
Design-to-time Scheduling
and Anytime Algorithms

�

Alan Garvey and Victor Lesser
Computer Science Department

Lederle Graduate Research Center A243
University of Massachusetts

Amherst, MA 01003
Email:

�
garvey,lesser � @cs.umass.edu

Abstract

Design-to-time real-time scheduling is an approach to
solving time-sensitive problems where multiple meth-
ods are available for many subproblems. It is an al-
ternative to the anytime algorithm approach, schedul-
ing discrete methods rather than anytime algorithms
with the goal of maximizing the value of the scheduled
computation. In this paper we briefly introduce the
design-to-time approach, describe how design-to-time
can be used to schedule anytime algorithms including
some experimental results, and examine anytime char-
acteristics of our design-to-time scheduling algorithm.

Introduction
Design-to-time[Garvey and Lesser, 1993; Garvey et al.,
1993; Garvey et al., 1994] is an approach to problem solv-
ing that involves designing a solution plan dynamically at
runtime that uses all of the time available to find as good
a solution as it can. Because the problems it is solving are
generally intractable and because time spent finding solution
plans is time that could otherwise be spent solving the actual
problem, it is a satisficing approach. In our design-to-time
work, problem solving is modeled as a set of interrelated
computational tasks,with alternative ways of accomplishing
the overall task and not a single “right” answer, but a range
answers of different qualities, where the overall quality of
a problem solution is a function of the quality of individual
subtasks. Because of the choices available at all levels of
task scheduling, design-to-time combines a simple form of
planning (deciding what to do) with scheduling (deciding
when to do it). A major focus of our work on design-to-time
is on taking interactions among subproblems into account
when building solution plans, both “hard” interactions that

�
This paper has not already been accepted by and is not cur-

rently under review for a journal or another conference. Nor will it
be submitted for such during IJCAI’s review period. This material
is based upon work supported by the National Science Founda-
tion under Grant No. IRI-9208920, NSF contract CDA 8922572,
DARPA under ONR contract N00014-92-J-1698 and ONR con-
tract N00014-92-J-1450. The content of the information does not
necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

must be heeded to find correct solutions (e.g., hard prece-
dence constraints), and “soft” interactions that can improve
(or hinder) performance (e.g., facilitates constraints[Decker
and Lesser, 1993]).

An example of a problem to be solved by the design-to-
time scheduling algorithm is given in Figure 1. This repre-
sentation of a task structure is based on the TÆMS modeling
framework[Decker and Lesser, 1993]. In a TÆMS task struc-
ture the leaves of the graph represent executable computa-
tions (known as methods) and the nonleaf nodes represent
tasks that achieve quality as a function of the quality of their
subtasks. Each separate graph is known as a task group
and represents a single independent problem to be solved.
Each task group has a deadline by which all computation on
that task group must be completed. Non-parent-child con-
nections between tasks and methods represent interactions,
such as enables (Task A must have quality greater than a
threshold before Method B can correctly begin execution)
and facilitates (if Task A has quality greater than a threshold,
then Method B will have reduced duration and/or increased
quality).

Given task structures of this form, the job of the design-to-
time scheduling algorithm is to dynamically build schedules
with a preference for schedules that (in order of importance)
achieve nonzero quality for all task groups, maximize the
sum of the qualitiesof all task groups, and minimize the total
duration of method executions. The result of this scheduling
algorithm is a schedule that specifies what methods to exe-
cute, when to execute them, and what values are expected
from that execution. Figure 2 shows a schedule for the task
structure in Figure 1.

A detailed description of our most recent design-to-time
scheduling algorithm can be found in a recent paper[Gar-
vey and Lesser, 1995]. That paper also discusses the in-
corporation of uncertainty in method duration/quality and
relationship parameters into the model. Uncertainty leads
to the need for both scheduling with uncertainty in mind
(for example, by building contingencies into schedules and
taking the likelihood of failure into account when evalu-
ating schedules) and monitoring the execution of methods
to allow rescheduling when progress is not acceptable. In
the remainder of this paper we first describe our extensions
to design-to-time to allow the scheduling of anytime algo-



TG 2TG 1

m1 m2
q: 23
d: 17

q: 57
d: 34

deadline: 40 deadline: 25

sum
Te

m9 m10
q: 12
d: 1

q: 25
d: 2

Td

m7 m8
q: 39
d: 5

q: 78
d: 9

Tc

m5 m6
q: 74
d: 2

q: 149
d: 4

Tb

m3 m4
q: 37
d: 2

q: 59
d: 4

Ta

Figure 1: An example of TÆMS task structure to be scheduled. The black lines represent task/subtask connections, while the
gray lines represent facilitates relationships.

