
Issues in Design-to-time Real-time Scheduling �

Alan Garvey
Department of Computer Science

Pacific Lutheran University
Tacoma, WA 98447

Email: garveyaj@plu.edu

Victor Lesser
Computer Science Department

University of Massachusetts
Amherst, MA 01003

Email: lesser@cs.umass.edu

Abstract

Design-to-time real-time scheduling is an al-
ternative to the many flexible computation ap-
proaches that are based on anytime algorithms.
It builds schedules at runtime that dynamically
combine solutions to subproblems, taking ad-
vantage of the time available to achieve the best
results it can. In this paper we look in detail at
a few issues related to design-to-time, includ-
ing where the approximations we rely on come
from, how uncertainty affects the scheduling
process and the interface between the sched-
uler and its invoker.

Introduction
An alternative to the standard flexible compu-
tation approach of having individual algorithms
that produce better results as they are given ad-
ditional runtime, is the design-to-time real-time
scheduling [Garvey, 1996; Garvey et al., 1993;
Garvey and Lesser, 1993] approach that builds
schedules at runtime that dynamically combine so-
lution methods for different parts of the overall
problem, attempting to maximize the quality of the
solution generated. Key to this approach is the avail-
ability of multiple methods that trade off solution
quality for time, as well as a clear understanding of
how these methods can be combined to solve the
overall problem, how these methods interact with
one another, and the quality, duration and possibly
cost distributions associated with the methods. In

�The work described in this paper was done while
the first author was affiliated with the University of Mas-
sachusetts. This research project is sponsored by the Dept.
of the Navy, Office of the Chief of Naval Research, un-
der Grant No. N00014-95-1-1198 and by the National
Science Foundation under Grants No. IRI-9523419 and
IRI-9321324. The content of the information does not
necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.

fact, this approach can also schedule the execution
of anytime algorithms by choosing a set of points on
the anytime performance profile and treating those
as individual solution methods.

In design-to-time we frame the input problem in
a generic representation of task structures known
as TÆMS [Decker and Lesser, 1993]. In TÆMS we
describe problems in terms of how quality is incre-
mentally accumulated over time, what soft and hard
interactions there are between tasks, and how much
uncertainty there is in method quality and dura-
tion. Figure 1 shows an example of a simple TÆMS
task structure that describes the problem of mak-
ing coffee. Note that there are multiple methods
for solving each of the three subtasks of the main
problem. Several of these methods have more than
one possible outcome, describing different kinds of
results that can have significantly different effects
on the overall solution. This example is meant to
introduce the reader to the ideas of TÆMS, not to
suggest that making coffee is a representative exam-
ple of the complexity of problems we are interested
in solving.

The TÆMS framework gives us what might be
called a partially digested description of a problem.
We do not have to plan completely from scratch,
deciding what operators apply in a given situation
and how they can be combined to solve problems.
That information is available to us in the TÆMS
task structure. Our job is to determine which of
the many options available in that task structure
we should actually pursue. Because options are dy-
namically combined (rather than using predefined
process plans) TÆMS needs to explicitly represent the
soft interactions between tasks that could normally
be built in to the process plan for a task, because the
exact effect of the interactions depends on the con-
text in which the tasks are executed. While it may
not be trivial to represent a problem in TÆMS we
believe that the TÆMS representation is much more



Make Coffee

Grind Beans Brew Coffee

minimum

Acquire Beans

Use Coffee
from Freezer

Buy Beans
at Starbucks

quality: 0
duration: 3-5 min

Use your
cheap grinder

quality: 6-8
duration: 20-30 sec

Use your
neighbor's
coffee mill

quality: 0
duration: 4-5 min

Boil over
campfire

Drip brew
in your
Melitta

maximum maximum maximum

enables enables

facilitates

Not ground

quality: 4-6
duration: 7-10 sec

quality: 3-5
duration: 7-10 sec

Already ground
50%

50%

Car won't start
5%

Normal

quality: 8-10
duration: 12-20 min

70%

Traffic Jam

quality: 8-10
duration: 20-30 min

25%

Normal
100%

Not home
20%

quality: 9-10
duration: 7-10 min

Normal
80%

quality: 4-7
duration: 5-7 min

Normal
100%

quality: 10
duration: 10 min

Normal
100%

Figure 1: An example of TÆMS task structure to be scheduled. The black lines represent task/subtask
connections, the thin gray line represents a facilitates relationship and the thick gray lines represent enables
relationships. The dashed line boxes represent different possible outcomes for each method. Each of these
possible outcomes has a range of possible quality and duration values.

