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Abstract

As the scale and scope of distributed and multi-agent sys-
tems grow, it becomes increasingly important to design
and manage the participants’ interactions. The potential
for bottlenecks, intractably large sets of coordination part-
ners, and shared bounded resources can make individual
and high-level goals difficult to achieve. To address these
problems, many large systems employ an additional layer
of structuring, known as an organizational design, that
assigns agents different roles, responsibilities and peers.
These additional constraints can allow agents to operate
more efficiently within the system by limiting the options
they must consider. Different designs applied to the same
problem will have different performance characteristics,
therefore it is important to understand the behavior of
competing candidate designs.

In this article, we describe a new representation for cap-
turing such designs, and in particular we show how quan-
titative information can form the basis of a flexible, pre-
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dictive organizational model. The representation is capa-
ble of capturing a wide range of multi-agent characteris-
tics in a single, succinct model. We demonstrate the lan-
guage’s capabilities and efficacy by comparing a range of
metrics predicted by detailed models of a distributed sen-
sor network and information retrieval system to empirical
results. These same models also describe the space of pos-
sible organizations in those domains and several search
techniques are described that can be used to explore this
space, using those quantitative predictions and context-
specific definitions of utility to evaluate alternatives. The
results of such a search process can be used to select the
organizational design most appropriate for a given situa-
tion.

1 Introduction

The notion of organizational design is used in many dif-
ferent fields, and generally refers to how members of a
society act and relate with one another. This is true of
multi-agent systems, where the organizational design of a
system can include a description of what types of agents
exist in the environment, what domain problem solving
and control roles and responsibilities they take on, and
specifications guiding how they act both independently
and with one another. More generally, if we assume an
entity has a set of possible choices to make during its op-
eration, the organizational design will identify a particular
subset of those choices that should actually be considered
at runtime. By working with this typically smaller set,
the entity’s decision process is facilitated. For example,
the design may specify a particular set of peers an agent
should interact with, or prioritize the agent’s responsibil-
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ities. Lacking such information, the agent would likely
need to expend time and resources to reach the same op-
erational state.

This additional structure becomes increasingly impor-
tant as the system scales in number and scope (2). Imag-
ine how difficult it would be for a large human organi-
zation, such as a corporation or government, to function
if individuals lacked job descriptions and long-term peer
relationships. Agent systems face similar challenges, and
can derive similar benefits from an explicit organizational
design.

Consider the problem of designing a solution for a com-
plex, resource-bounded domain, such as a distributed net-
work of sensors that is used for tracking. Such systems
typically consist of an array of sensor nodes that are de-
ployed to obtain the measurement data needed to track
mobile targets in an environment. Assume in this case
that each sensor is host to a local agent that is responsible
for controlling the sensor. Let us further assume that the
sensor nodes must collaborate in some way to be success-
ful. For example, multiple sensors must illuminate a tar-
get simultaneously to correctly obtain its position. Given
these assumptions, a designer must determine a way to
structure the agents’ behaviors so that tracking may be
accomplished. One strategy would create or delegate a
single agent to be themanagerof the entire sensor net-
work. The manager would decide when, where and how
each sensor should take measurements, and then process
the resulting data to estimate the targets’ positions. This
layout of responsibilities constitutes a rudimentary orga-
nizational design. It specifies what roles agents take on,
who they interact with, and where decision making au-
thority is located.

Under some conditions, this simple solution will per-
form optimally, because the manager can maintain an
omniscient view of the entire network’s state and use
that view to find the best assignment of sensing tasks.
However, under real world conditions, where bandwidth
and computational power is limited, communication and
data processing takes time, and the number of sensors
can be arbitrarily large, the weaknesses of this approach
quickly become apparent. A different strategy, in the
form of a different organizational design, can compen-
sate for these more challenging conditions. For exam-
ple, we might distribute the manager role among multi-
ple agents to more evenly balance the communication and
computational loads. We might also create an informa-
tion dissemination hierarchy among the agents that prior-

itizes, summarizes, and propagates measurement data to
use the available bandwidth more efficiently. However,
distributing the role can lead to conflicts among managers
about which sensors to assign for specific tasks, and lower
utility assignments because no single agent necessarily
has the local context to make the right decision. Simi-
larly, the summarization process of a hierarchical distribu-
tion scheme can introduce additional latency and impre-
cision. Because of these tradeoffs, the organization can
be a double-edged sword, both helping and hindering the
system in potentially complex ways. The questions ad-
dressed in this paper revolve around finding a general way
to determine the most appropriate organizational strategy
for a given environment and set of organizational objec-
tives when there are many such strategies to consider.

Implicit in this example is the idea that different organi-
zations will affect the performance of a working system in
different ways. Intuitively, changing the manner in which
agents interact or the pattern that those interactions take
on can change how the system behaves from both global
and local perspectives. The objectives of a particular de-
sign will depend on the desired solution characteristics,
so for different problems one might specify organizations
which aim toward scalability, reliability, speed, or effi-
ciency, among other things. Confounding the search for
such a design is the fact that many potentially important
characteristics can be subtle, not readily identified as the
system is being developed, or have complex interactions.

For example, at what point do the benefits of the dis-
semination hierarchy proposed above outweigh its costs?
The additional communication and processing resources
required to implement it may not be readily available. Ob-
taining them may require a monetary cost if new systems
must be purchased, or a complexity cost if the new re-
sponsibilities are spread among the existing systems. At
the same time, one must reason about the dimensions of
the hierarchy – how tall and wide should it be? Which
entities should be assigned the responsibilities present at
each node? Should the tree dimensions be kept small,
potentially concentrating the burden, or be made large to
more evenly distribute the load? The designer will likely
have an intuitive grasp of what is required, which is how
existing systems are typically developed. However, all of
these features are interrelated along with the goals of the
system, the type and frequency of tasks it will experience,
and the nature of the available resources. Intuition can
fall short when such interactions allow small changes to
lead to unexpected outcomes. These so-called phase tran-
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sitions or tipping points require a deeper understanding
and a more concrete representation to be addressed.

Understanding the basis for behaviors like those de-
scribed above that occur within and between agents, and
using that information to develop accurate, predictive
models of their effects are both critical to selecting an
appropriate design, particularly as the agent population
grows in scale or complexity. Although mathematical
models for particular aspects of organizationally-driven
agent behaviors have been created (34; 22; 32; 5; 12),
none of these works have explored the utility of a gen-
eral modeling language capable of incorporating arbitrary
quantitative information. If we are to understand these or-
ganizational effects and develop the means by which they
can be exploited or avoided through organizational de-
sign, we must have a representation capable of expressing
the range of ways the design can be created and capturing
the quantitative characteristics each design will exhibit.

Many different representations have been created to de-
scribe agent organizations (40; 6; 19; 26; 7; 35; 9; 11; 21;
17; 36). Most fall into one of two categories: either they
represent a wide range of organizational characteristics
abstractly, or they can capture a smaller set of characteris-
tics concretely. The former are usually good at represent-
ing what entities exist or could exist, but cannot compare
alternatives in a quantitative way. The latter may contain
quantitative knowledge, but have difficulty relating that
knowledge to specific organizational concepts, mitigating
their usefulness if one is hoping to understand the effects
a particular organizational design will have.

More specifically, existing organizational representa-
tions are either flexible and qualitative or inflexible and
quantitative. In this paper we will describe a repre-
sentation, the Organizational Design Modeling Language
(ODML), that is both flexible and quantitative. This lan-
guage is designed to capture organizational information
across many different domains at different levels of ab-
straction in a single unified, predictive structure. At the
same time, it is able to integrate concrete numeric infor-
mation in the form of expressions and predictive equa-
tions using a range of mathematical techniques. Using
this representation, it is possible to create a wide range
of integrated models that possess a level of quantitative
detail that is not possible with existing languages. These
models can then be used as part of a search process to
evaluate and rank candidate organizational designs.

The following section will expand on the motivations
behind ODML, and its relation to existing work. Section

3 will provide details describing the language itself and
the rationale behind its design. In Section 4, we also dis-
cuss and evaluate modeling strategies for three domains
to both demonstrate how the language can be used and
provide examples of the detailed predictions that are pos-
sible in ODML. Section 4 will show how these models
can be used as part of an organizational design search
process. The complexity of such a search is determined,
and several techniques described that can help cope with
this complexity. Section 5 will summarize our conclu-
sions and future directions.

2 Motivation and Related Work

The rationale behind ODML’s design was to create an
organizational representation with several key features.
It should first be able to represent a wide range of de-
signs across different domains possessing different rele-
vant metrics. Second, an individual model should be able
to define a class of designs, each with potentially different
runtime characteristics. Finally, for each possible design,
that same model should be able to predict concrete values
for the metrics and characteristics deemed important by
the designer. Together, these features allow a particular
model to define the space of organizational possibilities
and provide a means by which those possibilities can be
compared.

An example ODML structure for a distributed sensor
application can be seen in Figure 1. The details behind
the structure will be covered in Section 3, it is sufficient
here to note that ODML is used to create graph-based
models consisting of interrelatednodes. Each node cor-
responds to a particular organizational component, such
as an agent, a role. Nodes in this model includesensor,
sector, andtrack manager, among others. Each node con-
tains a set offields, which use equations to describe the
characteristics of that node. Several different types of in-
teractions allow the fields of one node to affect those of
another. Taken together, these fields and interactions pro-
duce a “web of equations” that can be used to predict the
various characteristics of the functioning organization.

The idea of quantitatively modeling a system is not a
new one. For example, Shen et al. (34) use a formal
model to uncover a relationship between the environment,
the level of cooperation exhibited by the agents, and the
performance of the system as a whole. Decker and Lesser
(5) motivate the need for meta-level communication to
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Figure 1: An example ODML structure capturing organizational interactions present in a distributed sensor network
design. Rectangles represent ODML nodes, and the embedded expressions those nodes’ fields. Solid edges represent
has-a relationships, while dashed edges show relationships formed by nonlocal modifiers. The light gray labels with
dotted edges give the type names for the reader, and are not part of the actual structure.

guide dynamic organizational adaptation when conditions
are uncertain. So and Durfee (38) created a quantitative
model of a tree-based organization, to predict how various
types of hierarchies will behave under difference circum-
stances. Sen and Durfee (32) have created a model pre-
dicting the effects of various meeting scheduling heuris-
tics, so that agents may dynamically adapt their behavior
to correctly trade off local needs versus those of the larger
organization. Malone, et al. (22), Gnanasambandam, et
al. (12) and Schmitt and Roedig (31) have all used tech-
niques from queuing or network theory to model organi-
zational aspects of distributed or agent systems. In each
of these works, a quantitative model was used to describe
and predict particular organizationally-affected character-
istics in much the same way that ODML is used. How-
ever, none of them do so in a manner that permits the link-
ing of all relevant characteristics into a single, domain-
independent model that is amenable to search. Therefore,
while these approaches are individually quite useful, and

in several cases the underlying techniques they employ
have been incorporated successfully into ODML models,
they do not address the same class of problems as that
representable in ODML.

More closely related to ODML’s intent is the large set
of existing organizational representations that have been
created (40; 6; 19; 26; 7; 23; 35; 9; 11; 21; 17; 36). Table
1 contrasts the features supported by these different sys-
tems. As mentioned in the previous section, none of these
exist in the flexible-but-quantitative space that ODML oc-
cupies. For example, OMNI (9) andM OISE+(17) can
each capture a greater variety of explicit organizational
concepts than ODML, but do so in a largely qualitative
way. For example, they have concrete notions of norms,
ontologies and plans, but no way to directly relate the
organizational decisions that define those features to the
qualitative effects they have on performance. The MaSE
system designed by Matson and DeLoach (23) does dy-
namically compute the quantitative utility of an organiza-
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ODML X X X X X X X X

OMNI X X X

M OISE+ X X X X X X

MaSE X X X X X X

SADDE X X X X X X

Process Handbook X X X X X X

Sims X X X X X X X X

Table 1: A comparison of the characteristics and capabilities of several different organizational representations.

tion, but does so using only a single approximate qual-
ity statistic. The previous section provided an intuition
of how many different interacting features affect the util-
ity of an organizational design. Conversely, both SADDE
(35) and MIT’s Process Handbook (21) can incorporate
arbitrary quantitative information, but neither couples this
information with the organizational structure in a way that
enables one to deduce how the characteristics of one as-
pect of the design affect another. The representation cre-
ated by Sims (36) does incorporate quantitative informa-
tion into a structured organizational model, but we believe
ODML’s more flexible design can model more situations
at different levels of abstraction. For example, although
one can model individual agents and roles in ODML, the
representation does not require that such elements exist.
By modeling these concepts only abstractly or not at all,
one can potentially create models of much larger systems
without the associated high combinatorics. At the same
time, this flexibility can make the design search itself
more difficult.

A feature lacking in ODML but supported in all the
contrasting systems is the ability to explicitly representa
task structure. Task structures are generally used to de-
termine the responsibilities of the various components in
the system, which ultimately affects the viability of al-
ternative organizational designs. ODML captures such
requirements and the effects they have on organization
performance within the structure itself. For example,
the structure shown in Figure 1 has both externally de-
fined task responsibilities (numtargetsin the Organiza-
tion level) and organizational decisions that affect task al-

location (numsensorsin Sector). This design choice pro-
vides for a variety of ways to model tasks and keeps the
ODML language itself simple. Conversely, it also makes
this knowledge somewhat less explicit, and prevents the
language from offering much guidance on how to rep-
resent such information. This is a tradeoff that we have
made consciously throughout the design of ODML, which
we will return to in Section 3.1.

Each of the representations mentioned above has its
strengths and ODML’s goal is not to supplant these works,
but to demonstrate another approach that makes different
tradeoffs. As will be shown in Section 3, ODML does
so by incorporating a concrete but flexible set of primi-
tives that can model a range of organizational constructs
along with the quantitative characteristics that differenti-
ate them.

3 Quantitative Organizational
Models

As shown in Figure 1, ODML is used to create graph-
based models, consisting of a set of nodes that represent
organizational components and edges that represent inter-
actions between those components. ODML models ex-
ist in two distinct forms that share a common represen-
tational definition. The first acts as atemplate, that ex-
presses a range of organizational possibilities by explic-
itly encoding the organizational decisions that must be
made. The second is an organizationalinstance, created
from the template by making specific choices for those
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decisions.
Formally, an ODML template specificationO is defined

as follows:

O = {N ,H,C,K,M,V}

N = {N0,N1, . . . ,Nn} (1)

Ni = {t, `, p̄, I ,H,C,K,M,V}

Examples of how these features are used in practice are
given later in the section. The bulk of the ODML tem-
plate specification is made up of the setN of nodes, each
of which corresponds to a particular physical or logical
entity that might exist in the organization. For example,
in the sensor network scenario there would be nodes cor-
responding to sectors, managers, relationships, agents and
the environment, among other things. Each nodeNi con-
tains a number of elements, defined below:

t The node’stype. This is an identifier that must be
unique within the set of template nodes that make
up the organization.

N.t = 〈symbol〉

∀N,M ∈N , N.t = M.t⇔ N = M

` The node’s instancelimit . This specifies the maximum
number of instances of the node type permitted in a
valid organizational instance.

N.` ∈ Z
+∪{∞}

p̄ An ordered list ofparametersthat must be passed to
the node’s template when an instance of the node is
created. These are analogous to the parameters one
might pass to an object constructor. Each parameter
is specified with a type and local name.

N.p̄ = [〈symbol,type〉, . . . ]

I The set of node types that this node has anis-a relation
with using conventional object-oriented inheritance
semantics. If we assume that a node’sI = {a,b},
an instance of the node will also be an instance ofa
andb, possessing the characteristics of all three node
types (e.g., ifa has a constantx, then the related node
will have the samex unless it locally overrides it). Is-
a relationships cannot be cyclic, i.e.,N cannot have
itself as a decedent.

N.I = {〈type〉, . . .}

∀i ∈ N.I ,∃N′ ∈N |N′.t = i∧N′.t 6= N.t∧

∀i′ ∈N′.I ,∃N′′ ∈N ...

