
A Plan-based Intelligent Assistant
That Supports the Software Development Process

Karen E. Huff and Victor R. Lesser

Computer and Information Science Department
University of Massachusetts at Amherst

Abstract: We describe how an environment can be
extended to support the process of software development.
Our approach is based on the AI planning paradigm.
Processes are formally defined hierarchically via plan
operators, using multiple levels of abstraction. Plans are
constructed dynamically from the operators; the sequences
of actions in plans are tailored to the context of their use.
and conflicts among actions are prevented. Monitoring of
the development process, to detect and avert process errors,
is accomplished by plan recognition; this establishes a
context in which programmer-selected goals can be
automated via plan generation. We also show how non-
monotonic reasoning can be used to make an independent
assessment of the credibility of complex process
alternatives, and yet accede to the programmer’s superior
judgment. This extension to intelligent assistance provides
deeper understanding of software processes.

1. Introduction

Environments have traditionally provided minimal support
for the process of software development. Separate parts of
the process are typically supported by separate tools, while
global patterns of tool usage are not made explicit, and are
not exploited. Thus, the environment cannot prevent a
programmer from starting compilations before an
appropriate context is set up. enforce a policy of regression
and performance testing before a customer release, insure

that new source versions are checked back into the source
code control system, or guarantee that source files are
deleted only after their contents have been archived or
superseded. Such support would be valuable to both
programmers and their managers.

Extending environments to incorporate process support
requires explicit representation of the software process,
showing how software development goals are mapped into
sequences of environment actions (Figure 1). Typical goals
(during implementation) are concerned with adding
functionality to a system version, fixing bugs, adhering to
various project-specific policies, and maintaining an
organized on-line workspace. The actions available to
achieve these goals consist of invocations of tools provided
within the environment. Knowledge of a specific software
process governs the mapping from goals to actions,
distinguishing between appropriate sequences of actions and
random ones.

This view of software processes fits the planning paradigm,
an AI approach to a theory of actions. In planning [9],
knowledge of a domain is expressed in operators
(parameterized templates defining the possible actions of
the domain) together with a state schema (a set of predicates
that describe the state of the world for that domain). Goals

are logical expressions composed of the state predicates. A

plan is a hierarchical, partial order of operators (with bound

This work was supported by the Air Force Systems
Command, Rome Air Development Center, Griffiss Air
Force Base, New York 134414700, and the Air Force Office
of Scientific Research, Bolling AFB, DC 20332 under
contract No. F30602-C-0008. supporting the Northeast
Artificial Intelligence Consortium (NAIC).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee and/
or specific permission.

01988 ACM 0-8979I-290-X/88/0011/0097 $1.50 Figure 1: A View of Software PrOCeSSeS

97
Recommended by: Robert M. Baker

parameters) that achieves a goal given an initial state of the
world. There are two mapping algorithms: planning, where
a plan is constructed given a goal and an initial state, and
plan recognition, where a plan and its goal are inferred
given a sequence of actions and an initial state.

When the planning paradigm is applied to software
processes, operators are the vehicle for formally defining
processes; plans are the data structures that represent
instantiations of processes; and, assistance can be active
(via planning) or passive (via plan recognition). If the
programmer retains the initiative for performing the
process, issuing commands exactly as at present, plan
recognition can detect and avert process errors. This
“kibitzing” is an automated version of a colleague watching
over the shoulder of a progxamrner at work. Alternatively.
the programmer can state a goal to be satisfied, invoking
plan generation to automate achievement of the goal.
Depending on the scope of the goal, plan generation may be
completely automatic, or cooperative [6] (relying on
interactive input from the programmer).

We call this combination of volunteered advice and
cooperative automation intelligent process assistance-an
approach to machine mediation of software development [2,
181 as it applies specifically to the development process.
Another type of plan-based intelligent assistance, directed
at understanding the deep structure of code, is described in
[14, 251.

