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ABSTRACT

The organization and mechanisms of agent societies are be-
coming increasingly important with the growing size of agent
networks. Particularly, in multi-agent based content shar-
ing system, a flat, peer-to-peer(P2P) agent organization is
not the most effect agents from efficiently locating relevant
agents for queries. This paper develops and analyzes a hi-
erarchical agent group formation protocol to build a hybrid
organization for large-scale content sharing system as well as
a content-aware distributed search algorithm to take advan-
tage of such an organization. During the organization for-
mation process, the agents manage their agent-view struc-
tures to form a hierarchical topology in an incremental fash-
ion. The algorithm aims to place those agents with similar
content in the same group. We evaluate the system per-
formance based on TREC VLC 921 datasets. The results
of the experiment demonstrate a significant increase in the
cumulative recall ratio(CRR) measure compared to the flat
agent organization and structure.

Categories and Subject Descriptors
1.2.11 [Aritificial Intelligence]: Distributed Artificial In-
telligenceMultiagent Systems

General Terms
Algorithms,Design,Experimentation

Keywords
Peer to Peer Networks, Agent Organization, Distributed In-
formation Retrieval

1. INTRODUCTION

This paper investigates the role of an agent organization in a
large-scale content retrieval system. In such a system, each
agent shares its document collection and cooperates with
other agents to conduct information retrieval tasks. An in-
formation retrieval task is defined as a process during which

an agent receives a query from a user, forwards the query
to other agents, who then conduct local search on their own
document collections and return relevant documents to the
query initiator. In this paper, we consider such a system as a
multi-agent system and focus on the organizational perspec-
tives, i.e. how to organize these agents together to provide
better system performance.

Our previous results showed that an uninformative search
strategy performs badly on flat P2P agent networks. How-
ever, a topology reorganization process combined with context-
aware search algorithms can improve the information re-
trieval performance considerably [9]. This motivates us to
investigate more complicated multi-agent organizations. Here
we propose a hierarchical agent organization formation pro-
tocol to explicitly form a multi-level topical hierarchical struc-
ture to facilitate locating relevant documents. In one such
system, the agents join different groups largely by their con-
tent similarity. Even among the same group, Agents can be
placed in different levels to reflect their different collection
similarity.

We make the following assumptions in this paper. First,
each agent maintains an independent index and an IR search
engine for its local document collection. However, we do not
introduce any further restrictions on the local search engines
and thus the network can be populated by agents having
very different local search engines. Second, the experimen-
tal results presented are based on local search engines that
are “perfect” in that they return all relevant documents in
the collection for a given query. Third, we assume there is a
third-party protocol in place to merge the returned results.
Thus, our protocol does not have to deal with the merging
of the returned lists. Lastly, we assume that agents are co-
operative in that they all agree to use the same protocols for
propagating resource descriptions among each other, accept-
ing queries from peers and finally returning search results to
the originators of the queries

The main contributions of this paper are as follows: (1) A
group formation protocol for forming a hierarchical topical
organization. The group formation is achieved by organizing
the agent-view structures properly so as to place semanti-
cally similar agents together to form explicit groups in an
incremental and distributed manner. (2) A content-aware
search algorithm taking full advantage of the hierarchical
organization. During the search process, agents in the net-



work follow various cooperation strategies to forward queries
and return results in the network.

The remainder of the paper is structured as follows: Sec-
tion 2 presents agent’s internal structure and system ar-
chitecture. Section 3 describes the algorithm to form the
hierarchical groups in content sharing systems. Section 4
illustrates the content-aware distributed search algorithms.
Section 5 gives the experimental settings and results anal-
ysis is given in Section 6. Section 7 discusses some design
issues and future work. Section 8 presents the related work.
Section 9 concludes the paper.

2. THE SYSTEM ARCHITECTURE

In the proposed hierarchical agent society, agents have two
roles: group-mediator and query-processor. All non-leaf
agents in the organization take on both roles while leaf
agents only take on the role of query-processor. Each medi-
ator manages a group of agents and takes on a central role
in group management including decisions on whether a new
agent should be added to the group, when to reorganize the
group, the selection of group members to handle a query
and the propagation of queries to non-group members.

