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ABSTRACT 

This paper is a survey of the development and future 
t rends in rnicroprograrnrning. We show how the structure of 
rnicroprograrnmed processors has been shaped primarily by 
two factors= the state of (semiconductor) technology and the 
task of emulation. The other main theme of this article is that 
it is a fruit less exercise to t ry  to characterize and understand 
microprograrnming in terms of how it differs from 'regular' 
programming. The right approach to understanding 
microprogramrning is to recognize that it is primarily applied 
to the task of emulation (interpretation). Through this 
approach the evolut ion of  rnicroprograrnming, independent of 
a part icular technology and type of instruction set being 
emulated, is rev iewed and future trends indicated. 

i. INTRODUCTION 

The structure of microprogrammed processors, and 
microprogramrning in general, is largely determined by two 
factors= the state of (semiconductor) technology and the task 
of emulation. Therefore, this article first reviews those 
technological advances as well as those constraints and 
demands imposed by the emulation process that have shaped 
the evolut ion of microprogramming. The remainder of this 
art icle then uses these observations to put the past 
developments of rnicroprogramming in perspective and 
forecast the major developments in the years ahead. 

The other main theme of this article is that it is a 
fruit less exercise to t ry  to characterize and understand 
rnicroprograrnrning in terms of how it differs from 'regular' 
programming. The futi l i ty of this approach can be seen by 
the numerous, contradictory definitions on microprogramming 
in the l i terature [Rosin, 1969; Wilkes, 1969~ Mallach, 1972]. 
At tempts to base a definition on features of a processor's 
architecturep such as horizontal instruction formats, lack of an 
expl ic i t  program counter, or visibil ity of real registers and 
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data paths; or features of a processor's realization, such as 
the speed of main memory to that of the control (micro-) 
memory, are easily rejected on the basis of existing 
processors that are commonly recosnized to be 
microprogramrned processors yet do not possess the required 
features. 

Most of this confusion in alternative definitions of 
microprograrnrning comes from the fact that it has been used 
in two ve ry  di f ferent ways: (1) in a technological manner to 
economical ly implement a complex instruction set or a small 
number of di f ferent instruction sets on a single processor, 
and (2) in a software manner to provide programmers with an 
ex t ra  degree of representational freedom, i.e. develop 
mult iple instruction sets, each one appropriate for a 
part icular task domain. The technological use of 
microprogramrning was the dominant justification for the 
development  of rnicroprogrammable processors in the 1960's. 
But as the cost of software began to become the major cost 
of a computer system, the use of microprol~ramming as a 
technique for making a computer more convenient to prot~ram 
has and will continue to become the more important 
application. 

The right approach to understanding microprogramming 
is to recognize that it is primarily applied to the task of 
emulat ion (interpretation). Through this approach it is 
possible to understand and predict the evoluton of 
rnicroprograrnnrning independent of a particular technology and 
type  of instruction set being emulated. 

The process of emulation will be taken up in 
considerably more depth in Section 3, but it will be useful 
here in the introduction to briefly look at the different 
processors used to emulate a BAS]C machine. On the one 
hand there are the Hewlett-Packard 2100, DEC PDP-11, and 
PDP-8 that have time-sharing systems supporting BASIC. 
The only  language available to the user is BASIC and he has 
no way  of knowing the architecture of the processor. On the 
other  hand there are the BASIC programmable calculators 
avai lable from Hewlett-Packard [Spagler, 1972] and Wang 
Laborator ies that operate as BASIC machines= the input keys 
and the displays are tailored to the BASIC language. It is 
dif f icult  to insist that the HP-2100, PDP-11, and PDP-8 are 
not rnicroprograrnmed processors while the 'hidden' 
processors in the HP and Wang BASIC calculators are 
rnicroprogramrned. The only characteristic all these 
processors have in common is that they are emulating BASIC 
and a 8ood case can be made for dropping the term 
'rnicroprograrnrning' altogether and simply use 'emulation' in 
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its place. H o w e v e r ,  we will continue to use the term 
'microprogramming' here since it is so widely used and it is a 
convenient  way to indicate that we are discussing 
programming as it applies to emulation (and interpretation) 
rather  than programming in general. 