Comprehensive support of the software process requires
involvement in both the complex decisions as well as the
mundane details. Formally representing some of these

decisions is a challenge (independent of the choice of
process specification formalism). What are the criteria for
choosing the baseline from which to develop a new system
version, selecting tests to run, or deciding which system
version is releasable? If a process assistant lacks
knowledge to address these decisions, it cannot
independently critique a choice made by the programmer,
nor can it suggest a restricted set of likely candidates from
which the programmer can choose; the level of assistance is
seriously restricted.

While universal decision procedures embodying these
complex criteria seem unattainable, rules can be given to
cover typical situations and anticipated exceptions.
Reasoning with these rules is inherently imprecise; the
conclusions are plausible, but fallible-assumptions may
have to be revised. By introducing non-monotonic
reasoning, it is possible to formalize additional process
knowledge to evaluate the credibility of alternatives for
decisions that could not otherwise be addressed. The
additional discrimination power is flexible, not absolute; it
is possible to defer gracefully to the programmer’s
judgment, integrating the implications of that judgment
into a revised set of assumptions.

In Section 2. we show how the planning paradigm applies to
software development, giving examples of software process
operators and plans. planning is compared with other
approaches to specifying and supporting software
processes. We also show how a plan-based intelligent
assistant is integrated into an environment architecture, and
give examples of volunteered advice and automation. In
Section 3. we present an approach to deeper process

OPERATOR release
GOAL: current-release(Systom)
PRECONDS: built(System)

regression-tested(System)
performance-tested(System)

CONSTR: current-release(C)
not-equal(C,System)

EFFECTS: DELETE current-ralease(C)
ADD current-release(System)
ADD customer-release(System)
ADD prior-release(System,C)

OPERATOR build
GOAL: built(System)
PRECONDS:
SUBGOALS: creatod(System,Baseline)

has-load-mod(System)
unit-tested(System)
archived(System)

EFFECTS: ADD built(System)

l all-controlled(S) =
not{ part-of(X,S) and not controlled(X))

OPERATOR link

GOAL: hes-load-mod(Systom)
PRECONDS: compiled(System)
EFFECTS: NEW load-module(Lm)

ADD has-load-mod(System)
ADD oxecutable(System,Lm)
SET time(System.Time)

GOAL: archived(System)
PRECONDS: unit-testod(System)
CONSTR:
SUBGOALS:

PRECONDS:
EFFECTS:

Figure 2: Software Process Operators

98

understanding. Additional process knowledge is expressed
in monotonic and non-monotonic rules, and a truth
maintenance system is used to reason with thii knowledge.
In the final section we summarize the GRAPPLE project
status and describe future extensions.

2. Plan-based Process Support

2.1 Software Process Operators

As an example of a software process, consider how
implementation might be carried out for a traditional
programming language such as C, assuming currently
accepted engineering practice such as incremental
development, source code control, bug report database, and
specialized test suites. A partial library of operators for this
domain appears in Figure 2. A state schema supporting
these operators is sketched in Figure 3, using the ER model
of data [5] as the graphical presentation; relationships and
attributes correspond to the logical predicates used in the
operator definitions.

Operator definitions follow the state-based, hierarchical
planning approach [22, 23. 281. Each operator has a
precondition defining the state that must hold in order for
the action to be legal, and a set of effects that defies the

state changes that result from performing the action. These
core clauses are augmented by a goal clause that defines the
principal effects of an action (thus distinguishing them from
“side-effects” of the action), and a constraints clause that
defines restrictions on parameter values. The unit-check-in
operator in Figure 2 describes the action of checking a new
version of a source module into a source code control system
(such as RCS [24]). The precondition on the action requires
that the module was previously checked-out with return
privileges. The goal of the action is that the new version is

now “under” source code control; this is also one of the
effects of the action. There is one side-effect, namely that
the return privilege is lost (another operator is used to
describe the type of check-in that retains the return
privilege).

An abstraction hierarchy is created through complex
operators having subgoals. (This is essential for describing
complicated processes.) The subgoals of the build operator
decompose building into four parts: creation of new source
versions, creation of a load module, running unit tests, and
checking-in. Primitive operators, which do not have
subgoals, correspond to the atomic actions in the domain.
Some primitive actions, like unit-check-in, correspond to
tool invocations (perhaps with specific parameter settings).
Other primitive actions correspond to command-language
scripts; release could be implemented as a script that copies
a load module to the customer’s directory and issues a release
notice.

