
MICROPROGRAMMING AND ITS RELATIONSHIP
TO EMULATION AND TECHNOLOGY*

Samuel H. Fuller and Victor R. Lesser
Carnesie-Mellon University

Pittsburgh, Pennsylvania

C. Gordon Bell and Charles Kaman
Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT

This paper is a survey of the development and future
t rends in rnicroprograrnrning. We show how the structure of
rnicroprograrnmed processors has been shaped primarily by
two factors= the state of (semiconductor) technology and the
task of emulation. The other main theme of this article is that
it is a fruit less exercise to t ry to characterize and understand
microprograrnming in terms of how it differs from 'regular'
programming. The right approach to understanding
microprogramrning is to recognize that it is primarily applied
to the task of emulation (interpretation). Through this
approach the evolut ion of rnicroprograrnming, independent of
a part icular technology and type of instruction set being
emulated, is rev iewed and future trends indicated.

i. INTRODUCTION

The structure of microprogrammed processors, and
microprogramrning in general, is largely determined by two
factors= the state of (semiconductor) technology and the task
of emulation. Therefore, this article first reviews those
technological advances as well as those constraints and
demands imposed by the emulation process that have shaped
the evolut ion of microprogramming. The remainder of this
art icle then uses these observations to put the past
developments of rnicroprogramming in perspective and
forecast the major developments in the years ahead.

The other main theme of this article is that it is a
fruit less exercise to t ry to characterize and understand
rnicroprograrnrning in terms of how it differs from 'regular'
programming. The futi l i ty of this approach can be seen by
the numerous, contradictory definitions on microprogramming
in the l i terature [Rosin, 1969; Wilkes, 1969~ Mallach, 1972].
At tempts to base a definition on features of a processor's
architecturep such as horizontal instruction formats, lack of an
expl ic i t program counter, or visibil ity of real registers and

*This paper accepted for publication in State 0.1 t.b.e,,.
Reoort ~ MicroDro~rarnmin~ ~;1. ,S...ystenq~ Architecture.
Infotech Ltd., Berkshire, U.K. (1974).

This work was part ial ly supported by the.Advanced Research
Projects Agency of the Office of the Secretary of Defense
(Contract F44620-73-C-0074) and is monitored by the Air
Force Office of Scientific Research.

data paths; or features of a processor's realization, such as
the speed of main memory to that of the control (micro-)
memory, are easily rejected on the basis of existing
processors that are commonly recosnized to be
microprogramrned processors yet do not possess the required
features.

Most of this confusion in alternative definitions of
microprograrnrning comes from the fact that it has been used
in two ve ry di f ferent ways: (1) in a technological manner to
economical ly implement a complex instruction set or a small
number of di f ferent instruction sets on a single processor,
and (2) in a software manner to provide programmers with an
ex t ra degree of representational freedom, i.e. develop
mult iple instruction sets, each one appropriate for a
part icular task domain. The technological use of
microprogramrning was the dominant justification for the
development of rnicroprogrammable processors in the 1960's.
But as the cost of software began to become the major cost
of a computer system, the use of microprol~ramming as a
technique for making a computer more convenient to prot~ram
has and will continue to become the more important
application.

The right approach to understanding microprogramming
is to recognize that it is primarily applied to the task of
emulat ion (interpretation). Through this approach it is
possible to understand and predict the evoluton of
rnicroprograrnnrning independent of a particular technology and
type of instruction set being emulated.

The process of emulation will be taken up in
considerably more depth in Section 3, but it will be useful
here in the introduction to briefly look at the different
processors used to emulate a BAS]C machine. On the one
hand there are the Hewlett-Packard 2100, DEC PDP-11, and
PDP-8 that have time-sharing systems supporting BASIC.
The only language available to the user is BASIC and he has
no way of knowing the architecture of the processor. On the
other hand there are the BASIC programmable calculators
avai lable from Hewlett-Packard [Spagler, 1972] and Wang
Laborator ies that operate as BASIC machines= the input keys
and the displays are tailored to the BASIC language. It is
dif f icult to insist that the HP-2100, PDP-11, and PDP-8 are
not rnicroprograrnmed processors while the 'hidden'
processors in the HP and Wang BASIC calculators are
rnicroprogramrned. The only characteristic all these
processors have in common is that they are emulating BASIC
and a 8ood case can be made for dropping the term
'rnicroprograrnrning' altogether and simply use 'emulation' in

151

its place. H o w e v e r , we will continue to use the term
'microprogramming' here since it is so widely used and it is a
convenient way to indicate that we are discussing
programming as it applies to emulation (and interpretation)
rather than programming in general.

