
Inferring Task Structure From Data
Paul E. Utgoff
David Jensen
Victor Lesser

Department of Computer Science
140 Governor’s Drive University of Massachusetts

Amherst, MA 01003 U.S.A.

Technical Report 00-54
November 9, 2000

Abstract

An algorithm is presented for fitting an expression composed of continuous and discontinuous primitive functions to
real-valued data points. The data modeling problem comes from the need to infer task structure for making coordina-
tion decisions for multi-agent systems. The presence of discontinuous primitive functions requires a novel approach.

1 Introduction 1

2 Multi-Agent Task Structure 1

3 Task Structure Inference as Function Fitting 2

4 The BEFIT Fitting Algorithm 3

4.1 Generating Children . 4

4.2 Node Ordering Heuristic . 5

5 Illustrations of the BEFIT Algorithm 5

6 Summary 8

Inferring Task Structure From Data 1

1 Introduction

Scientists and engineers often confront the problem of inferring structure from data. How does the value of one
variable relate to the value of another? To the extent that such questions can be answered, one has knowledge of the
structure of the domain. Such modeling problems, wherever they originate, are almost always of interest to researchers
within the field of Machine Learning because to infer structure is to learn.

One such modeling problem comes from the study of multi-agent systems. For a group of agents to solve a problem as
well as possible, one must consider how to coordinate the subtasks among the agents. Coordination involves deciding
which agent will do which subtasks, and in what collective order the subtasks will be done. Assigning subtasks to
agents is only one piece of the problem because the order in which each agent accomplishes its tasks can affect the
ease or difficulty of problem solving for other agents. One can gather data about how the subtasks were assigned and
ordered, and the global quality of the solution that resulted. From such data, one would like to infer the effects of
various coordination choices.

One approach to multi-agent coordination is to create a wrapper around an agent which deals with how an agent’s
activities should be selected and ordered to achieve coherent activities with other agents. An example of such an
approach is Generalized Partial Global Planning (GPGP) (Decker & Lesser, 1995). This approach requires an agent’s
wrapper to have knowledge about several aspects of an agent’s possible activities, including the actions an agent can
take (called methods) and:

1. ordering constraints among the methods,

2. behavioral characteristics of methods such as the probability distribution on their duration and the local quality
of their results, and

3. how the choice of specific methods determines the global quality achieved.

This knowledge is used by a GPGP module in each agent to establish coordination commitments among agents about
when certain tasks will be achieved and with what local quality. These commitments, together with local constraints
such as deadlines and objective criteria, are used by a scheduling component in each GPGP module to provide the
agent with ordering constraints on its activities that will result in coherent activities among agents.

A major shortcoming of such approaches to multiagent coordination is the engineering required to add the above
knowledge to an agent, particularly if that agent is a pre-existing system that is being incorporated into a new multi-
agent system. Thus, learning is a valuable capability in adapting preexisting agents for use in a multi-agent context.
In past work (Jensen, Atighetchi, Vincent & Lesser, 1999), we have analyzed traces of agent behavior, and have been
able to learn all these types of knowledge except the last — how the specific choice of methods and their associated
local quality of methods determines the global quality of the solution. Filling this remaining gap would allow learning
of all the knowledge necessary for a multi-agent system to make high-quality coordination decisions with GPGP.

Below, we describe in greater detail the problem of inferring task structure for multi-agent coordination. We then
restate the problem in terms of a discontinuous function fitting task, and present a new algorithm for solving it.

2 Multi-Agent Task Structure

We adopt the existing TÆMS (Task Analysis, Environment Modeling, and Simulation) framework for multiagent
coordination (Decker & Lesser, 1993) that has previously been used to represent the knowledge required by GPGP.
TÆMS represents quantitative information about agent activities, including candidate actions and how those actions
can be combined to achieve high-level tasks. A task is represented as a tree whose root is the overall task and whose
leaves are methods. A method represents actual instantiated computations or actions that the agent can execute.
Methods can be characterized by their duration and cost, and the results of methods can be characterized by their local
quality. In short, a TÆMS task structure is a compact representation of a network of plan alternatives, and a method
of calculating the performance characteristics (quality, duration, and cost) of those alternatives.