reasonable for a real-time problem-solver. Planning
from first principles is often difficult in real-time sce-
narios. TÆMS is an abstract description of problem
solving activities that allows us to make decisions
about how to tradeoff among solution quality, cost
and duration of alternative ways of accomplishing a
task. TÆMS task structures can be generated offline
for problems that are expected to come up during
problem solving.

Our heuristic design-to-time scheduling algo-
rithm consists of three main components: high-level
search through the set of alternatives (unordered
combinations of executable methods), a scheduler
that assigns start and finish times to the methods
from an alternative, and an evaluator that both re-
members the best schedules found so far and looks
for ways to improve the current schedule.

The algorithm consists of these three particular
components because they help to reduce the overall
complexity of the problem to manageable levels.
Initial search is done at a higher level of abstraction,
ignoring interactions between tasks and deadlines,
to allow us to feasibly consider a broad cross-section
of possible solution plans. Scheduling is done on
only those plans that make it through the first level
of the algorithm, because completely scheduling all
possible plans would be computationally impossible
in most situations. Evaluation is done at the end

to reduce the likelihood that we are missing good
plans by suggesting plans that are simple variations
on existing plans that could have increased value.

In this paper we discuss issues related to design-
to-time real-time scheduling. First we go into some
detail about how the approximations we use can
arise in real problems. Then we focus on uncertainty
in the information used for scheduling and how
that is handled by the algorithm. Finally we briefly
describe the interface to the scheduler and how it
should allow the scheduler to be usefully used to
solve real problems.

Sources of approximations
One question that a study of design-to-time needs
to address is the question of where approximations
come from in an application and how difficult they
are to construct. In our experience with building
complex problem solving systems, multiple paths
of control seem to occur naturally. Approxima-
tions, often in the form of variations on a standard
algorithm, are a standard part of building AI ap-
plications. We can identify at least three general
sources of approximation in problems. They are
the use of approximate data, the use of approximate
algorithms, and (related to the second) the dynamic
creation of approximate algorithms through the re-
arrangement and skipping of individual problem



steps.
Examples of these kinds of approximationscan be

seen in a pair of large, complex AI applications with
which we are familiar: the Distributed Vehicle Mon-
itoring Testbed (DVMT) [Decker et al., 1990], an
application that identifies and tracks vehicles mov-
ing through a region, and the Integrated Processing
and Understanding of Signals system (IPUS) [Lesser
et al., 1995].

An example of the use of approximate knowledge
from the DVMT is an approximation that can re-
place the multiple steps involved in interpreting low
level sensor data and using it to identify and track ve-
hicles moving through the domain. Figure 2 shows
an example of an approximation from the DVMT
that is used in vehicle identification. In this case
the two ways to solve the problem are one that uses
the grammar on the left and has individual methods
for propagating information from the lowest level
to the intermediate level and for propagating infor-
mation from the intermediate level to the top level,
and one that uses the grammar on the right and
has one individual method that goes from the lower
level to the upper level. Using the approximation
nearly halves the runtime required for a solution, at
the expense of reducing the certainty and precision
of the identification of the vehicle.

In IPUS the task is to identify the sources of var-
ious acoustic signals that can be detected. Fourier
transforms are used to isolate signals into particu-
lar spectral bands. Within the IPUS project, re-
cent work has looked at approximating these trans-
form calculations [Nawab and Dorken, 1993]. Ei-
ther these approximations or standard Fast Fourier
Transform algorithms can be used, depending on
the time requirements and the importance of the
particular calculations.

