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Abstract: We describe how an environment can be 
extended to support the process of software development. 
Our approach is based on the AI planning paradigm. 
Processes are formally defined hierarchically via plan 
operators, using multiple levels of abstraction. Plans are 
constructed dynamically from the operators; the sequences 
of actions in plans are tailored to the context of their use. 
and conflicts among actions are prevented. Monitoring of 
the development process, to detect and avert process errors, 
is accomplished by plan recognition; this establishes a 
context in which programmer-selected goals can be 
automated via plan generation. We also show how non- 
monotonic reasoning can be used to make an independent 
assessment of the credibility of complex process 
alternatives, and yet accede to the programmer’s superior 
judgment. This extension to intelligent assistance provides 
deeper understanding of software processes. 

1. Introduction 

Environments have traditionally provided minimal support 
for the process of software development. Separate parts of 
the process are typically supported by separate tools, while 
global patterns of tool usage are not made explicit, and are 
not exploited. Thus, the environment cannot prevent a 
programmer from starting compilations before an 
appropriate context is set up. enforce a policy of regression 
and performance testing before a customer release, insure 

that new source versions are checked back into the source 
code control system, or guarantee that source files are 
deleted only after their contents have been archived or 
superseded. Such support would be valuable to both 
programmers and their managers. 

Extending environments to incorporate process support 
requires explicit representation of the software process, 
showing how software development goals are mapped into 
sequences of environment actions (Figure 1). Typical goals 
(during implementation) are concerned with adding 
functionality to a system version, fixing bugs, adhering to 
various project-specific policies, and maintaining an 
organized on-line workspace. The actions available to 
achieve these goals consist of invocations of tools provided 
within the environment. Knowledge of a specific software 
process governs the mapping from goals to actions, 
distinguishing between appropriate sequences of actions and 
random ones. 

This view of software processes fits the planning paradigm, 
an AI approach to a theory of actions. In planning [9], 
knowledge of a domain is expressed in operators 
(parameterized templates defining the possible actions of 
the domain) together with a state schema (a set of predicates 
that describe the state of the world for that domain). Goals 

are logical expressions composed of the state predicates. A 

plan is a hierarchical, partial order of operators (with bound 
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parameters) that achieves a goal given an initial state of the 
world. There are two mapping algorithms: planning, where 
a plan is constructed given a goal and an initial state, and 
plan recognition, where a plan and its goal are inferred 
given a sequence of actions and an initial state. 

When the planning paradigm is applied to software 
processes, operators are the vehicle for formally defining 
processes; plans are the data structures that represent 
instantiations of processes; and, assistance can be active 
(via planning) or passive (via plan recognition). If the 
programmer retains the initiative for performing the 
process, issuing commands exactly as at present, plan 
recognition can detect and avert process errors. This 
“kibitzing” is an automated version of a colleague watching 
over the shoulder of a progxamrner at work. Alternatively. 
the programmer can state a goal to be satisfied, invoking 
plan generation to automate achievement of the goal. 
Depending on the scope of the goal, plan generation may be 
completely automatic, or cooperative [6] (relying on 
interactive input from the programmer). 

We call this combination of volunteered advice and 
cooperative automation intelligent process assistance-an 
approach to machine mediation of software development [2, 
181 as it applies specifically to the development process. 
Another type of plan-based intelligent assistance, directed 
at understanding the deep structure of code, is described in 
[ 14, 251. 

Comprehensive support of the software process requires 
involvement in both the complex decisions as well as the 
mundane details. Formally representing some of these 

decisions is a challenge (independent of the choice of 
process specification formalism). What are the criteria for 
choosing the baseline from which to develop a new system 
version, selecting tests to run, or deciding which system 
version is releasable? If a process assistant lacks 
knowledge to address these decisions, it cannot 
independently critique a choice made by the programmer, 
nor can it suggest a restricted set of likely candidates from 
which the programmer can choose; the level of assistance is 
seriously restricted. 