All the policies and procedures that are associated with a
particular software development process must be included in
the operator definitions. Changing the definitions of the
operators changes the process that will be followed. For
example, the release operator in Figure 2 requires that
performance tests and regression tests be run before a
customer release is made. These requirements could be
relaxed (by deleting one or both testing-related
preconditions) or strengthened (by adding another
precondition requiring execution of a particular analysis
tool or updating of release documentation).

” -4

2.2 Software Process Plans

Plans are constructed dynamically by instantiating
operators. Operator definitions contain sufficient

Figure 3: Software Process State

99

information to reason about sequences of actions without
actually executing the actions. The state changes that an
action causes are explicit; therefore, sequences of actions
can be “simulated”. The exact preconditions for an action
are explicit; therefore, actions can be ordered correctly.
Concurrency is implicitly allowed, subject only to the stated
preconditions. Plans are automatically tailored to the exact
context for which they are needed. If a subgoal has already
been achieved as a side-effect of prior activity, actions to
achieve that subgoal will be omitted. If part of a plan fails
during execution, replanning will fill the gaps left by the
failure (and only those gaps).

Planning is distinguished from other theories of actions by
its emphasis on goals to achieve, not actions to perform.
Determination of actions proceeds from goals, so that
contingency handling (e.g., for redundancy or failures) is
internal-not external-to the planning system. When
process definition is procedural [191 or event-based [111, the
composition and ordering of actions is predetermined; any
contingency handling must be built into the definition by
hand, in advance. A behavioral approach to process
modeling that combines action and goal orientations is
described in [29].

A partial example of a hierarchical plan is given in Figure 4.
There, a vertical slice covering three hierarchical levels is
shown; lower levels reveal more detail in the plan.
Downward arrows between levels connect desired states with

operators instantiated to achieve them: in general, there
may be several alternative operators that could achieve a
given state. Arrows within levels show how the
achievement of certain states is partially ordered with
respect to time. These temporal constraints foIlow from the
operator definitions: precondition states must always
precede subgoals, for example.

A special type of contingency arises when there are
conflicts among actions. For example, consider an
instantiation of the build operator that involves changing
one source module. The new source module must be
preserved from the time it is created until it is checked-in.
An action such as editing (that would contribute to building
the next system version) cannot be allowed to interfere with
accomplishing the check-in. Strategies for salvaging the
plan include preventing editing until check-in occurs or
inserting an action to make another copy of the module.
Conflicts can occur within a single plan as well as between
two plans being carried out concurrently. The simple action
of deleting something has the potential of interfering with
almost any active plan.

Planning algorithms handle conflicts via domain-
independent methods. Associated with each precondition or
subgoal is a protection interval that begins when the
precondition or subgoal is achieved and ends when the
operator begins (for preconditions) or ends (for subgoals).
A conflict occurs when a precondition or subgoal is

I

An operator with the name A.

A stat. internal to an operator
$$ (rithor a procondition, subgoal,
. . .._._. or l lloct d the operator) defined i.... by the given formula. II box is
.,,,, shaded, no expansion is needed
j:.:. .P...._. l ths n*xt lowrr Irvel. .z.._. :;:;:i :.:.:. . ..C. j::< ..i..L_. .c...._. <>> /
...._. ::: A link between a stat. al one level >:.: ..i_. . ..L._. and an operator at a lower level, .:.:.: :.:.;. .:.:_: where the goal 01 ths operator
:.:.:. achieves the stat.. ::_I...

Figure 4: Vertical Slice of Hierarchical Plan

100

destroyed during its protection interval. Domain-
independent methods for resolving conflicts, described in
[12. 22. 23. 281. include imposing additional temporal
constraints and selecting alternative operators.