Following our discussion of technology and emulation, 
this article then discusses specific hardware and software 
techniques for emulation. A number of different types of 
microprogrammed processors are also included as examples. 

2. SEMICONDUCTOR TECHNOLOGY 

The state of the art in semiconductor electronics has 
had a profound effect on the feasibility of microprogramming. 
Prior to the 1960's the only ef fect ive means of implementing 
a high speed control store was to use a diode matrix. This 
was the technology used by Whirlwind ! [Everett, 1951] and 
by' Wilkes in his original paper on microprogramming [Wilkes 
and Stringer, 1953]. Figures 2.1 and 2.2 show the structure 
of these control units. As long as these diodes were discrete 
components a control store of any reasonable size was too 
expensive to compete with alternate implementations using 
random logic (e.g. about 35,000 bits of control storage are 
requi red to implement the full PDP-11/40 architecture while 
the Whirlwind ! had only 4,800 'bits' in its control store). It 
is important to realize that both of these structures are just 
the control  part of the processor and are an alternative to 
convent ional  sequential control circuits as shown in Figure 
2.3. It was not until the middle and late 1960's that 
integrated-ci rcui t  technology advanced to the point that 
economic read-only-memories (ROMs) and read-write 
memories (RAMs) became a practical reality. It stands to the 
credi t  of [BM's engineers that they were able to develop the 
|BM System/360 series of machines via microprogramming in 
the ear ly  1960%; every  model in the early IBM 360 line used 
a di f ferent ,  non-semiconductor technique to implement its 
control  store. These ingenuous, but admittedly cumbersome 
and costly techniques could be laid aside when the ]I3M 370 
series of machines were implemented since integrated circuit 
technology had advanced to the stage that semiconductor 
control  stores were reliable. Figure 2.4 illustrates the basic 
s t ructure of current microprogram control units. 

Semiconductor memories suitable for control stores in 
microprogrammed processors are now at the stage where 
256 bi t /package RAMs and 1K (1024) bit/package ROMs are 
in wide use in present processors and 1K RAMs and 4K ROMs 
are being designed into the newer processors. 4K RAMs and 
16K ROMs have been announced and are available in limited 
quantit ies, but in general they are too slow to be seriously 
considered for control stores. 

For well over lO years now semiconductor 
manufacturers have set a pace where the commercially 
feasible chip complexity (i.e., number of devices per chip) has 
rogh ly  doubled every  one to two years. For example, the 4K 
bit~package RAM (13,000 devices) was introduced roughly 
two  and one half years after the 1K bit (4000) RAM. There is 
eve ry  reason to believe that this trend will continue for at 
least the next four to six years. Hence we face a situation 
where  we can expect to see the size of control stores 
growing as technology encourages designers to use more 
control  storage to cut costs in other areas, improve the 
performance of the microprocessors, or add additional 
capabil i t ies. 
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Memory arrays are not the only development in 
semiconductor technology that are having a significant effect 
on the structure of microprogrammed processors. Two other 
ve r y  important developments are the programmable logic 
a r ray  (PLA) and shifters. The basic structure of a PLA is 
shown in Figure 2.5. It is a two-level combinatorial logic 
circuit that is 'wired'  for a specific application by the 
masking, or metalization, that is used. The PLA has the same 
outward  characteristics of a ROM except that it would take a 
ROM with several orders of magnitude more devices to match 
the function of the PLA in many applications. For example, a 
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Fig,/r. 2.5. A p r o s r ~ b l e  i o g l ¢  array (PiA). 

common PLA is a Rockwell Corporation package with .48 
input /output  terminals [Rockwell, 1973]. A ROM that would 
be equivalent to this PLA in many applications would require 
two orders of magnitude more bits. A PLA uses the same 
techniques that designers of digital circuits used a decade 
ago to minimize the number of gates required to real ize a 
combinatorial function. However, if the function .to be 
implemented is sufficiently ill-conditioned (e.g., a parity 
tester),  the PLA offers no advantage over a ROM. instruction 
decoding is an example of a combinatorial function amenable 
fo minimization techniques and hence PLAs will be very useful 
for providing the decoding of instructions that must otherwise 
be done with random logic or via a sequence of 

I microinstructions. 