Following our discussion of technology and emulation,
this article then discusses specific hardware and software
techniques for emulation. A number of different types of
microprogrammed processors are also included as examples.

2. SEMICONDUCTOR TECHNOLOGY

The state of the art in semiconductor electronics has
had a profound effect on the feasibility of microprogramming.
Prior to the 1960's the only ef fect ive means of implementing
a high speed control store was to use a diode matrix. This
was the technology used by Whirlwind ! [Everett, 1951] and
by' Wilkes in his original paper on microprogramming [Wilkes
and Stringer, 1953]. Figures 2.1 and 2.2 show the structure
of these control units. As long as these diodes were discrete
components a control store of any reasonable size was too
expensive to compete with alternate implementations using
random logic (e.g. about 35,000 bits of control storage are
requi red to implement the full PDP-11/40 architecture while
the Whirlwind ! had only 4,800 'bits' in its control store). It
is important to realize that both of these structures are just
the control part of the processor and are an alternative to
convent ional sequential control circuits as shown in Figure
2.3. It was not until the middle and late 1960's that
integrated-ci rcui t technology advanced to the point that
economic read-only-memories (ROMs) and read-write
memories (RAMs) became a practical reality. It stands to the
credi t of [BM's engineers that they were able to develop the
|BM System/360 series of machines via microprogramming in
the ear ly 1960%; every model in the early IBM 360 line used
a di f ferent , non-semiconductor technique to implement its
control store. These ingenuous, but admittedly cumbersome
and costly techniques could be laid aside when the]I3M 370
series of machines were implemented since integrated circuit
technology had advanced to the stage that semiconductor
control stores were reliable. Figure 2.4 illustrates the basic
s t ructure of current microprogram control units.

Semiconductor memories suitable for control stores in
microprogrammed processors are now at the stage where
256 bi t /package RAMs and 1K (1024) bit/package ROMs are
in wide use in present processors and 1K RAMs and 4K ROMs
are being designed into the newer processors. 4K RAMs and
16K ROMs have been announced and are available in limited
quantit ies, but in general they are too slow to be seriously
considered for control stores.

For well over lO years now semiconductor
manufacturers have set a pace where the commercially
feasible chip complexity (i.e., number of devices per chip) has
rogh ly doubled every one to two years. For example, the 4K
bit~package RAM (13,000 devices) was introduced roughly
two and one half years after the 1K bit (4000) RAM. There is
eve ry reason to believe that this trend will continue for at
least the next four to six years. Hence we face a situation
where we can expect to see the size of control stores
growing as technology encourages designers to use more
control storage to cut costs in other areas, improve the
performance of the microprocessors, or add additional
capabil i t ies.

]i

Inputs (e,g, I AC $1ge)

(!
*Tim4 State Generator.

i;4 / [] 5 = t ;~:'o:~:;.

I

f ro order register

. . . . '="°°" t

c~b:;::l 0

* RTrroprogram address register, or fl~aster-slave registers,

,.Pu., l l ~ L ° ° " = ou..u.,

Memory arrays are not the only development in
semiconductor technology that are having a significant effect
on the structure of microprogrammed processors. Two other
ve r y important developments are the programmable logic
a r ray (PLA) and shifters. The basic structure of a PLA is
shown in Figure 2.5. It is a two-level combinatorial logic
circuit that is 'wired' for a specific application by the
masking, or metalization, that is used. The PLA has the same
outward characteristics of a ROM except that it would take a
ROM with several orders of magnitude more devices to match
the function of the PLA in many applications. For example, a

152

..... [- ~ - ' F ~ -] ''~
f r o m L • , . ~ I S E n a T O R 1
o r d e r I I o .
r c g l s t e r and ~ , +
¢ o n d i t l o n ~ l i
Z n p ~ t s ~ .

Coe~ro~ to:o l " '
" s e l e c t I I "

I . p u t

NCxC S t o r e n ~ d l f l c t s

• • N e x t sca~e

. evoke r e g i s t ~ ,
t r a n s f e r o p e r a -
t ; o n s .

I I1~ "

HODIFY TP

a Mlcroprograu~ address reg is te r ,
** One possib}e [m p l ~ e n t a t l o n .

r - i - d - * - - I n
, T I I I ']

_ , J J I I t '
inLou s ; I | , C o ~ l n a t i o n a l array

/ k- j " " " 1.._,~_. I (.)