Fig. 1 illustrates the internal structure of an agent. Each
agent is composed of four components: the collection infor-
mation, a local search engine, an agent-view structure and a
control unit. The collection information includes the collec-
tion hosted by the agent to share with other agents as well
as a collection model built for the collection. The collection
model can be considered as the “signature” of a collection;
a collection model is a statistical language model built for a
particular collection. It characterizes the distribution of the
vocabulary in the collection and estimates the probability
of absent words using various smoothing techniques. The
language model concept was originally introduced in infor-
mation retrieval research [7] and has proven effective in the
distributed IR applications [9, 4, 1].

The language model has many interesting properties which
are easily exploitable in peer-to-peer network systems: first,
a collection model is lightweight as it significantly condenses
the description of the content of the collection and thus is
much smaller in size compared to the collection. Addition-
ally, the size of the collection model grows minimally with
the size of the document collection. Secondly, the collection
model is a relatively accurate indicator of the content of the
collection. In our agent organization, collection models are
propagated in the network to broaden the scope of an agent’s
awareness of what other information is available in the net-
work. The agent control unit’s role is to accept user queries
and to decide whether the queries should be processed by
one or more group members and determine the order of the
other agents or groups that the queries should be forwarded
to. The local search engine allows each agent to conduct a
local search on its document collection so as to determine
whether there are any documents that meet the criteria of
a specific user query and then return relevant documents.

The agent-view structure, also called the local view of each
agent, contains information about the existence and struc-
ture of other agents in the network and thus defines the
underlying topology of the agent society. The agent-view
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Figure 1: The internal structure of an agent

structure connects the agents together to form a specific
topology in the network. Agents need to hold enough in-
formation about other agents to direct queries and yet not
to introduce inconsistency between their agent-view struc-
tures and the actual changing agent information. In prac-
tice, the agent-view structure contains the collection model
of the collections as well as the address of these agents. The
agent-view structure also differentiates agents that take on
both roles from those that take on only the role of query-
processor. The agents who only take on the role of query-
processor have only two kinds of links in their agent-view:
neighboring links which connect neighboring agents together
and upward links, which connect a member to its mediators.
Besides these two kinds of links, mediators have downward
links which connect a mediator to its immediate group mem-
bers. In our current model, besides their direct mediators,
agents also connect to the top-level mediator of their group
with an upward link so as to facilitate a new agent joining
and the associated group formation process, as well as the
search process that will be introduced in later sections. This
top-level connection is not an absolute necessity since there
are many alternative linking structures that can achieve this
goal. For simplicity in describing the protocol, we assume
the existence of this type of link. The hierarchical group
formation process organizes the agent-view structures of the
agents to form a nearly-decomposable hierarchical structure.

It is worth to pointing out that the degree, or the number of
the entries in agent-view structures is an important factor in
determining system performance. On one extreme, if each
agent has the information about all agents in the network,
it is indeed a centralized version of distributed information
retrieval problem which has been well studied in the informa-
tion retrieval community[1]. This, however, is impracticable
in P2P system for a very large network. Previous studies
indicate that in general the degree of each node satisfies the
power law distribution. In our work, we specify that each
agent has a degree limit for neighboring links based on pre-
vious work. Further we assume there is underlying linear
relation between the neighboring links degree and upward,
downward links degrees. In this paper, we use a discount
factor to capture this correlation. In the experimental set-
ting and results analysis, we will compare the performance
for different discount factors settings.

Figure 2 illustrates an agent organization with three levels.



Figure 2: The system architecture

In the hierarchical structure, we specify that each group is
a cluster of the agents with similar topics. Each agent can
belong to multiple groups if applicable.

In our nearly-decomposable hierarchical organization, the
members at the same level are connected to each other in
a peer-to-peer fashion despite the fact that agents are con-
nected in a hierarchical fashion among different levels. These
hybrid links make the system well connected, more load-
balanced, and meanwhile have clusters of agents that are
organized by topical structures.

3. HIERARCHICAL GROUP FORMATION

In this section, we propose an online hierarchical grouping
protocol. The protocol aims to build a topical hierarchical
structure incrementally as agents join the network. For a
particular new agent, the joining process involves locating
an appropriate group (or starting a new cluster) and the
actual joining process. During this process, the new agent
builds its agent-view structure to place itself appropriately
in the network. Meanwhile, the current existing members
might prune their agent-view structure to reflect the changes
and connect themselves to the new agent through neighbor-
ing links. This section is organized into three subsections.
Section 3.1 introduces the message propagation and group
locating process; Section 3.2 describes the actual join pro-
cedure; Section 3.3 gives several examples to clarify the al-
gorithms described in Section 3.1 and 3.2.