PLAs do not lend themselves to dynamic alternations; 
there is no natural addressing mechanism for each of the 
make-or -break points in the PLA structure. A dynamically 
al terable component that could be used much like a PLA is an 
associative memory. Associative memories have been toted 
for some time now as a panacea for many problems but have 
ye t  to prove to be a cost effective unit. However, as the 
number of pins per package becomes more of a limitation 
than the complexity of the semiionductor circuit itself, 
associative memories may become viable components, e.g. the 
SPS-41 used an associative memory to specify sophisticated, 
programmable ]/O patterns that will cause an interrupt 
[SPS,1972]. 

The other non-memory semiconductor device that has 
recent ly  made an important impact on microprocessors is the 
shifter. For example, the Signetics 8243 takes an eight bit 
by te  as input, shifts it left from zero to seven positions, 
zeroing out the leftmost bits, and presents the shifted byte 
on eight output pins. Using a package like the Signetics 8243 
as a basic building block, larger shifters can easily be 
constructed. The abil i ty of cheaply implementing a fast 
shi f ter makes variable-length byte extraction, a common 
process in emulation, a much easier task. 

As will be detailed in the next sections, these 
technology advances will lead to microprommable 
architectures that are more uniform in structure (less ad hoc), 
easier to program and can more efficiently emulate a wide 
va r ie t y  of di f ferent and more complex instruction sets. 

3. THE PROCESS OF EMULATION 

As we stated in the introduction, the right approach to 
understanding microprogramming is to examine the task it 
must perform: emulation. Thus, this section spells out in 
detai l  the task of emulation and through this discussion 
indicates the appropriate representational framework and 
associated operations for efficiently performing an emulation 
( interpretat ion).  In the next section we tie together our 
observat ions on emulation and technology to predict the 
future evolut ion of microprogramming. 

Our present discussion of emulation and 
microprogramming is especially appropriate given the view a 
major t rend in microprogramming is towards more generalized 
emulat ion in terms of both the number and complexity of 
machine languages capable of being efficiently emulated on a 
single microprogrammable processor. Recent architectures 
such as the Burroughs B1700 [Wilner, 1972], which was 
designed for efficient emulation of algebraic block-structure 
languages, and SAAB FCPU [Lawson and Maim, 1973], which 
provides general emulation capabilities in a high speed 
processor, are examples of this more general approach to 
emulation. This trend should be heightened in the future as 
the var ie ty  and complexity of tasks being programmed on a 
single processor continue to increase. 

An interpreter  can be characterized as a system that 
carr ies out the execution of a program in one 
representat ional  framework by dynamically mapping each 
statement (instruction), at the point it is to be executed, into 
an execution sequence of statements in another environment 
which realize the semantics of the mapped statement. Given 
this defini t ion of interpretation, emulation could be defined as 
the special case in which the interpreter maps into an 
envi ronment which is directly executed by the hardware. 
However,  this type of distinction between interpretation and 
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emulat ion is often very fuzzy. For example, consider the 
in terpre ta t ion of the IBM 7090 on the IBM 360/65 which 
involves the use of two environments [Tucker, 1965], i.e. 
360 /65  microcode and 360 machine code which is in turn 
emulated in the microcode. 