This ability to anticipate and prevent conflicts (among
operators that are fundamentally if-rhea rules) distinguishes
plauning from other rule-based systems. Marvel [15] uses
forward and backward chaining to automate chores that are
prerequisites to or consequences of programmer actions.
Glitter [S] cooperatively automates goals in the
transformational development process. These systems do
not prevent conflicts among rules. Systems based on
<condition, action> rules, such as CLF [l] and Genesis [21],
lack descriptions of effects; they cannot reason about the
consequences of actions, and therefore cannot prevent
conflicts. Planning techniques are used in two existing
systems. Agora [43 provides a domain-specific planner for
tasks relating to heterogeneous, parallel systems. Although
help systems usually provide advice that is too local to
qualify as process support, UC [27] now uses planning to
gain a more global perspective [171.

2.3 Integration in an Environment

The integration of an intelligent assistant into an
environment is shown in Figure 5. The base environment
contains a command language processor that invokes the
available tools. The tools in turn reference and update the
environment storage system, implemented as a database [3,
10, 201 or objectbase [26], comprising not only software
products but also their attributes and the relationships
among them.

The intelligent assistant has an active component based on
algorithms for plan recognition and plan generation. These
algorithms are process independent; they obtain process
knowledge by referencing a library of operators. In order to
construct plans, the algorithms must reference the current
state of the world, which is essentially the database already
present in the environment. The intelligent assistant also
contributes additional state informatiqn to this database.

P
R
0
0
R

ii4
M
E
R

For example, the effects of the release operator define the
“meaning” of release from a higher-level perspective than
the script implementing release. The script invokes the
copy command to copy the contents of one file to another;
copy is not aware that a release is being copied or that the
release sequence is being extended.

The programmer communicates with the intelligent
assistant, which moves smoothly between passive and
active assistance. For commands issued in the normal way,
plan recognition is invoked to fiid an interpretation for the
action. If a valid interpretation is found, the command is
passed to the command language processor for execution.
An interpretation is a path from the action up through the
plan hierarchy to a top-level operator of an existing or new
plan; an interpretation is valid if all relevant preconditions
and constraints on the path are satisfied. When the
programmer issues the command achieve <goal>, plan
generation is invoked to produce a sequence of commands
for execution by the command language processor. Plan
generation can also be invoked to satisfy a precondition to
make an interpretation valid. Specific examples follow.

2.4 Process Support

Consider the plan recognition situation diagrammed in
Figure 6. Here, the programmer has been building a new
system version (Sl). and work has proceeded as far as unit-
testing. Thus, three subgoals of build (at level 1) have been
satisfied (the detail of exactly how this was accomplished
has been omitted). The current state of the world is also
diagrammed, showing that SI was constructed from two
source modules and one include module. Assume that the
programmer has just issued a command for unit-check-in on
module C. This action is “recognized” as fitting into the
plan for building Sl, because unit-check-in (on level 3)
satisfies a subgoal in system-check-in (on level 2) which
satisfies the remaining subgoal in build (on level 1). This
interpretation for unit-check-in of C is valid. because all
necessary preconditions are met: return privileges exist for
C (level 3) and Sl has been unit-tested (level 2). With a
valid interpretation, no advice need be volunteered.

:-V ;c’ - Process AM + I--

Command -L Language
Processor

Environment

Figure 5: Environment with Intelligent Assistant

101

Since the roles and interrelationships of actions are
explicitly represented in plans, agendas (what needs doing)
and status reports (what has been done) can be generated at
multiple levels of abstraction. A plan can be constructed for
any agenda item, and the rationale provided for any
completed activity. In contrast, the DSEE task management
facilities [16] allow users to associate actions performed
with a task/subtask structure, but any intelligent processing
of stored task information must be provided by the
programmer.

Three additional recognition examples are:

(1) If no return privileges exist for C, then the
interpretation of unit-check-in of C is not valid due to
an unsatisfied precondition at level 3. Plan generation
can be invoked to satisfy the precondition, thereby
making the interpretation valid.

(2) If the programmer had issued a command for unit-
check-in on module B, this action would be recognized
as superfluous-its goal is already true (presumably, B
was not modified to make Sl).

(3) If the programmer had attempted to relinquish the
return privileges on C (perhaps meaning to do a check-
in but garbling the parameters on the command), the

action could be “doubly” an error. Return privileges
on C are necessary to doing unit-check-in of C, which
is necessary to completing the build of S1. Since he
proposed action interferes with other actions, the
programmer is asked to confum it before execution
(assuming the interpretation is otherwise valid).
However, there may be no valid interpretation for this
action (e.g., no “reason” to do a relinquish); then an
error would be reported.