Internal nodes in a TÆMS task structure represent subtasks composed of other tasks and methods. Internal nodes also
specify functions that indicate precisely how quality will accrue depending on which methods are executed and when.
These quality accumulation functions (QAFs) define how the results of constituent subtasks and methods combine to
determine the global quality of the overall task. For example, consider a task with three subtasks, A, B and C, as its

Inferring Task Structure From Data 2

maxminsum

sum

apt-a apt-b apt-cfront-door back-door windowsbedroom kitchen livingroom

clean-apartment secure-apartment

min

examine-apartments

close-apartment

move-to-new-city

travel-to-new-city

enables

Figure 1. Example Task Structure

descendants. The quality of these subtasks can be accrued in several ways to yield the global quality. Consider three
scenarios:

� Suppose that the task is to clean a house and the subtasks are clean-bedroom, clean-kitchen, clean-living-room.
In this case, the more that gets done, the better. The quality of this process could be measured by the total quality
accrued from all three tasks — the sum of the individual qualities.

� Suppose the task is to select an apartment, with three methods examine-apartment-A, examine-apartment-B,
examine-apartment-C. Only a single apartment will be selected, and the final quality is the quality of the best
apartment — the maximum of the individual qualities.

� Suppose the task is to secure a house, with subtasks secure-windows, secure-front-door, secure-back-door. All
subtasks must be accomplished, and the final quality depends on the least secure entry point — the minimum of
the individual qualities.

In these three situations, the task structures are similar, but accurate representation of the task requires different QAFs:
SUM, MAX, and MIN.

TÆMS represents other important characteristics of tasks, in addition to the hierarchical task structure and the QAFs.
First, interrelationships between tasks or methods indicate where the execution of one method will affect the quality
or duration of another method. For example, executing method A may enable execution of method B. In other words,
B cannot be successfully performed before A is successfully completed. Second, each method is characterized by
frequency distributions indicating possible values of performance parameters such as quality, duration, and cost.

Figure 1 shows a fragment of a TÆMS task structure for moving to a new city. The task structure incorporates the
elements discussed above (e.g., selection of an apartment) into a larger structure, illustrating the hierarchical nature
of TÆMS, as well as the incorporation of other elements such as interrelationships among tasks. For example, the
task structure shows an “enables” relationship between the tasks “travel to new city” and “examine apartments” —
indicating that one must be physically present in a new city to examine apartments. While one might argue with
specific aspects of a particular task structure (e.g., should the the “close apartment” task have a min or sum as its
QAF?), TÆMS can be used to express a wide variety of such structures.

3 Task Structure Inference as Function Fitting

To induce the TÆMS task structure from a collection of examples, it is sufficient to fit the examples with a function
composed of the QAF primitives MIN, MAX, and SUM. Each example indicates which methods were executed,
the order in which the methods were scheduled, the local quality obtained for each method, and the global quality
achieved. One can think of each local method as a variable, and the global quality as the target value of the function
for those variables. The goal is to induce a single function composed from the primitives that produces the correct
target value for all of the examples.

Although the order of the methods (variables) has an impact on the global quality achieved, the global quality (function
value) is computed as a composition of the primitives over the local qualities (variable values). Each of the primitive

Inferring Task Structure From Data 3

functions is well defined and is applied solely to particular observed values. Other information does not bear on the
computation of a primitive function. For example, MIN(A,B) evaluates based solely on the values of A and B, not
other information. For this induction task, the ordering information can be ignored safely.

This function fitting task differs from more familiar forms of function approximation in two important ways. First,
an exact fit can be found. Even when there is variation or noise in the local quality measurements, and even when
interaction effects due to ordering are present, the final combination of these values into the global quality is a function
composed of the primitive functions MIN, MAX, and SUM. Because there is no error in the computation of these
primitives, the global quality is computed exactly from the given local qualities.

