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Modeling and Diagnosing Problem-Solving
System Behavior

EVA HUDLICKA AND VICTOR LESSER

Abstract —A new component of a problem-solving system, called the
diagnosis module (DM), that enables the system to reason about its own
behavior is described. The aim of the diagnosis is to identify inappropriate
control parameter settings or faulty hardware components as the causes of
observed misbehavior. The problem-solving system being diagnosed is a
distributed interpretation system, the distributed vehicle monitoring testbed
(DVMT), which is based on a blackboard problem-solving architecture.
The diagnosis module uses a causal model of the expected behavior of the
DVMT to guide the diagnosis. Causal-model-based diagnosis is not new in
Al What is different is the application of this technique to the diagnosis of
problem-solving system behavior. Problem-solving systems are char-
acterized by the availability of the intermediate problem-solving state, the
large amounts of data to process, and in some cases, the lack of absolute
standards for behavior. New diagnostic techniques that exploit the avail-
ability of the intermediate problem-solving state and address the combina-
torial problem arising from the large amount of data to analyze are
described. A technique has also been developed, called comparative rea-
soning, for dealing with cases where no absolute standard for correct
behavior is available. In such cases the diagnosis system selects its own
“correct behavior criteria” from objects within the problem-solving system
which did achieve some desired situation. The diagnosis module for the
DVMT has been implemented and successfully identifies faults.

I. INTRODUCTION

HE COMPLEXITY of man-made systems is rapidly
increasing to the point where it is becoming difficult
for us to understand and maintain the systems we build.
Artificial intelligence (AI) problem-solving systems are
particularly susceptible to this information overload prob-
lem due to their often ad hoc design, large knowledge
bases, and decentralized control mechanisms. This has
recently resulted in a trend toward more autonomous
systems: systems that can explain their behavior, aid the
developers with debugging, and monitor and adapt their
behavior to changing requirements. Central to all these
functions is the ability of the problem-solving system to
reason about its own behavior.
In this paper we describe a component of a problem-
solving system, the diagnosis module (DM), that reasons
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about a problem-solving system’s behavior to diagnose the
faults responsible for inappropriate system behavior. The
DM has been implemented and successfully diagnoses
faults in a distributed problem-solving system, the distrib-
uted vehicle monitoring testbed (DVMT) [11]. The faults
diagnosed may be either hardware failures (e.g., a failed
sensor) or inappropriate parameter settings, which we call
problem-solving control errors (e.g., the confidence factor
assigned to a sensor’s output). The DM consists of about
5000 lines of Lisp code and runs on a VAX under the
VMS operating system.

The Diagnosis Module

By way of an example, let us motivate the use of a
diagnosis module in a problem-solving system. Suppose
that a problem-solving system fails to generate the desired
result. In our case the DVMT-distributed interpretation
system fails to track a vehicle in some part of the sensed
environment. Knowing the general characteristics of the
desired result, the DM traces back through the history of
problem solving guided by the model of correct processing.
The DM determines what intermediate results would have
had to be produced to achieve the desired results. In this
way the cause of the failure to generate a desired result can
be traced back to the lack of low-level data; this problem
could then possibly be traced further to a failed sensor or
an incorrect setting of the control parameter that specifies
the confidence factor associated with the sensor’s output.
In the latter case diagnosis involves understanding that
data from the sensor were available but not processed
because they were below an acceptable confidence
threshold.

Characteristics of Diagnosis of Problem-Solving
System Behavior

Diagnosis is not a new problem for Al. Many systems
exist for medical diagnosis [14], [16], diagnosing digital
circuits [4], [6], [9], electrical devices [12], and large systems
such as nuclear reactors [13]. We have found that diagnosis
of problem-solving system behavior is different from the
techniques used in these domains. While some diagnostic
techniques are generally applicable across all domains,!

'For example, given a symptom, go back through the events that led up
to it until the cause is found.
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aspects of problem-solving system behavior require new
diagnostic techniques.
Problem-solving systems are characterized by:

complete knowledge of the internal system structure;
availability of the intermediate problem-solving state;
large amount of data to process during diagnosis;

in many cases, lack of absolute standards for correct
behavior.

Since the structure of the system is known, we can use a
causal model of the system in which problem-solving be-
havior is modeled as a series of states. These states are
linked by causal relationships to represent the sequence of
events required for a desired result to be produced. Diag-
nosis then consists of determining why some expected state
was not reached by exploring the appropriate part of the
causal model of the system.

Since the internal system state is available (by directly
examining the system data structures), we need not address
the problem of determining the internal state from the
inputs and outputs.> However, we introduce a correspond-
ingly difficult combinatorially explosive problem: the states
of the causal model must be mapped onto the record of
system behavior. In many cases a number of possible
intermediate results from this record could be used in
diagnosis. For example, the problem-solving system may
have partially explored a number of alternative paths in
attempting to generate a solution. All of these are stored in
the system as part of the intermediate state record. In a
multilevel blackboard system such as the DVMT, the
intermediate state includes the many possible hypotheses
on the blackboard which could have been on the path to a
solution. The crucial question is, does diagnosis require an
exhaustive analysis of all the search paths explored by
problem-solving system search or is there a way for diag-
nosis to limit its analysis?

Much of the work reported here was devoted to develop-
ing techniques for avoiding the potential combinatorial
explosion of diagnostic paths to analyze by choosing which
particular piece of data to use in diagnosis and how to
group related diagnostic paths. For example, the for-
malism for modeling the problem-solving system allows
the representation of a class of objects so that during
diagnosis, the DM can reason about classes of situations
rather than individual cases.