H The set of node types that this node has ahas-arela-
tion with. If we assume thatH = {a,b}, an instance
of the node will possess some number of instances
of both a andb. It is through this type of relation-
ship that the primary organizational decomposition
is formed. Each has-a has a magnitude that speci-
fies the number of instances connected by the rela-
tionship. The magnitude may be defined as a simple
number or in terms of a constant or variable symbol
defined elsewhere.

N.H = {〈symbol,type,magnitude〉, . . .]

magnitude∈ Z
+∪{s|∃c〈s,c〉 ∈ N.C∪N.V}

C A set ofconstantsthat represent quantified character-
istics associated with the node. Constants may be
defined with numeric constants (e.g., 42), or mathe-
matical expressions (e.g.,x+y).

N.C = {〈symbol,expression〉, . . .}

K A set of constraints. Also defined with expressions,
an organization is considered valid if all of its con-
straints are satisfied.

N.K = {〈symbol,op,expression〉, . . .}

op∈ {<,>,≤,≥,=, 6=}

M A set of modi f iers that can affect (e.g., mathemati-
cally change) a value contained by a node. Multi-
ple modifiers may affect the same value. Modifiers
model flows and interactions by allowing the char-
acteristics and decisions made in one node to affect
those of another.

N.M = {〈symbol,op,expression〉, . . .}

op∈ {+,−,×,÷}

V A set ofvariables, representing decisions that must be
made when the node is instantiated. Each variable is
associated with a range of values it can take on. For
example, a node might have a variablex that could
take any one value in the set[2.7,y2,πz].

N.V = {〈symbol,{expression, . . .}〉, . . .}

symbol refers to a user-defined string, similar to a
variable name in a conventional programming language.
These typically describe or refer to a particular character-
istic. We will use dot notation to indicate characteristics
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of particular objects.type is the type name of some de-
fined node, so∃N ∈ N such thatN.t = type. expression
is an arbitrary algebraic expression, possibly referencing
constants, symbols and function calls. ODML supports
the use of floating point values, lists of floating point val-
ues, and discrete probabilistic distributions.

C,K,M,V are collectively known as a node’sfields, and
the quantitative state of a field as itsvalue. For clarity, the
names of nodes and fields are represented in italics. For
example, Figure 1 shows that theorganizationnode has a
constantaveragerms that is defined in terms of therms
fields of thetrackers(i.e., the expected root-mean-squared
triangulation error of each tracker). Note that the use of
the term “constant” may initially be misleading. While
the expression definingaveragerms is fixed, the value
for averagerms produced by that equation may change
through the application of modifiers, or due to changes
in fields or values that the expression is dependent on (in
this case, in therms fields of the track managers). The
top-level organization nodeO also contains the elements
H,C,K,M,V, providing a location for the designer to em-
bed additional global information and constraints.

Through modifiers or the assimilation of nonlocal val-
ues, the characteristics of one node may affect or be af-
fected by those of another. ODML models are generally
constructed by designing individual nodes, and linking
them through nonlocal dependencies or modifiers. The
resulting web of equations allows one to model important
concepts such as information flow, control flow, and the
effects of interactions. By propagating data through these
expressions, the model can correctly predict the charac-
teristics of both individual nodes and the organization as
a whole.

The manner in which field’s values are determined is
defined by the pseudocode in Figure 2 that outlines the
get value function for computing the value of a sym-
bol. Note that some aspects ofget value’s behavior,
such as the manipulation of list and distribution-based
data, have been omitted for clarity. This function shows
how various sources of information, non-local data and
node interrelationships all interact to describe the fea-
tures of a particular node. It is through the execution
of this function on a particular symbol that predictions
are made of the design’s performance. For example,
organization.get value(averagerms) would return a pre-
diction of theorganization’s averagerms.

ODML instances are quite similar to templates. The
difference is that where a template is a description of what

get value(symbol s)
r ← null
if (s is of the forms1.s2)

n← N.get value(s1)
r ← n.get value(s2)

else if(∃ c∈ C | c.symbol= s)
r ← N.evaluate(c.expression)

else if(∃ h∈ H | h.symbol= s) r ← h
else if(∃ v∈ V | v.symbol= s)

r ← N.evaluate(v.expression)
else if(∃ p∈ p̄ | p.symbol= s) r ← p
else forall i ∈ I

r ← i.get value(s)
if (r 6= null) break

forall m∈M
if (m.symbol= s)

r ← r m.op N.evaluate(m.expression)
forall n∈ N

forall m∈ n.M
if (m.symbolis of the forms1.s2)
∧ (s1 = N) ∧ (s2 = s)
r ← r m.op n.evaluate(m.expression)

return r

evaluate(expression e)
forall s∈ { non−function symbols referenced bye}

vs← N.get value(s)
substitute all occurrences ofs∈ e with vs

r ← mathematical result ofe
return r

Figure 2: Pseudocode for the getvalue function of a node
N, used to quantify the characteristics of instance nodes.

could be, an instance is a description of whatis. Where
a template like that shown in Figure 3a might specify that
a sectormanagerrole can be assigned to a singleagent
or distributed across multipleagentnodes, a correspond-
ing instance would indicate thatmanager1 is distributed
acrossagent5 andagent7, and so on. Once instantiated,
the expressions defined by the fields, the data passed in
through parameters, and the interactions caused by rela-
tionships can all be used to predict values for an individ-
ual node’s characteristics.

The formal definition of an instance is nearly identical
to that given in Equation 1, so we do not repeat it here.
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The differences principally relate to the replacement of
node types in the template with instances of those nodes
in the organizational instance. Thus, the setN is the set
of node instances, whose individual types no longer need
be unique. So, where there might be just a singlemanager
type in the template, there can be an arbitrary number of
managerinstances in the instance. Both is-a (N.I ) and
has-a (N.H) relationships no longer reference node types,
but particular node instances inN . Finally, the set ¯p is
filled with appropriate values from each node’s parent,
and the variable setV for each node is replaced by a sin-
gle item from that variable’s range. Because a common
syntax is shared between the two forms, for the remain-
der of this document we indicate where necessary which
is being considered.

The process of finding an appropriate organization re-
volves around first finding the set ofvalid instances, and
selecting from that set the one that is most desirable. Sec-
tion 4 will describe the search process used to traverse this
space of instances. A valid design instance is one where
the number of instances of a node type does not exceed
the type’s limit` and all the constraints in each node’s set
K are satisfied. More formally, the validity of a particular
organizational instanceO is defined as:

O is valid iff ∀N ∈ O.N ,N is valid

N is valid iff ∑M∈O.N |M.t=N.t1≤ N.`∧∀k∈ N.K, (2)

(N.get value(k.symbol) k.op

N.evaluate(k.expression)) = true

The “desirability” of instanceO can be quantified by
defining autility characteristic in the organization. This
can then be computed using the existing machinery by
calling O.get value(utility). Becauseutility is defined
like any other field, it may be defined as an arbitrary com-
bination of the characteristics of other components of the
organization. Therefore, the utility value may vary de-
pending on the choices made to bind variables, the nodes
used to satisfy is-a or has-a relations, and the quantitative
interactions encoded in equations and modifiers. Once
such a value has been computed for all candidate orga-
nizational designs, they may be ranked and the best se-
lected.

3.1 Representational Flexibility

The flexibility of the ODML representation, its ability to
model a wide range of concepts and functionality, is de-
rived from the nature of the language itself. Nearly all ex-
isting organizational representations are structured around
a well-defined set of required or permissible structures.
For example, they will have concrete and explicit notions
of an agent, a role, norms or goals. These concepts can
be represented in ODML, but this representation is ac-
complished using only the primitive notions of node, re-
lationship and quantitative characteristics outlined above;
they have no pre-defined semantics. For example, a node
with the user-defined typemanager, having a has-a rela-
tionship with another node of typeagentcould embody a
role-agent relationship. A sequence of has-a relationships
between nodes could indicate a hierarchy. Although the
high-level semantics for these nodes may be implicit, the
concrete characteristics and design ramifications are still
directly and quantitatively captured by the nodes’ fields.

One might go further to argue that, because nearly
all concrete, organizational concepts have been shed to
maximize flexibility, ODML may not properly be called
an organizational modeling language at all. For exam-
ple, a formalism consisting of quantitative relationships,
a general graph-based structure and constraints can be
used to model many domains outside of organizational
design. We contend that although the nomenclature used
by ODML may not explicitly be organizational, that the
spirit in which it was designed is decidedly so. The fea-
tures provided by ODML were chosen specifically to ad-
dress the automated organizational design problem, where
structural decisions have quantitative ramifications, and
one must be able to both enumerate and rank the space
of such possibilities. We believe it is precisely the con-
ventional nomenclature used by other approaches, and
the assumptions that generally underlie it, that forces de-
signers down paths that may not be appropriate for the
problem they face. Although having such built-in con-
cepts can be beneficial, their existence, particularly if they
are required, means that any model created with such a
language must abide by the assumptions associated with
those concepts. These assumptions can be sufficiently
constraining or inflexible that the representation is no
longer usable, or that the accuracy of the resulting model
is compromised.

For example, a proposed organization may be large
enough that one would not want to have an explicit no-
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tion each individual agent, because to do so would re-
sult in a model so large as to be computationally un-
wieldy. In another case, the agent characteristics sup-
ported by the language may be insufficient or inappropri-
ate to capture the nature of the domain in question. Sec-
tion 3.2 shows that important organizational characteris-
tics are frequently domain-specific, and therefore unlikely
to be present in a language that limits the representable
features to some predefined set. Because ODML makes
no such assumptions, the first designer could choose to
omit an explicit representation of each agent, creating a
more abstract but correspondingly more scalable model.
The second designer has the freedom to incorporate those
characteristics they deem appropriate, including those that
are specific to their domain. So, although typical orga-
nizational constructs are largely absent from ODML, we
feel that the benefits that such a representation offers are
worth exploring the tradeoff.

The drawback to having a language lacking in high-
level concepts is that it can make both the model design
and search processes more difficult. For example, in lan-
guages that explicitly support agents and roles it is usually
clear how a system employing those concepts should be
modeled. In ODML, the designer is given the ability to
capture those concepts in whatever manner is appropriate,
but in doing so it does place additional demands on the
designer. In general, ”things” such as agents, resources
and objects should be defined as either nodes or, if the in-
ner details of those things are not needed or not relevant,
as simple fields. Less tangible features such as roles and
groups may also be modeled as nodes, while membership
or organizational relationships can be defined with has-
a relations. Interactions, communication or dependen-
cies are generally defined as modifiers. State and knowl-
edge are typically represented as constant fields, while the
functional or practical limits are defined as constraints.
Like system design, however, these are not hard-and-fast
rules, and the exact mapping from system to model is a
product of the needs and creativity of the designer. Sec-
tion 3.2 will provide some concrete examples of how re-
alistic systems have been modeled.

From a search perspective, higher-level languages can
also embed into the design search process the idea that
(for example) roles must be bound to agents or that tasks
exist that must be scheduled, and create heuristics or
strategies specifically designed to address those needs re-
lationships (e.g., (36; 30; 24; 3)). Because ODML lacks
such structural landmarks, its search process can only at-

tempt to infer these situations. Given that such require-
ments might be modeled in different ways by different
designers (or omitted altogether as above), the applicabil-
ity of concept-specific techniques such as this is limited.

Because of this, and because the search space created
by an ODML template can be quite large, solving the
search problem is difficult. Section 4 returns to this is-
sue, discussing the complexity of the search, and describe
several techniques that have been employed to make the
search process tractable and efficient.

3.2 Example Organizational Models

An important benefit from ODML’s approach is the abil-
ity to model the domain-specific characteristics of a vari-
ety of organizational styles. This section briefly describes
three such models, the first for a distributed sensor net-
work, the second for an distributed information retrieval
system and the last for a coalition. For each of these do-
mains we will describe the high level objectives and the
features and interactions we have found to be most im-
portant, and then outline how those concepts are captured
by ODML models. The first two models, being based on
running systems, will also be evaluated against those sys-
tems. We have also included the actual ODML model rep-
resenting the information retrieval system in Appendix A.

The models presented in this section are included first
as concrete examples of the language being used, to pro-
vide some insight into how various characteristics may be
captured. They are also a demonstration of the types of
features that can be accurately modeled, and the expres-
siveness of the language in general. They are not intended
to show the limits of what is possible, but to show that
complex, realistic interactions can be captured within the
ODML framework.

The sensor network model has been described previ-
ously in (15), so only a summary is given here. More
detail is given for the information retrieval model, while
the coalition description discusses how a different types
of coalitions might be modeled at a high level. Addi-
tional information for these models can be found in (13),
which also contains descriptions of ODML models that
have been created for several other organizational charac-
teristics and paradigms not covered by this article, includ-
ing teams, federations, marketplaces, and characteristics
that are affected by location or the passage of time.

9



3.2.1 Distributed Sensor Network

The distributed sensor network (DSN) application de-
scribed in this section is a more complex version of that
presented in Section 1, although it retains the same objec-
tive to track targets that move through an environment. It
was designed prior to the existence of ODML, making it
an ideal platform to gauge ODML’s ability to accurately
depict the characteristics of a real-world system. The sys-
tem employs an explicit organizational design that is com-
posed of several different elements. This begins by divid-
ing the environment into a series of logicalsectors, which
are intended to explicitly limit the interactions needed be-
tween sensors. There are also three types of responsibil-
ities, or roles, that agents may take on:sector manager,
track managerandsensor. Each role specifies behaviors,
responsibilities and interactions that must be enacted by
the agent it is assigned to. Agents can take on multiple
roles.

Some aspects of this design are static, such as the parti-
tioning and sector manager assignment, and defined as the
sensors are deployed in the environment. Other aspects
are dynamic, such as the track manager assignment and
sensor selection, requiring the agents to self-organize in
response to new events. This blend of styles takes advan-
tage of characteristics of the environment that are invari-
ant, without giving up the ability to react appropriately
as conditions change. The DSN architecture, comprising
roughly 40,000 lines of Java code and described in de-
tail in (20), has been demonstrated in both simulation and
real-world experiments.

An abbreviated view of the ODML model for this do-
main that includes field expression information is shown
in Figure 1, and a complete structural view of the template
and instance models is shown in Figure 3. Space pre-
cludes showing the complete textual specification, which
is roughly 300 lines long (it can be found in (13)). Vertices
in the graph, such assensorandtrack manager, directly
map to the organizational components described above.
Note that nodes can represent both tangible (e.g.agent)
and intangible (e.g.sector) entities. Edges in the graph
represent the interaction between those components. For
example, the solid edge fromsectormanagerto agent
models the role-agent relationship. The dashed edge from
s tm relation shows how a modifier is used to pass the
demand for measurements from thetrack managerto the
sensor.

A range of characteristics have been incorporated into

the model, including the physical and task environment,
agent interactions, single and multiple role assignments,
dynamic role assignment, heterogeneity, geographic het-
erogeneity, potential conflicts, and both hard and soft con-
straints. Each was successfully modeled, suggesting that
the relatively modest set of primitives offered by ODML
is capable of representing a wide range of complex and
relevant organizational factors. Although ODML lacks a
true general notion of time, we have been able to incor-
porate the notion of a bounded temporal window into this
model. This allows one to inspect organizational charac-
teristics at different points in time, so that performance
predictions can depend on features that may change over
time (e.g., the movement pattern of targets). This is im-
portant because organizations may respond differently to
different sequences of events. In the DSN domain, for ex-
ample, you might require a different organizational design
depending on whether the targets are consistently diffuse
or periodically concentrated. Additional details describ-
ing this can be found in (13).

Our previous work analyzed the effects that this organi-
zation had on performance across a range of metrics (15).
In those tests, the number of agents in each sector was
varied to demonstrate how changing the organization can
have far-reaching consequences. Because the total num-
ber of agents remained constant, varying the number of
agents per sector altered the number of sector managers.
This in turn affected the number of roles each agent took
on, the number of relationships they formed, the load
incurred by those responsibilities and the overall perfor-
mance of the system.