While universal decision procedures embodying these 
complex criteria seem unattainable, rules can be given to 
cover typical situations and anticipated exceptions. 
Reasoning with these rules is inherently imprecise; the 
conclusions are plausible, but fallible-assumptions may 
have to be revised. By introducing non-monotonic 
reasoning, it is possible to formalize additional process 
knowledge to evaluate the credibility of alternatives for 
decisions that could not otherwise be addressed. The 
additional discrimination power is flexible, not absolute; it 
is possible to defer gracefully to the programmer’s 
judgment, integrating the implications of that judgment 
into a revised set of assumptions. 

In Section 2. we show how the planning paradigm applies to 
software development, giving examples of software process 
operators and plans. planning is compared with other 
approaches to specifying and supporting software 
processes. We also show how a plan-based intelligent 
assistant is integrated into an environment architecture, and 
give examples of volunteered advice and automation. In 
Section 3. we present an approach to deeper process 

OPERATOR release 
GOAL: current-release(Systom) 
PRECONDS: built(System) 

regression-tested(System) 
performance-tested(System) 

CONSTR: current-release(C) 
not-equal(C,System) 

EFFECTS: DELETE current-ralease(C) 
ADD current-release(System) 
ADD customer-release(System) 
ADD prior-release(System,C) 

OPERATOR build 
GOAL: built(System) 
PRECONDS: 
SUBGOALS: creatod(System,Baseline) 

has-load-mod(System) 
unit-tested(System) 
archived(System) 

EFFECTS: ADD built(System) 

l all-controlled(S) = 
not{ part-of(X,S) and not controlled(X) ) 

OPERATOR link 

GOAL: hes-load-mod(Systom) 
PRECONDS: compiled(System) 
EFFECTS: NEW load-module(Lm) 

ADD has-load-mod(System) 
ADD oxecutable(System,Lm) 
SET time(System.Time) 

GOAL: archived(System) 
PRECONDS: unit-testod(System) 
CONSTR: 
SUBGOALS: 

PRECONDS: 
EFFECTS: 

Figure 2: Software Process Operators 
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understanding. Additional process knowledge is expressed 
in monotonic and non-monotonic rules, and a truth 
maintenance system is used to reason with thii knowledge. 
In the final section we summarize the GRAPPLE project 
status and describe future extensions. 

2. Plan-based Process Support 

2.1 Software Process Operators 

As an example of a software process, consider how 
implementation might be carried out for a traditional 
programming language such as C, assuming currently 
accepted engineering practice such as incremental 
development, source code control, bug report database, and 
specialized test suites. A partial library of operators for this 
domain appears in Figure 2. A state schema supporting 
these operators is sketched in Figure 3, using the ER model 
of data [5] as the graphical presentation; relationships and 
attributes correspond to the logical predicates used in the 
operator definitions. 

Operator definitions follow the state-based, hierarchical 
planning approach [22, 23. 281. Each operator has a 
precondition defining the state that must hold in order for 
the action to be legal, and a set of effects that defies the 

state changes that result from performing the action. These 
core clauses are augmented by a goal clause that defines the 
principal effects of an action (thus distinguishing them from 
“side-effects” of the action), and a constraints clause that 
defines restrictions on parameter values. The unit-check-in 
operator in Figure 2 describes the action of checking a new 
version of a source module into a source code control system 
(such as RCS [24]). The precondition on the action requires 
that the module was previously checked-out with return 
privileges. The goal of the action is that the new version is 

now “under” source code control; this is also one of the 
effects of the action. There is one side-effect, namely that 
the return privilege is lost (another operator is used to 
describe the type of check-in that retains the return 
privilege). 

An abstraction hierarchy is created through complex 
operators having subgoals. (This is essential for describing 
complicated processes.) The subgoals of the build operator 
decompose building into four parts: creation of new source 
versions, creation of a load module, running unit tests, and 
checking-in. Primitive operators, which do not have 
subgoals, correspond to the atomic actions in the domain. 
Some primitive actions, like unit-check-in, correspond to 
tool invocations (perhaps with specific parameter settings). 
Other primitive actions correspond to command-language 
scripts; release could be implemented as a script that copies 
a load module to the customer’s directory and issues a release 
notice. 