Data approximations can appear in the DVMT in
the form of time skipping and clustering. In time
skipping, instead of using data from every sensor
interpretation cycle, some cycles are skipped. The
same algorithms are used to process the data, but
when it is processed less frequently runtime is saved
that can be applied to other tasks. Clustering in
the DVMT involves treating groups of data points
as if they were a single point for processing. Again
this has the effect of reducing solution quality while
saving significant runtime.

Related to algorithm approximation is the use
of algorithms where the form of solutions to at
least some intermediate problems is shared, allow-
ing some intermediate problem solving steps to be
skipped or rearranged to save time. Representations
of this type are common in iterative refinement
approaches (such as anytime algorithms) where a

solution must always be available. However, not
all approximations of this form are straightforward
anytime algorithms. It may be that different small
groups of intermediate problem steps share different
solution forms or that none of these intermediate
solutions can stand alone as complete problem so-
lutions. Approximations of this form appear in
several places in the IPUS control structure. This
occurs because IPUS uses iterative techniques to
solve many of its subtasks. One example is the
basic IPUS control loop, which uses a bottom-up
approach to process low level signal data, then ver-
ifies what the bottom-up processing concludes by
doing top-down processing. But this entire verifica-
tion step can be bypassed at the potential cost of low
quality solutions (e.g., increased uncertainty about
the correctness of the signal identification.) Within
the top-down verification process IPUS looks for
data to verify its conclusions, diagnoses why ex-
pected signals were not found and reprocesses the
data to verify that its diagnoses correctly identified
what was happening. Again both the diagnosis step
and the reprocessing step can be bypassed to save
time.

As these examples suggest, approximations can
often arise naturally in complex problem solving
systems. We believe that as applications become
more complex, the desirability of having multiple
paths of control through them will become appar-
ent.

As mentioned briefly above, the design-to-time
scheduling algorithm can also be used to schedule
anytime algorithms. An interesting example of how
approximations can appear even with anytime algo-
rithms comes from the work of Crites [Crites and
Barto, 1996]. He uses simulated annealing to learn
good control plans for elevator operation. His use
of simulated annealing has a definite anytime char-
acter, as more time is spent learning, better plans
are generated. However, his results show that if you
know in advance how much time is available for an-
nealing, it is possible to achieve better results than
those achieved by just stopping the execution of a
longer annealing process, because of the parameter
settings associated with the annealing. This suggests
that it is useful to have a set of different anytime al-
gorithms for the annealing (with different parameter
settings associated with different expected comple-
tion times) and choosing from among those algo-
rithms at runtime in a design-to-time manner.

Uncertainty
Our design-to-time algorithm relies on being able
to accurately predict runtime information about the
tasks being scheduled. However, because the kind of



and

and

or

G
1 G

2 G3

S7S1 S
4S2

S5S3 S6

and

vehicle level
1.0

1.01.01.0

0.6

0.9
1.0

1.0
0.8

0.20.70.7

1.0

0.9
1.0 1.0

and

0.8
xor

signal level

group level

0.9

V1

S7S1 S
4S2

S5S3 S6

vehicle level

signal level

V1

f

Figure 2: Both complete (on the left) and approximating (on the right) grammars describing the hypotheses
necessary to identify a vehicle of type V� in a sensor interpretation application.

AI tasks that we are interested in scheduling often
involve search, it is usually not possible to com-
pletely predict the runtime and solution quality of
the tasks. In this section we describe how we model
this uncertainty in TÆMS and how the scheduler
takes the uncertainty into account when producing
schedules.

Uncertainty in TÆMS takes the form of uncer-
tainty concerning what kind of outcome a task will
produce, what the solution quality of the outcome
will be, how long it will take to achieve the outcome,
whether a soft interaction exists between tasks, and
what the power of existing soft interactions are.