To gauge the representational efficacy of ODML, we
have used the model described in the previous section
to create organizational instances that match those prior
test runs. Characteristics defined in the ODML model
make predictions for the same metrics that were origi-
nally tested, allowing us to calculate values that can be
compared against the empirical results. These predictions
were obtained using theget value function described in
Figure 2. This exercise both demonstrates how ODML
can be used as a predictive tool for different operating
contexts, and evaluates how well a specific model was
able to capture real-world behaviors.

The comparative results are shown in Figure 4. Note
that the behavioral details behind these results are be-
yond the scope of this document (they can be found in
(15)). In this context, we are exploring only the accu-
racy of the ODML model’s predictions (i.e., the ability of
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Figure 3: Example ODML (a) template and (b) instance structures for the sensor network organization. As previously,
edges with solid heads are has-a relationships, while hollow-headed edges represent is-a relationships. Grey edges are
modifiers.

a parameterized web of equations to correctly predict the
performance of a class of domain-specific organizations).
Solid lines represent the values predicted by the ODML
model, while dashed are those obtained through the pre-
vious empirical testing. Figure 4a shows communication
totals by type. Figure 4b shows the communication dis-
parity, which measures how well or poorly the commu-
nication load is distributed in the population. Figure 4c
shows the average root-mean-squared (RMS) error of the
tracking tasks. Although there are some points of differ-
ence, in most cases the model does a good job predicting
performance. One difference can be seen in Figure 4b,
where the predicted standard deviation underestimates the
actual performance in most cases. This is a byproduct of

our assumption that all sensors were equally used. In the
running system, sensors in the center of the environment
are used more than those at the edges, and will have dif-
ferent communication profiles because of it. The model
as described here does not capture these geographic dif-
ferences, and will therefore generally have a lower esti-
mated deviation. However, as shown in (13) it is possi-
ble to model the movement patterns of targets within the
ODML model, and use that more detailed knowledge to
predict load imbalances caused by geographic location if
the additional accuracy is needed. This is a good example
of the type of tradeoff that ODML permits the designer to
make between the simplicity of the model and the level of
detail present in the model’s subsequent predictions. We
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Figure 4: ODML DSN model predictions versus empirical observations for a) Message totals by type, b) Messaging
disparity and c) RMS error. Predicted lines are solid, empirical are dashed.
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Figure 5: Comparison of the ODML DSN model’s role-specific predictions.

will revisit this ability in the context of search in Section
4.2.4.

To evaluate how this model captures finer-grained de-
tails, we compared the communication profiles of indi-
vidual roles, as seen in Figure 5. In addition to com-
munication totals, these graphs also include role counts,
indicating how many agents took on the specified role.
‘A’ represents thesensorrole, ‘M’ is the sectormanager,
while ‘T’ is the track manager. ‘AM’ describes agents
acting as both sensors and sector managers. Predictions
at this more detailed level are also accurate. Many of the
differences that do exist can be attributed to geographic
variances in a small sample size. For example, the 36-
and 18-size scenarios had only one or two sector man-
agers. Their individual geographic locations can affect
performance, and these variations are not reflected in the
predicted values.

3.2.2 Information Retrieval

As a second example, we will describe a model of a peer-
to-peer information retrieval system. A general peer-to-

peer information retrieval (IR) system is composed of a
number of interconnected databases, controlled by a set
of entities (agents, in this case). Queries are first received
by individual members of the network. An appropriate set
of information sources must then be discovered that can
address the query, after which the query is routed and pro-
cessed to produce a response for the user. The informa-
tion necessary for responding to a particular query may be
distributed across the network, which can cause an undi-
rected retrieval process to be time consuming, costly, or
ineffective, particularly when the number of sources is
large.

Zhang and Lesser (42) propose that a hierarchical or-
ganization can be used to address this problem. Their
solution organizes information sources into a set of hi-
erarchies, allowing queries to quickly propagate to data
sources, and results be routed back to a single agent in the
network. At the top level of each hierarchy is amediator.
Each mediator is responsible for providing a concise and
accurate description, known as a collection signature, of
the data available in the information sources present in the
hierarchy below it. An information source may be an in-
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Figure 6: The control and communication sequence in-
volved in handling a query in the information retrieval or-
ganization.

dividualdatabase, or anaggregatorwhich manages other
sources. Mediators are responsible for handling the user
queries, by first using the signatures of other mediators to
compare data sources, then routing the query to those me-
diators that seem appropriate, and finally collecting and
delivering the resulting data.

The sequence of messages and actions performed by
the organization handling a query is summarized in Fig-
ure 6. In that example, Mediator receives the user query
and searches all three nearby mediators. The search re-
sponse (3) from MediatorL indicates it has no relevant in-
formation, so only Mediator and MediatorR are selected
to handle the query.

This organizational design provides several advantages.
The use of collection signatures to model the contents of a
number of individual sources can dramatically reduce the
number of agents that must be searched and queried. The
use of hierarchies introduces parallelism into the query
distribution process. These same hierarchies also dis-
tribute the communication and processing load.

At the same time, if the structures are poorly designed
they can lead to inefficiencies. A single collection signa-
ture, which must be bounded by size to be efficiently used,
can become unacceptably imprecise if the set of sources

it models is large or extremely diverse. This can cause
data sources to be overlooked, potentially reducing the re-
sponse quality. If the data sources are distributed across
many different mediators it may require a more extensive
search and query process to obtain a high quality result.
Whenever a hierarchy is used, there also exists a tension
between the width and height of the structure. Because
each agent is a bounded resource, very wide structures can
lead to bottlenecks, as particular individuals with high in-
degree may become overwhelmed by the number of inter-
actions. Very tall structures can be slow or unresponsive,
as the long path length from root to leaf increases latency.

An organizational model for this system was created
using ODML. The structural designs of the IR template
and instance models are shown in Figure 7. The under-
lying textual specification for the template can be found
in Appendix A, and we will describe some of the details
of this model more thoroughly below. Like the sensor
network model above, this model uses notions of roles, a
task environment and performance constraints. However,
other, more domain-specific phenomena that must be cap-
tured are significantly different, and drive the shape of the
organization in different directions. These include pre-
dicting the quality of the result that will be returned for a
user query and determining how load distribution affects
the system’s response time.

The system’s response quality, defined in the model as
responserecall, measures what proportion of the relevant
information was returned to the user. This value depends
on what mediators are used to service the query, which
can be determined by estimating the query load at each
mediator. The query load incurred by a mediator, and by
relation any sources beneath it, will be dependent on the
number of queries that mediator is asked to service. This
value depends on a number of factors, including the me-
diator’s perceived value, the average number of queries
arriving in the system, the number and value of compet-
ing mediators, and how many mediators are searched for
and used to answer the query. To estimate this, we must
first determine the relative rank orderingmr in terms of in-
formation content of the mediator in questionm, and the
number of mediatorsRr that share that ranking.
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Figure 7: a) An ODML template structure for the information retrieval domain. b) A small organizational instance
produced from that template.

mr = 1+
(

∑
k∈O.mediators

0max(m.prs−k.prs,0)

−0abs(m.prs−k.prs)
)

(3)

Rr = ∑
k∈O.mediators

0abs(mr−kr ) (4)

prs is theperceivedresponsesizeof the respective medi-
ator. The summation term will equate to 1 when the com-
peting size is higher, and 0 when lower. Thus, the highest
ranked mediator will be 1, followed by 2, and so forth.
Mediators with the same value will have the same rank-
ing. Because this rank ordering is used to select which
mediators will be used to service a query, it is possible to
use this to compute the probabilityP(m) that mediatorm
will be selected.

P(m) =
s
|M|

1
(|M|−1

s−1

)

(q−1

∑
i=0

min(s,Rr )−1

∑
j=0

(

mr −1
i

)(

Rr −1
j

)

(

|M|−mr −Rr +1
s− i− j−1

)

min
(

1,
q− i
j +1

))

(5)

Where |M| is the total number of mediators,s is the
number of mediators that will be searched and compared
(searchset size), andq is the number of mediators that
will be given the query (queryset size). Equation (5)
models the search process and subsequent mediator se-
lection that will take place when a query is received by

the system. Equations 3, 4, and 5 all exist in themedia-
tor node of the ODML model. They can be found in the
rank, rank ties, andqueryprobability constants, respec-
tively, of themediatordefinition in Appendix A.

In this particular domain, some subset of the available
mediators will be searched and ranked based on their col-
lection signatures. Using these ranks, a subset of those
searched will actually be selected to service the query.
This is a common strategy employed by agent and team-
based systems (39; 16; 41), so it is worth discussing the
equation in greater detail.

First, assume that all mediators may be initially
searched with equal probability, and that selection from
a set of equally-ranked mediators is done uniformly. The
probability that mediatorm is searched, which depends
on the total number searched and the total number of me-
diators, is s

|M| . The nested summations count the total
number of sets of remaining mediators that both could be
searched and would result inm receiving the query. A ra-
tio of this total to the number of possible mediator combi-
nations from the search

(|M|−1
s−1

)

provides the final desired
probability. The summations iterate over the various ways
in which the mediator search set might be composed. On
each loop, a value is selected for the numberi of higher
ranked mediators andj of equally ranked mediators that
will exist in the set, the remainder being made up of lower
ranked mediators. There are

(Rr−1
j

)

equal valued media-
tors competing for the available query slots, and the final
ratio calculates the fraction of those that might containm.
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Figure 8: A comparison of the predicted and empirical
response recall values as the search and query sizes are
varied.

These equations are used to determine the finalquery rate
for a particular mediator, and itsqueryprobabilitywhich
is used elsewhere in the model.

To test this formulation, a set of simulation trials were
performed, and the observed response recall compared
to the predicted value for each scenario. The environ-
ment (described in more detail in (13)) consisted of six
mediators and nine databases, and each trial consisted
of 100 queries from a simulated user to a random me-
diator in the organization. The first mediator had four
of the databases below it, the second had three and the
third had two. The remaining three mediators with no
appropriate data sources served as distractions. Theper-
ceivedresponsesizefor each mediator was proportional
to the number of databases it had access to. In the tri-
als, both the number of mediators that were searched for,
searchset size, and the number of mediators that were
queried,queryset sizeranged from 1 to 6. A graph com-
paring the values predicted by the ODML model and the
empirical results are shown in Figure 8. As expected,
when the search size is small, the recall suffers, because
it is less likely a good information source will be found.
The queryset sizehas a similar but lesser effect. This
shows that the predictions were quite accurate in most
cases, with an average of 0.9% error over all cases. Exper-
iments not shown here with other designs produced simi-
lar results.

The second characteristic that we will describe, the re-
sponse time of the IR system, is the amount of time that
elapses between a user query and the system’s response.
This characteristic is clearly important from an evaluation
standpoint, as it captures an easily observable phenomena
that is important to the end user. Like the probabilistic
query model, the response time is intimately tied to the
structure of the organization. Several characteristics affect
this value. For example, each communication event incurs
some message transit latency. The query processing by
the databases, and the aggregation performed by both the
aggregator and mediator will take some variable amount
of time. Because queries are reflected to all subordinates,
the latter two entities must also wait for slowest of their
information sources before they can themselves respond.
Finally, because multiple queries can exist simultaneously
in the network, additional delays at individual agents can
be incurred when a query must wait in a queue for ex-
isting processing to complete. The ODML model draws
upon existing techniques from probability theory, queuing
theory and order statistics to capture these aspects of the
system. In particular, the model predicts an entire proba-
bility density function for the response time at each level
in the organization, not just a single mean statistic. As
will be shown below, this detailed represented is needed
to correctly predict the performance of managers that are
dependent on subordinates that act as queuing systems.

The rate at which an individual mediator will receive
user queries it itsarrival rate. Responses will be returned
back at this same rate, on average. More concretely, the
existing model assumes that queries have a Poisson arrival
distribution and mean ratearrival rate. After the query
makes its way down through any aggregators, the leaf
databases will receive the query, also at ratearrival rate.
Each database has aservicerate, defining how quickly it
can process queries. At any given time there may be pre-
viously received queries already being processed or wait-
ing at the database. We assume FIFO processing, so the
amount of time any new query must wait will depend in
part on these existing queries.

Queuing theory (18; 29) can be used to analyze how
long the wait will be, by modeling a database service as a
M/M/1 queue with Poisson task arrival rate and service
rate. The pdffM(x,λ) and cdfFM(x,λ) of the M/M/1
queue’s waiting time distribution are given below, where
x≥ 0 andλ = servicerate−arrival rate.
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fM(x,λ) = λe−λx (6)

FM(x,λ) = 1−e−λx, (7)

The model maintains this information as a discrete list
of sampled points, which are calculated dynamically from
the two underlying functions.

The mediator waits for responses from all its informa-
tion sources before progressing, so its expected service
time will be dependent on the maximum service time of
those below it. This value can be found by computing the
maximum order statistic (the expected maximum value)
of those source service times. The model makes a simpli-
fying assumption that the source service time distributions
are independent, but does not assume they are identical.
The model generates the pdff(n) and cdfF(n) distributions
of this independent, not-identically distributed (inid) max
order statistic using the following functions (4; 28):

f(n)(x) =
[ n

∏
i=1

Fi(x)
] n

∑
i=1

( fi(x)
Fi(x)

)

(8)

F(n)(x) =
n

∏
i=1

Fi(x), (9)

wherefi andFi represent the pdf and cdf of theith sample,
respectively (i.e., the service time distribution of theith
source).

The mediator itself is not simply a pass-through, but
must process and aggregate the resulting data as well,
introducing additional latency. Thus, the mediator can
also be viewed and modeled as aM/M/1 queue. The
service rate of the mediator depends on the number of
responses it receives, which depends on the number of
information sources below it. The mediator’s pdf and
cdf can also be produced using Equations 6 and 7, with
servicerate = responseservicerate/numsources, and
a Poisson rate ofλ = arrival rate−servicerate.

The model determines the total service time by combin-
ing these two activities, modeled as the sum of the times
exhibited by these two random variables. The total ser-
vice time pdf fC and cdfFC can then be determined by
finding the convolution of the corresponding distribution
functions, which has the general form:

fC(x) =
d range/d step

∑
i=0

fs(i) fl (x− i)d step (10)

FC(x) =
d range/d step

∑
i=0

fs(i)Fl (x− i)d step (11)

wherexn = n and(0≤ n < d range
d step ). d rangerepresents

the upper bound on the sampled points, whiled stepis the
stride length between points. For the mediator,fs would
be the aggregate information source pdf given in Equation
8, while fl andFl would be the pdf and cdf of the waiting
time for the localM/M/1 queuing process.

Note that Equations 8-11 are recursive, in that they rely
upon both the pdf and cdf distributions of the sources be-
low the mediator. The equations make no assumptions
about the form of those distributions, so they can be used
both when the information source is a single database or
an arbitrarily complex aggregator hierarchy. This same
assumption also allows Equations 8 and 9 to be used to
compute the pdf and cdf distributions for the aggregator it-
self. The definition terminates in the exponential response
distribution exhibited by the databases. By incorporating
the cumulative overhead incurred by the message tran-
sit times of the query and result propagation process the
model can now compute the expectedservicetimeof the
mediator, allowing prediction of theresponsetimedistri-
bution of the organization as a whole.

The model’s predictions are shown in Figure 9. Each
scenario measures the response time performance of a
different IR organizational design, by submitting 1000
queries to it in a Poisson fashion. The organizational de-
sign of each scenario is depicted on the left, along with
the predicted (solid) and empirical (dashed) response time
distribution data on the right. These performance graphs
show the ODML model does a good job of predicting
the response time distribution of the different organiza-
tional designs. Additional trials were performed for or-
ganizations with three agents [1 Mediator, 0 Aggrega-
tors, 2 Databases], five agents [1M,0A,4D], 10 agents
[1M,2A,7D], and 14 agents [1M,3A,10D], with similar

results. The coefficient of determinationR2 (= 1− (y−ŷ)2

(y−ȳ)2 )

was calculated for each scenario, which estimates how
much of the observed behavior can be explained by the
model (8). R2 was greater than 0.8 for all tested scenar-
ios, where a value of 0.7 or above is considered good for
this statistic.

