:239–260, 1997.

4. Keith S. Decker. Task environment centered simulation. In M. Prietula, K. Carley, and
L. Gasser, editors, Simulating Organizations: Computational Models of Institutions and
Groups. AAAI Press/MIT Press, 1996.

5. Keith S. Decker and Victor R. Lesser. Designing a family of coordination algorithms. In
Proc. of the 1st Intl. Conf. on Multi-Agent Systems, pages 73–80, June 1995. AAAI Press.

6. N.R. Jennings. Specification and Implementation of a Belief-Desire-Joint-Intention Archi-
tecture for Collaborative Problem Solving. Intl. Journal of Intelligent and Cooperative Info.
Systems, 2(3):289–318, 1993.

7. N.R. Jennings. Coordination Techniques for Distributed Artificial Intelligence. In G.M.P.
O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial Intelligence, pages
187–210. Wiley Interscience, 1996.

8. David Jensen, Yulin Dong, Barbara Staudt Lerner, Eric K. McCall, Leon J. Osterweil, Stanley
M. Sutton Jr., and Alexander Wise. Coordinating agent activities in knowledge discovery
processes. In Proc. of Work Activities Coordination and Collaboration Conference (WACC),
1999.

9. Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and Shelley XQ.
Zhang. BIG: A resource-bounded information gathering agent. In Proc. of the 15th National
Conf. on AI (AAAI), July 1998.

10. A.S. Rao and M.P. Georgeff. Modelling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the 3rd Intl. Conf. on Principles of
Knowledge Representation and Reasoning, pages 473–484. Morgan Kaufmann, 1991.

11. Milind Tambe. Agent Architecture for Flexible, Practical Teamwork. Proc. of the 14th
National Conf. on AI (AAAI), 1997, pages 22–28.

12. Thomas Wagner, Brett Benyo, Victor Lesser, and Ping Xuan. Investigating Interactions Be-
tween Agent Conversations and Agent Control Components. In Agents 99 Workshop on
Conversation Policies, 1999.

13. Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task Schedul-
ing. Intl. Journal of Approximate Reasoning, Special Issue on Scheduling, 19(1-2):91–118,
1998. A version also available as UMASS CS TR-97-59.

14. Thomas Wagner and Victor Lesser. Relating Quantified Motivations for Organizatioanlly
Situated Agents. In Under review, 1999.

15. Thomas Wagner and Victor Lesser. Toward Generalized Organizationally Contexted Agent
Control. In AAAI Workshop on Reasoning in Context, 1999.

16. Alexander Wise, Barbara Staudt Lerner, Eric K. McCall, Leon J. Osterweil, and Stanley
M. Sutton Jr. Specifying Coordination in Processes Using Little-JIL. UMASS CS Technical
Report UM-CS-1998-038, 1998.