C o n t r o l

L.

Vcc

?

° ° ° 1

T h e l e i n t e r ~ 1 I £ ~ s c o r r u p o ~ d CO m l n t e ~ s
iB • | u m - o f - p r o d u c t , r e p r e s e n t a t l o n o f t he

f u n c t i o n ,

I/

8

i' :-

Fig,/r. 2.5. A p r o s r ~ b l e i o g l ¢ array (PiA).

common PLA is a Rockwell Corporation package with .48
input /output terminals [Rockwell, 1973]. A ROM that would
be equivalent to this PLA in many applications would require
two orders of magnitude more bits. A PLA uses the same
techniques that designers of digital circuits used a decade
ago to minimize the number of gates required to real ize a
combinatorial function. However, if the function .to be
implemented is sufficiently ill-conditioned (e.g., a parity
tester), the PLA offers no advantage over a ROM. instruction
decoding is an example of a combinatorial function amenable
fo minimization techniques and hence PLAs will be very useful
for providing the decoding of instructions that must otherwise
be done with random logic or via a sequence of

I microinstructions.

PLAs do not lend themselves to dynamic alternations;
there is no natural addressing mechanism for each of the
make-or -break points in the PLA structure. A dynamically
al terable component that could be used much like a PLA is an
associative memory. Associative memories have been toted
for some time now as a panacea for many problems but have
ye t to prove to be a cost effective unit. However, as the
number of pins per package becomes more of a limitation
than the complexity of the semiionductor circuit itself,
associative memories may become viable components, e.g. the
SPS-41 used an associative memory to specify sophisticated,
programmable]/O patterns that will cause an interrupt
[SPS,1972].

The other non-memory semiconductor device that has
recent ly made an important impact on microprocessors is the
shifter. For example, the Signetics 8243 takes an eight bit
by te as input, shifts it left from zero to seven positions,
zeroing out the leftmost bits, and presents the shifted byte
on eight output pins. Using a package like the Signetics 8243
as a basic building block, larger shifters can easily be
constructed. The abil i ty of cheaply implementing a fast
shi f ter makes variable-length byte extraction, a common
process in emulation, a much easier task.

As will be detailed in the next sections, these
technology advances will lead to microprommable
architectures that are more uniform in structure (less ad hoc),
easier to program and can more efficiently emulate a wide
va r ie t y of di f ferent and more complex instruction sets.

3. THE PROCESS OF EMULATION

As we stated in the introduction, the right approach to
understanding microprogramming is to examine the task it
must perform: emulation. Thus, this section spells out in
detai l the task of emulation and through this discussion
indicates the appropriate representational framework and
associated operations for efficiently performing an emulation
(interpretat ion). In the next section we tie together our
observat ions on emulation and technology to predict the
future evolut ion of microprogramming.

Our present discussion of emulation and
microprogramming is especially appropriate given the view a
major t rend in microprogramming is towards more generalized
emulat ion in terms of both the number and complexity of
machine languages capable of being efficiently emulated on a
single microprogrammable processor. Recent architectures
such as the Burroughs B1700 [Wilner, 1972], which was
designed for efficient emulation of algebraic block-structure
languages, and SAAB FCPU [Lawson and Maim, 1973], which
provides general emulation capabilities in a high speed
processor, are examples of this more general approach to
emulation. This trend should be heightened in the future as
the var ie ty and complexity of tasks being programmed on a
single processor continue to increase.

An interpreter can be characterized as a system that
carr ies out the execution of a program in one
representat ional framework by dynamically mapping each
statement (instruction), at the point it is to be executed, into
an execution sequence of statements in another environment
which realize the semantics of the mapped statement. Given
this defini t ion of interpretation, emulation could be defined as
the special case in which the interpreter maps into an
envi ronment which is directly executed by the hardware.
However, this type of distinction between interpretation and

153

emulat ion is often very fuzzy. For example, consider the
in terpre ta t ion of the IBM 7090 on the IBM 360/65 which
involves the use of two environments [Tucker, 1965], i.e.
360 /65 microcode and 360 machine code which is in turn
emulated in the microcode.