16



M

A A

A A

D D D D

A A

D D D D

Duration (ms)
0 1000 2000 3000 4000 5000

F
re

qu
en

cy

0

20

40

60

80

100

120

140
Predicted

Observed

(a) (b)

M

D A A A

D D D D D D A

D D D D

D D A A

D D D D A

D D D

Duration (ms)
0 1000 2000 3000 4000 5000

F
re

qu
en

cy
0

20

40

60

80

100

120

140

160
Predicted

Observed

(c) (d)

Figure 9: A comparison of the predicted and observed response time distributions in organizations with (a,b) fifteen
[1M,6A,8D], and (c,d) twenty-eight [1M,7A,20D] agents. In(a,c), node M is a mediator, A are aggregators, and D
are databases.

3.2.3 Coalitions

The general form of a coalition is quite simple – it is sim-
ply a grouping of entities that have banded together to
serve some common purpose. Unlike the previous two
examples, hierarchical relationships generally do not ex-
ist within the groups. An example ODML template is
seen in Figure 10a, which shows that both the number
of coalitions, and the number and type of participants in
each coalition can vary. A sample coalition instance pro-
duced from this template is shown in Figure 10b. Note
that although the organizational instance is structured as
a tree, the organization itself is not hierarchical. As with
the previous two examples, theorganizationnode is used
as a convenient place to encode global information about
the organization. The individualcoalition groups act as
independent peers.

In their purest form, coalitions are disjoint, so that
entities may be a member of only one coalition at a
time. This constraint can be represented in ODML
in the same way that the one-sensor-per-agent condi-

tion was modeled in the DSN organization. Each agent
would have anumcoalitionscharacteristic, which would
be initialized to zero and incremented through the use
of a modifier as they are added to a coalition. Each
agent could also specify amaxcoalitions, along with a
constraintnumcoalitions≤ max coalitions. By setting
max coalitionsto one, the disjoint constraint will be up-
held. Some researchers have demonstrated the utility of
relaxing or removing the disjoint constraint (33). This
can be modeled by settingmax coalitionsto some value
greater than one.

There are three key characteristics associated with
coalitions that must also be represented: the strength of
the resulting group, the costs associated with formation
and maintenance, and the manner in which rewards (if
any) are apportioned to the participants. These can take
many forms, so it is worth exploring how a range of pos-
sibilities might be modeled. The strength of the coalition,
for example, is in some cases simply the number of par-
ticipants, or some valuation of the total “mass” of the par-
ticipants. A bargaining collective or union are examples
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Figure 10: An ODML coalition a) template and b) example instance.

of this, and can be modeled with a simple summation in
thecoalitionnode:

strength= f orallsum(m,members,m.mass)

Consider a somewhat more complex situation, where
participants can have different types of skills and different
levels of proficiency in those skills. Furthermore, assume
the goal requires some minimal combined skill set, and
there are upper bounds beyond which further capability
adds no additional strength. For example, assume each
member agent has constantsskill a andskill b, which are
assigned their respective numeric levels of proficiency.
The coalition gets no strength if the total proficiency level
of a is less than 0 or if the total level ofb is less than 6,
and gets no additional benefit ifa is greater than 1 orb
greater than 10. The coalition’s strength can then be mod-
eled using sigmoid functions as:

skill a = f orallsum(m,members,m.skill a)

skill b = f orallsum(m,members,m.skill b)

strengtha = 1/(1+e∧− ((skill a−0.5)/0.1)

strengthb = 1/(1+e∧− ((skill b−8)/0.5)

strength = strengtha∗ strengthb

If the set of member nodes was limited, through a
node instance limit or a constraint-based mechanism, then
a purely strength-driven assignment of the members to
coalitions would use these definitions to make the con-
textually appropriate trade-offs.

Modeling coalition cost can be quite similar to mod-
eling strength. For example, instead of aggregating the

strength of the participants, one could create a profile of
the total communication behavior, and bound it against
the available bandwidth in the environment. There may
also be fixed costs associated with coalition formation,
such as the time needed needed to elect a leader or dis-
seminate goal or participant information.

In a self-interested situation, it is not only the strength
of the coalition as a whole that is of interest, but also the
perceived benefit that individual members will observe.
This is frequently described as the “reward” the agent will
receive. If there is a fixed amount of reward available, the
manner in which the reward will be distributed is a key
factor that can determine if an entity will choose to join
the coalition. A simple approach is to divide the reward
into equal portions among the participants. In themember
node, this would be defined as:

reward= c.reward/c.nummembers

In this case,c is a reference to the parentcoalition. A
slightly more complex approach would divide the reward
according to the proportional benefit the member brings
to the coalition (i.e., itsstrength):

reward= c.reward∗ strength/c.strength

This would encourage the inclusion of valuable mem-
bers, particularly if costs grow proportionally with coali-
tion size.

3.3 Organizational Utility

The features contained in these models provide some in-
sight into the space of possible characteristics that can
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be relevant when deciding upon an appropriate organiza-
tional design. A search process for the best organizational
design must be able to reason about the relative advantage
or disadvantage each of these characteristics has relative
to the environment and larger objectives. This is typically
accomplished by summarizing those features into a single
numeric utility value, which can then be used to compare
and rank competing designs along a common scale.

The utility of a design can be considered to be an orga-
nizational characteristic like any other. As such, it can be
embedded in the ODML model as a constant field called
utility, and defined using whatever expression is most ap-
propriate. This allows it to be based on many differ-
ent, potentially interacting and domain-specific character-
istics, which is consistent with the complexity that exists
in determining the utility of a design in the real world.

In the simple coalition model, for example,utility
might be defined as the sum of the strengths of the in-
dividual coalitions minus the sum of the costs, or in terms
of the number of tasks that can be completed with the skill
sets that are represented with a similar cost penalty. In the
self-interested case, the global utility might also be a func-
tion of the individuals’ utilities, or hard constraints could
be added to each agent to ensure that all participants have
some minimal utility.

As another example, Figure 1 shows thatutility in the
DSN domain is defined as negativeaveragerms, thus util-
ity increases as the expected RMS decreases. This metric
is appropriate for this domain because it captures what is
arguably the most important measure of quality of a track-
ing system, which is the error of its track estimates. As
described earlier,averagerms is defined directly or indi-
rectly in terms of nearly all other characteristics of this
organization. By association, the utility then depends on
how large the sectors are, how well the tracking load is
distributed, how roles are assigned, and a host of other
features.

Sometimes the features that performance is dependent
on are not all precisely known at the time the model is cre-
ated. This is generally occurs when features are beyond
the control of the designer, because they are part of the
environment. It also can occur when the model is being
used to predict the performance of an open organization,
and the participants are not known a priori. ODML sup-
ports the use of probabilistic distributions in these cases,
which allow the designer to encode a range of possibil-
ities, along with the relative chance that each possibility
has of occurring. For example, thenumtargetsconstant

in DSN model in Figure 1 is defined with a distribution,
because we do not knowa priori how many targets will
exist in the environment. ODML provides a Monte-Carlo
evaluation technique when the utility value depends on
such uncertain information and that information cannot
be mathematically evaluated directly. In this case, util-
ity is determined through a series of repeated sampling
and evaluation trials, the results of which are combined to
produce a suitably representative value.

Utility in the IR domain is defined in terms of the de-
sign’s expected response recall and response time. In this
case, recall is more important than response time, so a
multiplicative factor is applied to the recall value, after
which the response time is subtracted out:

utility = responserecall∗1000− responsetime/10

The normalization terms cause this formulation to gen-
erally favor quality over speed, and instances with equal
recall will be differentiated by their response time.

As with the DSN formulation, the IR utility also de-
pends (recursively) on many different characteristics of
the design as well as the environment the organization is
expected to operate in. For example, one would expect
the performance of a particular IR design to depend on
the rate at which queries arrive in the system. For ex-
ample, a design that is sufficiently robust to handle high
query rates may be less efficient when the rate is low.

Figure 11 demonstrates that this behavior is manifested
in the IR ODML model, by showing the predicted utility
for several different designs with a range of query rates.
This figure shows all eighteen possible organizations that
are possible in a six database environment with a maxi-
mum height of three and a minimum of two subordinates
per node. Optimal utilities for each rate are shown in bold.
Organizations have zero utility at a given query rate when
the query arrival rate exceeds the organization’s service
rate, resulting in an infinite length queue.

In this case, the single-level, single-mediator organiza-
tion number 1 is predicted to be optimal when the query
rate is 0.5 or less (i.e., less than one query every other
second). This is intuitive, because the slow query rate
avoids queuing delays, causing the response time to be
dominated by the height of the organization.

As the query rate increases, first organization 8, then
number 9 and finally number 11 become optimal, as the
highly-connected mediator in organization 1 becomes an
increasing bottleneck. The benefit the multi-mediator de-
signs offer is increased ability to handle high work loads.
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Figure 11: The utility predicted for the range of possible
six-database organizations when the query rate (queries
per second) is varied. Mediators and aggregators are
shown as hollow circles, while the solid databases form
the leaves.

Where no single-mediator organization can handle more
than six queries per second, all eight multi-mediator de-
signs can obtain utility with at least seven queries per sec-
ond. This is because the smaller search size reduces the
query rate any individual mediator sees. The aggregate
demand on the system is lower, which reduces the growth
rate of individual agents’ queues, which allows the system
as a whole to tolerate higher query rates (albeit with lower
recall).

These results show the spectrum of tradeoffs that can be
made in this particular design. In a broader sense they also
demonstrate why explicit organizational design is useful,
by providing a concrete example of how design impacts

performance. From the perspective of this paper, they
show that the ODML model was able to capture the un-
derlying interactions between the various elements of the
organizational design and the environment.

The ability to distill a set of organizational decisions
down to a single utility value is a key component in any
automated organizational design process, because it per-
mits one to directly compare competing designs. Section
4 will show how this capability is leveraged as part of a
larger search process for the most appropriate organiza-
tional design.

3.4 Model Fidelity Versus Complexity

Based on our experiences, first designing and then eval-
uating the DSN and IR models against their real coun-
terparts, we believe that ODML does a good job of sat-
isfying our initial objective of providing a flexible-but-
quantitative toolkit for organizational design. The DSN,
IR and coalition systems are substantially different, using
different organizational styles with different objectives
and different sets of relevant characteristics. As demon-
strated by the results presented in this section, ODML is
effective at capturing these quantitative characteristics, al-
lowing one to quickly determine the utility of each design.
This is in contrast to the majority of the related systems
described in Section 2, where it is not possible to explic-
itly tie organizational decisions to metrics such as track-
ing error, response recall or a coalition’s contribution to
utility.

A significant drawback to the approach we propose is
the complexity of the modeling process itself. The DSN
and IR models were created and incrementally refined,
adding new features as the mechanics of the correspond-
ing systems were better understood. In some domains, so-
phisticated techniques may be needed to accurately cap-
ture relevant phenomena. We believe, however, that if
such sophistication is needed, it is needed regardless of
one’s choice of modeling language. The complexity is
a characteristic of the domain in question, and tools that
lack the ability to express this complexity can only ap-
proximate the behavior of the system. This can ultimately
affect the quality of the decisions that are made based on
those tools.

One way to cope with design complexity is to recog-
nize common elements that different organizations, par-
ticularly among organizations intended to operate in the
similar environments or make use of the same resources.
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For example, both the DSN and IR domains had agents,
roles, and an environment. It is possible to reuse and re-
cycle these elements, thereby taking advantage existing
work and simplifying the modeling process. This reuse is
enabled through the use of generic designs, whose com-
ponents can be incorporated with is-a relationships and
specialized as needed.

Recall that the is-a relationship allows object-oriented
style inheritance relationships to be defined in an ODML
model. In both the distributed sensor network and infor-
mation retrieval models this capability was used to de-
fine characteristics shared by multiple entities inside a
common base node. These characteristics could then be
imparted on those entities through the is-a relationship,
which reduced the size of the model and the time required
to create it. The ability to express inheritance relation-
ships in ODML can also allow the time, effort and ex-
pertise needed to create organizational components to be
exploited in new circumstances. This is accomplished by
first creating a domain-independent set of nodes, captur-
ing characteristics that exist regardless of context or ap-
plication, and then use inheritance to incorporate those
nodes in different models across different domains.

For example, in the DSN environment there was an
agentnode. The notion of an agent is quite general, and
likely to be used in most models of agent systems. Instead
of creating such a node anew in every model, one could
create ageneric-agentjust once, that had common at-
tributes such ascommunicationload, computationalload
or cost. Generic, related variants such asrobust-generic-
agent and normal-generic-agentcould also be created
that possessed more specialized characteristics and con-
straints. An example of this is captured by the struc-
ture fragment shown in Figure 12. The remainder of that
structure shows how those generic nodes can be used in a
domain-specific manner. In this case, theagent, normal-
agentandrobust-agentnodes from the DSN domain (see
Figure 3a) have been added. By simply adding an is-a
relationship from, for example,normal-agentto normal-
generic-agent, the domain-specific agent node inherits all
the information present in the generic agent node. Data
which is relevant to the new domain can then be reused,
and that which is not can be overridden.

Another facet of the same complexity problem is know-
ing when a model is complex enough that additional re-
finements are not necessary. Ideally, one would avoid
modeling minutia that may not needed to produce a sat-
isfactory answer to the organizational design problem. If

a domain is well-understood and has recognizably domi-
nant interactions, then capturing those features will gen-
erally be sufficient. The level of needed complexity also
depends on the context in which the system will be de-
ployed. If computational resources are abundant, for ex-
ample, it may not be necessary to model agent computa-
tional load.

Consider Figure 13, which shows a range of model-
ing strategies, from more abstract to more detailed. The
DSN model presented in Section 3.2.1 exists at the far left
of this figure. Additional modifications presented in (13)
add notions of space and time, representing points further
to the right. In model from Section 3.2.1, we chose to ig-
nore the fact that, for example, sensors on the edge of the
area will likely be used less than their counterparts in the
interior. Instead, usage is captured with an approxima-
tion that is uniform over all sensors. The additional detail
needed to capture geographic differences might be war-
ranted if one of the organizational decisions that needed to
be made included where to deploy “robust” versus “nor-
mal” sensors.

When interactions are more complex or bounds are
tight, one can determine if additional details are needed
by comparing predictions produced by organizational in-
stances against known phenomena, simulation results, or
even intuition. Like any mathematical model or simula-
tion, ODML templates should be vetted through analysis
or empirical comparison to determine their accuracy. As
mentioned above, however, we believe that model com-
plexity is ultimately driven by the application domain.
The ability to choose the level of detail that is most ap-
propriate sets ODML apart from most existing organiza-
tional design frameworks. We will return to this concept
in Section 4.2.4.

4 Designing Organizations

Recall that ODML representations are divided into two
distinct classes:templatesandinstances. A template en-
compasses the range of all possible organizations that are
to be considered, while an instance is a singular, particular
organization derived from a template. The key difference
is that a template depicts the organizational choices that
must be made, while in an instance those choices have
been decided.

The process of designing an organization consists of
searching theorganizational spacedefined by the tem-
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Figure 12: Reusing common agent models in new domains.
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Figure 13: A range of modeling possibilities, each with different levels of abstraction.

plate and selecting an appropriate instance. This orga-
nization space is defined by decision points that exist in
the template. These decision points are manifested in two
ways: with variables and with has-a relationships.

For example, the sensor network example explored the
effects of changing the size of a sector. In the model, a
numsensorsvariable exists in thesectornode. This vari-
able can take on one of several discrete numeric values,
as shown in Figure 1. This controls the size of the has-
a relationshipsectorhas withsensor. As shown earlier,
each of these choices results in an organization with dif-
ferent characteristics. In the IR domain, a similar has-a
size variable calledtopic mediatorsexists that determines
how many mediators will exist in the organization. It can
be assigned different values, which will also result in or-
ganizations that have different forms.