This example also points up the difference between 
actions which are done solely for the sake of interpretation 
control  and information (mapping actions) and those which 
actual ly cause the interpreted program to be executed 
(execut ion actions) [Mitchell, 1970]. In this example, mapping 
actions were programmed in a different representation 
envi ronment than execution actions, respectively 360/65 
microcode and 360 machine language. As will be discussed 
later, the appropriate environments for expressing these 
d i f ferent  types of actions and the interface between them is 
one of the keys to understanding the evolution of 
microprogrammable processors and how the emulation task 
di f fers from other computational tasks. For example, the 
SAAB FCPU expl ici t ly recognizes the distinction between 
mapping and execu t ion  actions by providing separate, 
asynchronous processing elements for each type of action. 

The other key to understanding the emulation process 
is based on a static v iew of this process in contrast to the 
dynamic v iew in terms of mapping and execution action so far 
presented. A static view of emulation comes from 
understanding the relationship between the two environments 
the emulator operates on, i.e. the emulated and execution 
environment.  An environment consists of: (1) a data and 
control  state image which includes, for example in a 
convent ional  processor, its set of working registers 
(accumulator, index register, program counter, interrupt 
register,  etc.) and its main memory which hold data and 
program; (2) a set of primitive actions which can be used to 
modify and test the state image~ and (3) a set of control rules 
which decide, based on the current status of the control state 
image, the sequence of primitive actions to execute. The 
ease wi th which each of these aspects of an environment to 
be " in terpreted"  can be imbedded into the corresponding 
aspects of "execution" environment is one of the main 
determiners of the efficiency of the interpretation process. 

The state diagram of one step in the emulation process, 
Figure 3.1, represents both static and dynamic aspects of the 
emulat ion process. The lefthand side of the diagram 
represents the effect of executing an instruction of the 
emulated computer on the state image of the emulated 
computer. The righthand side represents the sequence of 
t ransformations that the microprogrammed processor must 
per form on its own state image in order to emulate this 
instruction. ]n terms of this diagram, efficient emulation 
occurs when: 

The data and control state image of target 
(emulated) machine can be easily imbedded 
into host (microprogrammed processor) 
machine; 

2. The decoding and control sequencing 
function can be implemented efficiently. (In 
conventional instruction sets most of the 
work  involves decoding, but in the 
emulation of higher-level languages much 
less of the total effort is spent on 
decoding.)~ 

3. Microinstruction semantics can operate on 
imbedded state image of emulated machine 

in the same way the emulated instruction 
does on its state image. 

]n the initial use of microprogrammable processors for 
emulation, each of these aspects that contributes to efficient 
emulat ion could be easily attained because the environment(s) 
to be emulated was known before the design of the 
processor. This prior knowledge resulted in the design of a 
microprogrammable processor that had a state image and 
instruct ion semantics that were compatible with the emulated 
environment,  and a hardwired version of the mapping action 
(control  and decoding) between environments. However, as 
unanticipated and more complex environments began to be 
emulated a more general approach was needed: 

1. a generalized decoding structure; 

2. a means of statically reconfiguring, for the 
durat ion of an emulation, the state image, 
control structure, and primitive operation of 
the execution environment so that these 
aspects more nearly match those of the 
emulated environment (see Figure 3.2) 
[Lesser, 1972]; 

3. a means of dynamically modifying the 
microinstruction semantics based on 
parameters which are specified in the 
emulated instruction, i.e. microinstruction as 
a parameterized templates [Lesseh 1971]. 
Another way of viewing this requirement is 
the need for clean, efficient interface 
between the output of mapping actions and 
semantics of execution actions. 

These requirements for generalized emulation together 
wi th  the technological advances described in tile last section, 
have led to the following concepts being incorporated into 
more advanced microprogrammable processors: 

1. f lexible bit extraction and manipulation for 
generalized decoding: 

a. barrel shifter and mask capability 
(B1700 and FCPU) 

b. insertion of data in an arbitrary field 
of an internal register (FCPU) 

2. the concept of residual control as a way of 
configuring the environment; 

a. set up gating patterns between 
registers and buses (QM-1) 

b. set up mode of arithmetic, i.e. l 's 
complement, BCD, etc. (B1700, FCPU) 

c. set up word length of data which will 
be applied to arithmetic operations, 
memory accesses and stores (B1700, 
FCPU) 

d. pseudo-interrupt register for 
embedding control structure of 
emulated machine (MLP-900, [Lawson 
and Smith 1971]) 
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3. microinstructions as parameterized 
templates: 

a. indirect address of general registers, 
shift count, ALU function (MLP-900) 

b. execute-command (B1700,FCPU) 

This list of features when taken as a whole shed some 
light on what are the appropriate components of an 
environment (microprogrammed processor architecture) for 
general purpose emulation= 

1. a primitive unit of information which is the 
bit string. 