0 3 6 9 12 15 18 21 35

m10: 
q: 25, d: 2

m8: 
q: 78, d: 9

m6:
q: 213, d: 3

m4:
q: 106, d: 3

m1:
q: 23, d: 17

Figure 2: A schedule that solves the problem from Figure 1. The runtimes and qualities for ��� and ��� are not as indicated
in Figure 1, because both methods are facilitated, thus reducing duration and increasing quality.

rithms, then discuss the anytime performance characteristics
of our design-to-time scheduling algorithm.

Design-to-time Scheduling of Anytime
Algorithms

In the example of design-to-time given above, each method
had an expected duration and an expected quality. Each of
these methods achieves zero quality unless it is executed to
completion, at which point it achieves full quality. This can
be thought of as a performance profile with a single large
step at completion.

We have recently extended our design-to-time scheduling
algorithm to schedule methods that are anytime algorithms.
This extension involves extending our method execution
model to allow methods that accumulate quality as they
execute (before completion), representing the performance
profiles of these anytime algorithms, modeling the effect of
hard and soft relationships on these performance profiles,
and effectively scheduling the execution of these anytime
algorithms.

Modeling Anytime Algorithms
Our base representation of performance profiles is simi-
lar to one described by Zilberstein [Zilberstein, 1993]. This
representation uses a table where each row in the table repre-
sents a particular duration, each column represents a quality
value, and entries in the table store the probability that the
given quality will be achieved in the given duration. This
provides a discrete distribution of quality values for each
possible duration.

We extended this representation to allow the modeling
of the effects of hard and soft relationships. Hard and soft

relationships can adjust the maximum achievable quality
(and the corresponding duration to achieve that quality) for
a method, that is, they adjust the point in the performance
profile where maximum quality is achieved. We chose to
model this by normalizing our performance profile quality
and duration values to this point (i.e., maximum quality has
value 1 as does the duration to achieve this quality). Our
table consists of these normalized values, so, when the ac-
tual maximum quality changes because of the effect of a
relationship, the entries in the table can remain unchanged.
Zilberstein achieves a similar effect by having different per-
formance profile tables for different input quality values.
His approach is more general (because he doesn’t assume
that the profiles keep the same general shape as we do), but is
less space efficient. However, because his approach is more
general it may better model particular anytime algorithms.

Given this normalized table representation, we can cal-
culate the expected quality for any particular duration by
finding the normalized duration that is closest to the given
duration (possibly through interpolation), looking up the as-
sociated normalized qualities and multiplying them by the
current maximum achievable quality.

Scheduling Anytime Algorithms
Our basic approach to scheduling anytime algorithms with
our design-to-time scheduler is to choose a few dura-
tion/quality points on each performance profile and treat
those as discrete methods. For example, Figure 3 shows a
performance profile with a set of discrete duration/quality
points. Once this set of points is chosen, each of them can
be modeled as a possible method to execute, and design-to-
time scheduling can be done as it is normally. (It might be
desirable to have special scheduler features for anytime al-



Solution
Quality

Duration

M1

M2

M3

M4

Figure 3: An anytime algorithm performance profile with a
set of discrete duration/quality points.

gorithm methods, such as the ability to dynamically choose
intermediate points on a performance profile to maximize
performance or to delay the execution of anytime meth-
ods because their highly predictable duration allows them
to safely execute right up to a deadline, but we do not be-
lieve such extra features would significantly improve system
performance, because they would be outweighed by the un-
certainties of method performance.)

Interesting questions include how to choose the discrete
points on the performance profile and how many points
should be chosen. We have implemented an algorithm for
choosing the discrete points that tends to choose points that
allow close modeling of the performance profile function.
More points tend to be chosen in areas of rapid change
in duration or quality. The algorithm starts with a large
set of points (initially a point for every integer duration
value) and each cycle removes the point with the smallest
duration/quality area between it and the next point. Points
that are close to each other in duration and quality will have
small areas; at points of transition in quality or duration
this area will be large. The algorithm completes when the
desired number of points are all that remain.