The second important difference is that the primitive functions MIN and MAX have discontinuous derivatives. Were it
not for this, one might consider adapting standard parametric approaches such as gradient descent (Duda & Hart, 1973;
Press, Flannery, Teukolsky & Vetterling, 1988) that iteratively reduce error. We require a function that is composed
of the primitives as deeply as is needed to fit the data. The two primitives MIN and MAX have the special property
of selecting one argument as the function value. For example, MIN(A,B) selects A when A�B, and excludes B. This
notion of value selection is important in the discussion below.

A naive approach would be to search the space of expressions over MIN, MAX, and SUM in an uninformed manner
for an expression that evaluates correctly for all the examples. One might try simply to be correct for the largest
number of examples, but that is disappointing for a problem in which an exact fit is known to exist. This will not work
however because, as is often the case, an uninformed search is intractable.

Consider the size of the space of expressions, which is finite. Throughout the discussion, we consider just the bi-
nary form of the primitive functions. For example, MIN(A,B,C) would be represented as one of MIN(MIN(A,B),C),
MIN(MIN(A,C),B), or MIN(MIN(B,C),A). There are more possibilities because all three primitive functions are sym-
metric. However, one can generate expressions in a manner that does not duplicate the various nested binary expres-
sions that are equivalent to a single n-ary primitive function. Thus we can work with the binary forms without affecting
the complexity.

Assume that one builds an expression tree by repeatedly joining a pair of disconnected expressions by a primitive
function. Initially, every local method is represented by the base form of an expression tree, which is a leaf. A leaf
is marked as such, and also records how to access the appropriate value for that leaf from an example. For n local
methods, there are initially n disconnected leaves. By repeatedly joining two disconnected expression trees with a
primitive function, the initial set of disconnected leaves eventually becomes a single connected expression tree.

How can we know which pair of disconnected expression trees to connect, and by which of the primitive functions
MIN, MAX, or SUM? For an uninformed search, one must consider all the possibilities. For n local methods, there are
initially n�n�1��2 possible pairs, and 3 possible primitive functions for each of those, making 3n�n�1��2 possible
new expressions. For each of these, there are now n�1 expressions, making 3n�n�1��2 �3�n�1��n�2��2 possible
new expressions. Continuing this expansion for the n factors shows that the number of possible expressions is O�n n�.
An informed search is essential in order to navigate this space at all productively.

4 The BEFIT Fitting Algorithm

The BEFIT (Best-first Expression FITter) algorithm solves this function fitting task with a combination of best-first
search and constraint satisfaction. One can control growth of the search tree by early refutation of every candidate
expression that must be incorrect for at least one example. Among those candidate expressions that are correct for all
the examples, a measure of evidentiary support guides the search to consider the more promising candidates earlier
rather than later.

As described above, BEFIT initializes the root node as the list of disconnected leaf expressions. A leaf simply specifies
which local method’s quality measure should be indexed in an example. A goal node is one in which the list of dis-
connected expressions is of length one, which is equivalent to having one completely connected expression. Because
all expressions listed in a node are individually correct for all the examples, a list of one expression is guaranteed to
be a correct solution. The best-first search removes the most promising node from the open list. If it is not a solution,
then its potentially correct children are generated, as described in Section 4.1, and inserted into the open list according
to the metric described in Section 4.2.

Inferring Task Structure From Data 4

Global 87.75
A 20.09
D 20.09
F 20.09
L 20.09
M 7.39
Q 20.09
T 148.41

W 20.09
Z 20.09

Figure 2. A Data Point

4.1 Generating Children

We would like to generate only those children that could be on the path to a solution expression. If a node has k
disconnected expressions, then there are 3k�k� 1��2 candidates to consider. A great many of these candidates need
not be generated as child nodes because they would be incorrect for at least one example. No descendant of an incorrect
node can ever be correct for all the examples.

Consider the data example shown in Figure 2. The global quality measure (function value) is indicated by ‘Global’,
and each of the local method values (variables) is indicated by a single letter. Suppose that the node being expanded
contains nine disconnected expressions, each one being a leaf expression. There are 108 candidate children for the
node. For this example, it happens that there are 35 combinations of the expression values that sum to the target global
quality. Among these possibilities for this example, expression T is always excluded, and expression M is always
included. This permits three different ways of eliminating candidate children.