The second type of decision point revolves around how
has-a relationships are satisfied. The magnitude or size
of a has-a relationships can be controlled with a variable
as above. The nodes that may be attached with a has-a
relationship represent a more complicated space, because
the relationship may be satisfied by a range of nodetypes,
and there may also be a number of existing instances of
each type that are suitable. Consider a typical role-agent

relationship, such assensorhas withagent, and assume
that bothnormal agentandrobustagenthave anis-arela-
tionship withagent. Further assume that we are part way
through organizational construction, and that two agents
(a1 anda2) have already been created and assigned to one
role each. In this case there are four ways to assignsen-
sor’s agent. A new instance of eithernormal agentor ro-
bustagentcan be created, or it can be attached toa1 or a2.
Each will have different tradeoffs, and in some cases the
decision may affect previously made decisions in other
parts of the organizational structure

A similar relationship exists in the IR model. In that
model, bothaggregatorand databaseare possible in-
stances ofsource. Themediator-sourcehas-a relationship
therefore represents a decision point, because two differ-
ent types of source may be used to satisfy the relationship.
In this case, mediators with the same number of sources
can be further differentiated by the types of sources they
manage.

In both of these cases, the quantitative effects of lo-
cal decisions can have significant and complex non-local
impact. For example, as a result of the has-a assign-
ment above,a1 might have to divide its time between two
roles. This could negatively affect the quality produced
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by the initial role by dividing scarce resources, as well
as the performance of any other entities that depend on
that role. Hard constraints elsewhere in the structure that
were previously satisfied may become invalid, and soft
constraints may degrade. It is equally possible that all
those values improve as a result of the decision, or that
some local values degrade while higher achieving global
utility. In general, the interdependencies between nodes
and fields mean that values may be both nonlinear and
non-monotonic as the structure changes.

Given the two types of organizational decisions that
must be made, one must next determine how best to ex-
plore the space of alternatives when searching for an ap-
propriate organizational design. One approach is to sim-
ply generate full organizations and test them in turn. This
is a valid approach, but there may be a great many such
organizations to consider. A more incremental strategy
is preferable, because backtracking from partially formed
organizations prunes higher in the search tree, and can
therefore be vastly more efficient than doing so only af-
ter a complete structure has been formed. However,
because the organizational structure changes continually
during such an incremental search and construction pro-
cess, making correct predictions for nonlinear and non-
monotonic values can be difficult. This makes it corre-
spondingly difficult to predict the characteristics of the
completed organization, so deciding when it is appropri-
ate to backtrack is a challenging problem.

In either case, the search progresses by determining the
validity of each considered design, and using the calcu-
latedutility value from Section 3.3 to compare and rank
it against competing designs. The valid design with the
greatest utility is considered optimal. It is during this eval-
uation and ranking phase that the web of equations is used
most. Other representations typically perform their eval-
uation using a fixed set of characteristics limited by the
language, through simulations or model-specific heuristic
analyses, or through more qualitative or logical compar-
isons. ODML is differentiated by the fact that one can em-
bed arbitrary mathematical expressions within the model,
and use those to produce fast, precise predictions of what-
ever characteristics are deemed relevant to evaluating de-
sign utility.

The necessity for such a systematic approach to design
is derived from at least three parts. The first, as shown
in Section 3.3, is that the particular organization that is
employed can have a significant effect on a range of im-
portant runtime characteristics. Section 3.2 showed the

potential for complex interactions among these charac-
teristics. This provides a second motivation, as design
intuition can fall short when these details become simul-
taneously critical in importance and difficult to discern.
The potential for a large or incomplete space of possible
designs is the third motivating factor. For example, the
initial by-hand enumeration of possible designs for the
relatively simple six-database experiments in Figure 11
came up with 16 alternatives. It was only after the more
methodical and computational search techniques were ap-
plied to the model that the remaining two designs were
revealed (numbers 9 and 12), one of which was shown to
be optimal under some conditions.

4.1 Design Complexity

Although superficially straightforward, the combinatorics
of the search space conspire to complicate the search pro-
cess. For example, implicit in the role-agent example
above is the fact that if a new agent is created, the next
role-agent relationship will have five choices instead of
four. An entire space of role-agent relationships will also
exist for each new choice ofsensorsper sector, making
the search progressively more difficult as the structure is
incrementally produced. In fact, the problem of finding
even a valid organization, not necessarily the more desir-
able optimal or most appropriate one, is shown below to
be NEXP-Complete. This is consistent with complexity
results presented in related work by Nair and Tambe (24),
who analyzed the complexity of the role assignment and
execution problem. We will refer to the process of deter-
mining if a satisfying instance exists in the space defined
by an ODML template as ODML-SAT. Determining the
complexity of this problem will help determine how large
the search space is likely to be, and how hard it is to find
solutions in that space.

In these proofs, we will assume that the ODML struc-
ture in question does not contain recursive relationships.
Structures that contain unbounded recursion have an in-
finite search space, and therefore the ODML-SAT prob-
lem would be undecidable in the general case. ODML
does also allow a form ofboundedrecursion, where a par-
ticular node may be revisited only a specified number of
times along any root to leaf has-a path in a valid organi-
zational instance. In this case, the non-recursive set is a
strict and simpler subset of such bounded recursive tem-
plate instances. Bounded recursive templates can be con-
verted to non-recursive equivalents by unrolling the recur-
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sion, adding in placeholder nodes as needed to represent
the individual recursion levels.

Lemma 4.1. Given any non-recursive ODML template
containing n nodes, each with has-a relationships of size
m, the maximum-sized instance derivable from that tem-
plate will have Sn = ∑n

i=0

(n
i

)

mi entities.

Proof. In this proof we will be considering the parent-
child structure of the organization formed by the has-a
relationship. Specifically, we wish to know what arrange-
ment of nodes formed by has-a relationships will produce
the largest possible organization, i.e., the one with the
most distinct entities in it. Assume the total number of
allowed nodes for any given type is unbounded. Letn
be input size, which is the number of node types in an
ODML template,{N1, . . . ,Nn}. We will assume without
loss of generality that each nodeNi will have a single has-
a relationship for each node typeNj , n≥ j > i (to avoid
recursion) and that each such relationship is of sizem.
Because of this, there will bem children created by each
relationship.

If n = 0, the organization consists of only the empty
root organization. Ifn = 1, there is only one arrange-
ment, which by our assumption will containm+ 1 en-
tities, which is maximum. Assume that there is an ar-
rangement ofn = k nodes that will produce an orga-
nization with a maximum number of entitiesSk, where
Sk = ∑k

i=0

(k
i

)

mi . The maximum sized, non-recursive or-
ganization withk+ 1 node types will add a has-a rela-
tionship of sizem from all existing nodes{N1 . . .Nk} to
the new nodeNk+1. Any fewer added relationships will
lead to a smaller organization instance, and any more re-
lationships, or any relationships of size greater thanm,
violate our base assumptions. This will result in a new
instance which has all the entities from the previous max-
imum sized instance, plusmnew entities ofNk+1 for each
of those previous entities. The size of this new organiza-
tion will be Sk+1:
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BecauseSk+1 = ∑k+1
i=0

(k+1
i
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mi matches the original
premise, the result follows by induction.

Lemma 4.2. ODML-SAT is in NEXP.

Proof. Assume we have an arbitrary ODML structureO

containingn node definitions, each of which has some
number of has-a relations of size less than or equal tom.
By Lemma 4.1 the largest organization derivable from a
non-recursive ODML structureO will contain O(mn) en-
tities. Because the number of decisions that must be made
to create an organization is proportional to the number of
decisions embedded in each template node and the num-
ber of entities in the final organization, the number of
decisions is alsoO(mn). Therefore, if a satisfying orga-
nization exists, we can nondeterministically guess a cor-
responding decision sequence in exponential time. The
instance itself may then be generated from this decision
sequence in exponential time.

The validation step involves visiting each entity in the
organizational instance, and verifying that its constraints
are satisfied. At worst, a constraint may be based on all
data possessed by all other nodes in the structure, which
will require O(mn) time to gather. Therefore, all entities
may be validated inO(m2n) = O(mn) time. Because a
satisfying solution to an arbitrary ODML structure may
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Figure 14: A sample TILING problem and consistent so-
lution.

be nondeterministically discovered and validated in expo-
nential time, it is in the NEXP complexity class.

To demonstrate that ODML-SAT is NEXP-Hard, we
will reduce from the TILING problem, as defined in
(25; 1). A TILING problem consists of a set of tile
typesT = {t0, . . . ,tk}, a grid sizeN in binary, and a set
of horizontal and vertical compatibility relationsH,V ⊆
T×T. An N×N tiling is a mappingf : {0, . . . ,N−1}×
{0, . . . ,N−1}→ T. f is consistent only if 1)f (0,0) = t0
(the origin 〈0,0〉 has tile t0) and 2) ∀x,y〈 f (x,y), f (x +
1,y)〉 ∈ H (all horizontal pairs are compatible) and 3)
∀x,y〈 f (x,y), f (x,y + 1)〉 ∈ V (all vertical pairs are com-
patible). The TILING decision problem is to determine,
givenT,N,H,V, if a consistent tiling exists. An example
TILING problem and consistent solution can be seen in
Figure 14.

Lemma 4.3. TILING≤ ODML-SAT

Proof. Any TILING problem with inputsT,N,H,V can
be reduced to ODML-SAT in the following way. First,
construct an ODML model containing the TILING prob-
lem inputs. The template for such a model, along with
an example solution, can be seen in Figure 15. For each
tile tn ∈ T there will be a correspondingt n node that
has an is-a relation with the abstract nodetile. Simi-
larly, each compatibility relationh ∈ H and v ∈ V will
be represented by a node having an is-a relationship with
horizontal relation and vertical relation, respectively.
Theorganizationconsists ofN rows of N tiles that make
up the mapping. The size of this corresponding template
grows linearly with the number of the TILING inputs, and
thus can be constructed in polynomial time.

The organizations derived from this template incorpo-
rate the elements of candidate mappings in the original
TILING problem. The high levelorganizationcontains
theN row nodes ofN tiles that make up theN×N grid.
Becausetile itself is abstract, each has-a relation must be
satisfied by one of thet n nodes present in the template.

Eachrow also hasN−1 horizontal relationnodes, corre-
sponding to theN−1 pairs of tiles in the row. Theverti-
cal relationnodes contained by eachcolumnare used for
similar purposes.columnitself lacks has-a relationships
with tile, instead referencing those contained by therow
nodes directly.

The numeric values embedded in these nodes are used
to ensure the consistency of the mapping. Eachtile has
a typefield corresponding to the type of the original tile.
Eachrelation has fieldst1t andt2t, corresponding to the
two tile types specified by the corresponding original rela-
tion in H orV. The compatibility restrictions are modeled
using constraints in each of these nodes. Eachrelation
contains a pair of constraints, specifying that the types of
the twotile nodes it corresponds to must matcht1tandt2t,
respectively. The origin condition of the TILING prob-
lem is represented with a constraint field inorganization,
which states that the tile at〈0,0〉must have typet0.

If the original TILING problem had a consistent map-
ping, then there will exist a valid organization. Cell〈0,0〉
in the organization will containt 0. Each cell〈x,y〉 in
the original mapping can be used as a choice oftile node
for the corresponding rowx columny in the organization.
Each horizontal or vertical compatibility relation relied
upon in the original mapping may be selected to satisfy
the correspondingrelation has-a relationship in eachrow
andcolumn. All constraints in this organization will be
satisfied, and therefore it will be valid.

If a valid organization can be found within the con-
structed model, then a consistent mapping will exist in the
corresponding TILING problem. The origin cell will con-
tain t0. Each choice oftile for row x columny can be used
to specify the contents of grid cell〈x,y〉 in the mapping.
Eachhorizontal relation andvertical relation represents
a valid selection from the appropriate compatibility lists
for each horizontal and vertical pairings in the grid.

Because an appropriate ODML-SAT problem can be
created in polynomial time from the TILING inputs that
contains a valid organization when a consistent mapping
exists, and does not contain a valid organization when no
mapping exists, TILING≤ ODML-SAT.

Theorem 4.4. ODML-SAT is NEXP-Complete

Proof. By Lemmas 4.2 and 4.3, and because TILING
is itself NEXP-Complete (25), ODML-SAT is NEXP-
Complete.
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Figure 15: (top) An example ODML template used to reduce a TILING problem. (bottom) A valid organizational
instance created from that template.

4.2 Searching for Organizations

These complexity results suggest that an optimal but com-
binatorially feasible search technique that works for all
search spaces is unlikely to exist. However, there may
be algorithmic techniques that work for certain classes of
problems, or offer benefits to all problems without a for-
mal reduction in complexity. The strategies presented in
this section fall into this category. We will assume that
they are used as part of an initially exhaustive search of
the organizational space. The base assumption is that all
organizational possibilities will be explored, and that the
techniques will eliminate, avoid or more efficiently find
some of these possibilities. To be correct, a valid candi-
date with optimal utility (if one exists) must be present in
the subset of those possibilities that remain after applying
the algorithmic technique. Additional search techniques
not described here can be found in (13), including how
to avoid redundant search, the use of general mathemati-
cal solvers, the use of cached values and the inclusion of
homogeneity in the model to shrink the search space.

4.2.1 Exploiting Hard Constraints

One way of avoiding unnecessary branches in the search
tree is to exploit the existence of hard constraints in the
model. This is accomplished by determining the numeric

trend of a constrained value, and bounding the search if
it can be determined that the constraint is unsatisfiable
based on that trend. For example, if a value is already too
high and its trend indicates it will only increase as a result
of later decisions, no further search needs to be performed
along that branch of the decision tree.

For example, in the DSN domain a single agent can-
not control more than one sensor. Eachagenthas asen-
sors controlledvalue, which is initially zero and later in-
cremented using a modifier when it is bound to asen-
sor. The one sensor per agent restriction is modeled by
a hard constraint in theagentnode, which specifies that
sensorscontrolled≤ 1, as shown in Figure 1. Because
sensorscontrolledis only affected by thesensormodifier,
it can only increase monotonically. Therefore, if the con-
straint is ever violated it will remain unsatisfied regardless
of what subsequent decisions are made.

Because a valid organizational instance cannot contain
unsatisfied constraints, if a constraint has become unsat-
isfied during the course of an organizational search it may
be reasonable to halt the search and backtrack from that
point. Two issues complicate this process. The first is
that constraints may be initially unsatisfied and only be-
come satisfied through the course of the decision making
process. The second is that, because values may change
non-monotonically, a constraint that is currently satisfied
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or unsatisfied can change its state repeatedly during the
instantiation process. A strategy that blindly backtracks
when an unsatisfied constraint is observed is incorrect,
since valid organizations may potentially be missed in ei-
ther case.

Because a constrained value may change as a result of
decisions made elsewhere in the model, for example when
a new modifier is instantiated or a choice is made for a
variable the value is dependent on, one cannot determine
the trend of a characteristic myopically. However, it is
possible to make this determination through a wider in-
spection of the relationships defined in the organizational
template. In particular, by evaluating the equations that
model the constraint and the modifiers that have the po-
tential to affect its value, it is possible to estimate how
future decisions might affect the constraint’s satisfaction.
Because this technique relies on features that can be de-
rived directly from the underlying model, it is domain-
independent.

The algorithm used to determine satisfiability is out-
lined in Figure 16. The process starts by determining
what fields the characteristic is dependent on by enumer-
ating the fields referenced by the characteristic’s expres-
sion. For example, ifx = a+ 2b, its set of fieldsD will
be{a,b}. The bounds and trend of each symbol’s value
must first be estimated to determine the trend ofx.

A symbol that has no dependents or incoming modi-
fiers is considered constant (fixed). The range of the value
may be determined immediately by evaluating its expres-
sion, and its trend will be to remainconstant. Symbols
which are not fixed reference other symbols that must
themselves be analyzed. This analysis process is there-
fore recursive.

Having determined the bounds and trend of a particular
symbol, one must also determine how it affects the value
of the expression that references it. This can be done by
taking the partial derivative of the expression with respect
to the symbol in question. If both the derivative and the
dependent symbol’s trend are monotonic, then we may
infer the behavior of the target’s value with respect to that
symbol. If either is not monotonic then the target’s trend
is considered unknown, which indicates the technique is
not applicable.