2. a capability for dynamically reconfiguring 
both the internal and external environment 
of a microprogrammable processor, i.e. word 
width, number of general registers, control 
structures, register bussing connections, 
arithmetic mode, etc. 

3. a capability for constructing complex 
address mapping functions. 

These are capabilities that are desirable in almost all types of 
computer environment. The important point is that they are 
crucial for effective emulation, i.e. these features should be 
looked at in terms of a matter of degree rather than specific 
function when comparing with other task domains. 

The future of microprogrammable processors will 
inevitably result in a more generalized version of these 
concepts as technology permits. However, the aspect of 
microcomputer architectures that will probably receive the 
most attention in the next 10 years is their control structure. 
The control structure will play a more important role in 
future years because one of the dominant trends in 
programming languages is towards more complex control 
structure (i.e. coroutine, data flow models, parallelism, etc.). 
Inevitably, these more complex control structures in future 
programming languages will be reflected in the machine 
languages that will be compiled into. 

4. HARDWARE AND SOFTWARE INTERPRETATION TECHNIQUES 

To predict the future of microprogramming it is 
necessary to understand how hardware and software 
techniques are used in effecting interpretation. Then, 
advances in technology can be related to advances in 

techniques and, hence, to resultant advances in computer 
systems. Since microprogramming is simply a variation of 
conventional programming in terms of the desire for 
general i ty and ease of coding, advances in microprogramming 
wil l  l ikely follow the same pattern already seen in assembly 
level programming over the last twenty five years. This is 
especially true given the trend toward more complex and 
varied instruction sets which will require writing of many 
large emulators, each supporting a complex run time 
environment, e.g. PL/I machine, operating systems machine, 
etc. Since emulation is the major application of 
microprogramming, specific programming support will be 
accented. With advances in technology offering more storage 
capacity and functional processing per unit area (at low cost), 
hardware structures will become more flexible thus providing 
a general environment for interpretation and emulation. 
Since sections of general structures usually 8o unused in any 
single application, the cost or cost-performance of generality 
is rarely acceptable to all. However, the added cost of 
general i ty may be borne by improved technology thus 
providing the user with more functional capability at a 
constant cost. In contradistinction, the consumer market for 
computers requires the lowest possible cost and, so, will 
t rade generali ty for cost. Here, technology is used to lower 
cost while keeping the application specific. 

In addition to the techniques detailed in the last section 
for general purpose emulation, there are also techniques for 
making it easy to microprogram many large emulators. A list 
of techniquesp in approximate order of increasing generality, 
include: 

2. 

3. 

More hip_h-speed working registers. Efforts 
to minimize the size of the processor state 
is not as strong in microprogrammed 
processors as it is in more conventional 
processors. 

Lar~er control stores. Much of the current 
involuted character of microprograms is a 
result of squeezing a complete emulator 
into a small space (e.g. 256 words) and 
more reasonable (micro)programminoo will be 
possible with larger control stores. 

N-way branches (case statements). The 
ability to test several conditions and branch 
to any of several sections of code which 
service them. 

5. 

6. 

(Micro)subroutines. The ability to invoke a 
function or reference data specified 
indirectly at a higher level,. 

~J.~..l:i~..¢......Y.. management, tvlultiprogramming is 
already a common practice. For example, 
emulators for central processors, several 
I/O processors, and rnicrodiagnostics often 
reside in the same control store. Problems 
of protection, relocation, and using overlays 
or paging from backing stores are issues of 
emerging concern in microprogramming. 