This example also points up the difference between
actions which are done solely for the sake of interpretation
control and information (mapping actions) and those which
actual ly cause the interpreted program to be executed
(execut ion actions) [Mitchell, 1970]. In this example, mapping
actions were programmed in a different representation
envi ronment than execution actions, respectively 360/65
microcode and 360 machine language. As will be discussed
later, the appropriate environments for expressing these
d i f ferent types of actions and the interface between them is
one of the keys to understanding the evolution of
microprogrammable processors and how the emulation task
di f fers from other computational tasks. For example, the
SAAB FCPU expl ici t ly recognizes the distinction between
mapping and execu t ion actions by providing separate,
asynchronous processing elements for each type of action.

The other key to understanding the emulation process
is based on a static v iew of this process in contrast to the
dynamic v iew in terms of mapping and execution action so far
presented. A static view of emulation comes from
understanding the relationship between the two environments
the emulator operates on, i.e. the emulated and execution
environment. An environment consists of: (1) a data and
control state image which includes, for example in a
convent ional processor, its set of working registers
(accumulator, index register, program counter, interrupt
register, etc.) and its main memory which hold data and
program; (2) a set of primitive actions which can be used to
modify and test the state image~ and (3) a set of control rules
which decide, based on the current status of the control state
image, the sequence of primitive actions to execute. The
ease wi th which each of these aspects of an environment to
be " in terpreted" can be imbedded into the corresponding
aspects of "execution" environment is one of the main
determiners of the efficiency of the interpretation process.

The state diagram of one step in the emulation process,
Figure 3.1, represents both static and dynamic aspects of the
emulat ion process. The lefthand side of the diagram
represents the effect of executing an instruction of the
emulated computer on the state image of the emulated
computer. The righthand side represents the sequence of
t ransformations that the microprogrammed processor must
per form on its own state image in order to emulate this
instruction.]n terms of this diagram, efficient emulation
occurs when:

The data and control state image of target
(emulated) machine can be easily imbedded
into host (microprogrammed processor)
machine;

2. The decoding and control sequencing
function can be implemented efficiently. (In
conventional instruction sets most of the
work involves decoding, but in the
emulation of higher-level languages much
less of the total effort is spent on
decoding.)~

3. Microinstruction semantics can operate on
imbedded state image of emulated machine

in the same way the emulated instruction
does on its state image.

]n the initial use of microprogrammable processors for
emulation, each of these aspects that contributes to efficient
emulat ion could be easily attained because the environment(s)
to be emulated was known before the design of the
processor. This prior knowledge resulted in the design of a
microprogrammable processor that had a state image and
instruct ion semantics that were compatible with the emulated
environment, and a hardwired version of the mapping action
(control and decoding) between environments. However, as
unanticipated and more complex environments began to be
emulated a more general approach was needed:

1. a generalized decoding structure;

2. a means of statically reconfiguring, for the
durat ion of an emulation, the state image,
control structure, and primitive operation of
the execution environment so that these
aspects more nearly match those of the
emulated environment (see Figure 3.2)
[Lesser, 1972];

3. a means of dynamically modifying the
microinstruction semantics based on
parameters which are specified in the
emulated instruction, i.e. microinstruction as
a parameterized templates [Lesseh 1971].
Another way of viewing this requirement is
the need for clean, efficient interface
between the output of mapping actions and
semantics of execution actions.

These requirements for generalized emulation together
wi th the technological advances described in tile last section,
have led to the following concepts being incorporated into
more advanced microprogrammable processors:

1. f lexible bit extraction and manipulation for
generalized decoding:

a. barrel shifter and mask capability
(B1700 and FCPU)

b. insertion of data in an arbitrary field
of an internal register (FCPU)

2. the concept of residual control as a way of
configuring the environment;

a. set up gating patterns between
registers and buses (QM-1)

b. set up mode of arithmetic, i.e. l 's
complement, BCD, etc. (B1700, FCPU)

c. set up word length of data which will
be applied to arithmetic operations,
memory accesses and stores (B1700,
FCPU)

d. pseudo-interrupt register for
embedding control structure of
emulated machine (MLP-900, [Lawson
and Smith 1971])

154

Vtr=ual
E= l= ted Hicroco=puter
Hach t~ sya¢~

sI ~p l t cL¢ lmbeddLn 8
~ ¢ a c e d - - - - - - -,lipS..
mlchlne o£ sta te ~.=~e I~ hatdv lre

I
Emulaced ~ l a t o r ~pptrql b~srdva~
t ~ c ~ c c t o ~ tns t ruc t ion=

ind t r i c e a d d r e U i ~)

s~+l~ l d~q.~ lmpltct¢ excrsc¢ion S I+]v ~ asapFtn=

~:~a~hl[- - - - " o f i c s c e ~vagl h l rdvs t t

Physical
Htcroc~pucet

Ii s I

.1
sI+t

TILqsre 3,2. A l¢~w iLew of C~mmutactve Scst:e DJ.=g¢~ of Eeltlal:f.~ Procl l=

3. microinstructions as parameterized
templates:

a. indirect address of general registers,
shift count, ALU function (MLP-900)

b. execute-command (B1700,FCPU)

This list of features when taken as a whole shed some
light on what are the appropriate components of an
environment (microprogrammed processor architecture) for
general purpose emulation=

1. a primitive unit of information which is the
bit string.