Recall that modifier fields elsewhere in the organiza-
tion can also affect a constant’s value. By searching the
organizational template, it is possible to find any and all
modifiersM that have the capacity of affecting a particu-
lar constant. For each modifier one must first determine

is satisfiable(constraintc)
if (c.satisfied)return true
tv← find trend(c.LHS)
te← find trend(c.RHS)
if (tv = unknown∨ te= unknown) return true
if (tv = constant∧ te= constant) return false
if (tv = increasing∧

(te = constant∨ te= decreasing)) return false
if (tv = decreasing∧

(te = constant∨ te= increasing)) return false
return true

find trend(expressione)
D← e.dependencies
M← e.modifiers
t← constant
for (f ∈ D ∪M)

t f← find trend(f)

df←
∂e
∂ f

if (df .dependencies⊆ { f } ∧ df is linear)
t f← ∇ df (i.e., wrt f and t f , increasing,

decreasingor constant)
elset f← unknown
if (t f = increasing∨ t f = decreasing)

if (t = constant) t← t f

else if(t f 6= t) t← unknown
else if(t f 6= constant) t← t f

return t

Figure 16: Pseudocode for the constraint satisfiability and
trend estimation procedures.

the trend of the modifier’s expression, and next determine
how the modifier can affect the constant’s value. This is
performed in a manner similar to the analysis of the ex-
pression’s dependent fields. The only difference is that
the partial derivative is calculated from a combined ex-
pression that includes the potential cumulative effects of
the modifier.

If the effect of each dependent field and modifier is
known and predictable and their aggregate effect is co-
herent, the overall trend of the expression’s value may be
estimated. For example, if all individual trends are in-
cremental, the overall trend will beincreasing. If all the
interactions decrease the value of the expression, it isde-
creasing. If some symbols have the capacity to decrease
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Figure 17: A comparison of the search time differ-
ences with and without the constraint estimation algo-
rithm across three different models.

while others increase, the trend is consideredunknown.
In this way the trends of both the constraint’s target and

its expression may be determined. One can use this in-
formation to determine if the constraint is unsatisfiable
or potentially satisfiable. Ifis satisfiablefunction returns
false, then no organizational decisions exist that have the
ability to satisfy the constraint and the search should back-
track. A response of true implies either that such decisions
do exist, or conflicting trends make it impossible to deter-
mine satisfiability using this particular analysis technique.

The potential benefit of using this technique has been
demonstrated through a series of experiments, the results
of which are shown in Figure 17. Three different mod-
els were contrasted in a pair of trials, one that bound the
search using the constraint trend estimate, and one that did
not. The two DSN models contain a constrained mono-
tonic trend insensorscontrolled, as described above. The
subset-sum model was included as an example because it
contains a constrained non-monotonic trend. The search
process is deterministic, and the timing differences for
identical trials on the same dedicated processor were neg-
ligible, so only a single trial was performed for each test.

The subset-sum tests show how search performance
does not improve when using the technique in that do-
main, because its constrained value was non-monotonic.
The two other scenarios (sensor-4 and sensor-9) were per-
formed using the DSN model, one with four sensors and
one with nine. The technique is seen to be quite beneficial
in that domain, as the time elapsed in the “without” trials
quickly exploded while the “with” remained low. A third
DSN scenario involving 18 sensors was also tested (but
is not shown), where the trials using constraint estimation
finished after 2000 ms on average, and those without had

not completed a single trial after three days of computa-
tion. These results are consistent with the discussion and
motivation presented above.

The utility and significance of the benefit imparted by
this technique depends on the model itself. In models
lacking constraints, or only containing constraints over
non-monotonic characteristics, no performance improve-
ments will be realized. In models possessing constraints
over monotonic characteristics, the amount of improve-
ment will depend on how large the search space is, and
how much of that space can be avoided by the technique.
In the sensor-4 scenario, for example, the search space
was relatively small so only modest gains were observed.
The space of the sensor-9 scenario was much larger be-
cause of the increased number of role assignments to
be made. Additionally, thesensorscontrolledconstraint
could be checked early in the decision tree, as a violation
was detectable immediately after the conflicting sensor
role assignment was made. Applying the trend estimation
technique early allowed very little work to be wasted, re-
sulting in the dramatic savings in search time. Therefore,
although the performance gains are difficult to character-
ize in the general case, this shows that careful structuring
of the model can allow the designer to take advantage of
the technique.

4.2.2 Equivalence Classes

The second technique we will discuss exploits the idea of
equivalence classes to reduce the search space. To do this,
we must formalize the various ways that a has-a relation
may be satisfied. Recall from Section 3 thatN is the set
of node templates present in an ODML model,h.t is the
type of has-a relationh, andN.I is the set of is-a relations
possessed by nodeN. ThenNt , the set of node templates
which can satisfy typet either directly or because of in-
heritance, can be defined as:

Nt =
[

N∈N

N|(N.t = t)∨ (∃i∈N.I i ∈Nt) (12)

Let A be the set of nodes that have previously been in-
stantiated during the search and currently exist. ThenDh,
the domain of choices available to has-a relationh at this
particular point in the instantiation process, can be repre-
sented as the set:
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Dh =
[

N∈Nh.t

{a′N.t}∪{a∈ A|a.t = N.t} (13)

a′N.t represents a newly created instance ofN. The size
of Dh grows with both the number of related templates
and with the number of instances that have been created.
Since this latter set necessarily grows as part of the pro-
cess of instantiation, the domain of has-a relationships
will tend to grow correspondingly, causing the decision
process to become more challenging as the instantiation
process progresses.

If there arek such decisions which must be made to
construct the organization, then the total number of com-
plete paths in the corresponding decision tree is on the
order of nk. However, many of these paths may be the
same, or at least functionally equivalent. Consider the
case where one is deciding upon an agent to serve as a
sector manager. There may be five previously instantiated
agents, along with the option of creating a new agent, re-
sulting in six elements in the decision’s domain. Further
assume that four of those agents are simply sensor con-
trollers, while the fifth is both a manager of a different
sector and a sensor controller. Note that choosing any one
of the four sensor controllers will produce the same orga-
nization, because they are functionally equivalent with re-
spect to this particular decision. By segregating this agent
pool into a set of equivalent classes and choosing a distin-
guished representative from each pool, the domain can be
cut in half to just three options.

More formally, one may define theequivalence class
[a] of a particular elementa ∈ Dh using an appropriate
equivalence relation(≡) over the set of elements inDh.

[a] = {α ∈ Dh|α≡ a}

This function may be used to derive thequotient set
(Dh/ ≡) of the domain, consisting of all possible equiva-
lence classes as created by the function.

Dh/≡= {∀a∈Dh[a]}

Whenh must be satisfied, the quotient setDh/ ≡ can be
used in place ofDh, choosing a single member of each
class to act as the representative of that class when eval-
uating alternatives. Because the quotient set is at most as
large as the original set, this provides the opportunity to
reduce the search space, without a corresponding reduc-
tion in utility.

Although this segregation does not affect the combina-
torics of the decision process in general, it can still have
a significant impact on the running time of the search.
Consider an extreme but common example from the DSN
model. Assume that 99agentshave been created so far
in the search process, all of which have been assigned
to distinct sensorroles. A newsensornode has been
created, and itsagenthas-a relationh must be satisfied.
Without using equivalence classes, there will be at least
100 alternatives to evaluate inDh. Next, let the equiv-
alence relation≡sc be defined to be true when thesen-
sors controlled value of both nodes are equal and false
otherwise. Because all existing agents fall into a single
equivalence class, the quotient setDh/ ≡sc will contain
only two possibilities, thereby avoiding 98 redundant al-
ternatives that would otherwise have been examined.

In practice, the equivalence function for a particular de-
cision is created using a set ofdiscriminatorsthat are as-
sociated with the has-a relationship. Implicit in the way
this information is specified is the idea that different deci-
sion processes may have different equivalence functions,
since the set of relevant characteristics may change in dif-
ferent contexts, even if they share the same underlying
domain. For example, when searching for an appropri-
ate agent to fulfill the sensorrole, one might discrimi-
nate based on the agent’ssensorscontrolledfield. When
searching for anagent for the track managerrole, the
agent’s currentcommunicationload may be paramount.
Each discriminator set consists of a list of arbitrary ex-
pressions similar to those described earlier. During in-
stantiation, the search process calculates the value of each
of these expressions for each member of the candidate
set, which are then combined to produce a “fingerprint”
for the instance. The equivalence function≡ is defined
as equality over these fingerprints; instances which have
the same fingerprint will fall within the same equivalence
class. As above, a single member of each set may be
used to represent the entire class for has-a satisfaction pur-
poses, thereby reducing the domain of the decision and
the consequent complexity of the search.

The potential benefits of using this technique are shown
in Figure 18, which compares the number of organiza-
tional alternatives (both valid and invalid) that are con-
sidered with and without equivalence classes across four
DSN design problems. The “with” model has thesen-
sor role create equivalence classes ofagentnodes using
thesensorscontrolledcharacteristic, as described above.
The search process is deterministic, so only one trial was
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Figure 18: A comparison of the number of alternatives
that are considered with and without equivalence classes
across four differently sized sensor networks. The models
allowed designs with 3, 6, 9 and 12 total sensors, respec-
tively.

performed for each data point. The log-scale graph shows
a dramatic decrease in the space of alternatives as the size
of the organization grows, which correspondingly reduces
the required time to search that space. The same optimal
organization was found in both trials for each model. As
described above, this improvement occurs because many
of the candidate agents can be identified as redundant and
ignored.

The significance of these results, and more generally
the amount of benefit that one can expect from using this
technique, depends on both the model and the designer’s
choice of discriminators. In particular, if the space of can-
didate decisions is small or highly varied, then the number
of equivalence classes may not be much smaller, and there
may not be much observed benefit. Conversely, larger,
more regular organizations like the example shown here
can see significant reductions in search time. This is sim-
ilar to the hard constraint exploitation technique from the
previous section, which also relied on the existence of par-
ticular features in the model, and is a drawback to both
approaches. The parallel search technique in the follow-
ing section does not suffer from this problem, but as will
be seen it also does not achieve the same level of benefit.

4.2.3 Parallel Search

A different approach to the search problem is to decom-
pose the space and distribute it among a group of pro-
cessors. This distribution is facilitated by the naturally
decomposable organizational space. Recall that the de-
sign process can be thought of as a series of choices made

for the decision points encoded in the organizational tem-
plate. These decision points form the backbone of a cor-
responding decision tree, while a series of choices that
form a particular organizational instance is a path from
root to leaf through that tree. The search space can be
cleanly partitioned at each vertex, where the decided path
to that vertex is shared and the child choices may be di-
vided as needed. Assuming that the individuals perform-
ing the search can be provided relatively equal portions
of that space without excessive communication overhead,
the total search time can be significantly reduced by per-
forming multiple searches in parallel.

The challenge in this design is dividing the search space
such that processing nodes are evenly loaded and no re-
dundant work is performed. There are at least two ways
to create such a division. The direct approach is to analyze
the space and divide it inton roughly equal-sized parts for
then available processors. If done correctly, this can max-
imize parallelism while minimizing inter-processor com-
munication. The difficulty in this approach is that it re-
quires one to characterize the entire search space before a
division is made, and it assumes that a series of equal di-
visions can be devised from such a characterization. Be-
cause parts of the organizational space may only become
apparent as a result of other choices, efficiently creating
such a characterization for an ODML template in the gen-
eral case is not a simple process. A further complication
arises in a mixed processor environment, where an “equal
division” may have to take into account the capability of
the target in addition to the size or complexity of the par-
titioned space that is provided.

Because of these complications, we have employed an
alternative division technique that partitions the space dy-
namically as the search progresses, similar to that pre-
sented in (27). This trades off optimality in message ex-
change to create a solution which dynamically adapts the
division of labor, regardless of the search space character-
ization or participant heterogeneity. Assume there existsa
set ofn processing agents that will take part in the search.
Upon initialization, all agents provided with 1) the organi-
zational template, and 2) the names of their agent “neigh-
bors”, some subset of then agents. The search begins
when a single agent is told to begin searching. When-
ever an agent has no organizational space to search, it se-
quentially asks each of its neighbors for more work (i.e.,
another part of the organizational space). If the recipient
of such a message has extra work, it partitions its local
space and gives the new fragment to the requester. The
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Figure 19: The partitioning of a local search tree. Strike-
outs indicate visited choices, bolded are the current
choice, while a question mark indicates additional un-
known choices remain.

requester then stops its querying and begins searching the
new space. This continues until the search is completed.

The performance of the distributed search using dif-
ferent numbers of processing agents is shown in Figure
20. These were produced from a series of optimization
searches on a template with an organizational space con-
taining approximately 12 million alternative designs.

Figure 20a shows the amount of speedup that was ob-
tained, where an observed value ofn indicates the trial
completed in 1

nth the time of the centralized solution.
Both the observed and ideal performance profiles are
shown. If the underlying processors used by the agents
were uniform, the ideal speedup would be linear, achiev-
ing an times improvement ifn. In these experiments the
processor pool was not uniform, and therefore the ideal
is weighted based on the measured performance of each
CPU.

As can be seen, the distributed algorithm performs well
with respect to the ideal for this number of agents, from
which one can infer that the distribution process is effi-
cient and agents are spending the majority of their time
searching the organizational space. The number of mes-
sages required to achieve these results is shown in Figure
20b, which indicates a roughly linear increase in messag-
ing as the number of processing agents increases.

The benefit that this approach offers over those in Sec-

tions 4.2.1 and 4.2.2 is that it works on all models and
requires no modifications to a model to be used. The
drawback is that it clearly requires additional physical re-
sources, and the amount of achievable speedup is lower.
For example, a roughly linear improvement was observed
with the distributed approach, while the search techniques
described earlier produced results that were orders of
magnitude better in some cases. These techniques are not
mutually exclusive, and in practice the earlier search tech-
niques are used without modification by the individual
participants in the distributed search to further improve
performance.

4.2.4 Model Abstraction

Improving the techniques used by the search process is
not the only way that the efficiency of automated design
can be improved. A different approach is to use abstrac-
tion to reduce elements of the structure to the simplest
form that still produces the desired level of accuracy. Un-
necessary or optional details may be removed or captured
with a probabilistic representation to eliminate branches
of the template which would otherwise add to the deci-
sion process, resulting in a smaller organizational space
and a more tractable search problem. This strategy is used
to design human organizations, such in supply chain op-
timization techniques that reason about entire companies,
and the aggregate characteristics of those companies, not
individuals within those companies.

The ability to represent organizational elements at an
arbitrary level of abstraction in ODML is significant fea-
ture that is absent from most other existing representa-
tions, which typically require a complete structure down
to the agent level. Because the model itself is changed
with this technique, it can potentially lead to an unde-
sirable loss of expressivity, but with care an appropriate
compromise can usually be found. Critical details omit-
ted from the model may also be restored to a subset of
abstract candidates that have been found to be promising.

An example of this approach is to truncate the model at
some point higher than the level actually used by the run-
ning system. For example, one could choose to model
only the most pertinent aspects of an agent’s decision
making process. A more concrete example of this tech-
nique is to not model down to the level of assigning roles
to individual entities or agents, as shown in Figure 21. Or-
ganizations derived from a truncated template will specify
what roles exist, and where they are located in the orga-
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Figure 20: Characteristics of the distributed search usingdifferent numbers of processors. The speedup factor is shown
in (a), and the number of messages required in (b).

Figure 21: An information retrieval template derived
from Figure 7a that incorporates abstraction by eliminat-
ing the assignment of roles to distinct agents.

nizational structure, but leave them otherwise unbound.
A separate, more detailed role-agent search could then
be performed on a subset of the discovered structures, or
a role assignment algorithm used to find an appropriate
binding (30; 24; 3).