Dealing with Lack of Absolute Standards for Behavior

Causal model diagnostic techniques work as long as a
model of the expected behavior is available. Such a model

2Many other diagnostic systems have dealt with the type of reasoning
necessary given a blackbox view of the system (Genesereth’s DART [6]
and Davis’s digital circuit analyzer [4] systems deal mainly with the
problems associated with this view), and our modeling formalism sup-
ports this type of reasoning. What the availability of the intermediate
states allows us to do is to get beyond these reasoning mechanisms and
explore other interesting problems associated with diagnosing the behav-
ior of complex systems.
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requires the existence of absolute criteria for system behav-
ior. In most cases we can provide such criteria when
dealing with problem-solving systems. For example, an
expected sequence of events in the DVMT system behavior
is the creation of a hypothesis, followed by the creation of
a goal, and then followed by the scheduling of a knowl-
edge source. Cases exist, however, where no absolute
criteria exist and a fixed model for correct system behavior
cannot be constructed a priori. Instead, we need to com-
pare the behavior of the faulty object to a similar object
that seems to behave correctly. In understanding why these
objects differ, we often uncover a fault. This lack of
absolute criteria for system behavior led to the develop-
ment of a diagnostic technique we call comparative rea-
soning (CR). When using CR, the diagnosis module ex-
amines similar cases within the system and from these
chooses a standard with which to compare the suspect
situation; this comparison is accomplished using a simple
form of qualitative reasoning [3]. A model is thus dynami-
cally constructed where both causal analysis and qualita-
tive reasoning are used to analyze the factors responsible
for the suspected situation.

Let us look at a simple example of this type of reasoning
in the DVMT, which is an agenda-based problem-solving
system. The agenda contains a list of knowledge source
(KS) processes that could be executed. They are ordered
by their rating, which is a function of a number of parame-
ters. Suppose that the DM traces some symptom to a KS
that did not execute because its rating was too low. The
next step is to discover which of the parameters influenc-
ing the rating is responsible for the low overall rating of
the KS. However, no absolute standards exist for any of
these parameters. The comparative reasoning analysis in-
volves first selecting a similar KS; this can be accom-
plished by choosing one that is at the top of the agenda
and thus likely to execute or one that has already executed.
The next step involves the pairwise comparison of the
parameters influencing the KS rating for the low-rated KS
and the high-rated KS. Suppose the low-rated KS that did
not execute (i.e., the problem KS) has two parameters,
A-problem KS and B-problem KS, and the high-rated KS
that is used for comparison (i.e., the model KS) has the
same parameters, 4-model KS and B-model KS. Further,
suppose the comparison of parameter values reveals
A-problem KS = A-model KS, but B-problem KS <« B-
model KS. The diagnostic module’s analysis can then
conclude that the B parameter was responsible for the low
rating of the problem KS. This intermediate result in the
diagnosis can be traced further; for example, the B param-
eter could be low because it was based on the belief
associated with the KS’s input data. This low belief could
then be traced further to the low setting of the parameter
controlling the confidence level that the system associates
with the sensor generating the data.

Comparative reasoning brings up many interesting prob-
lems. The choice of a good object to use as a model for the
object of interest is a nontrivial task, as is the matching of
the parallel states in the two instantiated models.
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The rest of the paper is organized as follows. Section II
briefly describes the distributed vehicle monitoring testbed
(DVMT). Sections III and IV discuss the modeling for-
malism and provide a more detailed description of the
diagnostic reasoning techniques. An indepth description of
a diagnostic session is developed through an example in
Section V. The example illustrates the use of the compara-
tive reasoning technique. Section VI discusses the methods
we have developed for reducing the combinatorics explo-
sion resulting from the large amounts of data to diagnose.
Section VII summarizes the work and outlines some direc-
tions for future research.

II. CoNTExT: THE DVMT

The problem-solving system we model and diagnose is
called the DVMT, a distributed problem-solving system in
which a number of processors cooperate to interpret
acoustic signals. The goal of the system is to construct a
high-level map of vehicle movement in the sensed environ-
ment. Raw data are sensed at discrete time locations at the
signal level. The final answer is a pattern track describing
the path of vehicles, moving as a unit in some fixed pattern
formation. To derive the final pattern track from the
individual signal locations, the data undergo two types of
transformation: the individual locations must be aggre-
gated to form longer tracks, and both the tracks and the
locations must be driven up several levels of abstraction,
from the signal level, through the group and vehicle levels,
up to the pattern level (see Fig. 1).

Each processor in the DVMT system is based on an
extended Hearsay-II architecture where data-directed and
goal-directed control are integrated [1]. The problem-solv-
ing cycle at each processor begins with the creation of a
hypothesis that represents the position of a vehicle. Hy-
potheses then generate goals that represent predictions
about how these hypotheses can be extended by incorpo-
rating more of the sensed data. Finally, a hypothesis
together with a goal triggers the scheduling of a knowledge
source (knowledge source instantiation) whose execution
will satisfy the goal by producing a more encompassing
hypothesis (one which includes more information about
the vehicle motion). This cycle begins with the input data
and repeats until a complete map of the environment is
generated. Fig. 2 illustrates the processing structure at each
node.

III. STRUCTURE OF THE SYSTEM BEHAVIOR MODEL

This section describes the modeling formalism used to
represent the possible behaviors of the DVMT system. By
representing the internal structure of the DVMT (i.e., the
causal relationships among DVMT events), we generate
the system behavior model (SBM) that supports not only
diagnosis, but also simulation of the system behavior.
Unlike some other causal models, such as CASNET [16],
which represent causal relationships among pathological
states, the SBM represents the normal system behavior.
The errors are represented as deviations from the expected
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Fig. 1. Levels of abstraction in DVMT data transformations. Data
blackboard has eight levels of abstraction. Input data, acoustic signals
representing vehicle positions at discrete time intervals, come in at
signal level (sl). Final answer, at pattern track level, is integrated
picture of “raw” sl data representing how vehicles move through
environment.

situations that were not achieved by the system. The model
can thus reason both about the causal sequences of
expected events (thereby simulating the correct system
behavior) and about the sequences of abnormal events
(thereby diagnosing faulty system behavior). The work of
Genesereth [6] and Davis [4] is similar in that it uses the
violated expectations approach to diagnosis.