At the lowest level there is a distribution of possi-
ble kinds of outcomes for a task. Each outcome has
a solution quality distribution and a duration distri-
bution. Different outcomes can represent different
kinds of solutions to a problem, e.g., success versus
failure or different ranges of value. Note that the
outcome of a task is not directly under the control of
the problem solving system. Outcomes just allow us
to represent the different kinds of answers we could
get after executing a task. Different outcomes can
have different interactions with other tasks. For ex-
ample, a positive outcome might facilitate another
task while a negative outcome does not. Associ-
ated with each interaction is a likelihood that the
interaction actually exists and distributions for the
parameters of the effect. For example, associated
with a facilitation interaction is a likelihood that
facilitation will actually take place (say 50 percent)
and distributions for the power parameters that de-
scribe the effect on solution quality and duration of
the facilitated task.

Given these kinds of uncertainties, the sched-
uler needs to produce schedules that are likely to
achieve the kind of results desired. It does this by
scheduling using likely bounds of expected task per-

formance (rather than just expected values), possi-
bly scheduling redundant tasks to increase certainty,
monitoring the performance of executing tasks and
rescheduling when necessary.

Rather than just schedule using the expected
values from solution quality and duration distri-
butions, the scheduler actually combines distribu-
tions, and uses upper and lower bounds to pre-
dict the results of computations. This allows best
and worst case expectations to guide the decisions
about which schedules to choose to execute. Our
use of bounds in scheduling has been influenced
by the work of Fujita [Fujita and Lesser, 1996a;
Fujita and Lesser, 1996b].

One aspect of this is that it is sometimes ben-
eficial to schedule redundant tasks to increase the
likelihood that a good result is generated. For ex-
ample, we may choose to use each of two methods
for computing an intermediate result, to allow us
to choose the best actual outcome at runtime. This
is particularly useful for the kind of AI search tasks
that we are most interested in scheduling, because
they are most likely to have significant amounts of
uncertainty in their predicted results.

Also important to ensuring that schedules per-
form as expected is the monitoring of the execution
of tasks. This involves setting appropriate expec-
tations for task execution, actually checking on the
progress of tasks as they execute to see if they are
meeting expectations, and possibly rescheduling if
expected performance is being either not met or
exceeded.

Scheduler interface
One important aspect of a scheduling system such
as ours is that it does not work in isolation. It needs
to interact with the other components in a problem
solving system. We have spent a significant amount



of time working out the details of an input/output
specification between the scheduler and a “decision
maker” that uses the schedule output to decide what
to do and what information to communicate to
other problem solving agents [Garvey et al., 1994].

At the heart of the scheduler interface is the idea
of commitments, which constrain the scheduler to
try to produce schedules with particular properties.
When the scheduler can commit to satisfying some
particular constraint, that commitment can be com-
municated to other agents, who can rely on it in their
computations.

The scheduler supports three kinds of commit-
ments:

� Do commitment – that commits the scheduler to
completing a particular task as part of problem
solving,

� Deadline commitment – that commits the sched-
uler to completing a particular task by a deadline
(presumably a deadline that is earlier than the
hard deadline associated with the task),

� Earliest-start-time commitment – that commits the
scheduler to not starting a particular task before
an earliest start time (again, presumably an ear-
liest start time that is later than the hard earliest
start time associated with the task)

The scheduler is invoked with a set of commit-
ments that the decision maker would like satisfied.
Deadline and earliest start time commitments can
have either specific times associated with them or,
for deadlines an indication that the earliest possible
finish time is desired and for earliest start times an
indication that the latest possible start time is de-
sired. This allows the scheduler to build schedules
with realistic values for these parameters rather than
forcing the invoker to guess what reasonable times
might be. The scheduler attempts to satisfy all com-
mitments, and when this is not possible it tries to
satisfy the most important commitments. When
commitments are not satisfied, the scheduler tries
to suggest alternate commitments that it can satisfy.