3.1 Message propagation and group locating
The group locating process propagates Join? messages in
the network and returns

When a new agent joins the system, it first contacts any
agent in the system with a Join? message. (Note that our
protocol does not specify how to acquire the entry point in-
formation of the network. However, we assume the network
is accessible either by an out-of-band approach as Gnutella
does or by other mechanisms).

groups invitations from which the new agent chooses one
or more of these invitations to join a sepcific part of the

agent society. This process is carried out in a top-down
fashion. Specifically, the new agent always tries to locate
the appropriate top-level mediators whose similarity with
the new agent is above their group thresholds. The top-
level mediators will then either add the new agent as its
own direct lower level member, or add it to a lower level
group by passing the new agent to other members in the
group. The rest of this section details the group locating
process.

The Join? message includes the collection model and other
information about the new agent. Upon receiving a Join?
message from a new agent, say A, an agent forwards the
message to its top-level mediator, say M, through the up-
ward link described in the previous section. M compares
the similarity of agent A’s collection model and its group
model, which is approximated by M’s collection model, i.e
P(A|M). If the similarity is above the threshold associated
with M, M will start a procedure to generate an invitation
for agent A to join the group it manages.

There are two cases in this action. In the first case, if the
number of the downward links for the top-level mediators
is below a pre-specified limit, the top-level mediator will
simply invite the new agent to join its group. In the second
case, if the downward degree of the mediator has reached
the pre-specified limit, the mediator then starts to merge
two group members into one subgroup in order to integer the
new agent. This process works as follows: the mediator picks
the two semantically closest direct members A and B in its
group (the new agent could be picked) and start to merge
A and B. The top-level mediator sends out a MergeRequest
message to agent B and expects either Merged! or Failed!
message back from B. When B receives the merge request
from the mediator, it then checks with A to join group A.
Note that now member A is in the same situation as the
mediator was. A then takes the same actions as the mediator
took in order to add agent B in its group. If the number
of the downward links of A has reached the limit or for
whatever other reasons that A might not be able to add
the group B, A simply returns NotAccept message to B. B
will then report either Merged! or Failed! messages back to
the mediator depending on the outcome of the group merge
process.

Upon receiving the Merged! message, the mediator removes
B from its downward links and add the new agent. Other-
wise, if B failed to join A, the mediators would continue to
pick another two agents whose similarity is only second to
the similarity between the two agents the mediator picked
and continue the same procedure. A GroupInvitation! mes-
sage will be sent back to the new agent if the mediator finally
can add the new agent in. Otherwise, a NotAccept message
will be sent back to the new agent. Note that, during this
process, if the similarity of the new agent to some of the
group members is close enough, it can be picked to join the
lower level mediators.

Figure 3 depicts the group locating process. The degree
limit of the mediator in the example depicted in Fig. 3 is
four. The current existing group members of the media-
tor are A, B, C, D respectively. We assume that agent A
and agent B are the most similar agent pair in the group.
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Figure 3: Group locating process

The dotted lines show the message flows during the group
locating process.

3.2 Member Joining and mediator re-election
After sending out the Join? message, the new agent starts
a timer. When the timer expires, the new agent examines
the group invitations received from current agents in the
network and decides which group(s) to join.

If the process ends up with no group invitations, the new
agent will start a new group with a threshold P.(D|G) which
is pre-acquired through offline computation. It then be-
comes a top-level mediator in the network. If it receives
multiple group invitations, we specify that the new agent
will join all the groups as long as the number of the upward
links is below the upward links degree limit. At this point,
the new agent would always add the top-level mediator with
an upward link.

Note that we set the mediator as the content centroid for
the group. With more and more nodes joining in, the con-
tent centroid changes over time. For this reason, the current
mediator periodically checks its group members and deter-
mines if it should hand over the mediator position to a new
mediator. If this happens, the mediator will pass to the
new mediator its mediator neighbors and all the information
about the regular agents in the group to the new mediator.
The structure of the group might change correspondingly as
the degree of the old mediator and the new mediators could
be different. This update will be sent to the affected agents
to update their agent-view structures to reflect the recent
changes.

Once the new agent and its group mediators update their
agent-view structure, the new agent is now part of the agent
organization. The new agent will then broadcast Arrival
messages in order to build intra-level connections to other
agents in the group. This process results in building neigh-
boring links for both new agents and the currently existing
agents. These intra-level links can promote the connectivity
of the system and thereby improving the robustness of the
network.