First, because T is always excluded, eliminate every candidate MAX(T,x) for which T�x. Such a candidate must be
wrong, and all of its descendants would therefore also be wrong. Also eliminate every candidate MIN(T,x) for which
T�x. Second, because M is always included, eliminate every candidate MAX(M,x) for which M�x. Also, eliminate
every candidate MIN(M,x) for which M�x. Finally, because T is always excluded and M is always included, eliminate
SUM(T,M). These steps eliminate nine candidates when considering just this one example. By considering all the data,
one achieves significant pruning of candidate children. Let’s state this approach algorithmically.

Enumerate the 2k possible ways to include or exclude each of the k expressions such that summing just the included
values produces the target global quality measure. This notion of selection follows from our earlier observation that the
primitives MIN and MAX act as selectors. We refer to each combination of include/exclude choices an interpretation.
If there is no interpretation under which a candidate expression holds (evaluates correctly) for this example, then that
expression is refuted and removed as a candidate child.

Some care must be taken in refuting candidates. For example, suppose that an expression that will be part of a correct
solution is MAX(A,B). When A�B and B is included in every interpretation, then MAX is refuted. Note that MAX
is not refuted when B is excluded in any interpretation, regardless of its numerical relationship to A. This is because
MAX(A,B) may itself be nested somewhere below a selecting primitive MIN or MAX. If MAX(A,B) need not be
selected, then the relationship of A and B is irrelevant and cannot serve as a refutation.

This pruning of necessarily incorrect candidate expressions provides a drastic reduction in the number of children
that are produced and potentially considered further. However, the need to enumerate 2 k possible interpretations
is worrisome because it consists of an exponential search. On present-day machines, k much beyond 20 becomes
expensive. Fortunately, for the time-being, the largest TÆMS task structures are smaller than this.

The BEFIT algorithm does not typically need to generate all 2 k possible interpretations. The space of possible inter-
pretations is itself searched and pruned safely. Think of the most general possible interpretation as including all k of
the expression evaluations. Compute its sum, and package this most general inclusion mask and its sum as the root
node of this subsearch. Now conduct a depth-first search, where at each step an included variable becomes excluded,
updating the node’s sum by a single subtraction. If the sum has dropped below the global quality measure in the
example, discard it, as further exclusions can never help. Otherwise, place it onto the head of the open list of the
subsearch. If the sum matches that of the example’s global quality measure, then the mask in the node indicates an

Inferring Task Structure From Data 5

interpretation. When the open list is exhausted, all possible interpretations (sum of included values matches global
measure) will have been considered. It is trivial to generate the mask children uniquely so that there is no duplication
of effort.

4.2 Node Ordering Heuristic

Generating only the potentially correct children of a node provides valuable guidance away from many fruitless search
avenues. For the children that are generated, additional guidance is needed. This takes the form of a heuristic function
of a node. Because a node contains a list of disconnected expressions, one would expect that a good heuristic function
would measure the promise of the set of expressions at the node. However, of the many heuristic functions we have
tried, the best one to date measures (explained below) just the expression created most recently. Recall that a new
expression is created by joining two existing expressions by a primitive function.

The measure computed for the most recently created expression at a node is the total number of interpretations with
positive support across all the examples. Positive support is present when the primitive function must evaluate correctly
for its arguments. As noted above, it may be the case for some interpretations that both argument values are excluded,
in which case their values are irrelevant. Such interpretations are not counted as positive support.

A greater number of interpretations with positive support are presumed to provide greater freedom downstream in the
search. This measure alone is not quite enough because shorter expression lists tend to have fewer total interpretations.
To compensate, the composite heuristic is to order nodes on the open list first by the number of expressions (fewer
is better), and second by the positive support count (higher is better). This renders BEFIT’s best-first search as a
heuristically guided depth-first search, but we shall continue to characterize it simply as best-first search.