(Micro)interruots. Useful when multiple 
emulations are being run on the same 
processors. 
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The hardware components which initially supported 
microprogramming were adequate speed ROMs and 
multiplexors. ROMs provide tables to encode, decode, and 
sequence control. Multiplexors extract fields, assemble 
conditions for testing in parallel, and select control 
information from registers containing the higher level 
instructions (indirect control) rather than from the microcode 
(direct control). The next advance came with the availability 
of high speed, random access, alterable memory. With these, 
microprograms are easily corrected, extended, or swapped 
for those which provide different functions, for example, 
machine diagnosis (microdiagnostics). More recent advances 
in technology have made available low cost, small sized 
shifters, associative memories, PLAs, and decima~ arithmetic 
units. The fast shifter is the most important of these since it 
easily extracts fields from instructions being interpreted or 
data from special formats, such as floating point numbers. 

To understand the implication of hardware and 
software techniques it is necessary to consider their 
application. The next section provides detailed examples. At 
this point the uses of microprogramming can be decomposed 
into two dimensions. The first compares designs by the level 
of language supported. The range includes assembly, 
intermediate, and high level languages. The second dimension 
orders machines by the number of environments supported, 
typically subdivided in two classes, one and many. Over the 
last decade the number of environments has increased and 
their level has risen from the assembly toward the procedure 
oriented. In the past when several environments were 
provided, one at a time was selectable from a small, fixed set. 

By observing the development of assembly level 
programming, techniques and by observing the parallel 
development of microprogramming so far, a reasonable 
prediction would be the continuation of the trend. If so, the 
next step will be the generalization and sharing of resources 
at the microprogram level. First, relocation and protection 
schemes for alterable microstores will be developed. Then, 
memory management and demand paging schemes to effect 
the ability to run large microprograms in comparatively little 
physical space will be included. The dynamic allocation of 
microstore address space will probably require a micro- 
operating system with fewer tasks than conventional ones 
but many similarities with respect to space allocation 
techniques. To facilitate writing and checkout of so much 
code, high level languages designed for microprogramming 
will be developed, just as they are now being used more and 
more as a tool for developing system programs today. 

To support these advances in microprogramming 
software, hardware must be provided. The most important 
advance on present components is larger microstores made 
possible by faster and denser memories. As an alternative to 
a fast, large microstore the cache structure could be used to 
combine a small, very fast primary microstore with a larger, 
slower secondary one. Similarly, demand paging requires a 
fast swapping medium. This might be provided by a high 
speed, low capacity solid state disk with low latency. 

Given the ability to execute so much microcode what 
use might be found for it? Extrapolating from today's 
machines and keeping the needs of emulation in mind, one 
natural application would be to provide multiple programming 
environments. By this is meant a time-shared computer 
system whose users divide into classes each requiring the 
same environment. Some of these would be machine 
languages for older machines, others would be intermediate, 

high level (Fortran, PL/I, COBOL), or application oriented. The 
high speed shifter is useful in all of these to extract fields. 
Emulating earlier machines would be made easier by the use 
of a programmable PLA or associative memory (to replace 
logic not conveniently embedded in memories due to the large 
number of inputs). Finally, note that the provision of multiple 
environments is a problem in multiprogramming and, 
eventually, as more environments are desired, in time-sharing. 

5. MACHINE SPECIES 

The various microprogrammed processors can be 
characterized along evolutionary lines, which in turn roughly 
correspond to their implementation complexity. One of the 
earliest computer implementations, Whirlwind I [Everett, 
1951], formulated the control part as an encoding in a 
changeable , diode array memory (see Figure 2.1). From this 
Wilkes and Stringer extended the encoding, and coined the 
word "microprogrammin6" [Wilkes and Stringer, 1953]. 