The system behavior in the DVMT is modeled by a set
of causally related states corresponding to a series of
events in the system. Each event results in the creation of
an object (e.g., hypothesis, goal, or knowledge source
instantiation) or the modification of the attributes of some
existing object. The states in the model represent the results
of such events in the DVMT system. Depending on what we
want to model, a state may represent simply whether some
event has occurred, or it may represent some finer aspect
of the event’s outcome.’

The SBM formalism consists of three major compo-
nents: hierarchical state transition diagrams which repre-
sent the possible system behaviors at various levels of
detail; abstracted objects which represent individual ob-
jects (i.e., data structures) or classes of objects in the
DVMT system; and constraint expressions among the dif-
ferent attributes of the abstracted objects which represent
the relationships among the objects. We can view the
model as two parallel networks (see Fig. 4).* At the higher
level is the state transition diagram, consisting of states
and directed state transition arcs. At the lower level is the
network consisting of the abstracted objects whose attri-

3There are two types of states in the model. Predicate states, which
represent whether an event has occurred or not, and relationship states,
which represent the relationship among two objects in the DVMT. The
relationship states are used in comparative reasoning.

“Fig. 3 contains the legend for the figures in this paper.
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Fig. 2. Structure of processing at each node in DVMT system. DVMT
begins its interpretation task with arrival of sensed data. All data are
represented by hypotheses and stored on data blackboard. Arrival of
hypothesis stimulates creation of goal, which represents prediction of
how hypothesis might be extended in future. Hypothesis together with
goal stimulate instantiation of knowledge source (KSI). Each such
instantiation is rated and if rating is high enough, KSI is inserted onto
scheduling queue. At beginning of each system cycle highest rated KSI
executes and produces additional hypotheses. Cycle repeats until final
answer is derived or until there are no more data to process.
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Fig. 3. Legend for figures in paper.

butes are linked by the constraint expressions that capture
the relationships among the object attributes. The con-
straint expressions relating the attributes of two abstracted
objects are shown in Fig. 5. The two networks are con-
nected by state—object links.

States are linked to other states to form an AND/OR
graph. If an event is influenced independently by a num-
ber of preceding events, then the states representing these
events will be ored. That is, any one of the preceding
events determines the outcome of the event in the same
manner. If the outcome of an event is influenced by a
number of preceding events acting together, then the states
representing these events will be ANDed. Fig. 6 shows a
part of the system model.

The states are linked to the abstracted objects which
describe characteristics of objects in the problem-solving
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Fig. 4. High-level view of modeling formalism. SBM modeling for-
malism consists of three major components: state transition diagram
clusters representing expected sequences of events in DVMT, ab-
stracted objects representing DVMT objects such as hypotheses or
goals, and constraint expressions representing relationships among
attributes of neighboring abstracted objects. SBM can thus be viewed
as two parallel networks: one containing state transition diagrams,
other containing abstracted objects and constraint expressions.

system record. Abstract objects are represented as frames.
If all attribute slots of a frame have fixed values, the
abstracted object corresponds to a specific instance of an
object in the system. When some abstract object attributes
are not specified precisely, the abstracted object is under-
constrained and represents a whole class of objects. For
example, an underconstrained hypothesis object could have
a list of levels in its level attribute and thus represent the
entire class of hypotheses at any of those blackboard
levels. If objects exist in the DVMT that match the char-
acteristics of an abstracted object, then the desired event
that is specified by the state/object has occurred. The
objects are represented as separate entities from the states
for efficiency reasons to avoid the duplicate representation
of similar sets of object attributes since several states may
refer to the same object.

The state transition diagram representing the system
behavior is organized into small clusters for manageability
(see Fig. 7). These clusters are then organized into a
hierarchy corresponding to increasingly detailed views of
the system. Thus a high-level cluster represents selected
events as contiguous states while a more detailed cluster
represents other events which occur in between these states.
Such a hierarchical representation allows reasoning at dif-
ferent levels of abstraction. This is useful during diagnosis
because it allows the system to focus quickly on the
problem by postponing a more detailed analysis until it is
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This attribute points to objects that exist in the DVMT. If no such objects exist, it Is false.

((vmt-1ds (f t1nd-track-hyps
(path self time-location-1ist)
(path self event-class)

(path self node)
pt))

This attribute represents the path of the vehicle.

(time-location-11ist
(((pt message-ob) (path xi t1l/trl))
((pt vt-hyp-ob) (path xi time-location-list))
((pt pl-byp-od) (path x1 time-location-1ist))

This attribute represents a creation of shorter pt segments that could produce the desired
segment. The function create-trace-segments looks for existing shorter segments and then
chooses the longest non-overlapping ones for instantiation.

((pt pt-hyp-odb) (f create-track-segments
(path xi time-location-1ist)

(path x1 event-class)

pt

(path x1 node)))))

This attribute represents the specific type of signal. The function phd:higher-level-cvent-
classesdetermines the event classes for the pattern level from the vehicle level according
to the system signal grammar.

(event-class  (((pt message-ob) (path x1 event-classes))
((pt vt-hyp-ob)
(t higher-level- event-classes
vt

(path x1 eveant-class)))
((pt pt-hyp-odb) (path xi event-class))
((pt pl-hyp-ob) (path xi event-class))))
(level pt)
(node (path xi node)))

Fig. 5. Constraint expressions among abstracted objects. Constraint expressions linking abstracted object attributes allow
DM to determine attribute values of one object based on attribute values of any of its neighboring objects. Figure shows
relationship among attributes of object representing pattern track hypothesis and its neighboring objects: shorter pattern
tracks (pt-hyp-ob), pattern location hypotheses (pl-hyp-ob), vehicle track hypotheses (vt-hyp-ob), and received pattern
tracks (message-ob). First part of each constraint expression specifies context: current state and neighbor whose values are
to be used. For example, (pt message-ob) means that current state is pt and object whose values are to be used is
neighboring message object. Second part of expression specifies which of object’s attribute values should be used. For
example, (path x1 tll/trl) specifies tll/trl (time-location-list /time-region-list) attribute of neighboring object (represented
by variable x1 which always refers to neighbor object that was instantiated most recently and whose values are to be used).

scheduled and if so, why they did not run. This means that
the diagnosis is first done using the answer derivation
cluster and only later using the KSI scheduling cluster?
(see Fig. 7). A subset of the states, designated as primitive,
represents reportable faults during diagnosis.