Specifically, the new agent sends out NewArrival! messages
with a certain TTL(time to live) value to the mediators who

Figure 4: Before E joins [Scenario 1]

Figure 5: After FE joins [Scenario 1]

then forward the message to their neighbors and or upper
level mediators. TTL value decreases after each hop. During
the message propagation process, each existing agent in the
network also takes this opportunity to prune its neighbor-
ing list. Upon receiving the NewArrival! message, a current
agent chooses to build a connection with the new agent and
send out a LinkInvitation message with a certain likelihood.
Once it decides to build a link to the new agent, the current
agent simply adds the new agent as a neighbor if the cur-
rent degree is below the capacity limit and otherwise, they
will cancel the current links to take the new agent. Upon
receiving the LinkInvitation message, the new agent chooses
which agent to connect to randomly.

3.3 Anexample for group formation algorithm
Section 3.1 and 3.2 elaborate the group formation process.
In this section, we give some concrete examples to further
clarify the algorithms introduced in the above sections.

Scenario 1: Agent E joins in the system as a top-level me-
diator:

Fig. 4 and 5 demonstrate how a new agent, E, joins the
agent network as a top-level mediator. In both figures, A,
B, C, D are all top-level mediators. In Fig. 4, when a new
agent E joins the network, it contacts any agent in the net-
work through an out-of-band approach. If the agent is not a
top-level mediator, it then forwards E’s join? message to its
corresponding top-level mediator. Particularly, assume that
in Fig. 4, B is the first top-level mediator that receives join
message from E. B then forwards the join? message among
the top-level mediator network. In this example, we assume
that the similarity between any top-level mediator and E is
less than the thresholds associated with the top-level medi-
ators, This assumption ends up with no any invitation mes-
sage for E. Under this situation, £ would start a new group
with the threshold associated with the data source where E
comes from. In the meantime, the other top-level mediators
build neighboring connections to the new top-level media-
tor, E. The resultant situation after E joins the network is
shown in Fig. 5.

Scenario 2: Agent F joins the group led by E



Figure 6: After F joins the system [Scenario 2]

Figure 7: Before agent I joins [Scenario 3]

In this scenario, a new agent, F, joins the network shown
in Fig.5. In this particular example, we assume that the
similarity of the top-level mediator E with F' is above the
threshold associated with E. Thus F’s joining process differs
from E’s only in that F' receives invitition from E to join its
group. In this case, since E does not have any direct group
member yet, it simply adds F directly to its group. Fig. 6
depicts the resulted network after F' joins.

Scenario 3: When the top-level mediator is fully-loaded

Fig. 7 and 8 show the situations before and after a new agent
I joins the network. In this scenario, we assume that agent I
repeats the same process as agent F' experiences in scenario
2. However, the difference is that the top-level mediator £
can not take more direct group members since the number
of the direct members of E has reached the limit specified by
the downward degree. Therefore, when E receives the join
message from agent I, because the similarity is close enough,
E identifies I as a potential member in its group. In this
situation, E selects the most similar agent pair in its current
group, G and H in this case, to merge. More specifically, E
asks agent H to join the group led by G. Notice that this is
exactly the same situation in scenario 2. After E receives the
merging confirmation message from H, it then takes agent
I as a new group member and removes the old downward
link with H. Fig. 7 shows the situation before agent I joins
the network while Fig. 8 exhibits the resulted situation that
agent I joins the network.

Scenario 4: A recursive joining example

Fig. 9 and 10 illustrate another agent joining scenario to
further clarify the group formation algorithm. Fig. 9 shows
the situation before agent L joins the network. In this figure,
both E and H can take no more direct group members.
Therefore, upon receiving the join message from agent L,
mediator E selects the agent pair of the highest similarity
in its group to merge. In this case, we assume they are F

Figure 9: Before agent L joins [Scenario 4]

and H. During the merge process, F' sends a join message to
the group led by H. Notice that the situation of H exactly
resembles that of agent E in Scenario 3. After F successfully
joins H, it sends back confirmation to agent E, which then
takes L as a direct group member, as shown in Fig. 10 .This
recursive process can be more complicated in networks with
more levels.

4. A TWO-STAGE SEARCH ALGORITHM

In this section, we first describe a two-stage search algorithm
in Section 4.1 and then gives more examples in Section 4.2.