We chose a more empirical approach to investigating the
number of points to be chosen. Figure 4 is a graph showing
the percent of maximum quality achieved for a range of
values for the number of points chosen. In these experiments
we ran the system with each possible number of points on
the same 100 randomly generated problem instances. When
the number of possible points is 1 our options are to either
execute the anytime algorithm to completion or not execute
it at all. As the number of points increases the number of
duration/quality choices increases. In these experiments,
performance improved up to about 5 choices, then leveled
off. This is probably related to the fact that the average
duration of a method in these experiments was 10.

•

•

•
• • • • • • • •

1 2 3 5 7 10 15 20 30 40 50
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Pe
rc

en
t o

f 
m

ax
im

um
 q

ua
lit

y

Number of performance profile points chosen

Figure 4: The percent of maximum quality of the best sched-
ule as a function of the maximum number of points chosen
from each anytime algorithm performance profile.

Anytime Design-to-time Scheduling
Our design-to-time scheduling algorithm is heuristic and
among the decisions that it makes heuristically are which
combinations of methods (known as alternatives) to try to
schedule and how many of these combinations to try. These
heuristics tend to cause the algorithm to produce better
schedules as it is given additional time to schedule (that
is, as a greater number of alternatives are considered.)

Figure 5 shows the sum quality of the best schedule found
(so far) as more alternatives are considered for the example
problem from Figure 1. This algorithm has a few parame-

• •

• • • •
•

• • • • • • • • • • •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

300

350

400

450

Su
m

 o
f t

as
k 

gr
ou

p 
qu

al
it

ie
s

Alternatives Scheduled

Figure 5: The sum quality of the best schedule as a func-
tion of the number of alternatives considered for the task
structure from Figure 1.

ters that can externally control the behavior of the algorithm.
Judicious use of these parameters can result in anytime per-



formance by the algorithm. Unfortunately it would probably
be quite difficult to calculate an a priori performance profile
for the scheduling of a particular task structure. It should (in
principle) be possible to predict the bounds on runtime for
the algorithm given a particular task structure, but it is very
difficult (probably impossible) to predict the expected qual-
ity and duration of the resulting schedule without actually
doing a minimum amount of actual scheduling.

Conclusions
We have described the design-to-time approach to real-time
problem solving. We have shown how that approach can be
extended to effectively schedule anytime algorithms. We
have also shown how the performance of the scheduling
algorithm itself is anytime in character, producing better
schedules as more alternatives are considered.

We would like to extend this work by doing more de-
tailed experiments comparing our scheduling approach to
other anytime algorithm scheduling approaches, and by
understanding in more detail the anytime character of the
design-to-time scheduling algorithm, possibly leading to an
algorithm that is better able to control its own performance.

Acknowledgments
We would like to thank Satoru Fujita for his help on the
design-to-time scheduling algorithm implementation and
for the idea and initial implementationof the code for choos-
ing discrete points on performance profiles. We would like
to thank Keith Decker for his work on the TÆMS task mod-
eling framework.

References
Decker, Keith S. and Lesser, Victor R. 1993. Quantitative
modeling of complex computational task environments.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence, Washington. 217–224.
Garvey, Alan and Lesser, Victor 1993. Design-to-time
real-time scheduling. IEEE Transactions on Systems, Man
and Cybernetics 23(6):1491–1502.
Garvey, Alan and Lesser, Victor 1995. Design-to-time
scheduling with uncertainty. CS Technical Report 95–03,
University of Massachusetts.
Garvey, Alan; Humphrey, Marty; and Lesser, Victor
1993. Task interdependencies in design-to-time real-time
scheduling. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence, Washington, D.C. 580–
585.
Garvey, Alan; Decker, Keith; and Lesser, Victor 1994. A
negotiation-based interface between a real-time scheduler
and a decision-maker. CS Technical Report 94–08, Uni-
versity of Massachusetts.
Zilberstein, Shlomo 1993. Operational rationality through
compilation of anytime algorithms. Ph.D. Dissertation,
Department of Computer Science, University of California
at Berkeley, Berkeley, CA.