5 Illustrations of the BEFIT Algorithm

The algorithm has been tested on artificial data that was generated by a simulator available in the TÆMS project.
Three data sets are discussed here. All use the same task structure, but they vary in the kinds of interaction effects.
The first problem (p5) has no interactions of any kind. The second problem (p6) contains one ‘enable’ and one
‘facilitate’ interaction, and the third problem (p7) contains one ‘disable’ and one ‘hinder’ interaction. In each of the
three cases, the BEFIT finds the task structure from the data. It does not identify the interaction effects because these
are considered to be apart from the task structure. We expect that it will not be difficult to identify these interactions,
but this has not yet been done. Presence of interactions alters various local qualities, and hence the global quality.

Below is a trace of the BEFIT algorithm as applied to the p5 data set. Other than two notes about cpu consumption,
each block summarizes information about the node just expanded. ‘Support’ is the measure of positive support as
described above in Section 4.2. ‘Open’ is the number of nodes on the open list of the best-first search. ‘Expressions’
is the number of disconnected expressions at the node. Recall that disconnected expressions are combined repeatedly
in an effort to produce just one connected expressions.

The next lines, until but not including ‘Generated ...’ simply list the disconnected expressions at the node. The leaf
expressions, each corresponding to a single local method, are all listed on just one line. Each local method (variable)
is indicated by a single capital letter. Each of the non-leaf expressions is then listed on a separate line. Each primitive
function is implemented as a function of two arguments, but the expression printer causes it to to appear as a function
of any number of arguments wherever possible. For example, an expression F(F(x,y),z) would print as F(x,y,z). The
final line shows how many potentially correct children were generated from the number of candidate children.

1.28 cpu seconds to load 1185 examples

Root: Open: 1 Expressions: 15
Z W V U T S R Q M L K G F D A

Generated 30 of 315 possible successors

Support: 54530 Open: 30 Expressions: 14
A D F G L M Q S T U V W Z
max(R,K)

Generated 24 of 273 possible successors

Support: 40775 Open: 53 Expressions: 13
Z W V U S Q L G F D A
min(M,T)

Inferring Task Structure From Data 6

max(R,K)
Generated 17 of 234 possible successors

Support: 37928 Open: 69 Expressions: 12
A D F G L Q S U W Z
max(V,R,K)
min(M,T)

Generated 19 of 198 possible successors

Support: 21869 Open: 87 Expressions: 11
Z W S Q L G F D A
sum(max(V,R,K),U)
min(M,T)

Generated 16 of 165 possible successors

Support: 11497 Open: 102 Expressions: 10
D F G L Q S W Z
min(M,T,A)
sum(max(V,R,K),U)

Generated 18 of 135 possible successors

Support: 7412 Open: 119 Expressions: 9
Z W S Q L G F D
sum(min(M,T,A),max(V,R,K),U)

Generated 15 of 108 possible successors

Support: 2954 Open: 133 Expressions: 8
D F G L Q W Z
sum(min(M,T,A),max(V,R,K),U,S)

Generated 13 of 84 possible successors

Support: 1039 Open: 145 Expressions: 7
Z W Q G D
sum(F,L)
sum(min(M,T,A),max(V,R,K),U,S)

Generated 11 of 63 possible successors

Support: 962 Open: 155 Expressions: 6
D Q W Z
sum(G,min(M,T,A),max(V,R,K),U,S)
sum(F,L)

Generated 10 of 45 possible successors

Support: 356 Open: 164 Expressions: 5
Z Q D
sum(W,F,L)
sum(G,min(M,T,A),max(V,R,K),U,S)

Generated 10 of 30 possible successors

Support: 962 Open: 173 Expressions: 4
D Q Z
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 9 of 18 possible successors

Support: 11 Open: 181 Expressions: 3
Z
sum(D,Q)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 3 of 9 possible successors

Support: 11 Open: 183 Expressions: 2
sum(D,Q,Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 182 Expressions: 2