2. a capability for dynamically reconfiguring
both the internal and external environment
of a microprogrammable processor, i.e. word
width, number of general registers, control
structures, register bussing connections,
arithmetic mode, etc.

3. a capability for constructing complex
address mapping functions.

These are capabilities that are desirable in almost all types of
computer environment. The important point is that they are
crucial for effective emulation, i.e. these features should be
looked at in terms of a matter of degree rather than specific
function when comparing with other task domains.

The future of microprogrammable processors will
inevitably result in a more generalized version of these
concepts as technology permits. However, the aspect of
microcomputer architectures that will probably receive the
most attention in the next 10 years is their control structure.
The control structure will play a more important role in
future years because one of the dominant trends in
programming languages is towards more complex control
structure (i.e. coroutine, data flow models, parallelism, etc.).
Inevitably, these more complex control structures in future
programming languages will be reflected in the machine
languages that will be compiled into.

4. HARDWARE AND SOFTWARE INTERPRETATION TECHNIQUES

To predict the future of microprogramming it is
necessary to understand how hardware and software
techniques are used in effecting interpretation. Then,
advances in technology can be related to advances in

techniques and, hence, to resultant advances in computer
systems. Since microprogramming is simply a variation of
conventional programming in terms of the desire for
general i ty and ease of coding, advances in microprogramming
wil l l ikely follow the same pattern already seen in assembly
level programming over the last twenty five years. This is
especially true given the trend toward more complex and
varied instruction sets which will require writing of many
large emulators, each supporting a complex run time
environment, e.g. PL/I machine, operating systems machine,
etc. Since emulation is the major application of
microprogramming, specific programming support will be
accented. With advances in technology offering more storage
capacity and functional processing per unit area (at low cost),
hardware structures will become more flexible thus providing
a general environment for interpretation and emulation.
Since sections of general structures usually 8o unused in any
single application, the cost or cost-performance of generality
is rarely acceptable to all. However, the added cost of
general i ty may be borne by improved technology thus
providing the user with more functional capability at a
constant cost. In contradistinction, the consumer market for
computers requires the lowest possible cost and, so, will
t rade generali ty for cost. Here, technology is used to lower
cost while keeping the application specific.

In addition to the techniques detailed in the last section
for general purpose emulation, there are also techniques for
making it easy to microprogram many large emulators. A list
of techniquesp in approximate order of increasing generality,
include:

2.

3.

More hip_h-speed working registers. Efforts
to minimize the size of the processor state
is not as strong in microprogrammed
processors as it is in more conventional
processors.

Lar~er control stores. Much of the current
involuted character of microprograms is a
result of squeezing a complete emulator
into a small space (e.g. 256 words) and
more reasonable (micro)programminoo will be
possible with larger control stores.

N-way branches (case statements). The
ability to test several conditions and branch
to any of several sections of code which
service them.

5.

6.

(Micro)subroutines. The ability to invoke a
function or reference data specified
indirectly at a higher level,.

~J.~..l:i~..¢......Y.. management, tvlultiprogramming is
already a common practice. For example,
emulators for central processors, several
I/O processors, and rnicrodiagnostics often
reside in the same control store. Problems
of protection, relocation, and using overlays
or paging from backing stores are issues of
emerging concern in microprogramming.

(Micro)interruots. Useful when multiple
emulations are being run on the same
processors.

155

The hardware components which initially supported
microprogramming were adequate speed ROMs and
multiplexors. ROMs provide tables to encode, decode, and
sequence control. Multiplexors extract fields, assemble
conditions for testing in parallel, and select control
information from registers containing the higher level
instructions (indirect control) rather than from the microcode
(direct control). The next advance came with the availability
of high speed, random access, alterable memory. With these,
microprograms are easily corrected, extended, or swapped
for those which provide different functions, for example,
machine diagnosis (microdiagnostics). More recent advances
in technology have made available low cost, small sized
shifters, associative memories, PLAs, and decima~ arithmetic
units. The fast shifter is the most important of these since it
easily extracts fields from instructions being interpreted or
data from special formats, such as floating point numbers.