All the policies and procedures that are associated with a 
particular software development process must be included in 
the operator definitions. Changing the definitions of the 
operators changes the process that will be followed. For 
example, the release operator in Figure 2 requires that 
performance tests and regression tests be run before a 
customer release is made. These requirements could be 
relaxed (by deleting one or both testing-related 
preconditions) or strengthened (by adding another 
precondition requiring execution of a particular analysis 
tool or updating of release documentation). 

” -4 

2.2 Software Process Plans 

Plans are constructed dynamically by instantiating 
operators. Operator definitions contain sufficient 

Figure 3: Software Process State 
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information to reason about sequences of actions without 
actually executing the actions. The state changes that an 
action causes are explicit; therefore, sequences of actions 
can be “simulated”. The exact preconditions for an action 
are explicit; therefore, actions can be ordered correctly. 
Concurrency is implicitly allowed, subject only to the stated 
preconditions. Plans are automatically tailored to the exact 
context for which they are needed. If a subgoal has already 
been achieved as a side-effect of prior activity, actions to 
achieve that subgoal will be omitted. If part of a plan fails 
during execution, replanning will fill the gaps left by the 
failure (and only those gaps). 

Planning is distinguished from other theories of actions by 
its emphasis on goals to achieve, not actions to perform. 
Determination of actions proceeds from goals, so that 
contingency handling (e.g., for redundancy or failures) is 
internal-not external-to the planning system. When 
process definition is procedural [ 191 or event-based [ 111, the 
composition and ordering of actions is predetermined; any 
contingency handling must be built into the definition by 
hand, in advance. A behavioral approach to process 
modeling that combines action and goal orientations is 
described in [29]. 

A partial example of a hierarchical plan is given in Figure 4. 
There, a vertical slice covering three hierarchical levels is 
shown; lower levels reveal more detail in the plan. 
Downward arrows between levels connect desired states with 

operators instantiated to achieve them: in general, there 
may be several alternative operators that could achieve a 
given state. Arrows within levels show how the 
achievement of certain states is partially ordered with 
respect to time. These temporal constraints foIlow from the 
operator definitions: precondition states must always 
precede subgoals, for example. 

A special type of contingency arises when there are 
conflicts among actions. For example, consider an 
instantiation of the build operator that involves changing 
one source module. The new source module must be 
preserved from the time it is created until it is checked-in. 
An action such as editing (that would contribute to building 
the next system version) cannot be allowed to interfere with 
accomplishing the check-in. Strategies for salvaging the 
plan include preventing editing until check-in occurs or 
inserting an action to make another copy of the module. 
Conflicts can occur within a single plan as well as between 
two plans being carried out concurrently. The simple action 
of deleting something has the potential of interfering with 
almost any active plan. 

Planning algorithms handle conflicts via domain- 
independent methods. Associated with each precondition or 
subgoal is a protection interval that begins when the 
precondition or subgoal is achieved and ends when the 
operator begins (for preconditions) or ends (for subgoals). 
A conflict occurs when a precondition or subgoal is 

I 

An operator with the name A. 

A stat. internal to an operator 
$$ (rithor a procondition, subgoal, 
. . .._. . . .._. or l lloct d the operator) defined . . . . . . . . . . . . . . . . . . i.... . . . . . by the given formula. II box is 
. . . . . . . ..,,,, shaded, no expansion is needed . . . . . 
j:.:. .P.... . . .._. l ths n*xt lowrr Irvel. .z.._. :;:;:i :.:.:. . ..C. j::< ..i.. . . . . . . . ..L . . .._. .c.... . . .._. <>> / 
_..._. . . .._. ::: A link between a stat. al one level >:.: ..i_. . ..L. . . .._. and an operator at a lower level, .:.:.: :.:.;. .:.:_: where the goal 01 ths operator 
:.:.:. . . . . . . . . . . . achieves the stat.. ::_ . . . . . . .I... 

Figure 4: Vertical Slice of Hierarchical Plan 

100 



destroyed during its protection interval. Domain- 
independent methods for resolving conflicts, described in 
[12. 22. 23. 281. include imposing additional temporal 
constraints and selecting alternative operators. 