4.1 Algorithm description

Figure 10: After agent L joins [Scenario 4]



Search in a content sharing multi-agent system should avoid
significant communication costs and minimize the access to
those agents that do not contain relevant documents for a
given query. The benefits of communication cost savings are
obvious. However, avoiding unnecessary query processing
that involves local searches of documents collection can also
significantly improve overall system performance especially
in situations where there are many active queries concur-
rently being processed by the system.

Our query search process is structured into two stages. In
the first stage, a coordinated search protocol is used to re-
locate the queries to “relevant agent zones” by taking ad-
vantage of the hierarchical structure that has been built.
Here, a “relevant agent zone”, as opposed to an “irrelevant
agent zone”, means a group whose members contain rele-
vant documents. This is a somewhat fuzzy definition as
there is no clear boundary between a relevant-agent-zone
and an irrelevant-agent-zone. However, as shown in [9], in
reality, most of the agents in the network are irrelevant to a
given query. Therefore, in our coordinated search algorithm,
we try to locate the “relevant agent zones” by sorting the
P(Q|G) value, which can be considered as the similarity of
a query Q and a group collection model G. This value in our
paper is again estimated by the similarity between the query
and the mediator collection model. Specifically, the query
initiator sends out the query to the top level mediators with
a certain TTL(time to live) value. TTL value decreases by
1 when the message goes through each agent in the agent
society. After it expires an agent will not forward the query
any further, thus stopping further search along this path.
Upon receiving the queries, a mediator will return with the
content similarity of the group and the query P(Q|G). The
query initiator then picks the N highest similar top-level
mediators as the starting points of the second phase search.
Notice that a sorting strategy is used to pick the starting
points instead of a threshold strategy used in [9] as the cal-
culation for content similarity value between a short query
and a collection[5] can be biased by the particular collection
properties and thereby making an absolute threshold value
inaccurate.

During the second stage, we start the search from the medi-
ators chosen in the first phase. The query initiator forwards
the query to the K most promising agents who then proceed
to forward the query on to their neighbors in a decreasing
order of similarity values. This process continues in the net-
work until all the agents receiving the query drop the mes-
sage or there are no other agents to forward to. There is no
explicit recognition by individual agents that the query is
no longer being processed by any agent in the network. The
K value affects number of agents that could be visited when
the search algorithm ends. The bigger K value is, the more
messages will be generated in the system and potentially
more agents will eventually be visited. In our experiments,
we set this value as the minimum value of 8 and the number
of the top-level mediators.

4.2 An example for searching algorithm
Section 4.1 presents the two-stage search algorithm. Two
examples are given in order to make the algorithm more
concrete.

Figure 12: The second phase

Fig. 11 and 12 demonstrate the situation when agent K re-
ceives a query from its user. Fig. 11 shows the first phase of
the search process described in Section 4. After receiving the
query, agent K forwards it to the top-level mediator, E, con-
nected through an upward link. Upon receiving the query,
agent E forwards it out to other top-level mediators, which
calculate the similarity values of their collection models to
the given query and return the values to agent E.

During the second phase, the top-level mediator E ranks
the similarity value it collected from other mediators. It
then propagates the query to the mediators according to
the ranking. The mediators then proceed to forward the
query to its group members. This process is shown in Fig.
12.

5. EXPERIMENT SETUP AND THRESHOLD

CALCULATION
Definition 1: Cumulative Recall Ratio (CRR) for a query
after n agents are searched is defined as

CRRyn =310
j=1 "tai

Here R,; is defined as the total number of relevant docu-
ments located in the entire network for the query ¢;, and
rj is the number of relevant documents located at agent j.
CRR is used as a metric to measure the performance of a
distributed search algorithm in relationship to the number
of agents the algorithm covers.



Table 1: Collection Statistics

collection| source] Docs Megabytes
size

Min | Avg | Max | Min | Avg | Max

921 TRE( 12 | 8157 | 31703 1 23 31
VLC

5.1 Experiment setup

In our experiment, we use TREC-VLC-921 dataset which
contains 921 sub-collections split from TREC VLC1 collec-
tion by information sources. TREC VLCI is part of the
TREC collections which are distributed by the National
Institute of Standards and Technology (NIST) for testing
and comparing the current text retrieval techniques. TREC
VLC1 (very large collection) includes documents from 18 dif-
ferent data sources, such as news, patents, and the Web[3].
We ran the query set 301-350 on TREC-VLC-921 to simu-
late the user queries. Table 1 shows the collection statistics
for TREC-VLC-921. The distribution of relevant documents
for the queries is illustrated in [9].