The SBM thus represents a generalized description of
selected aspects of the DVMT system behavior. Fig. 7

sensor ok
6\ PrefOR
N N
g
@senseu value sl
S

9l shows the set of model clusters we have constructed.
data exists
Fig. 6. Answer derivation model. Model cluster represents data trans- IV. UsE oF SBM IN REASONING ABOUT DVMT
formation DVMT is expected to perform; that is, to produce pattern BEHAVIOR

track (pt) hypotheses from incoming sensor data at signal level (sl).
Arrival of initial data depends on sensor functioning (SENSOR-OK : ; ; : St
state) and data’s existence (DATA-EXISTS state). SENSED-VALUE ., Reasoning about DVMT behavior consists of instantiat
state represents separate sensed signal for each sensor. ng the part of the SBM.that rgpresents the system behav-
ior relevant to the situation being analyzed. The aim of all
) the different reasoning strategies is to explore the causes,
necessary. For example, consider the case when the DM o the effects, of an initial situation provided as input to

tries to determine why some hypothesis was not con-  the DM.® This situation is represented by an instantiated
structed. Rather than looking for the knowledge source
instantiation that could have produced that kind of hy-
pothesis, the DM first looks for the necessary supporting 5The KSI s.chedulmg gluster represents.the. events that occur in be-
data. and onlvy if these data exist d it investicate th tween each pair of states in the answer derivation cluster.

’ y . R Xist does 1t mvestigate the Currently, this is done by hand. In a fully fault-tolerant system the
knowledge source instantiations to see whether they were input would come from a detection component.
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Fig. 7. Model clusters representing DVMT behavior. Figure shows diagrams of all five model clusters used in diagnosis. At
%ighest level are answer derivation cluster and communication cluster. KSI scheduling and Comm KSI scheduling clusters
represent events that take place in between each pair of states at higher level models. KSI rating derivation cluster
represents additional knowledge about value relationships among rating components of various objects. (a) Communication
cluster. (b) Communication KSI scheduling cluster. (c) KSI rating derivation cluster. (d) Answer derivation cluster. (e) KSI

scheduling cluster.

state and its abstracted object, that is, a state and object
whose attributes have been evaluated (see Fig. 8). The DM
propagates these known values through the SBM using the
constraint expressions among the abstracted objects and
thereby instantiates a sequence of states causally related to
the initial situation. We call such a sequence a causal
pathway.

When the initial situation represents some desirable
event in the DVMT that never occurred, we call it a
symptom. A symptom represents an object that was never
created by the DVMT, usually a hypothesis.” Upon receiv-
ing a symtpom, the DM traces back through the SBM to

A symptom could also represent a class of objects, such as all
hypotheses at some blackboard level. This would be done using under-
constrained objects.

find out at which point the DVMT stopped working
“correctly.” This is done by comparing the behavior neces-
sary for the desired situation to occur, as represented by
the instantiated model, with what actually did occur in the
problem-solving system, as determined from the DVMT
data structures. The aim is to construct a path from the
symptom state to some false primitive states which caused
it and thus explain, in terms of these primitive causes, why
the DVMT system did not behave as expected. This type
of diagnostic reasoning thus consists of backward chaining
through the SBM. Since it constructs a causal pathway
linking the initial symptom to the faults that caused it, we
call this type of reasoning backward causal tracing (BCT).
Fig. 9 shows a BCT-constructed causal pathway.

The BCT search stops when all possible pathways rele-
vant to the situation being analyzed have been explored.
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State MESSAGE-SENTO0111

f-n (p:or (message-received0110)) ; front neighbor
b-n (p:or (message-exists0217)))  ; back neighbor
value F ; state is false

object-ptrs message-0b0071 ; abstracted object

Abstracted Object MESSAGE-OB0071

vmt-ids F
from-node 2
message-type hyp-ob

til/trl ((5 (14 10)) (6 (16 12)) (7 (18 14)) (8 (20 16)))
event-classes 1
level vt
node 2
to-node 3

Fig. 8. Symptom represented by instantiated state and abstracted ob-
ject. Situation in DVMT is represented by instantiated state and its
associated abstracted object. Figure shows instantiated MESSAGE-
SENT state and its object MESSAGE-OBJECT. Object represents
hypothesis at vehicle track (vt) level that was to be sent from Node 2 to
Node 3. That this hypothesis was never sent is represented by value
attribute of the state, which is f (false). Only subset of attributes is
shown.

SENSOR 0K
AND r O_D~
‘ SpsD st oL m m
&y 1 1-3
ot 1,2,3 12,3 12,3 2,3
EHISTS
12,3

Fig. 9. BCT-constructed causal pathways. Instantiated answer deriva-
tion cluster where BCT traced lack of vehicle track (vt) 1-3 hypothesis
to failed sensor, represented by false SENSOR-OK state. Instantiated
model shows intermediate states that form causal pathway from false
symptom state VT to primitive false state SENSOR-OK. Intermediate
states are VL state representing three necessary locations and, simi-
larly, GL and SL states, and SENSED-VALUE state, representing
signals sensed by individual sensors (in this case only one sensor exists
and therefore only one sensed value).