This ability to anticipate and prevent conflicts (among 
operators that are fundamentally if-rhea rules) distinguishes 
plauning from other rule-based systems. Marvel [15] uses 
forward and backward chaining to automate chores that are 
prerequisites to or consequences of programmer actions. 
Glitter [S] cooperatively automates goals in the 
transformational development process. These systems do 
not prevent conflicts among rules. Systems based on 
<condition, action> rules, such as CLF [l] and Genesis [21], 
lack descriptions of effects; they cannot reason about the 
consequences of actions, and therefore cannot prevent 
conflicts. Planning techniques are used in two existing 
systems. Agora [43 provides a domain-specific planner for 
tasks relating to heterogeneous, parallel systems. Although 
help systems usually provide advice that is too local to 
qualify as process support, UC [27] now uses planning to 
gain a more global perspective [ 171. 

2.3 Integration in an Environment 

The integration of an intelligent assistant into an 
environment is shown in Figure 5. The base environment 
contains a command language processor that invokes the 
available tools. The tools in turn reference and update the 
environment storage system, implemented as a database [3, 
10, 201 or objectbase [26], comprising not only software 
products but also their attributes and the relationships 
among them. 

The intelligent assistant has an active component based on 
algorithms for plan recognition and plan generation. These 
algorithms are process independent; they obtain process 
knowledge by referencing a library of operators. In order to 
construct plans, the algorithms must reference the current 
state of the world, which is essentially the database already 
present in the environment. The intelligent assistant also 
contributes additional state informatiqn to this database. 

P 
R 
0 
0 
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For example, the effects of the release operator define the 
“meaning” of release from a higher-level perspective than 
the script implementing release. The script invokes the 
copy command to copy the contents of one file to another; 
copy is not aware that a release is being copied or that the 
release sequence is being extended. 

The programmer communicates with the intelligent 
assistant, which moves smoothly between passive and 
active assistance. For commands issued in the normal way, 
plan recognition is invoked to fiid an interpretation for the 
action. If a valid interpretation is found, the command is 
passed to the command language processor for execution. 
An interpretation is a path from the action up through the 
plan hierarchy to a top-level operator of an existing or new 
plan; an interpretation is valid if all relevant preconditions 
and constraints on the path are satisfied. When the 
programmer issues the command achieve <goal>, plan 
generation is invoked to produce a sequence of commands 
for execution by the command language processor. Plan 
generation can also be invoked to satisfy a precondition to 
make an interpretation valid. Specific examples follow. 

2.4 Process Support 

Consider the plan recognition situation diagrammed in 
Figure 6. Here, the programmer has been building a new 
system version (Sl). and work has proceeded as far as unit- 
testing. Thus, three subgoals of build (at level 1) have been 
satisfied (the detail of exactly how this was accomplished 
has been omitted). The current state of the world is also 
diagrammed, showing that SI was constructed from two 
source modules and one include module. Assume that the 
programmer has just issued a command for unit-check-in on 
module C. This action is “recognized” as fitting into the 
plan for building Sl, because unit-check-in (on level 3) 
satisfies a subgoal in system-check-in (on level 2) which 
satisfies the remaining subgoal in build (on level 1). This 
interpretation for unit-check-in of C is valid. because all 
necessary preconditions are met: return privileges exist for 
C (level 3) and Sl has been unit-tested (level 2). With a 
valid interpretation, no advice need be volunteered. 

:-V ;c’ - Process AM + I-- 

Command -L Language 
Processor 

Environment 

Figure 5: Environment with Intelligent Assistant 
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Since the roles and interrelationships of actions are 
explicitly represented in plans, agendas (what needs doing) 
and status reports (what has been done) can be generated at 
multiple levels of abstraction. A plan can be constructed for 
any agenda item, and the rationale provided for any 
completed activity. In contrast, the DSEE task management 
facilities [16] allow users to associate actions performed 
with a task/subtask structure, but any intelligent processing 
of stored task information must be provided by the 
programmer. 

Three additional recognition examples are: 

(1) If no return privileges exist for C, then the 
interpretation of unit-check-in of C is not valid due to 
an unsatisfied precondition at level 3. Plan generation 
can be invoked to satisfy the precondition, thereby 
making the interpretation valid. 