As an example of how planning and plan recognition are
complementary, consider the request achieve built(Sl). The
goal is that of the partially completed build plan, so the
request equates to completing that plan. If this happens
after unit-testing is complete, there will be one remaining
subgoal in build to satisfy. The system-check-in operator
(level 2) will be chosen to satisfy it, and unit-check-in
(level 3) will be chosen to expand two subgoals in system-
check-in: since B is already checked-in, the third subgoal is
vacuously satisfied. Because the programmer does not have
return privileges for A, a further expansion of the
precondition in unit-check-in for A will have to be done.
The final plan consists of three actions: two unit-check-ins.
one of which is preceded by a dummy check-out to acquire
the return privilege.

Modulm 0 LSystem Sl
Controlled A Archived

I

Figure 6: A Plan in Progress

102

Planning can be invoked on any level goal within an
existing plan, or on new goals. Plan recognition sets the
context for planning in two ways. First, it provides
additional state information not otherwise available (e.g.,
the effects of releuse, or any effect in a complex operator not
logically implied by the conjunction of the subgoals).
Second, when the goal is part of a recognized plan in
progress, some planning choices, such as parameter
bindings, may already be decided.

confirms the action, the assumptions would need to be
revised to be consistent with the programmer’s judgment.

Reasoning that involves making and revising plausible
assumptions in the absence of complete information is
called non-monotonic reasoning (NMR) [9]; one form of
NMR is a truth maintenance system (TMS) [7]. In the next
two sections, we show how deeper process understanding
can be achieved using a TMS.

3. Achieving Deeper Process Understanding 3.1 Formalizing Additional Knowledge

One obstacle to deeper process understanding is that some
useful information about the state of the world cannot be
directly observed from the actions performed; nor can it be
computed with certainty from observable data. Consider the
issue of the “releasability” of a given system version.
Customers generally expect (bug-free) releases with
successively greater functionality. The release operator of
Figure 2 ignores these considerations-it is too permissive.
For example, it allows releases in random order of
functionality. Adding a requirement that a new release must
have been developed after the current release gives an
operator that is too rigid. A development time-stamp is not
a perfect predictor of functionality, although generally
versions developed later have more function. Also, there
could be other exceptions, such as re-releasing the previous
release when the current release is found to have a serious
bug.

A TMS uses a multi-valued logic approach to NMR. It
maintains a network of nodes, each of which can be labelled
IN or OUT. Separate nodes are used for a predicate and its
negation. If the node for a predicate is IN and the node for
its negation is OUT. the predicate is true; if the node is OUT
and the negation is IN, the predicate is false. If both are
OUT. the truth value is unknown; if both are IN, there is a
contradiction.

Although a “decision procedure” to determine releasability
with certainty seems unattainable, it is possible to identify
some rules for making plausible assumptions about
releasability, based on what is typically the case. These
assumptions would then be the basis for determining the
credibility of a particular release action; actions below a
certain credibility threshold could be challenged, not as
actual errors, but as possible errors. If the programmer

Justifications capture the relationships between the nodes,
correlating a set of support nodes and a set of exception
nodes with a conclusion node. A justification of the form A
-EXCEPT B -> C means if A is IN and B is OUT, then C is
IN. The exception node B represents the non-monotonic
content of the justification; a monotonic justification
(standard logical implication) has an empty list of
exceptions. In order for a node to be IN, it must have at least
one valid justification; a justification is valid if all its
support nodes are IN and all its exception nodes are OUT. A
premise justification has empty support and exception lists;
it is always valid.