For example, to determine why some hypothesis was not
constructed, the DM must examine all possible ways in
which it could have been generated: that is, via several
pathways within a node, from locally available data, or
from data received from other nodes. Within the instanti-
ated model the analysis is done exhaustively by a depth-first
search. An exhaustive search is feasible here because the
search space has already been reduced by the methods to
be discussed in Section VI: for example, grouping together
objects that behave similarly, using underconstrained ob-
jects to reason about a class of objects rather than the
individual cases, and using existing data to constrain the
search.

In addition to symptoms, initial situations may repre-
sent arbitrary events in the DVMT whose effect on the
DVMT behavior needs to be simulated. This is the case,
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for example, when the DM needs to see what effects some
identified fault, such as a faulty parameter setting or a
failed hardware component, has on the DVMT system.
This type of simulation thus consists of forward chaining
through the SBM. Here the DM constructs a causal path-
way which links the initial situation to all situations caused
by it. We therefore call this type of reasoning forward
causal tracing (FCT). FCT uses underconstrained objects
to reason about the class of problems caused by the fault,
rather than just the individual cases.

Both BCT and FCT are more complex than simple
backward and forward chaining because the model is
hierarchical and the DM must decide when to change the
level of resolution, for instance, when to reason at different
levels of abstraction and when to reason about classes of
objects. In addition to BCT and FCT, we have also found
the need for a new type of diagnostic reasoning we call
comparative reasoning, which will be described in detail
through an example in the following section.

V. DIAGNOSTIC SESSION USING COMPARATIVE
REASONING

This section describes a DM diagnostic session of a
failure scenario where the use of comparative reasoning is
necessary to handle situations in which no absolute criteria
for correctness exist. CR works by selecting a situation
from the DVMT which can be used as a model with which
to compare a problematic situation. CR then compares
these two situations in the DVMT system and tries to
explain why they are different. This is done by systemati-
cally tracing the development of both situations and com-
paring them at each step. This type of reasoning is neces-
sary because we cannot always understand the system
behavior by looking at an isolated object in the system and
comparing that object to some fixed standard, as is done
with backward causal reasoning,.

The following example illustrates the use of comparative
reasoning to track the low rating of a knowledge source
instantiation (KSI) to a low-rated hypothesis at an early
point in the data transformation. The diagnosis begins
with a missing high-level hypothesis at the pattern track
(pt) level.® The diagnosis module reconstructs, based on a
causal model of processing in the DVMT, the internal
events and intermediate results that would be required to
generate the desired data. As a result of this backward
trace, it discovers that the desired hypothesis was not
derived because lower level location hypotheses were never
produced. Specifically, while hypotheses did exist at the
group location (gl) level, they were never driven up to the
next level, the vehicle location (vl). The diagnosis module
further determines that this was due to the fact that the

8We will be following the convention of representing both symptoms
and faults (i.e., any undesirable situations) by false states in the case of
predicate states and by the qualitative relationships lower-than or
greater-than in the case of relationship states. For example, a lack of
some hypothesis at the vehicle track (vt) level will thus be represented by
a false state VT, with its associated abstracted object representing the
specific vt hypothesis.
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Instantiated SBM for fault scenario 2. Instantiated SBM for diagnosis of low KSI rating by comparative reasoning.

Comparative reasoning works by instantiating two copies of model cluster, in this case KSI rating derivation cluster, and
comparing “problem object rating” with “model object rating.” “Model object” is chosen by diagnosis module based on
selection criteria contained in SBM. Here low KSI-RATINGIS is traced to low HYP-RATING30 of sl hypothesis.
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KSI that would have created the desired vl hypotheses
never executed because its rating was too low. Recall that
it is always the highest rated KSI on the scheduling queue
that executes. It is thus possible for a KSI with a low
rating to remain on the queue for a long time. The diagno-
sis up to this point is done via backward causal tracing.
The low-rated KSI is represented by the state KSI RAT-
INGI15 in Fig. 10.°

The point of the diagnosis here is to determine what
caused the KSI rating to be low. The DM now switches to
comparative reasoning and to a cluster representing the

This is a relationship state whose value is “lower-than.”

derivation of the KSI rating, the KSI rating cluster. Let us
call the low-rated KSI the problem KSI and the maximally
rated KSI on the queue (with the appropriate characteris-
tics) the model KSI. Before CR can continue, a model
object must be found for the low-rated KSI. Such an
object must be of the same type of the problem object and
it must, of course, be rated higher than the problem object.
In this case we are looking for a “successful” KSI (i.e., a
high-rated KSI which is about to run) that takes a hy-
pothesis at the gl level and produces a corresponding
hypothesis at the vl level. The model KSI is represented by
the state KSI-RATING19 in Fig. 10. The DM has a model
of how a KSI rating is derived from its components: a KS
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parameter called KS-goodness, the goal that is to be satis-
fied by the hypotheses produced by the KSI, and the data
the KSI is to use.

In this case, CR examines the factors influencing the
KSI rating for both the problem KSI and a model KSI
selected from the queue. It notes that both the KS-good-
ness parameters and the goal components are identical in
both the problem and the model KSI’s but that the data
component rating is lower for the low-rated KSI. This then
is identified as the cause of the overall low rating of the
problem KSI. The next step is to trace back through the
derivation of this low hypothesis rating and determine why
it is rated low. Again, the highly rated hypothesis from the
model KSI is used as a standard with which to compare
the low-rated hypothesis. This continues through several
levels of abstraction until either a primitive node in the
model is reached which is responsible for the low rating (in
this case, a low sensor weight or low-rated data are identi-
fied) or if the search is unsuccessful, until the causal
pathway can no longer be extended.

Notice that there are now two parallel instantiations of
the KSI rating cluster: one for the problem KSI and one
for the model KSI. The two clusters will be instantiated
one state at a time and compared in an attempt to find an
explanation for the low rating of the problem KSI. The
search through the model (i.e., which neighbors will be
expanded next) is now determined by the type of relation-
ship found among the problem state and the model state
(i.e., <, =, or >), rather than the state value (true or
false), as was the case with predicate states. CR continues
to expand back neighbors as long as they can explain the
current state’s relative value with respect to the parallel
state. A state’s relative value is explained by its predeces-
sor states” values if they have the same relationship. For
example, a < state is explained by its preceding < states,
but not by > or by = states.