This technique is analogous to those presented by Dur-
fee in (10), which reduced complexity by using team-level
abstraction to leave specific agent assignments unbound
during coordination. If agents were heterogeneous or per-
mitted to take on multiple roles, this can reduce the search
space exponentially. Even if agents were homogeneous,
in a fully hierarchical structure this can cut the size of
instances in half, which simplifies analysis and reduces
memory consumption. The precision lost in this instance
stems from the details that were previously stored within

individual agent nodes. For example, it is more difficult
to validate an individual agent’s communication or work
loads. Generic agent nodes can be retained to compen-
sate for this loss of detail, but one will not be able to pre-
dict how the combined effects of multiple roles affect the
agent or its performance within the organization.

The further implication of using this technique arises
from the fact that the resulting organizational instance will
no longer completely specify how it should be applied to
a set of resources and agents. Decisions that were previ-
ously made during the design process must now be made
by an auxiliary process or at runtime. In the example
above, roles must be assigned to specific agents before
the system can function. A second process must take the
agent population and map them to the nodes proscribed
by the selected organizational instance, which is itself a
search process (37). Although this late binding requires
additional analysis after the design phase, our belief is that
it also fosters increased context-sensitivity by providing
a framework to support dynamic allocation. For exam-
ple, assume that themediatorrole has not been bound to
a particular agent at design time. At runtime, when the
actual number and types of databases are known (as op-
posed to the statistical averages used in the models), the
organizational design can be inspected to determine what
resources that role requires and what burdens it will place
on the agent it is assigned to. That entity model, coupled
with the new information obtained at runtime can be used
to select an appropriate agent to fill that role.

The exact amount of search space reduction that is ob-
served using these techniques is dependent on the partic-
ular manner in which the template changes are carried
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Template Decisions Valid Organizations Utility
Baseline 6,210,780,885 12341 692.86
Abstract 59,940 12 692.86

Table 2: Search results from two small-scale IR templates.
Utility is given for the optimal found organization.

content_organization

environment mediator

agent aggregator aggregator

agentdatabase database

agent agent

agent database database database

agent agent agent

Figure 22: The optimal organization found by the baseline
template for the small-scale scenario.

out. Some approaches will clearly be better than others
in terms of space complexity and achievable utility, and
these must be weighed against the value of information
lost through the modeling changes.

To demonstrate the effectiveness of this technique, two
small-scale variants of the IR template were evaluated.
The design allowed up to five databases, up to two medi-
ators, and the aggregators could have two, three or four
sources. The number of agents was unbounded. The
source node types are the same hierarchies discussed in
Section 3.2.2, with a single level height restriction in the
small scenario, and a three-level restriction in the large
(i.e., up to two aggregators with a database leaf). The
baseline template is shown in Figure 7a. The second tem-
plate employs abstraction, by not assigning a particular
agent to each role as shown in figure 21. Alternatively,
one could also view this model as creating a new agent
for each role.

The test results are given in Table 2, which shows the
number of decisions made during the entire search, the
number of valid organizations that were found, and the
utility of the optimal found structure. These show a dra-
matically smaller search space when abstraction is used,
which reduced the number of valid organizations that had
to be evaluated by several orders of magnitude. The re-
duction in decisions that were made was even greater.

This demonstrates that number of possible assignments
of agents to roles can be quite large even for small or-
ganizations, so avoiding this process results in a tremen-
dous reduction in search space. The optimal organization
found by the baseline template is shown in Figure 22. In
this case the optimal organization found in both searches
was the same, because there was no limit on the number
of agents and no cost associated with each agent. In gen-
eral one cannot assume that the optimal organization will
be retained in the modified model, and care must be taken
to ensure that the space of possibilities is not adversely
affected.

5 Conclusions

As was shown in Section 2, many different organiza-
tional representation languages have been created by re-
searchers in the past. The ODML language defined in
Section 3 takes a fundamentally different approach to
solving this problem by offering a simple but quantita-
tively rich framework in which organizational character-
istics can be modeled. Unlike previous representations,
ODML eschews predefined structures and assumptions in
favor of a general mathematical syntax. We believe this
approach leads to an increased diversity of representable
situations as well as an increased level of predictive detail.
Lacking this information, those earlier efforts may be able
to describe the range of possible organizations, but they
are generally not able to directly and computationally de-
ducehow or why one design is better than another in a
given context.

Section 3 showed that ODML can be used to cap-
ture many different organizational features across differ-
ent domains. These include a complete model of a real-
world distributed sensor network architecture, whose pre-
dictions were validated against the existing system it de-
scribes. Modeled characteristics include aggregate level
features such as average RMS tracking error and commu-
nication disparity, as well as individual entity elements
such as communication load, role frequency and sensor
usage. A second complete model was generated for a
distributed information retrieval network, which was ver-
ified through empirical comparison to a simulation envi-
ronment that implements the concepts. This model incor-
porates techniques from probability theory and queuing
theory to predict the results of search and the probability
density function of the organization’s response time. A
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simpler model of a coalition was also discussed, showing
how organizations lacking any semblance of a hierarchy
may be represented, and providing some further insights
into rewards, costs and self-interested agents.

The result of these modeling efforts is to demonstrate
that it is possible to create quantitative organizational
models in ODML that accurately predict large and small
scale performance. Such models can be used to find and
evaluate candidate organizations or identify design weak-
nesses. More generally, they show that the flexible and
quantitative approach ODML employs can be an effective
way to capture the behaviors of a realistic organization in
a concrete and detailed way.

In addition to their predictive qualities, the models tem-
plates also describe the range of possible organizational
instances, using a pair of relatively simple decision types.
This allows an ODML model to characterize the space
of design alternatives, which can then be systematically
searched to enact the automated organizational design
process. Section 4 proved the complexity of this pro-
cess, which lead to the exploration of several approaches
that have been employed to cope with that complexity.
Techniques that exploited hard constraints and notions of
equivalence used particular model features to achieve sig-
nificant reductions in search time. A distributed approach
to the search that works with all models exhibited less im-
pressive, but still worthwhile improvements. These are
currently unified in a single implementation that attempts
to use each technique where applicable, and is conser-
vative where they are not. Finally, we also showed that
through changes to the model itself one can vary the level
of abstraction and detail, directly affecting the size of the
organizational space. Because these approaches make no
domain-specific assumptions, they demonstrate that it is
possible to create effective algorithms that address the
general design problem.

Although none of these techniques remove the funda-
mental complexity issues that arise as the general prob-
lem scales (notice that, for example, the trends in Figures
18 that use the equivalence technique are still exponen-
tial, but at a slower rate), they do allow classes of prob-
lems that would otherwise be intractable to be solved.
Of course, this is not an exhaustive study of such gen-
eral approaches, and we believe that in many cases a
suitably crafted domain-specific approach can yield ad-
ditional benefits.

A notable drawback to the detailed approach taken by
ODML is the level of effort needed to build the mod-

els themselves, and the complexity of the resulting arti-
fact. Both the DSN and IR models required a fair amount
of domain and modeling expertise to create. Techniques
were explored, revised and sometimes abandoned during
this process, but ultimately a useful, working artifact was
produced. We contend that the majority of this complex-
ity is a product of the domains themselves; ODML just
provides a means to express it. Existing organizational
frameworks generally lack the ability to represent such
concepts, or they are specialized to capture a subset of
domain-independent characteristics.

Searching through the organizational space created by
these models is also difficult, particularly as the num-
ber of decisions increases. This underscores the need
to develop good heuristics that can navigate the search
space of common-case organizational designs. A benefit
of our approach is that it enables an efficient inner loop
for this search, by using the embedded web of equations
to quickly evaluate candidate designs. Evaluating a par-
ticular ODML instance is orders of magnitude faster than
running the trials needed to analyze a working system in
simulation or with a prototype. This ability means that
more designs can be searched in less time, which can cor-
respondingly increase the quality of the final result. If suf-
ficiently accurate modeling techniques are not known, it is
also possible to exploit the strengths of both approaches,
by using simulation trials to analyze a set of solutions pre-
viously culled by a model-based approach.

5.1 Future Directions

There are a number of areas where this work may be ex-
tended. Possibly the most ambitious would be its appli-
cation to dynamic reorganization. Although the models
described in Section 3.2 incorporate notions of change,
the resulting design is still static in the sense that that the
underlying principles that produced it are not reevaluated.
In the face of a changing environment, any static organi-
zation is vulnerable to contextual changes that can render
it inefficient or ineffective. We believe the search space
provided by the ODML model can be used to facilitate the
adaptation or reorganization of the running system. The
existing model can first be reused as the basis for a model-
based diagnosis process that monitors for and evaluates
operational faults, by comparing predicted characteristics
to those that are observed (14). Appropriate search strate-
gies must then be developed to find organizational appro-
priate solutions in a timely manner. We feel ODML’s abil-
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ity to represent not just the space of adaptive solutions, but
also the rationale behind observed symptoms and the con-
sequences of organizational change allow it to support a
more deliberate and directed search than is currently pos-
sible.

Less ambitious, but equally useful would be the de-
velopment of additional techniques to search the space
defined by an ODML model. The existing search tech-
niques described in Section 4 are all integrated within an
encompassing, exhaustive search. The benefit of this ap-
proach is that it is complete and optimal, but it can be
a very expensive process if the space has sufficient size
or complexity. If the size of the pruned search space re-
mains intractable, an incomplete but informed search of
the space can be used in an attempt to derive good but not
necessarily optimal results. A heuristic approach to this
search could attempt to guide decision making based on
locally observable characteristics, although the ramifica-
tions of a particular choice can be difficult to ascertain and
it is not always obvious what characteristics are most rel-
evant. Genetic, sampling or other stochastic approaches
could be employed to avoid this by attempting to divine
what the space of possibilities looks like (through their
utility or other characteristics), and guide the search into
promising areas. As mentioned earlier, the possibility of
using a domain or model-specific search process that re-
lies on environmental or design assumptions also seems
potentially fruitful.

Finally, we have also considered how ODML can be
applied to fundamentally different situations than the top-
down, cooperative design process described here. For ex-
ample, an ODML model could be used by a particular
agent as a tool to help predict the drawbacks and bene-
fits of joining an existing competitive organization, such
as a marketplace. ODML might also be used to create
an appropriate model of an existing organization. The
organizational space defined by the model can then be
analyzed in an effort to determine how good that orga-
nization’s design is relative to what is possible. Similar
techniques could be used to determine vulnerabilities of
organizations, by isolating weak or critical dependencies
in the underlying equation graph. These and other poten-
tial benefits motivate further research into representations
like ODML that are capable of capturing the quantitative
details of organizations.

References

[1] Daniel S. Bernstein, Robert Givan, Neil Immerman,
and Shlomo Zilberstein. The complexity of de-
centralized control of markov decision processes.
Mathematics of Operations Research, 27(4):819–
840, 2002.

[2] Daniel D. Corkill and Susan E. Lander. Diversity in
Agent Organizations.Object Magazine, 8(4):41–47,
May 1998.

[3] Mehdi Dastani, Virginia Dignum, and Frank
Dignum. Role-assignment in open agent societies.
In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 489–496. ACM Press, 2003.

[4] Herbert Aron David.Order Statistics, 2nd Ed.Wi-
ley, 1981.

[5] K. Decker and V. Lesser. An Approach to Analyzing
the Need for Meta-Level Communication.Interna-
tional Joint Conference on Artificial Intelligence, 1,
January 1993.

[6] K. Decker and V. R. Lesser. Quantitative Modeling
of Complex Environments.International Journal
of Intelligent Systems in Accounting, Finance and
Management. Special Issue on Mathematical and
Computational Models and Characteristics of Agent
Behaviour., 2:215–234, January 1993.

[7] Scott DeLoach. Modeling organizational rules in the
multi-agent systems engineering methodology. In
Proceedings of the 15th Conference of the Cana-
dian Society for Computational Studies of Intelli-
gence on Advances in Artificial Intelligence, pages
1–15. Springer-Verlag, 2002.

[8] Jay L. Devore. Probability and Statistics for En-
gineering and the Sciences. Wadsworth, Inc., Bel-
mont, CA, 1995.

[9] Virginia Dignum, Javier Vazquez-Salceda, and
Frank Dignum. Omni: Introducing social struc-
ture, norms and ontologies into agent organizations.
In Second International Workshop on Programming
Multi-Agent Systems at the Third International Joint
Conference on Autonomous Agents and Multi-Agent
Systems, pages 91–102, New York, NY, July 20
2004.

35



[10] Edmund H. Durfee and Thomas A. Montgomery.
Coordination as distributed search in a hierarchi-
cal behavior space.IEEE Transactions on Systems,
Man, and Cybernetics, 21(6):1363–1378, 1991.

[11] Mark Fox, Mihai Barbuceanu, Michael Gruninger,
and Jinxin Lin. An Organizational Ontology for
Enterprise Modeling. In Michael J. Prietula, Kath-
leen M. Carley, and Les Gasser, editors,Simulat-
ing Organizations: Computational Models of Insti-
tutions and Groups, pages 131–152. AAAI Press /
MIT Press, 1998.

[12] N. Gnanasambandam, S. Lee, N. Gautam, S. R. T.
Kumara, W. Peng, V. Manikonda, M. Brinn, and
M. Greaves. Reliable MAS performance prediction
using queueing models. InProceedings of the IEEE
Multi-agent Security and Survivability Symposium
(MASS), 2004.

[13] Bryan Horling.Quantitative Organizational Model-
ing and Design for Multi-Agent Systems. PhD thesis,
University of Massachusetts at Amherst, February
2006.

[14] Bryan Horling, Brett Benyo, and Victor Lesser. Us-
ing Self-Diagnosis to Adapt Organizational Struc-
tures. Proceedings of the 5th International Confer-
ence on Autonomous Agents, pages 529–536, June
2001.

[15] Bryan Horling and Victor Lesser. Analyzing, Mod-
eling and Predicting Organizational Effects in a Dis-
tributed Sensor Network.Journal of the Brazilian
Computer Society, Special Issue on Agents Organi-
zations, pages 9–30, July 2005.

[16] Bryan Horling, Roger Mailler, Jiaying Shen, Regis
Vincent, and Victor Lesser. Using Autonomy, Orga-
nizational Design and Negotiation in a Distributed
Sensor Network. In Victor Lesser, Charles Ortiz,
and Milind Tambe, editors,Distributed Sensor Net-
works: A multiagent perspective, pages 139–183.
Kluwer Academic Publishers, 2003.
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A Information Retrieval ODML Model

This appendix contains the complete ODML listing for the information retrieval domain model described in Section
3.2.2. The raw textual model given below contains additional structure not shown in Figure 7a. The key differences
include separating out theuserandother mediatorroles, as well as the addition of arole node. These changes are for
modeling convenience only, and do not affect the earlier discussion.

As with most ODML models, this one is structured with theorganizationcharacteristics defined first, followed by
a series of node definitions for the other entities in the organization. Theenvironmentnode specifies a set of scenario
constants, and contains the two variables that decide the size of the search and query sets of the mediator. Theuser
node is similarly used to store scenario information, in this case to define the rate at which queries will enter the
system.

The mediatorrole follows theuser, and begins by specifying theagentit will be bound to, and the number and
type ofsourceentities that will exist below it. The mediator’srank andqueryprobability are computed next, which
determine how likely it is the mediator will be selected to answer a query. From this thework load can be deduced,
which is used to determine the probability distributions described in Section 3.2.2. The service and response times are
computed last.

Theother mediatornode is used to represent the mediators in the system that do not compete with themediator,
but are still a distraction because they must be searched during the first part of the query handling phase. They are
nearly identical to the normalmediator, except that they have nosourcesbelow them.

The aggregatorand databasenodes are similar to mediators, except they do have have the ranking and query
probability computations. The localquery rate of each is determined from the manager above it. This is used to
determine the work load and response times of the entity.

Theagentandregular agentnodes contain a small number of default characteristics. Therole, managerandsources
nodes do as well, although they serve a dual purpose in helping frame the structural decision problems by providing
base types that the other entities may inherit.

The code for the model follows below.