We use the algorithm introduced in [6] to calculate the de-
gree limit of the agents with parameters o = 0.5 and 8 = 0.6.
In our experiments, we estimate the upward limit and down-
ward degree limit using linear discount factors 0.5, 0.8 and
1.0. The corresponding performance will be presented in
Section 6.

Content similarity measures are heavily used in both group
formation and the distributed search algorithms. In our
framework, both collection models and query models are
treated as language models, and therefore, distributions.
We use Kullback-Leibler (KL) divergence to measure the
distance between collection models or collection models and
query models. We use Lemur toolkit [5] to calculate the
distance. Theoretically, KL divergence is always positive
and ranges from 0 to infinity. However, the approximation
approach used in [5] can end up in negative results. We
use a conversion formula Wi (p,q) = 107#P®19) to trans-
form the dissimilarity measure into the similarity measure
[9]. Here an empirical parameter 8 maps the original dis-
tance value to domain (0,1). After testing different values,
we set (8 value as 10.

5.2 Threshold calculation

To determine if an agent collection model C belong to a cer-
tain group collection model G, we calculate the probability
P(G|C) with Bayes formula:

P(C|G)P(G)
P(0)

Note that G represents the group collection model which
is the sum of all the agent collection models in its group.
In computing the above formula, as we do not have the
prior probability information about P(C) and P(G), we
simply assume the prior probability of an agent and the
group is uniformly distributed. Therefore, we use probabil-
ity P(C|G) to estimate P(G|C). In order to further reduce
the computation complexity, we estimate the group collec-
tion model G with the group mediator collection model M,
as it is specified as the centroid of the group, i.e. P(C|M).

P(G|C) =

Theoretically, this probability should be computed with ap-
propriate smoothing techniques described in [7]. However,
the computational cost prevents us from doing so in an on-
line manner in large P2P applications. Here we estimate
P(C|M) with the content similarity computation which is
introduced in the experimental setting section in order to
reduce its computational cost.

Particularly, the top-level mediators are associated with an
entry threshold P.(C|M) which is acquired through an of-
fline computation by the minimum similarity value of M
with the members from the same source.

P.(C|M) = mineecaP(C|M)

This value is group dependent and specified prior to the
group formation process is initiated. In order to join a group
led by a certain top-level mediator (directly or indirectly),
the probability of a new agent collection C belonging to the
group G, P.(C|M), has to be above the threshold associated
with the top-level mediator.

Based on the method described in Section 3 and similarity
value calculation described in the above paragraph, we cal-
culate the thresholds for 18 data sources of TREC VLC1
dataset. The thresholds are listed in Table 2.

Table 2: Thresholds for Datasets

Data Source Thresholds
AAG(Australian  Attorney-General’s | 0.897
Department)

ADIR(Australian Department of In- | 0.887

dustrial Relations).
AFPL(Australian Federal Parliament) | 0.952
AU(Websites operated by ten Aus- | 0.93

tralian Universities)

CRE(Congressional Record I) 0.86
CRH(Congressional Record II) 0.95
DO(DOE publications) 0.90
AP(Associated Press) 0.969
PA(U.S patents) 0.824
FBIS(Foreign Broadcast Information | 0.936
Service)

FR(Federal Register) 0.935
LA(LA Times) 0.974

GU(Gutenberg collection of out-of- | 0.88
copyright books)

SIM(San Jose Mercury News) 0.972
FT(Finicial Times) 0.968
GH(Glasgow Herald) 0.97

NEWS(USENET NEWS) 0.924
ZIFF (Zifi-Davis) 0.948
WSJ(Wall Street Journal) 0.973
WE(Downloads of websites) 0.94

6. RESULTS ANALYSIS AND EVALUATION

In experiments, we build the agent organization incremen-
tally as the 921 agents join the system. Then we ran the
search algorithms with the query set 301 — 350. The query
always starts from a randomly picked agent. We define a
time unit as the communition time cost from one agent to
the next one. Notice that this definition does not include



the local search time, which will be analyzed separately in
the next section. During the search process, we record the
visited time for each agent and the corresponding generated
messages. With this data, we are able to calculate the CRR
value for a certain time period. To get a greater than 95 per-
cent confidence interval, we ran the simulation 50 rounds. In
each round, we built a new agent organization and repeated
every query 50 times on that organization.