The result is a set of schedules that satisfy par-
ticular commitments or suggest alternates. The de-
cision maker can then choose to communicate in-
formation about which tasks will be completed and
when to other agents, which can in turn rely on that
information when producing their own schedules.
Another use for commitments is to allow the sched-
uler to be easily controlled by a higher level agent
that uses the scheduler to understand the lower level
effects of high level decisions as described in the in-
formation gathering work of Zilberstein and Lesser
[Zilberstein and Lesser, 1996].

Also part of the invocation of the scheduler is an

indication of what the scheduler objectives should
be. This allows priorities to be set indicating what
combination of maximizing solution quality, in-
creasing certainty and finishing as soon as possible
is desired. For example, one invoker of the sched-
uler might want to maximize solution quality, while
another may want a schedule that is most likely to
achieve solution quality above a particular thresh-
old.

Associated with each schedule is a detailed sum-
mary of what solution quality can be expected for
every task in the TÆMS task structure, information
about the uncertainties associated with schedule el-
ements (including how likely it is that particular
schedule elements will not complete execution be-
fore their deadline), and monitoring points at which
the scheduler suggests ranges of performance that
are acceptable.

Conclusions
We have described recent work in the area of design-
to-time real-time scheduling. First we outlined how
approximations of the sort we require tend to arise
in applications. Then we described how uncertainty
is represented and how it affects the scheduler. Fi-
nally we described parts of the interface between the
scheduler and its invoker. Together these threads be-
gin to show how the design-to-time approach can
be used to solve real world problems in a reasonable,
efficient way.

References
Robert H. Crites and Andrew G. Barto. Improving
elevator performance using reinforcement learn-
ing. In D.S. Touretzky, M.C. Mozer, and M.E.
Hasselmo, editors, Advances in Neural Information
Processing Systems 8. MIT Press, Cambridge, MA,
1996.
Keith S. Decker and Victor R. Lesser. Quantita-
tive modeling of complex environments. Interna-
tional Journal of Intelligent Systems in Accounting,
Finance, and Management, 2(4):215–234, Decem-
ber 1993. Special issue on “Mathematical and
Computational Models of Organizations: Models
and Characteristics of Agent Behavior”.
Keith S. Decker, Victor R. Lesser, and Robert C.
Whitehair. Extending a blackboard architecture
for approximate processing. The Journal of Real-
Time Systems, 2(1/2):47–79, 1990.
S. Fujita and V. Lesser. Cooperative tasks in coarse
grain search problems. CS Technical Report 96–
28, Univ. of Massachusetts, 1996.
S. Fujita and V.R. Lesser. Centralized task dis-
tribution in the presence of uncertainty and time



deadlines. In Proceedings of the Second Interna-
tional Conference on Multi-Agent Systems (ICMAS-
96), Japan, 1996.
Alan Garvey and Victor Lesser. Design-to-time
real-time scheduling. IEEE Transactions on Systems,
Man and Cybernetics, 23(6):1491–1502, 1993.
Alan Garvey, Marty Humphrey, and Victor Lesser.
Task interdependencies in design-to-time real-time
scheduling. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 580–
585, Washington, D.C., July 1993.
Alan Garvey, Keith Decker, and Victor Lesser.
A negotiation-based interface between a real-time
scheduler and a decision-maker. CS Technical Re-
port 94–08, University of Massachusetts, 1994.
Alan Garvey. Design-to-time real-time scheduling.
Ph.D. Dissertation, Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA,
February 1996.
V. Lesser, S. H. Nawab, and F. Klassner. IPUS:
An architecture for the integrated processing and
understand of signals. Artificial Intelligence, 77(1),
1995.
S. H. Nawab and E. Dorken. Efficient STFT
computation using a quantization and differenc-
ing method. In Proceedings of the 1993 IEEE Inter-
national Conference on Acoustics,Speech, and Signal
Processing, volume 3, pages 587–590, Minneapo-
lis, MN, April 1993.
S. Zilberstein and V. Lesser. Intelligent informa-
tion gathering using decision models. CS Techni-
cal Report 96–35, Univ. of Massachusetts, 1996.