To understand the implication of hardware and
software techniques it is necessary to consider their
application. The next section provides detailed examples. At
this point the uses of microprogramming can be decomposed
into two dimensions. The first compares designs by the level
of language supported. The range includes assembly,
intermediate, and high level languages. The second dimension
orders machines by the number of environments supported,
typically subdivided in two classes, one and many. Over the
last decade the number of environments has increased and
their level has risen from the assembly toward the procedure
oriented. In the past when several environments were
provided, one at a time was selectable from a small, fixed set.

By observing the development of assembly level
programming, techniques and by observing the parallel
development of microprogramming so far, a reasonable
prediction would be the continuation of the trend. If so, the
next step will be the generalization and sharing of resources
at the microprogram level. First, relocation and protection
schemes for alterable microstores will be developed. Then,
memory management and demand paging schemes to effect
the ability to run large microprograms in comparatively little
physical space will be included. The dynamic allocation of
microstore address space will probably require a micro-
operating system with fewer tasks than conventional ones
but many similarities with respect to space allocation
techniques. To facilitate writing and checkout of so much
code, high level languages designed for microprogramming
will be developed, just as they are now being used more and
more as a tool for developing system programs today.

To support these advances in microprogramming
software, hardware must be provided. The most important
advance on present components is larger microstores made
possible by faster and denser memories. As an alternative to
a fast, large microstore the cache structure could be used to
combine a small, very fast primary microstore with a larger,
slower secondary one. Similarly, demand paging requires a
fast swapping medium. This might be provided by a high
speed, low capacity solid state disk with low latency.

Given the ability to execute so much microcode what
use might be found for it? Extrapolating from today's
machines and keeping the needs of emulation in mind, one
natural application would be to provide multiple programming
environments. By this is meant a time-shared computer
system whose users divide into classes each requiring the
same environment. Some of these would be machine
languages for older machines, others would be intermediate,

high level (Fortran, PL/I, COBOL), or application oriented. The
high speed shifter is useful in all of these to extract fields.
Emulating earlier machines would be made easier by the use
of a programmable PLA or associative memory (to replace
logic not conveniently embedded in memories due to the large
number of inputs). Finally, note that the provision of multiple
environments is a problem in multiprogramming and,
eventually, as more environments are desired, in time-sharing.

5. MACHINE SPECIES

The various microprogrammed processors can be
characterized along evolutionary lines, which in turn roughly
correspond to their implementation complexity. One of the
earliest computer implementations, Whirlwind I [Everett,
1951], formulated the control part as an encoding in a
changeable , diode array memory (see Figure 2.1). From this
Wilkes and Stringer extended the encoding, and coined the
word "microprogrammin6" [Wilkes and Stringer, 1953].

5.1 One-Machine. Integrated Control a.D_d. Data

With the availability of fast, read only, random-access
memories computer processors with a single, fixed
instruction-set were designed. These early designs permitted
instruction-sets wih more complex data-operations (e.g.
multiply, divide, double precision). The most notable design
of this type, the IBM System/360 [Blaauw and Brooks, 1964;
Stevens, 1964] was actually a set of about 10 computer
models implementing the same instruction set covering a
performance range of about 300 and a price range of about
100. Over half of the models were implemented using
programmed control interpreters.

/~, Fixed Group g..[Conventional Instruction-Sets

Given that a single machine instruction set can be
implemented in a single processor, the natural extension is to
implement several machines. The earliest implementations of
multiple instruction sets in a single physical machine used
conventional programming. First generation, cyclic access,
drum memory computers were "emulated" usin,~ higher speed,
second and third generation computers with random access
memories.

An early and extensive use of multiple, fixed machine
emulations occurred with the IBM 360 microprogrammed
processors as they were used to implement the IBM
System~360 instruction-set, the 360 input-output processor
instruction-sets, and several models of earlier IBM computers.
The design methodology of these computers is not well
understood outside IBM. The design process for these
machines appears to be: first the primary machine (in this
case the 360) is designed; the various other machines to be
interpreted are then added to the design by installing their
idiosyncrasies (e.g. carry and overflow conditions, state,
special data path breaks) [Tucker, 1965].