(2) If the programmer had issued a command for unit- 
check-in on module B, this action would be recognized 
as superfluous-its goal is already true (presumably, B 
was not modified to make Sl). 

(3) If the programmer had attempted to relinquish the 
return privileges on C (perhaps meaning to do a check- 
in but garbling the parameters on the command), the 

action could be “doubly” an error. Return privileges 
on C are necessary to doing unit-check-in of C, which 
is necessary to completing the build of S1. Since he 
proposed action interferes with other actions, the 
programmer is asked to confum it before execution 
(assuming the interpretation is otherwise valid). 
However, there may be no valid interpretation for this 
action (e.g., no “reason” to do a relinquish); then an 
error would be reported. 

As an example of how planning and plan recognition are 
complementary, consider the request achieve built(Sl). The 
goal is that of the partially completed build plan, so the 
request equates to completing that plan. If this happens 
after unit-testing is complete, there will be one remaining 
subgoal in build to satisfy. The system-check-in operator 
(level 2) will be chosen to satisfy it, and unit-check-in 
(level 3) will be chosen to expand two subgoals in system- 
check-in: since B is already checked-in, the third subgoal is 
vacuously satisfied. Because the programmer does not have 
return privileges for A, a further expansion of the 
precondition in unit-check-in for A will have to be done. 
The final plan consists of three actions: two unit-check-ins. 
one of which is preceded by a dummy check-out to acquire 
the return privilege. 

Modulm 0 LSystem Sl 
Controlled A Archived 

I 

Figure 6: A Plan in Progress 
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Planning can be invoked on any level goal within an 
existing plan, or on new goals. Plan recognition sets the 
context for planning in two ways. First, it provides 
additional state information not otherwise available (e.g., 
the effects of releuse, or any effect in a complex operator not 
logically implied by the conjunction of the subgoals). 
Second, when the goal is part of a recognized plan in 
progress, some planning choices, such as parameter 
bindings, may already be decided. 

confirms the action, the assumptions would need to be 
revised to be consistent with the programmer’s judgment. 

Reasoning that involves making and revising plausible 
assumptions in the absence of complete information is 
called non-monotonic reasoning (NMR) [9]; one form of 
NMR is a truth maintenance system (TMS) [7]. In the next 
two sections, we show how deeper process understanding 
can be achieved using a TMS. 

3. Achieving Deeper Process Understanding 3.1 Formalizing Additional Knowledge 

One obstacle to deeper process understanding is that some 
useful information about the state of the world cannot be 
directly observed from the actions performed; nor can it be 
computed with certainty from observable data. Consider the 
issue of the “releasability” of a given system version. 
Customers generally expect (bug-free) releases with 
successively greater functionality. The release operator of 
Figure 2 ignores these considerations-it is too permissive. 
For example, it allows releases in random order of 
functionality. Adding a requirement that a new release must 
have been developed after the current release gives an 
operator that is too rigid. A development time-stamp is not 
a perfect predictor of functionality, although generally 
versions developed later have more function. Also, there 
could be other exceptions, such as re-releasing the previous 
release when the current release is found to have a serious 
bug. 

A TMS uses a multi-valued logic approach to NMR. It 
maintains a network of nodes, each of which can be labelled 
IN or OUT. Separate nodes are used for a predicate and its 
negation. If the node for a predicate is IN and the node for 
its negation is OUT. the predicate is true; if the node is OUT 
and the negation is IN, the predicate is false. If both are 
OUT. the truth value is unknown; if both are IN, there is a 
contradiction. 

Although a “decision procedure” to determine releasability 
with certainty seems unattainable, it is possible to identify 
some rules for making plausible assumptions about 
releasability, based on what is typically the case. These 
assumptions would then be the basis for determining the 
credibility of a particular release action; actions below a 
certain credibility threshold could be challenged, not as 
actual errors, but as possible errors. If the programmer 

Justifications capture the relationships between the nodes, 
correlating a set of support nodes and a set of exception 
nodes with a conclusion node. A justification of the form A 
-EXCEPT B -> C means if A is IN and B is OUT, then C is 
IN. The exception node B represents the non-monotonic 
content of the justification; a monotonic justification 
(standard logical implication) has an empty list of 
exceptions. In order for a node to be IN, it must have at least 
one valid justification; a justification is valid if all its 
support nodes are IN and all its exception nodes are OUT. A 
premise justification has empty support and exception lists; 
it is always valid. 