Process knowledge about releasability is given in
justification form in Figure 7 (left column). Rule Jl covers
the common situation: a non-buggy version developed after
the current release is considered releasable. Rule J2 covers a
re-release scenario; if the current release is buggy, the

Jt: currant-release(C) and developed-after(R,C)
EXCEPT buggy(R) or not releasable(R)
-> releasable(R)

J2: current-release(C) and buggy(C) and
previous-release(C,R) EXCEPT not releasable(R)
or buggy(R) --r releasable(R)

53: EXCEPT releasable(R) -> not releasable(R)

54: has-bug(S.B) and severlty(B,hlgh)
EXCEPT not buggy(S) -> buggy(S)

J5: EXCEPT buggy(S) --, not buggy(S)

J6: quallfler(T,c) EXCEPT not type(T,code)
-> type(T,code)

J7: qualifier(T,doc) EXCEPT not type(T,doc)
-> type(T,doc)

J8: successor(T1 ,T2) and type(T1 ,code)
EXCEPT not type(T2,code) -> type(T2,code)

J9: successor(T1 ,T2) and type(T1 ,doc)
EXCEPT not type(T2,doc) --, type(T2,doc)

JlO: compiled(T) -r type(T,code)

Jll: type(T,code) --z not type(T,doc)
A and B EXCEPT C or D -s E

means
IF A Is IN and B is IN and C Is OUT and D is OUT,

then E Is IN

Jt2: type(T,doc) -> not typo(T,code)

Figure 7: TMS Justifications

103

previous release is considered releasable unless it is buggy.
Rule 13 provides that if rules Jl and J2 don’t apply, a
version is considered not releasable.* Rules J4 and JS give
a (simplistic) deftition of the predicate buggy, based on the
descriptions of explicitly reported bugs in a bug database.
An additional set of justifications (Figure 7, right column)
shows how the type of a text file can be deduced (based on
either the qualifier on its file name or the type of its
predecessor). This set contains monotonic justifications;
for example, if the file has compiled successfully, then it is
definitely code.

These justifications provide a way to compute the truth
values of new predicates (releasable, buggy, and type), thus
enlarging the state of the world beyond the original, core
state. When the justifications are instantiated, and the truth
values of core predicates entered (with premise
justifications), the truth maintenance process will label the
nodes, giving a read-out on the truth values of the new
predicates. When the core state changes as a result of an
action, the nodes will be relabelled and the new predicates
may change. The TMS will also determine whether a node is
certain or by-assumption. Nodes belonging to the core state
are always certain. Other nodes are certain if they are the
conclusions of monotonic justifications, all of whose
support nodes are certain. Remaining nodes are by-
assumption; for nodes that are IN by-assumption, one or
more non-monotonic rules were needed to justify them. (The
labels of nodes that are certain cannot be changed when
assumptions are being revised.)

* A justification of the form EXCEPT A -> 7A is only
made valid ufrer it has been determined that there are no valid
justifications for A. This is a special case of a more general
feature that allows justifications to be prioritized according
to their predictive accuracy. Priorities ensure that stronger
justifications are not invalidated by weaker ones, as
described in [13].

A TMS labelling is shown in Figure 8, where Sys2 is the
current release, Sysl the previous release, Sys2 was
developed after Sysl. and Sys3 was developed after SyD. In
the absence of any reported, high-severity bugs, none of
these systems is buggy (J5 valid, J4 not valid in each case).
Sysl is not releasable-neither Jl nor J2 are valid, but J3 is
valid. Sys3 is releasable by Il. Sys2 was at one time
releasable, but this is no longer the case.

Since the justifications determine the truth status of the new
predicates, releasable can be used where needed in operator
definitions. In particular, releasable(System) can now be
added as a constraint in the release operator of Figure 2.

3.2 Credibility and Revision of Assumptions

In the enlarged world state that is now accessible, predicates
will evaluate to one of five truth values: true with-certainty,
true by-assumption, unknown, false by-assumption, or false
with-certainty. These correspond to five credibility classes,
informally described as certainly OK, credible, can’t tell, not
credible, and certainly not OK. As the preconditions and
constraints of an action are checked along the path from the
action to a top-level goal, the credibility rating can be
accumulated.

Credibility can be used in two ways: to select among
competing interpretations for an action and to flag potential
errors in actions. For example, if a file is assumed to
contain code, we expect to see it used in actions on code, not
actions on documentation. When there is an action
involving this file that could be either part of preparing
code or part of preparing documentation, the interpretation
for preparing code will have a higher credibility. and will be
preferred. Potential errors flagged for the programmer’s
attention correspond to interpretations with a “not credible”
rating.