5.1 One-Machine. Integrated Control a.D_d. Data 

With the availability of fast, read only, random-access 
memories computer processors with a single, fixed 
instruction-set were designed. These early designs permitted 
instruction-sets wih more complex data-operations (e.g. 
multiply, divide, double precision). The most notable design 
of this type, the IBM System/360 [Blaauw and Brooks, 1964; 
Stevens, 1964] was actually a set of about 10 computer 
models implementing the same instruction set covering a 
performance range of about 300 and a price range of about 
100. Over half of the models were implemented using 
programmed control interpreters. 

/~, Fixed Group g..[ Conventional Instruction-Sets 

Given that a single machine instruction set can be 
implemented in a single processor, the natural extension is to 
implement several machines. The earliest implementations of 
multiple instruction sets in a single physical machine used 
conventional programming. First generation, cyclic access, 
drum memory computers were "emulated" usin,~ higher speed, 
second and third generation computers with random access 
memories. 

An early and extensive use of multiple, fixed machine 
emulations occurred with the IBM 360 microprogrammed 
processors as they were used to implement the IBM 
System~360 instruction-set, the 360 input-output processor 
instruction-sets, and several models of earlier IBM computers. 
The design methodology of these computers is not well 
understood outside IBM. The design process for these 
machines appears to be: first the primary machine (in this 
case the 360) is designed; the various other machines to be 
interpreted are then added to the design by installing their 
idiosyncrasies (e.g. carry and overflow conditions, state, 
special data path breaks) [Tucker, 1965]. 

/~. Variable Group ~ Conventional Instruction-Set% 

Given that a single machine can be built that 
implements several conventional instruction sets 
(sequentially), can a machine that implements several 
instruction sets, but on a variable basis, be built? In effect, 
Standard Computer Corporation attempted such a design in 
the IC-model 4 an~ later the MLP 900 [SCC 1968~ SCC, 1969]. 
The main goal of the MLP-900 was to implement an IBM 360, 
together with other undefined machines, e.g. PDP-10, etc. In 
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essence, the machine was designed with much generality 
using multiple register sets, and a two-stage pipeline for 
instruct ion fetching and instruction execution. The variable 
parts, which cannot be emulated easily by sequencing, were 
brgught to a 4 position, multiple pole, electronic switch, which 
permi t ted up to 4 variable parts to be selected by direct 
wir ing on a plugboard array. Although such an approach is 
of academic interest, the mechanical aspects of the 
plugboarding preclude the machine from being interesting in a 
product ion or economic sense. The myriad of details 
associated with the input-output section (e.g. channels, device 
state words, and transitions) add to the system definition job 
more than the central processor. 

Current ly,  there are no commercially viable machines 
that emulate a set of other conventional type machines on a 
var iable basis. It appears that the machines to be emulated 
must be determined a priori, in a fixed fashion. Such a 
machine would permit any one machine to be emulated at a 
given instant by loading a memory with the information 
necessary to interpret  the target machine. Although this has 
been done when a large machine interprets another machine, 
the implication in such a task is that the speed of emulation is 
essent ial ly that of the target machine, it appears the 
necessary hardware for this task will be available in the near 
future and that such systems can exist by 1980. 

5.4. A Single Hi~her Level Lan~_ua~_e Interbreter Machine 

Since the use of higher level algebraic languages (e.g. 
Algol, Fortran) and more natural textual languages (e.g. Cobol) 
there has been a substantial interest in the development of 
hardware that would interpret the languages directly. To 
date, several machines have been built for single languages 
(using direct ly hardwired techniques), and a number of 
machines have been microprogrammed to interpret languages 
direct ly.  These designs have not resulted in any particular 
insight about direct language interpretation. The 
implementations execute the object target lan,~uage faster 
than the non-microprogrammed counterparts, and the speed 
improvements hold no surprises; the faster memory of the 
microcode, together with the small, register transfer 
primit ives, provide the improvement. 