Process knowledge about releasability is given in 
justification form in Figure 7 (left column). Rule Jl covers 
the common situation: a non-buggy version developed after 
the current release is considered releasable. Rule J2 covers a 
re-release scenario; if the current release is buggy, the 

Jt: currant-release(C) and developed-after(R,C) 
EXCEPT buggy(R) or not releasable(R) 
-> releasable(R) 

J2: current-release(C) and buggy(C) and 
previous-release(C,R) EXCEPT not releasable(R) 
or buggy(R) --r releasable(R) 

53: EXCEPT releasable(R) -> not releasable(R) 

54: has-bug(S.B) and severlty(B,hlgh) 
EXCEPT not buggy(S) -> buggy(S) 

J5: EXCEPT buggy(S) --, not buggy(S) 

J6: quallfler(T,c) EXCEPT not type(T,code) 
-> type(T,code) 

J7: qualifier(T,doc) EXCEPT not type(T,doc) 
-> type(T,doc) 

J8: successor(T1 ,T2) and type(T1 ,code) 
EXCEPT not type(T2,code) -> type(T2,code) 

J9: successor(T1 ,T2) and type(T1 ,doc) 
EXCEPT not type(T2,doc) --, type(T2,doc) 

JlO: compiled(T) -r type(T,code) 

Jll: type(T,code) --z not type(T,doc) 
A and B EXCEPT C or D -s E 

means 
IF A Is IN and B is IN and C Is OUT and D is OUT, 

then E Is IN 

Jt2: type(T,doc) -> not typo(T,code) 

Figure 7: TMS Justifications 
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previous release is considered releasable unless it is buggy. 
Rule 13 provides that if rules Jl and J2 don’t apply, a 
version is considered not releasable.* Rules J4 and JS give 
a (simplistic) deftition of the predicate buggy, based on the 
descriptions of explicitly reported bugs in a bug database. 
An additional set of justifications (Figure 7, right column) 
shows how the type of a text file can be deduced (based on 
either the qualifier on its file name or the type of its 
predecessor). This set contains monotonic justifications; 
for example, if the file has compiled successfully, then it is 
definitely code. 

These justifications provide a way to compute the truth 
values of new predicates (releasable, buggy, and type), thus 
enlarging the state of the world beyond the original, core 
state. When the justifications are instantiated, and the truth 
values of core predicates entered (with premise 
justifications), the truth maintenance process will label the 
nodes, giving a read-out on the truth values of the new 
predicates. When the core state changes as a result of an 
action, the nodes will be relabelled and the new predicates 
may change. The TMS will also determine whether a node is 
certain or by-assumption. Nodes belonging to the core state 
are always certain. Other nodes are certain if they are the 
conclusions of monotonic justifications, all of whose 
support nodes are certain. Remaining nodes are by- 
assumption; for nodes that are IN by-assumption, one or 
more non-monotonic rules were needed to justify them. (The 
labels of nodes that are certain cannot be changed when 
assumptions are being revised.) 

* A justification of the form EXCEPT A -> 7A is only 
made valid ufrer it has been determined that there are no valid 
justifications for A. This is a special case of a more general 
feature that allows justifications to be prioritized according 
to their predictive accuracy. Priorities ensure that stronger 
justifications are not invalidated by weaker ones, as 
described in [13]. 

A TMS labelling is shown in Figure 8, where Sys2 is the 
current release, Sysl the previous release, Sys2 was 
developed after Sysl. and Sys3 was developed after SyD. In 
the absence of any reported, high-severity bugs, none of 
these systems is buggy (J5 valid, J4 not valid in each case). 
Sysl is not releasable-neither Jl nor J2 are valid, but J3 is 
valid. Sys3 is releasable by Il. Sys2 was at one time 
releasable, but this is no longer the case. 