The internal structure of a TMS is designed for revising
assumptions, not just reporting assumptions. When

-v-
53

1N by-assumption

S EXCEPT E

IN with certainty

Justifications in which
one or more nodes
are OUT with certainty
have been omitted

Figure 8: A TMS Labelling

104

proceeding with an interpretation in which one or more
predicates evaluated to unknown or false by-assumption, it
is necessary to make the world state consistent with the
requirements of the action. This can be trivially
accomplished by adopting the desired assumptions; but
then, clues that other assumptions are wrong will be
ignored. Since the justifications provide the accepted
rationale for various assumptions, it is better to find a
rationale for the desired assumption than to adopt it
outright. This will “integrate” the programmer’s judgment
into the current set of assumptions.

Consider an action (re-)releasing Sysl in the state
diagrammed in Figure 8. Since releasable(Sys1) is false by-
assumption, this action will be challenged. If the
programmer confirms this action, then releasable(Sys1)
must be made true. Only two rules, Jl and J2, justify
releasable. Jl cannot be made valid-it has a support node
(developed-ufter(sysl.sys2)) that is OUT with certainty. J2
can be made valid by making buggy(Sys2) IN. This has to
be done by supporting buggy(Sys2) directly, since no
revision of assumptions can make J4 valid. This change and
the new labels are shown in Figure 9. The algorithm for
revising assumptions [13] is similar to dependency-directed
backtracking [7].

This example shows how the process assistant uses the
justifications to make independent assessments (originally
to conclude that Sysl is not releasable), and yet accede to a
different decision and supply a rationale for that decision
(that Sysl is releasable because Sys2 must be buggy).

4. Status and Future Work

We have built a testbed for experimentation with the
GRAPPLE plan-based process assistant. Two versions of
the plan recognizer have been implemented. The TMS and
related facilities for deeper process understanding are
implemented in a Prolog version of the plan recognizer,
GRAPPLE is not tied to a particular software environment;

Figure 9: Revised Assumptions

rather, it accepts command streams transcribed from actual
terminal sessions or fabricated for experimental purposes.
We have studied actual session transcripts to develop a
better understanding of the content of process definitions,
but have not yet tested GRAPPLE in a real setting.

There are several dimensions along which plan-based
process support can be extended. We have already developed
(and are currently implementing) a method of using
metaplans to represent error recovery strategies and other
types of knowledge of exceptional situations [12]; this is
particularly important in light of the “trial and error”
character of software development. We also want to explore
the feasibility of applying intelligent assistance to the
commands within an interactive tool (e.g., a syntax-directed
editor). This would extend support to lower-level process
activities and capitalize on synergy between levels, as the
external context affects what is done within the tool, and
vice versa. The most exciting extension involves the use of
multi-agent planning techniques to represent project-level
coordination, cooperation, and negotiation among
programmers.

5. References

[l] Balzer, R.M. “Living in the Next Generation of
Operating System”. IEEE Software. 4:6 (November 1987).
77-85.

[2] Balzer, R.M.; Cheatham, T.E.; and Green, C.
“Software Technology in the 1990’s: Using a New
Paradigm”. IEEE Computer, (November 1983), 39-45,

[3] Bernstein, P.A. “Database System Support for
Software Engineering”. Nitih International Conference on
Software Engineering, (March 1987), 166-178.

[4] Bisiani, R.; Lecouat, F.; and Atnbriola, V. “A Planner
for the Automation of Programming Environment Tasks”.
Twenty-first International Hawaii Conference on System
Sciences, (January 1988).

[5] Chen, P.P. ‘The Entity-relationship Model: Toward A
Unified View of Data”. ACM Transactions on Database
Systems, 1:l (March 1976). 9-36.

[6] Croft, W.B. and Lefkowitz. L.S. “Knowledge-based
Support of Cooperative Work”. Twenty-first International
Hawaii Conference on System Sciences, (January 1988).
312-318.

[7] Doyle, J. “A Truth Maintenance System”. Artificial
Intelligence, 12 (1980). 231-272.