The value for state KSI-RATINGI1S is, of course, <
(this is guaranteed by the process selecting the model
object; if no appropriate model exists, no object will be
instantiated, the problem state will not have a parallel
state, and diagnosis will stop). To understand why KSI-
RATING1S5 is low,'° the DM expands its back neighbors
to see if any of them are abnormally low. Since a KSI
rating is a function of the KS goodness (a parameter which
determines the quality of a knowledge source) and the data
component (the ratings of the hypotheses the KSI is work-
ing with), the back neighbors of the state KSI-RATING
are KS-GOODNESS and DATA-COMPONENT. These
are instantiated, and their values are determined from the
values of their corresponding objects in the DVMT system.
The resulting states are KS-GOODNESS20 and DATA-
COMPONENT?21.

Similarly, the back neighbors of the model KSI rating
state KSI-RATING19 must be expanded so that the com-
parisons can continue. This expansion produces the states
KS-GOODNESS22 and DATA-COMPONENT?23. Before

9L ow here really means “lower than the model object” since there is
no such thing as absolutely low or high.
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the values of these states can be determined, the parallel
states must be matched. (Recall that the value of relation-
ship states is determined by comparing the ratings of the
problem and model objects.) The problem state KS-
GOODNESS20 is matched with the model state KS-
GOODNESS?22, and the problem state DATA-COMPO-
NENT?21 with the model state DATA-COMPONENT23.
The relationship of = is found for the KS-goodness states,
because the KS-goodness values are identical. The re-
lationship of the data-component states is <, because the
value of the data-component rating of the problem KSI is
lower than the value of the data-component rating of the
model KSI.

The next step is to select a subset of the expanded back
neighbors to expand further. As in backward causal trac-
ing, we want to continue expanding only those states that
explain the current problem. The current problem is a low
KSI rating, and we have determined that one of the
components influencing this rating is normal (KS good-
ness) and one is below normal (data component), where
“normal” means “same as the parallel state.” Clearly, the
normal value could not have caused the KSI rating to be
low. The KS-GOODNESS20 state is, therefore, a dead end
as far as the diagnosis is concerned because this state is
not causally related to the KSI-RATING15 state. The low
DATA-COMPONENT?21 state, however, is responsible for
the low KSI-RATINGI1S, and we therefore follow this
state backward by expanding its back neighbors.

The value of the data component of a KSI is a function
of the data (i.e., the stimulus and the necessary hypotheses).
In this case there were three gl hypotheses, one for each
event class, whose rating determined the rating of the data
component. (Knowledge sources that transform lower level
hypotheses into higher level ones often combine several
low-level hypotheses of different event classes into one
higher level one.) The back neighbor of data-component,
hyp-rating, is therefore instantiated into three states, one
for each of the three hypotheses of the problem KSI. These
states are HYP-RATING24, HYP-RATING25, and
HYP-RATING26. Their associated abstracted objects are
objects representing group location hypotheses, GL-HYP-
OB’s.

The state matching is more difficult here than before
because there are three parallel states to choose from on
the model side; each problem hyp-rating state has to select
one of the model hyp-rating states. In this case a heuristic
is used to select the appropriate model state: the DM looks
for a model state that minimizes the difference between the
ratings of the two objects while maintaining the constraint
that the model rating must be higher than the problem
rating. (This is discussed in more detail in [8].) In the
current example, this difference minimization results in the
following state pairs: HYP-RATING24 and HYP-RAT-
ING29, HYP-RATING25 and HYP-RATING27, and
HYP-RATING26 and HYP-RATING28. The values of
these states are < since all the hypotheses ratings are
lower than the model hypotheses ratings. Diagnosis, there-
fore, continues with the expansion of the back neighbors
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of these states. We begin with the state HYP-RATING24
and expand its back neighbors. The back neighbor of this
state is another hyp-rating state, representing the rating of
the hypothesis at the sl level from which the gl hypothesis
referred to by the state HYP-RATING?24 was derived. The
resulting state is HYP-RATING30. We also expand the
back neighbor of the parallel state which results in the
instantiation of the state HYP-RATING31. The state
matching is trivial here since there is only one model state
to choose from. The two states are matched, the value of
state HYP-RATING?30 is determined to be lower than its
parallel state HYP-RATING?31, and diagnosis continues
by expanding the back neighbors of this state. Thus the
low rating of a KSI at the vl level has been traced to a
low-rated hypothesis at the sl level. We will end the
diagnosis here, although it normally continues all the way
to the sensor-weight and data-signal states, which repre-
sent the primitive causes that are ultimately responsible for
the hypotheses ratings. See [8] where this example is dis-
cussed in more detail.

VI. REDUCING THE COMBINATORIAL PROBLEMS IN
DIAGNOSIS

In a typical run the DVMT creates hundreds of objects
in each of its processing nodes. To diagnose a given
situation, a subset of these objects has to be represented in
the instantiated SBM; the model then has to be searched
in an attempt to find the causes for the situation. This
section describes the methods for dealing with the poten-
tial combinatorial explosion resulting from the large
amount of data stored in the problem-solving system re-
cord (see Fig. 11). The following is a list of these methods:

1) parametrizing a group of objects to represent the
entire group by one parametrized abstracted object
(occurs during model construction);

2) parametrizing groups of states to represent them by
one state in the model (occurs during model con-
struction);

3) allowing the existing data to constrain the search
during diagnosis (occurs during model
instantiation);

4) selecting a representative from a group of related
objects and reasoning about it (occurs during model
instantiation);

5) grouping similar objects together and reasoning
about them as a group to reduce the search (occurs
during model instantiation);

6) abstracting the common characteristics of a group
of objects to represent and reason about the group
by one abstracted object, usually an undercon-
strained object (occurs during model instantiation).