Since the justifications determine the truth status of the new 
predicates, releasable can be used where needed in operator 
definitions. In particular, releasable(System) can now be 
added as a constraint in the release operator of Figure 2. 

3.2 Credibility and Revision of Assumptions 

In the enlarged world state that is now accessible, predicates 
will evaluate to one of five truth values: true with-certainty, 
true by-assumption, unknown, false by-assumption, or false 
with-certainty. These correspond to five credibility classes, 
informally described as certainly OK, credible, can’t tell, not 
credible, and certainly not OK. As the preconditions and 
constraints of an action are checked along the path from the 
action to a top-level goal, the credibility rating can be 
accumulated. 

Credibility can be used in two ways: to select among 
competing interpretations for an action and to flag potential 
errors in actions. For example, if a file is assumed to 
contain code, we expect to see it used in actions on code, not 
actions on documentation. When there is an action 
involving this file that could be either part of preparing 
code or part of preparing documentation, the interpretation 
for preparing code will have a higher credibility. and will be 
preferred. Potential errors flagged for the programmer’s 
attention correspond to interpretations with a “not credible” 
rating. 

The internal structure of a TMS is designed for revising 
assumptions, not just reporting assumptions. When 

-v- 
53 

1N by-assumption 

S EXCEPT E 

IN with certainty 

Justifications in which 
one or more nodes 
are OUT with certainty 
have been omitted 

Figure 8: A TMS Labelling 
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proceeding with an interpretation in which one or more 
predicates evaluated to unknown or false by-assumption, it 
is necessary to make the world state consistent with the 
requirements of the action. This can be trivially 
accomplished by adopting the desired assumptions; but 
then, clues that other assumptions are wrong will be 
ignored. Since the justifications provide the accepted 
rationale for various assumptions, it is better to find a 
rationale for the desired assumption than to adopt it 
outright. This will “integrate” the programmer’s judgment 
into the current set of assumptions. 

Consider an action (re-)releasing Sysl in the state 
diagrammed in Figure 8. Since releasable(Sys1) is false by- 
assumption, this action will be challenged. If the 
programmer confirms this action, then releasable(Sys1) 
must be made true. Only two rules, Jl and J2, justify 
releasable. Jl cannot be made valid-it has a support node 
(developed-ufter(sysl.sys2)) that is OUT with certainty. J2 
can be made valid by making buggy(Sys2) IN. This has to 
be done by supporting buggy(Sys2) directly, since no 
revision of assumptions can make J4 valid. This change and 
the new labels are shown in Figure 9. The algorithm for 
revising assumptions [13] is similar to dependency-directed 
backtracking [7]. 

This example shows how the process assistant uses the 
justifications to make independent assessments (originally 
to conclude that Sysl is not releasable), and yet accede to a 
different decision and supply a rationale for that decision 
(that Sysl is releasable because Sys2 must be buggy). 

4. Status and Future Work 

We have built a testbed for experimentation with the 
GRAPPLE plan-based process assistant. Two versions of 
the plan recognizer have been implemented. The TMS and 
related facilities for deeper process understanding are 
implemented in a Prolog version of the plan recognizer, 
GRAPPLE is not tied to a particular software environment; 

Figure 9: Revised Assumptions 

rather, it accepts command streams transcribed from actual 
terminal sessions or fabricated for experimental purposes. 
We have studied actual session transcripts to develop a 
better understanding of the content of process definitions, 
but have not yet tested GRAPPLE in a real setting. 

There are several dimensions along which plan-based 
process support can be extended. We have already developed 
(and are currently implementing) a method of using 
metaplans to represent error recovery strategies and other 
types of knowledge of exceptional situations [12]; this is 
particularly important in light of the “trial and error” 
character of software development. We also want to explore 
the feasibility of applying intelligent assistance to the 
commands within an interactive tool (e.g., a syntax-directed 
editor). This would extend support to lower-level process 
activities and capitalize on synergy between levels, as the 
external context affects what is done within the tool, and 
vice versa. The most exciting extension involves the use of 
multi-agent planning techniques to represent project-level 
coordination, cooperation, and negotiation among 
programmers. 
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