<?xml version="1.0" encoding="UTF-8"?>
<organization name="content_organization">

<!-- Create the root level participants -->
<has-a name="env">environment(this)</has-a>
<has-a name="users" size="num_users">user(env, this)</ has-a>
<has-a name="mediators" size="num_topic_mediators">me diator(env, this)</has-a>
<has-a name="other_mediators" size="num_other_mediato rs">other_mediator(env, this)</has-a>

<!-- Some scenario values -->
<variable name="num_topic_mediators">1,2,3,4</variab le>
<constant name="num_users">1</constant>
<constant name="num_other_mediators">3</constant>
<constant name="total_mediators">num_topic_mediators + num_other_mediators</constant>

<!-- Gross organizational characteristics -->
<constant name="response_time">max(mediators.respons e_time)</constant>
<constant name="response_recall">forallsum(mediators .recall_portion) / env.topic_size</constant>
<constraint name="response_recall" op="&gt;=">0.70</c onstraint>
<constant name="utility">response_recall * 10 - response_time / 100</constant>

<!-- Data to log -->
<log name="organization_dot" file="organization-shape .dot" append="false">todot(this, "true", "false")</log

>
<log name="utility">utility</log>
<log name="other_mediators">num_other_mediators</log >
<log name="response_recall">response_recall</log>
<log name="response_time">response_time</log>

<!-- Environment -->
<node type="environment">

<param>organization:org</param>
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<constant name="topic_size">700</constant> <!-- Total a mount of topic data -->

<constant name="topic_query_rate">forallsum(org.user s.topic_query_rate)</constant>
<constant name="nontopic_query_rate">forallsum(org.u sers.nontopic_query_rate)</constant>

<constant name="message_latency">20</constant> <!-- Ti me to send a message -->
<constant name="query_service_rate">25/25</constant> <!-- Service rate to interpret query -->
<constant name="process_service_rate">1/200</constan t> <!-- Service rate to perform query -->
<constant name="response_service_rate">1/50</constan t> <!-- Service rate to interpret response -->

<variable name="search_size">1,2,3,4,5,6</variable> < !-- How far searches propogate -->
<variable name="query_size">1,2,3,4,5,6</variable> <! -- How far queries propogate -->

<constraint name="search_size" op="&lt;=">org.total_m ediators</constraint>
<constraint name="query_size" op="&lt;=">org.num_topi c_mediators</constraint>

<constant name="search_set_size">search_size</consta nt>
<constant name="query_set_size">query_size</constant >

<constant name="search_probability">search_set_size / org.total_mediators</constant>
<constant name="mediator_query_rate">topic_query_rat e * search_probability

* min(1, query_set_size / org.num_topic_mediators)</cons tant>

<log name="topic_query_rate">topic_query_rate</log>
<log name="topic_size">topic_size</log>
<log name="query_set_size">query_set_size</log>
<log name="search_set_size">search_set_size</log>

</node>

<!-- Users -->
<node type="user">

<param>environment:env, organization:org</param>
<has-a name="agent">agent</has-a>

<constant name="query_limit">10000</constant>

<constant name="topic_query_rate">2/1000</constant>
<constant name="nontopic_query_rate">0/1000</constan t>

</node>

<!-- Top Level Topic Mediators -->
<node type="mediator">

<param>environment:env, organization:org</param>
<is-a>manager</is-a>
<has-a name="agent">agent</has-a>
<has-a name="sources" size="num_sources">source(this, env)</has-a>
<variable name="num_sources">1,2,3,4,5,6,7,8</variab le>

<constant name="search_set_size">env.search_set_size </constant>
<constant name="query_set_size">env.query_set_size</ constant>

<!-- Determine the mediators rank, based on its percieved re call -->
<constant name="rank">1 + forallsum(forall(s, org.media tors.perceived_response_size,

0ˆmax(perceived_response_size - s, 0) - 0ˆabs(perceived_ response_size - s)))</constant>
<constant name="rank_ties">forallsum(forall(r, org.me diators.rank,

0ˆabs(r - rank)))</constant>

<!-- Determine the probability the mediator will be queried -->
<constant name="query_probability">(search_set_size / org.total_mediators) *

(1 / choose(org.total_mediators - 1, search_set_size - 1)) *
forallsum(forrange(r, 0, query_set_size,

forallsum(forrange(g, 0, min(search_set_size, rank_tie s),
choose(org.total_mediators - rank - rank_ties + 1, search_ set_size - r - g - 1)

* choose(rank - 1, r)
* choose(rank_ties - 1, g)
* min(1, (query_set_size - r) / (g + 1))

))
))</constant>

<constant name="data_size">forallsum(sources.data_si ze)</constant>
<constant name="topic_size">forallsum(sources.topic_ size)</constant>
<constant name="topic_percentage">topic_size / data_si ze</constant>
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<constant name="actual_response_size">topic_size</co nstant>
<constant name="perceived_response_size">topic_size< /constant>
<constant name="recall_portion">query_probability * actual_response_size</constant>

<!-- Determine the work load the mediator will see -->
<constant name="query_rate">query_probability * env.topic_query_rate

+ (1 - topic_percentage) * env.nontopic_query_rate</constant>
<constant name="response_rate">0</constant>

<constant name="arrival_rate">query_rate</constant>
<constant name="service_rate">env.response_service_r ate / num_sources</constant>
<constant name="effective_service_rate">arrival_rate / agent.work_load</constant>
<constant name="poisson_rate">effective_service_rate - arrival_rate</constant>
<constraint name="arrival_rate" op="&lt;=">effective_ service_rate</constraint>
<modifier name="agent.work_load" op="+">arrival_rate / service_rate</modifier>

<constant name="local_pdf_list">forrange(x, 0, (dist_r ange / dist_step),
poisson_rate * eˆ(- poisson_rate * (x) * dist_step) / * Exp pdf f(x) * /

)</constant>
<constant name="local_cdf_list">forrange(x, 0, (dist_r ange / dist_step),

1 - eˆ(- poisson_rate * (x+1) * dist_step) / * Exp cdf F(x) * /
)</constant>

<constant name="source_pdf_list">forrange(x, 0, (dist_ range / dist_step),
forallprod(forall(s, sources, listitem(s.cdf_list, x)) )
* forallsum(forall(s, sources, listitem(s.pdf_list, x) / l istitem(s.cdf_list, x)))

)</constant>
<constant name="source_cdf_list">forrange(x, 0, (dist_ range / dist_step),

forallprod(forall(s, sources, listitem(s.cdf_list, x)) )
)</constant>

<constant name="pdf_list">forrange(x, 0, (dist_range / d ist_step),
forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list, i) * listitem(local_pdf_list, x - i) * dist_step
))

)</constant>
<constant name="cdf_list">forrange(x, 0, (dist_range / d ist_step),

forallsum(forrange(i, 0, x+1,
listitem(source_pdf_list, i) * listitem(local_cdf_list, x - i) * dist_step

))
)</constant>
<log name="pdf" file="pdf.dat">forrange(x, 0, (dist_ran ge / dist_step),

[(x * dist_step) + overhead_time, listitem(pdf_list, x)]
)</log>

<!-- Determine service and response times -->
<constant name="service_time">forallsum(forrange(x, 1 , (dist_range / dist_step),

(x * dist_step) * (listitem(pdf_list, x) * dist_step)
))</constant>

<constant name="overhead_time">
env.message_latency / * Query down from user * /
+ env.message_latency / * Search to mediators * /
+ env.message_latency / * Search reply from mediators * /
+ env.message_latency / * Query to mediators * /
+ env.message_latency / * Query down to sources * /
+ max(sources.overhead_time) / * Subordinate overhead * /
+ env.message_latency / * Response from mediators * /
+ env.message_latency / * Response up to user * /

</constant>
<constant name="response_time">overhead_time + service _time</constant>

<log name="topic_size">topic_size</log>
<log name="rank">rank</log>
<log name="query_probability">query_probability</log >
<log name="response_time">response_time</log>
<log name="poisson_rate">poisson_rate</log>
<log name="query_rate">query_rate</log>
<log name="service_rate">service_rate</log>
<log name="response_rate">response_rate</log>
<log name="service_time">service_time</log>
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</node>

<!-- Non-Topic Mediators -->
<node type="other_mediator">

<param>environment:env, organization:org</param>
<is-a>manager</is-a>
<has-a name="agent" discriminator="work_load">agent</ has-a>
<constant name="sources">list()</constant>
<constant name="num_sources">0</constant>

<constant name="search_set_size">env.search_set_size </constant>
<constant name="query_set_size">env.query_set_size</ constant>

<constant name="query_rate">query_probability * env.topic_query_rate
+ (1 - topic_percentage) * env.nontopic_query_rate</constant>

<constant name="response_rate">0</constant>
<constant name="overhead_time">

env.message_latency + / * Query down * /
env.message_latency / * Response up * /

</constant>
<constant name="response_time">overhead_time</consta nt>
<constant name="service_rate">1</constant>
<constraint name="query_rate" op="&lt;=">service_rate </constraint>

<constant name="rank">1 + forallsum(forall(s, org.media tors.perceived_response_size,
0ˆmax(perceived_response_size - s, 0) - 0ˆabs(perceived_ response_size - s)))</constant>

<constant name="rank_ties">forallsum(forall(r, org.me diators.rank,
0ˆabs(r - rank)))</constant>

<constant name="query_probability">(search_set_size / org.total_mediators) *
(1 / choose(org.total_mediators - 1, search_set_size - 1)) *
forallsum(forrange(r, 0, query_set_size,

forallsum(forrange(g, 0, min(search_set_size, rank_tie s),
choose(org.total_mediators - rank - rank_ties + 1, search_ set_size - r - g - 1)
* choose(rank - 1, r)
* choose(rank_ties - 1, g)

* min(1, (query_set_size - r) / (g + 1))
))

))</constant>

<constant name="data_size">forallsum(sources.data_si ze)</constant>
<constant name="topic_size">forallsum(sources.topic_ size)</constant>
<constant name="topic_percentage">topic_size / data_si ze</constant>

<constant name="actual_response_size">topic_size</co nstant>
<constant name="perceived_response_size">topic_size< /constant>
<constant name="recall_portion">query_probability * actual_response_size</constant>

<log name="topic_size">topic_size</log>
<log name="rank">rank</log>
<log name="query_probability">query_probability</log >

</node>

<!-- Mid-Level Aggregation Nodes -->
<node type="aggregator" recurse="5">

<param>manager:manager,environment:env</param>
<is-a>source(manager,env)</is-a>
<is-a>manager</is-a>
<has-a name="agent" discriminator="work_load">agent</ has-a>
<has-a name="sources" size="num_sources">source(this, env)</has-a>
<variable name="num_sources">2,3,4</variable>

<constant name="query_rate">manager.query_rate</cons tant>
<constant name="response_rate">0</constant>

<!-- Determine the work load the aggregator will see -->
<constant name="arrival_rate">query_rate</constant>
<constant name="service_rate">env.response_service_r ate / num_sources</constant>
<constant name="effective_service_rate">arrival_rate / agent.work_load</constant>
<constant name="poisson_rate">effective_service_rate - arrival_rate</constant>
<constraint name="arrival_rate" op="&lt;=">effective_ service_rate</constraint>
<modifier name="agent.work_load" op="+">arrival_rate / service_rate</modifier>
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<constant name="local_pdf_list">forrange(x, 0, (dist_r ange / dist_step),
poisson_rate * eˆ(- poisson_rate * (x) * dist_step) / * Exp pdf f(x) * /

)</constant>
<constant name="local_cdf_list">forrange(x, 0, (dist_r ange / dist_step),

1 - eˆ(- poisson_rate * (x+1) * dist_step) / * Exp cdf F(x) * /
)</constant>

<constant name="source_pdf_list">forrange(x, 0, (dist_ range / dist_step),
forallprod(forall(s, sources, listitem(s.cdf_list, x)) )
* forallsum(forall(s, sources, listitem(s.pdf_list, x) / l istitem(s.cdf_list, x)))

)</constant>
<constant name="source_cdf_list">forrange(x, 0, (dist_ range / dist_step),

forallprod(forall(s, sources, listitem(s.cdf_list, x)) )
)</constant>

<constant name="pdf_list">forrange(x, 0, (dist_range / d ist_step),
forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list, i) * listitem(local_pdf_list, x - i) * dist_step
))

)</constant>
<constant name="cdf_list">forrange(x, 0, (dist_range / d ist_step),

forallsum(forrange(i, 0, x+1,
listitem(source_pdf_list, i) * listitem(local_cdf_list, x - i) * dist_step

))
)</constant>

<!-- Determine the service and response times -->
<constant name="service_time">forallsum(forrange(x, 1 , (dist_range / dist_step),

(x * dist_step) * (listitem(pdf_list, x) * dist_step)
))</constant>

<constant name="overhead_time">
env.message_latency / * Query down to sources * /
+ max(sources.overhead_time) / * Subordinate overhead * /
+ env.message_latency / * Response up to manager * /

</constant>
<constant name="response_time">overhead_time + service _time</constant>

<constant name="data_size">forallsum(sources.data_si ze)</constant>
<constant name="topic_size">forallsum(sources.topic_ size)</constant>

<modifier name="manager.response_rate" op="+">respons e_rate / num_sources</modifier>

<log name="data_size">data_size</log>
<log name="topic_size">topic_size</log>
<log name="response_time">response_time</log>
<log name="poisson_rate">poisson_rate</log>
<log name="service_time">service_time</log>

</node>

<!-- Leaf Source Nodes -->
<node type="database">

<param>manager:manager,environment:env</param>
<is-a>source(manager,env)</is-a>
<has-a name="agent" discriminator="work_load">agent</ has-a>

<!-- Determine the work load the aggregator will see -->
<constant name="query_rate">manager.query_rate</cons tant>

<constant name="arrival_rate">query_rate</constant>
<constant name="service_rate">env.process_service_ra te</constant>
<constant name="effective_service_rate">arrival_rate / agent.work_load</constant>
<constant name="poisson_rate">effective_service_rate - arrival_rate</constant>
<constraint name="arrival_rate" op="&lt;=">effective_ service_rate</constraint>
<modifier name="agent.work_load" op="+">arrival_rate / service_rate</modifier>

<constant name="local_pdf_list">forrange(x, 0, (dist_r ange / dist_step),
poisson_rate * eˆ(- poisson_rate * (x) * dist_step) / * Exp pdf f(x) * /

)</constant>
<constant name="local_cdf_list">forrange(x, 0, (dist_r ange / dist_step),

1 - eˆ(- poisson_rate * (x+1) * dist_step) / * Exp cdf F(x) * /
)</constant>
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<constant name="pdf_list">local_pdf_list</constant>
<constant name="cdf_list">local_cdf_list</constant>

<constant name="service_time">forallsum(forrange(x, 1 , (dist_range / dist_step),
(x * dist_step) * listitem(pdf_list, x) * dist_step

))</constant>

<constant name="overhead_time">
env.message_latency / * Response up to manager * /

</constant>
<constant name="response_time">overhead_time + service _time</constant>

<constant name="data_size">100</constant>
<constant name="topic_percentage">0.8</constant>
<constant name="topic_size">data_size * topic_percentage</constant>

<modifier name="manager.response_rate" op="+">query_r ate</modifier>

<log name="data_size">data_size</log>
<log name="topic_size">topic_size</log>
<log name="response_time">response_time</log>
<log name="poisson_rate">poisson_rate</log>

</node>

<!-- Agents -->
<node type="agent" abstract="true">

<constant name="work_load">0</constant>
</node>
<node type="regular_agent" name="agent" size="50">

<is-a>agent</is-a>
</node>

<!-- Types -->
<node type="manager" abstract="true">

<is-a>role</is-a>
<constant name="response_time">0</constant>
<constant name="query_rate">0</constant>

</node>

<node type="source" abstract="true">
<is-a>role</is-a>
<param>manager:manager,environment:env</param>
<constant name="response_time">0</constant>
<constant name="topic_size">0</constant>
<constant name="data_size">0</constant>

</node>

<node type="role" abstract="true">
<constant name="e">2.71828183</constant>
<constant name="dist_step">10</constant>
<constant name="dist_range">4000</constant>

</node>

</organization>
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