This rest of this section motivates and describes methods
3-6. The first two are discussed in detail in [8, ch. 6].

Constraining the Search by Existing Data

In some cases the number of possible ways that a
DVMT object could have been derived is too large to be
able to explore each possible derivation path. One way of
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constraining the search without eliminating the diagnosis
of a possible fault is to use the existing data generated by
the DVMT to rule out certain paths. This situation occurs,
for example, in track hypotheses elongation, where a num-
ber of shorter track segments hypotheses or individual
location hypotheses are combined to form a longer track
hypothesis.

Suppose we are trying to analyze why a track consisting
of eight locations was not created. We could consider all
the possible combinations of shorter track segments and
locations and analyze why they were not created. In these
cases not only would the combinatorics be prohibitive, but
it would not even be useful to explore all the possible
derivation paths since the system would not explore all of
them either, being constrained by the data it has. We can
reduce the number of pathways to explore by allowing the
existing data to constrain the search during diagnosis.
Rather than exploring all the possible ways of deriving
some longer track, we consider only the track segments
that have already been derived by the system and analyze
why they were not extended further.

Selecting a Representative Object from a Class of Objects

Another use of abstraction involves the selection of a
representative object from a group of objects and analyz-
ing its behavior rather than the behavior of each of the
individual objects. For this strategy to be effective we must
guarantee that the set of faults diagnosed when analyzing
the representative object is the same as the set of faults
diagnosed if each of the objects was analyzed separately.
As for the foregoing method, track elongation best il-
lustrates the use of this technique. To create a longer track
hypothesis, the DVMT system will aggregate shorter track
segment and location hypotheses. Therefore, at any time a
number of shorter track segments will exist. In this case we
choose the longest segment and analyze why it was not
extended further. This does not reduce the number of
faults we can identify because the undiagnosed shorter
track segments fall into one of two categories. In one case
the shorter undiagnosed segments were later extended into
a longer segment and no fault exists. In the other case, the
reason they were not extended is the same as the reason
the longest track of the group was not extended. This fault
will be identified by analyzing why the longest track
segment was not extended, thus bypassing identical (re-
dundant) diagnosis for the shorter track segments.

Grouping Together Similarly Behaving Objects

In cases where a single object in the model is expanded
into a number of objects in the instantiated model, it may
be possible to group some of these objects together and
diagnose each group as a unit. This is more efficient than
creating a separate state for each of the objects and then
repeating identical diagnostic paths with each of the states.
In the initial stages of this project every object created in
the instantiated SBM had its corresponding state created
and attached. During diagnosis then, each of these
state—object pairs would be processed. This led to a combi-
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natorics problem, even in relatively simple cases. Consider
the diagnosis of the following situation. A pattern track
hypothesis ranging from time 1 through time 8 is missing.
To diagnose it, the system instantiates the SBM and traces
the problem to the lack of the necessary data for this
hypothesis. Because the hypothesis has eight time loca-
tions, eight locations are missing. Thus there are eight
pathways to follow during diagnosis. Notice also that they
all reduce to the same problem; missing data. It would be
much more efficient if we could recognize that all these
objects behave similarly and, therefore, require the same
diagnosis and can be grouped and diagnosed together. In
other words, all the objects behaving similarly can be
grouped under one state. This state is then the only one
that needs to be followed during diagnosis because the
predicate or value it represents is the same for all its
associated objects. There is, therefore, only one diagnostic
path to follow through the model.

Currently, the grouping is performed by applying a
function to some combination of the state or object attri-
butes. The result of this function determines the number of
equivalence classes for the objects. A separate state is then
created for each of those equivalence classes, and all the
objects in that class are attached to that state. This object
grouping greatly reduces the number of paths that need to
be examined during diagnosis without sacrificing the com-
pleteness of the diagnosis. As soon as the object behavior
changes and requires a different diagnostic pathway, the
system creates a separate state for it as specified in the
grouping criteria. An example of a criterion for grouping
objects is the existence of a corresponding object in the
DVMT. All the abstracted objects which do not have a
corresponding object in the DVMT are grouped together
under one state (which is false), and all those that do are
grouped under another (which is true).

Underconstrained Objects

Another way of using abstraction when reasoning about
the system is to group together a number of objects and
represent the whole class as one abstracted object in the
instantiated model. This is done by underconstraining
some of the attribute values of the abstracted object.
Underconstrained objects are useful when it is known that
a group of objects will behave identically and we can,
therefore, save time by reasoning about the group as a
whole. A situation where this is useful is the simulation of
the effects of an identified fault. Suppose the system has
identified a bad sensor in the DVMT system. It would be
useful to propagate the effects of this sensor forward
through the model and thereby not only explain any
pending symptoms, which were caused by the same fault,
but also account for future symptoms. In this case the
simulation involves reasoning about the class of hypothe-
ses generated from data in the area covered by the failed
sensor. Clearly, it is more efficient to represent this whole
class as one object rather than reasoning about all the
possible hypotheses. Examples where this occurs are found
during the forward simulation of an identified fault.
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The following example illustrates the use of undercon-
strained objects to represent and reason about a class of
objects. This capability is then applied to simulating the
effects of an identified fault on system behavior. Suppose a
problem-solving system is configured such that four com-
municating nodes exist, each working on its part of the
overall problem. Each node has different parameters that
control various aspects of its processing. For example, a
set of parameters controls the internode communication
(i.e., who should talk to whom and about what). If these
parameters are set incorrectly, then the entire system will
fail in its problem solving because the different parts of the
overall solution cannot be integrated.