/~. Variable Group ~ Conventional Instruction-Set%

Given that a single machine can be built that
implements several conventional instruction sets
(sequentially), can a machine that implements several
instruction sets, but on a variable basis, be built? In effect,
Standard Computer Corporation attempted such a design in
the IC-model 4 an~ later the MLP 900 [SCC 1968~ SCC, 1969].
The main goal of the MLP-900 was to implement an IBM 360,
together with other undefined machines, e.g. PDP-10, etc. In

156

essence, the machine was designed with much generality
using multiple register sets, and a two-stage pipeline for
instruct ion fetching and instruction execution. The variable
parts, which cannot be emulated easily by sequencing, were
brgught to a 4 position, multiple pole, electronic switch, which
permi t ted up to 4 variable parts to be selected by direct
wir ing on a plugboard array. Although such an approach is
of academic interest, the mechanical aspects of the
plugboarding preclude the machine from being interesting in a
product ion or economic sense. The myriad of details
associated with the input-output section (e.g. channels, device
state words, and transitions) add to the system definition job
more than the central processor.

Current ly, there are no commercially viable machines
that emulate a set of other conventional type machines on a
var iable basis. It appears that the machines to be emulated
must be determined a priori, in a fixed fashion. Such a
machine would permit any one machine to be emulated at a
given instant by loading a memory with the information
necessary to interpret the target machine. Although this has
been done when a large machine interprets another machine,
the implication in such a task is that the speed of emulation is
essent ial ly that of the target machine, it appears the
necessary hardware for this task will be available in the near
future and that such systems can exist by 1980.

5.4. A Single Hi~her Level Lan~_ua~_e Interbreter Machine

Since the use of higher level algebraic languages (e.g.
Algol, Fortran) and more natural textual languages (e.g. Cobol)
there has been a substantial interest in the development of
hardware that would interpret the languages directly. To
date, several machines have been built for single languages
(using direct ly hardwired techniques), and a number of
machines have been microprogrammed to interpret languages
direct ly. These designs have not resulted in any particular
insight about direct language interpretation. The
implementations execute the object target lan,~uage faster
than the non-microprogrammed counterparts, and the speed
improvements hold no surprises; the faster memory of the
microcode, together with the small, register transfer
primit ives, provide the improvement.

5.5 Interoret in~ Many Languages Directly with .a. Single
Machine

To date, only the Burroughs' B1700 [Wilner, 1972] has
been built with the goal of either the direct interpretation or
compile and execution of several higher level languages. In
that it is able to interpret the various languages, and encode
the object code in a space of roughly one half that of a
convent ional small computer (the IBM System 3), it is
successful. However, the execution time is not clear; one
would expect a factor of two increase in the execution of the
object code, too. There has been no attempt to compare the
execut ion time on a technology-normalized basis. The B1700
has also been used in the direct interpretation of several
convent ional machines (e.g. IBM 1401 and Burroughs' B2500).
Considering all factors, the B1700 appears to be the most
general* of the microprogrammed machines in existence.

*As measured by ability to access any bit in memory,
to have arb i t rary length microcode in any memory, and to
operate on variable length field with both binary and BCD
formats.

5.6 Special Purpose Machines

An especially interesting evolution of microprogrammed
machines has occurred for the interpretation of array data
for matrix and vector operations, includin,5 time series
evaluat ion (e.g., fast fourier transformation). Although there
were several ear ly laboratory processors, IBM~s 2938
performs this function. Most recently, a 3 processor system
for these operations has been developed and is attached as a
per ipheral to a conventional minicomputer [SPS, 1972]. The
three processors are functionally separated for: fetching
data from the attached computer, collecting analog inputs, and
stor ing the results back; moving data from the local array in
the r ight order for the arithmetic part; and the arithmetic
part.

6. CONCLUSIONS AND FORECASTS

In this article we have reviewed the most important
constraints within which successful microprogrammed
processors must operate: semiconductor technology and the
task of emulation. It is our view that these constraints more
s t rongly influence the direction future of microprogramming
per se. In fact, as we stated in the introduction, there is a
good case for dropping the term microprogramming
a l together and simply realize many processors are designed
to ef f ic ient ly emulate the instruction set of ' target' machine
architectures.

The major impact of semiconductor technology on
microprogramming is to provide large and fast control
storage. However, the emergence of programmable logic
arrays and fast shifters is also bound to have a significant
ef fect on microprocessors. It is relatively unclear at this
point exact ly what effect the processor-on-a-chip will have.
Implementing the entire processor on a single semiconductor
chip eliminates much of the flexibil i ty available in constructing
processors from MSI/LSI components, but, on the other hand,
provides a complete processor at a very low cost. If
processors-on-a-chip become sufficiently popular, emulation
wil l come into heavy use as these primitive processors are
surrounded by emulation routines to transform them into
processors with which we are comfortable working.