[8] Fickas, S.F. “Automating the Transformational
Development of Software”. IEEE Transactions on Sofiarare
Engineering, SE-11:ll (November 1985). 1268-1277.

105

191 Genesereth. M.R. and Nilsson. N.J. Logical
Foundations of Artificial Intelligence. Palo Alto,
California: Morgan Kaufmann. 1987.

[lo] Huff, K.E. “A Database Model for Effective
Configuration Management”. Proceedings of Fifth
International Conference on Software Engineering, (March
1981). 54-61.

[ll] Huff, K.E. and Lesser, V.R. “Knowledge-based
Command Understanding”, Technical Report 82-6,
Department of Computer and Information Science,
University of Massachusetts, Amherst, 1982.

[12] Huff, K.E. and Lesser, V.R. “Metaplans That
Dynamically Transform Plans”, Technical Report 87-10,
Department of Computer and Information Science,
University of Massachusetts, Amherst. 1987.

[13] Huff, K.E. and Lesser, V.R. “Plan Recognition in
Open Worlds”, Technical Report 88-18, Department of
Computer and Information Science, University of
Massachusetts, Amherst, 1988.

[14] Johnson, W. and Soloway. E. “PROUST: Knowledge-
Based Program Understanding”. IEEE Transactions on
Software Engineering, 11:3 (March 1985), 267-275.

[15] Kaiser, G.E. and Feiler, P.H. “An Architecture for
Intelligent Assistance in Software Development”,
Proceedings of the Ninth International Conference on
Software Engineering, (1987). 180-188.

[16] Leblang, D.B. and Chase, R.P. “Computer-aided
Software Engineering in a Distributed Workstation
Environment”. Proceedings of SIGSOFTI SIGPL.AN
Symposium on Practical Development Environments,
(1984), 104-112.

[17] Luria, M. “Goal Conflict Concerns”. Proceedings of
IJCAI, (August 1987).

[18] Rich, C. and Shrobe, H.E. “Initial Report on a Lisp
Programmer’s Apprentice”. IEEE Transactions on Software
Engineering, SE4 (November 1978).

[19] Osterweil, L. “Software Processes are Software Too.”
Proceedings of the Ninth International Conference on
Software Engineering, (1987). 2-13.

[20] Penedo. M.H. and Stuckle, E.D. “PMDB-A Project
Master Database for Software Engineering Environments”.
Proceedings of the Eighth International Conference on
Software Engineering, (1985). 150-157.

[21] Ramamoorthy, C.V.; Usuda.Y.; Tsai, W.T.; and
Prakash, A. “GENESIS: An Integrated Environment for
Supporting Development and Evolution of Software”, IEEE

Ninth International Computer Software and Applications
Conference, (October 1985), 472-479.

[22] Sacerdoti. E.D. A Structure for Plans and Behavior.
New York Elsevier-North Holland, 1977.

[23] Tate, A. “Project Planning Using a Hierarchical Non-
linear Planner”. Department of Artificial Intelligence
Report 25, Edinburgh University, 1976.

[24] Tichy. W.F. “RCS-A System for Version Control”.
Software Practice and Experience, 15:7 (July 1985), 637-
654.

[25] Waters, R.C. “The Programmer’s Apprentice: A
Session with KBEmacs”. IEEE Transactions on Software
Engineering, SE-l 1:ll (November 1985), 1296-1320.

[26] Wile, D.S. and Allard. D.G. “Worlds: an Organizing
Structure for Object-Bases”. Proceedings of Second
SIGSOFTISIGPLAN Symposium on Practical Development
Environments, (1986). 16-26.

[27] Wilensky, R.; Arens, Y.; and Chin, D. “Talking to
UNIX in English: An Overview of UC”. CACM. 27:6 (June
1984), 574-593.

[28] Wilkins, D.E. “Domain-Independent Planning:
Representation and Plan Generation”. Artificial
Intelligence, 22 (1984), 269-301.

[29] Williams, L. “Software Process Modeling: A
Behavioral Approach”. Proceedings of the Tenth
International Conference on Software Engineering, (1988).
174-186.

106