The experimental results show that the semantically close
agents are consistently grouped together. In this section, we
analyze the resulting hierarchical group organization from
both information retrieval and system performance perspec-
tives. Note that Figure 13, 14, 15 demonstrate the expec-
tation value from those simulation results with TTL value
set as 4 in the first relocating stage in our search algorithm
and 8 as the number of starting points for the second phase
search.

The number of local searches vs CRR
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Figure 13: CRR versus the number of local searches

6.1 Performance Analysis

Recall and precision are two important measures in tradi-
tional information retrieval research. Traditional recall ratio
reflects the proportion of the relevant documents over the
retrieved documents in a collection while the CRR value
characterizes the relevant documents returned when a cer-
tain number of agents have been searched. Therefore, the
CRR metric in our system can be considered as the counter-
part of recall ratio in traditional information retrieval field.
As we assume that each agent is able to distinguish rele-
vant documents from irrelevant ones with 100% precision,
the traditional precision ratio corresponds to the capability
of the agent selection(database selection) in P2P systems.
In another word, in order to maximize the cumulative recall
ratio, we need to forward the query to those agents hosting
most relevant documents. In this section, Fig. 13 demon-
strates the ratio of CRR over the agents retrieved. This
is achieved by plotting with the pair (CRR, site searched).
This measure has theoretical meaning in terms of informa-
tion retrieval performance as it characterizes the collection
selection performance. By searching fewer agents, we are
able to save tremendous messages cost and local computa-
tional costs.

In addition to the two IR metrics, the number of messages
generated and searching time ¢ are two important measures

from the system performance perspective. To simplify eval-
uation, we do not consider the time spent for relevant doc-
uments to return to the query initiator. Therefore, we de-
fine the the searching time t as the sum of the time spent
in the trip from the query initiator to agents, i.e. ti, and
local processing time spent in agents, i.e, t2. As the local
processing involves searching the local document collections,
sorting the similarity of neighboring agents to queries and
forwarding queries to other agents, we believe that t» is the
dominant factor in searching time t. Fig. 14 illustrates the
number of messages generated versus CRR value. Fig. 15
depicts cumulative recall ratio versus the elapsed time in the
search.

Note that in any case, we are not interested in the exhaus-
tive searches with 100% recall ratio. Instead, we only eval-
uate the system when a relative small part of the system
is searched. This is because that there can be tremendous
relevant information sources in P2P information retrieval as
Web information retrieval and thereby making an exhaus-
tive search unnecessary. Another downside about exhaustive
searches is it could lead to a bad performance in the pres-
ence of many concurrent queries in the system as it consumes
more resources.
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Figure 14: Messages number versus CRR

In Figure 13, we compare the results with the kNN, AVRA
algorithm (K=3, Gradient Search Algorithm) which we de-
scribed in our previous work[9], an improved random ap-
proach with a heuristic that agents forward queries to the
neighboring agents in a decreasing similarity order(as Im-
provedRandom in the figure), and the random approach. As
it turned out that the degrees of downward and upward links
did not contribute much to the system performance, we only
keep the curve when the discount factor is 0.8. In Fig.13,
The upper line is the central approach: Centralized KL di-
vergence based approach is used as an upper bound on per-
formance, which is common in the distributed IR literature.
This approach assumes the network is a fully-interconnected
graph and agents are visited in the order of decreasing sim-
ilarity values between collections and each query. We have
several observations from Fig.13: (1) The central KL ap-
proach consistently outperforms the other three approaches.
The results are consistent with the conclusion that the col-
lection model is a stable indicator for the collection from
distributed information retrieval experiments; (2) As little
is known about the content distribution, the number of rel-



evant documents retrieved by random algorithm is propor-
tional to the number of agents that have been searched; (3)
The graph demonstrates that the search algorithm on the
hierarchical topology consistently outperforms the other ap-
proaches including AVRA, kNN and improved random ap-
proaches;(4) Notice that the sorting strategy is more advan-
tageous compared to the heuristic we used in the previous
work[9]. ImprovedRandom outperforms the similar strat-
egy, i.e kNN, which we used in [9]. Again, as we mentioned
in the previous sections, we believe the edge of the sorting
strategy over threshold strategy comes from the fact that
absolute content similarity is less accurate in heteregeous
environments.