5.5 Interoret in~ Many Languages Directly with .a. Single 
Machine 

To date, only the Burroughs' B1700 [Wilner, 1972] has 
been built with the goal of either the direct interpretation or 
compile and execution of several higher level languages. In 
that it is able to interpret the various languages, and encode 
the object  code in a space of roughly one half that of a 
convent ional small computer (the IBM System 3), it is 
successful. However, the execution time is not clear; one 
would expect a factor of two increase in the execution of the 
object  code, too. There has been no attempt to compare the 
execut ion time on a technology-normalized basis. The B1700 
has also been used in the direct interpretation of several 
convent ional machines (e.g. IBM 1401 and Burroughs' B2500). 
Considering all factors, the B1700 appears to be the most 
general*  of the microprogrammed machines in existence. 

*As measured by ability to access any bit in memory, 
to have arb i t rary  length microcode in any memory, and to 
operate  on variable length field with both binary and BCD 
formats. 

5.6 Special Purpose Machines 

An especially interesting evolution of microprogrammed 
machines has occurred for the interpretation of array data 
for matrix and vector operations, includin,5 time series 
evaluat ion (e.g., fast fourier transformation). Although there 
were  several ear ly laboratory processors, IBM~s 2938 
performs this function. Most recently, a 3 processor system 
for these operations has been developed and is attached as a 
per ipheral  to a conventional minicomputer [SPS, 1972]. The 
three processors are functionally separated for: fetching 
data from the attached computer, collecting analog inputs, and 
stor ing the results back; moving data from the local array in 
the r ight order  for the arithmetic part; and the arithmetic 
part.  

6. CONCLUSIONS AND FORECASTS 

In this article we have reviewed the most important 
constraints within which successful microprogrammed 
processors must operate: semiconductor technology and the 
task of emulation. It is our view that these constraints more 
s t rongly  influence the direction future of microprogramming 
per se. In fact, as we stated in the introduction, there is a 
good case for dropping the term microprogramming 
a l together  and simply realize many processors are designed 
to ef f ic ient ly  emulate the instruction set of ' target' machine 
architectures. 

The major impact of semiconductor technology on 
microprogramming is to provide large and fast control 
storage. However, the emergence of programmable logic 
arrays and fast shifters is also bound to have a significant 
ef fect  on microprocessors. It is relatively unclear at this 
point exact ly  what effect the processor-on-a-chip will have. 
Implementing the entire processor on a single semiconductor 
chip eliminates much of the flexibil i ty available in constructing 
processors from MSI/LSI components, but, on the other hand, 
provides a complete processor at a very low cost. If 
processors-on-a-chip become sufficiently popular, emulation 
wil l  come into heavy use as these primitive processors are 
surrounded by emulation routines to transform them into 
processors with which we are comfortable working. 

Our rev iew of the requirements of the emulation task ' 
pointed to a number of central concepts that are required for 
eff ic ient emulation. 

Table 6.1 summarizes the major dimensions of 
emulat ion for di f ferent levels of target machines. In each cell 
the importance of each subtask is indicated and new concepts 
or capabil it ies, not used by a subtask at the previous level, 
are noted. 

Table 6.1 ,  FEmulet£on , u b t e s k s  for  each o f  zhe~JormachlRe 
(lansuage) levels. 

Level Sequencing :hat.orlon Inst~ctlou Op~srand 
fetch Decodlng ^ooeast~ 

Machlne condL~io~I 
Lat~uage branch sub= 

r ~ t i ~ s  
high  

Bas ic  i t e r a t i o n  

med~ medium 
block s t ~ c  

Fortran ,  

, A l g o l , e t c .  h£~h l ~  

Lisp,  
S~bol, linked l i s t s  

~ t a  
Operactons 

f i x e d  immediate add, ~ l t i p l y  
format £ndlreot  ) r ,  omple -  

indexed ~ n t  
hizh ~ d l ~  ~ow 

si.mple aub | c r i p t ed  | i n c .  cos tM,  
ayntax  ~ t r i x  ops. 

no.-reot .nS~- 
IAr data  
s i n e c u r e s  

1 ~  med£~ t d l u .  

l i s t .  
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