Inferring Task Structure From Data 7

min(sum(D,Q),Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 181 Expressions: 2
max(sum(D,Q),Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 11 Open: 180 Expressions: 3
Q
sum(D,Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 3 of 9 possible successors

Support: 11 Open: 182 Expressions: 2
sum(D,Z,Q)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 181 Expressions: 2
min(sum(D,Z),Q)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 180 Expressions: 2
max(sum(D,Z),Q)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 11 Open: 179 Expressions: 3
D
sum(Q,Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 3 of 9 possible successors

Support: 11 Open: 181 Expressions: 2
sum(Q,Z,D)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 180 Expressions: 2
min(sum(Q,Z),D)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 179 Expressions: 2
max(sum(Q,Z),D)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 0 of 3 possible successors

Support: 0 Open: 178 Expressions: 3
Z
min(D,Q)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 3 of 9 possible successors

Support: 0 Open: 180 Expressions: 2
min(D,Q,Z)
max(sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

Generated 1 of 3 possible successors

Solution: Open: 180 Expressions: 1
max(min(D,Q,Z),sum(W,F,L),sum(G,min(M,T,A),max(V,R,K),U,S))

75.12 cpu seconds to solve

Inferring Task Structure From Data 8

There are several points to notice. First, the number of potentially correct children is typically very much less than the
number of candidate children. Pruning in this manner eliminates many worthless paths. Sometimes, no children are
generated at all, indicating a failed path in the best-first search. Second, as the number of disconnected expressions
falls, so too does the support. Third, this task structure (see ‘Solution” at end of trace) includes nontrivial nestings:
MAX(SUM(),SUM()) and SUM(MIN(),MAX()). Finally, the search is quite efficient, making only a few mis-steps
when the values of the support heuristic become low. We suspect that more data would help; one needs data examples
that will include positive support for the various cases.

The BEFIT algorithm was also applied to problems p6 and p7. It found the same task structure for each, as it should
have. However, whereas BEFIT took 27 steps to solve problem p5, it took 15 steps to solve problem p6 and 23 steps
to solve p7. There are 15 local methods, so it must take at least 15 steps to produce a solution, so p6 was solved
without any mis-steps. We suspect that the presence of interactions reduces significantly the number of combinations
of local method values that could produce the total quality value, which helps rather than hurts the search efficiency.
For problem p7, 23 steps is somewhat better than the 27 steps for p5. The number of data examples was 1185 for p5,
1012 for p6, and 520 for p7. It may be that fewer examples for p7 had a detrimental effect. We will be pursuing these
performance issues to understand them better.

6 Summary

We have produced a new data fitting algorithm BEFIT that produces an expression composed of continuous or discon-
tinuous primitive functions. BEFIT navigates expression space efficiently both because it can refute and prune possible
expressions very effectively, and because a simple measure of evidentiary support ranks non-refuted expressions well.
The data modeling problem originated from the desire to understand how coordination choices for multiple agents
affects the overall quality of the solution produced by those agents. By using knowledge of the domain, it was possible
to fashion a learning algorithm that has advanced the technology for multi-agent coordination.

Acknowledgments

This material is based on work supported by the National Science Foundation under Grants IRI-9711239 and IIS-
9812755. Regis Vincent chose the task structures and generated the data tuples for them. David Stracuzzi and Margaret
Connell provided helpful comments.

References
Decker, K. S., & Lesser, V. R. (1993). Quantitative modeling of complex environments. International Journal of

Intelligent Systems in Accounting, Finance, and Management, 2, 215-234.

Decker, K., & Lesser, V. (1995). Designing a family of coordination algorithms. Proceedings of the First International
Conference on Multiagent Systems (ICMAS-95) (pp. 73-80). San Francisco: AAAI Press.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley & Sons.

Jensen, D., Atighetchi, M., Vincent, R., & Lesser, V. (1999). Learning quantitative knowledge for multiagent coordi-
nation. Proceedings of the Sixteenth National Conference on Artificial Intelligence (pp. 24-31).

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1988). Numerical recipies in C: The art of scientific
computing. New York: Cambridge University Press.