Time vs. CRR
1.2
1 ¥
}f’
¥
S :
o8 RS
H andom —x-
{ X0
£ 06 : e el
o] ‘ o e
i . M/'
0.4 § 5
! X
; XX W//
0.2 L JNSCE e
O % X)(x
0 10 20 30 40 50 60
Time

Figure 15: CRR versus communication time

Fig.14 illustrates that our approach generates fewer mes-
sages than random approach. Particularly when CRR reaches
40%, there are about 500 messages generated in the system
for the random search while the two-stage search algorithm
generates from 260 — 300 messages depending on the param-
eters. An interesting fact is that AVRA algorithm performs
really well when CRR is below a certain value, but increases
rapidly thereafter. This benefit comes from the fact that
AVRA algorithm attempts to locate a good start point for a
given query with minimal communication efforts. Therefore,
messages number increases slowly at the begining. How-
ever, once the query is forwarded out of relevant-agent-zone,
AVRA algorithm consumes more messages in order to gain
a certain amount of CRR.

Fig.15 demonstrates the time units ¢; spent to reach a cer-
tain CRR value. Not surprisingly, with the presence of only
a single query, the two-stage search algorithm and AVRA
algorithm spend more time in communication. This fact is
attributed to the facts that (1) the two-stage search is a kind
of focused search approach which spans less than the ran-
dom search algorithm; (2) In AVRA algorithm, as agents of
similar collection models are normally clustered together, a
query tends to be forwarded to same agent, thereby makeing
the query harder to reach more agents. However, we believe
that in real system, both AVRA and the two-stage search al-
gorithm would perform much better. The confidence comes
from two reasons: (1) as we mentioned in the previous sec-
tion, we believe that the ¢ is a minor factor contributing to
the search time t considering the agent selection efficiency.
(2) Fig.15 only shows the situation with a single query in
the system. With many queries concurrently in the system,

considering the messages queuing time, the situation in Fig
15 may not be an accurate predictor of performance. We
leave this simulation as future work.

7. DISCUSSIONS AND FUTURE WORK

This work explores techniques for the dynamic creation of
an agent organization and its impact on search efficiency
for a distributed information retrieval applications. In this
paper, we assume the agents are cooperative and therefore
we are not concerned about the incentives of the agents to
taking various roles in the protocol. Additionally, we did
not consider several important technical issues such as load
balancing and other design factors as resilience and robust-
ness etc. However, this work clearly indicates the potential
advantages of using a relatively complex agent organization
for this type of applications.

There are many possible directions to pursue with this work:(1)
to explore mechanisms to encourage cooperation in the sit-
uations that agents are self-interested. (2) to explore the
possibility of more sophiscated topology variations, (3) to
explore self-adaptive algorithms for the agents so that they
can adjust the agent-view dynamically over repeated query
processing sessions. This self-adaptation will in large part
be related to learning key parameter settings that in this
paper were set by hand. We believe that this evolution-
ary approach would allow the system to adapt in an open
environment, and thereby providing more stable system per-
formance.

8. RELATED WORK

Peer-to-peer (P2P) systems have emerged as a popular way
to share huge volumes of data. However, early work in
this area focused on file-sharing system with exact-match
based searching approach. Most recently, P2P based infor-
mation retrieval has attracted tremendous attentions [4, 8,
2]. Among this line, pSearch [8] distributes document in-
dices through the P2P network based on document seman-
tics generated by Latent Semantic Indexing (LSI); Crespo [2]
proposed a semantic overlay network (SON) to split the net-
work into several soft clusters. However, the authors made
no effort to improve the search algorithm and mainly focused
on the file-sharing system without considering search aspect.
Lu presented several langauge-model based search strategies
in hybrid P2P network[4]. However, in this work, the au-
thors assume the topology is already in place. Our work
differs from these works in that we proposed a multi-level
hiearchical group formation algorithm and a corresponding
searching algorithm.

9. CONCLUSION

In the multi-agent based content sharing system, the flat,
peer-to-peer(P2P) organization hinders agents from efficiently
locating relevant agents for queries. This paper develops
and analyzes a hierarchical agent group formation protocol
to build a hybrid organization for large-scale content sharing
system in an incremental and distributed fashion. During
the group formation process, agents are classified into var-
ious semantic groups by organizing their agent view struc-
ture. These agents in a same group cooperate together to
provide information service on certain topics. A collection
model based coordinated search algorithm is also proposed



to take advantage of the organization. We evaluated the sys-
tem performance based on TREC-VLC-921 datasets. The
results of the experiments demonstrate a significant increase
in the cumulative recall ratio(CRR) measure compared to
the flat agent organization and structure.
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