The lack of an overall solution will result in each node
having a set of symptoms to diagnose relating to missing
solution parts due to lack of communication. The DM will
begin with one of these symptoms, for example, the lack of
a specific piece of data, and will trace it to a failure: an
incorrect communication parameter setting. Once this fault
is identified, its effects will be propagated through the
system. As an example, consider what would happen if two
nodes were expected to exchange data in a certain area,
but the communication parameters were wrong and no
messages were sent. This would be discovered by the DM
when it is determined that a particular piece of data is
missing from one of the nodes. When the fault is identi-
fied, it is generalized to reflect that no data in the entire
affected region will be communicated. In this way all
symptoms representing missing data in that region will be
accounted for when the effects of the fault are simulated.

To summarize, due to the complexity of a problem-solv-
ing system, as compared to other systems to which causal
model diagnosis has been applied, we have utilized a
number of techniques to handle the combinatorial prob-
lems. In this section we have highlighted the types of
abstractions necessary to make problem-solving system
modeling and diagnosis feasible.

VII. SuUMMARY AND FUTURE RESEARCH

This paper discussed our work in the area of problem-
solving system diagnosis. Our approach integrates a number
of known techniques (diagnosis, simulation, qualitative
reasoning, and constraint networks) and describes two new
ones (comparative reasoning and the use of undercon-
strained abstracted objects) in an attempt to solve the
problems encountered in representing and reasoning about
problem-solving system behavior.

We have implemented a component of a problem-solv-
ing system, the diagnosis module, that diagnoses faults in
the problem-solving system behavior by using a causal
model of the system. The faults can be either hardware
failures or inappropriate control parameter settings, which
we call problem-solving control errors.

Our approach to diagnosis has been determined by the
following characteristics of the DVMT problem-solving
system.
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® The system maintains a number of data structures
(blackboards, queues) that contain its recent history.
We exploit this availability of the system’s inter-
mediate states in constructing an instantiation of the
system model to represent how a particular situation
was reached.

* For many events in the DVMT system no absolute
criteria exist for behavior. This means that in many
cases we cannot determine whether an event is ap-
propriate simply by comparing it to some fixed ideal
event. We must instead take a more global view and
examine the event’s relationship with other events in
the system. The lack of absolute standards for system
behavior necessitates a new type of diagnostic rea-
soning we call comparative reasoning.

e Because of the complexity of the DVMT system, we
could not represent every aspect of the system in the
model. The problem of devising a concise represen-
tation of a large set of possible system behaviors led
to various types of abstractions, both in the model
construction and in the use of the instantiated model.
These abstractions allow us to represent and reason
about classes of objects rather than individual cases.

To perform diagnosis with these constraints, we have
built upon a number of techniques developed elsewhere.
We use causal networks similar to CASNET [16], except
that we model correct rather than faulty behavior. We have
also added the explicit representation of objects in the
diagnosed system, in addition to representing the sequence
of expected states. The mapping between these abstracted
objects in the model and the data structures in the system
is not always straightforward; we cannot just represent
each object in the problem-solving system by a corre-
sponding abstracted object due to the large number of
system objects. We have developed techniques for reducing
these combinatorial problems. We have parametrized ab-
stracted objects and underconstrained objects to represent
classes of situations in the problem-solving system. We
have also developed techniques for dynamically selecting a
specific system object to represent, which will capture the
necessary characteristics of the situation that needs to be
diagnosed. We have exploited the techniques developed by
Genesereth [6] and Davis [5] in forward and backward
reasoning from first principles. Again, however, we have
had to extend these techniques to handle the increased
complexity of a problem-solving system as compared with
simple digital circuits. Our use of fault simulation repre-
sents synthesis of both techniques to understand what
symptoms can be explained as a result of an identified
fault. Finally, the work on comparative reasoning repre-
sents a new technique built on the basic backward/for-
ward causal reasoning and qualitative analysis technique
developed elsewhere. The diagnosis module is currently
being used to help explain the DVMT system behavior,
and we are planning to integrate it into the DVMT to
provide more sophisticated metalevel control [7].

Although this work was done with a specific system in
mind, we believe that the modeling formalism as well as
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the diagnostic techniques we have developed are equally
applicable to other systems, problem-solving or otherwise,
that have knowledge of the internal system structure and
access to the system’s history. The techniques we devel-
oped help alleviate problems associated with the diagnosis
of a large number of cases (underconstrained objects) and
make possible the diagnosis of some cases where no ab-
solute criteria exist for system behavior (comparative rea-
soning). Although we have only used underconstrained
objects in simulating the effects of a fault, it is extendable
to generalizing over a group of symptoms and thus com-
bining many diagnostic paths into one. Comparative rea-
soning was used to compare why two ratings of knowledge
sources differed. It could easily be extended to comparing
other quantities, such as the length of tracks or length of
derivation paths. We see many possibilities for further
research in this area based on our initial experience.

1) The abstracted objects could be extended to repre-
sent object components and composite objects and rea-
soning techniques could be devised for these new object
types. Such an object hierarchy could be used to represent
both low-level domain and system knowledge and high-
level expectations about the system behavior. We have
already begun work in this area.

2) The model could be extended to represent not only
what the system should do but the assumptions underlying
the reasons for doing it. This would permit a much deeper
analysis of the system behavior.

3) The issues could be formalized in comparative rea-
soning, and comparative reasoning extended to be able to
compare several system runs with different parameter set-
tings and understand why they differ.

4) Our approach relies on the availability of the inter-
mediate problem-solving states to reconstruct the actual
system behavior. In large systems this becomes a problem
as the system would quickly become flooded with informa-
tion. Another area of future research would attempt to
develop techniques for reducing the amount of informa-
tion kept by the system and yet maintain enough so that
past behavior can be reconstructed.

The work described here is a first pass at this large
problem. Diagnosis is a pervasive activity in problem-
solving system development and use; it plays a role in
debugging, in metalevel control, and in explaining system
behavior. We believe we have demonstrated that causal-
model-based diagnosis of problem-solving system behavior
is feasible and that while our work deals with a specific
problem-solving system, the techniques described here are
applicable to other systems.
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