Our rev iew of the requirements of the emulation task '
pointed to a number of central concepts that are required for
eff ic ient emulation.

Table 6.1 summarizes the major dimensions of
emulat ion for di f ferent levels of target machines. In each cell
the importance of each subtask is indicated and new concepts
or capabil it ies, not used by a subtask at the previous level,
are noted.

Table 6.1 , FEmulet£on , u b t e s k s for each o f zhe~JormachlRe
(lansuage) levels.

Level Sequencing :hat.orlon Inst~ctlou Op~srand
fetch Decodlng ^ooeast~

Machlne condL~io~I
Lat~uage branch sub=

r ~ t i ~ s
high

Bas ic i t e r a t i o n

med~ medium
block s t ~ c

Fortran ,

, A l g o l , e t c . h£~h l ~

Lisp,
S~bol, linked l i s t s

~ t a
Operactons

f i x e d immediate add, ~ l t i p l y
format £ndlreot) r , omple -

indexed ~ n t
hizh ~ d l ~ ~ow

si.mple aub | c r i p t ed | i n c . cos tM,
ayntax ~ t r i x ops.

no.-reot .nS~-
IAr data
s i n e c u r e s

1 ~ med£~ t d l u .

l i s t .

157

REFERENCES

Blaauw, G. A. and Brooks, F. P., "The Structure of
System/360," J.B..M System J.. 3,2 (1964), 119-135.

Everett, R. R., "The Whirlwind [Computer," AiEE-IRE Conf..
(1951), 70-74.

Lawson, H. W., Jr. and Smith, B. K., "Functonal Characteristics
of a Multilingual Processor," IEEE ~ ComDut., C-20, July
1971, 732-743.

Lawson, H. W, Jr. and Maim, B., "The DATASAAB Flexible
Central Processing Unit (FCPU): Background, Concepts, Basic
Design, and Applications," Data SAAB, Linkoping, Sweden,
1973.

Lesser, V. R., "An Introduction to the Direct Emulaton of
Control Structures by a Parallel Micro-Computer,"
Transactons ~ Computers (special issue On Micro-
programming), IEEE, July 1971.

Lesser, V. R., Dynamic Control Structures and Their Use in
Emulation, Ph.D. thesis, Report No. CS 309, Computer Science
Department, Stanford University, Stanford, Calif., September,
1972.

Mallach, E. G., "Emulation: A Survey," Honevw~ll ComDuter
Journal, 6,4 (1973), 287-297.

Mitchell, J. G., The Design and Constructon of Flexible and
Efficient Interactive Programming Systems, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, Pa., June
1970.

Rockwell Programmable Logic Array (PLA), Pub. No.
1590ON11, Rockwell Device Division, Rockwell [nternational,
Anaheim, Calif., August, 1973.

Rosin, R. F., Contemporary concepts of microprograrnming and
emulation, Combutin~ Surveys 1..., 4(1969), 197-212.

Spagler, R. M., "BASIC-Language Model 30 Can Be a
Calculator, Computer, or Term," Hewlett-Packard Journal.
December, 1972.

SCC, Inner Compuer--Model 9, Principles of Operation,
Standard Computer Corp., Los Angeles, Calif., 1968.

SCC, IC-9000 Processor Functonal Description, Form No.
9001-3, Standard Computer Corp., Los Angeles, Calif., 1969.

SPS-41 User's Manual, Signal Processing Systems,]no.,
Waltham, Mass., 1972.

Stevens, W. Y., "The Structre of System/360: Part []--System
Implementations," ~ Systems Journal, 3,2, 1964, 136-143.

Tucker, S. G., "Emulation of Large Systems;" Comm. ACM, 8,12,
December, 1965, 753-761.

Wilkes, M. V, "The Growth of Interest in Microprograrnming:
A Literature Survey," ComDutin~ Survevs~ 1,3, (1969), 139-
145.

Wilkes, M. V. and Stringer, J. B., "Microprogramrning and the
Design of the Control Circuits " ~ Cambrids, e ~ Soc..
Part ~ 49, April, 1953, 2:30-238.

Wilner, W. T., "Design of the Burroughs B1700," Pr~¢,
AFIPS ~ 41,489-497.

158

