
Chapter 16

TÆMS: A Framework for Environment
Centered Analysis & Design of
Coordination Mechanisms

�

Keith S. Decker

The design of coordination mechanisms for groups of computational agents, either
interacting with one another or with people, depends crucially on the task environment
of which they are a part. Such dependencies include the structure of the environment
(the particular kinds and patterns of interrelationships that occur between tasks) and
the uncertainty in the environment (both in the a priori structure of any episode within
an environment and in the outcomes of an agent’s actions). Designing coordination
mechanisms also depends on properties of the agents themselves (arising in turn from
the intentional design of their internal architecture)—a large body of work already
exists that describes the principled construction of agents that act based on what are
variously termed beliefs, desires, intentions, and goals (see Chapters 2 and 5). The
central idea presented here is that the design of coordination mechanisms cannot rely
on the principled construction of agents alone, but must rely on the structure and other
characteristics of the task environment—for example, the presence of uncertainty and
concomitant high variance in a structure. Furthermore, this structure can and should
be used as the central guide to the design of coordination mechanisms, and thus must
be a part of any comprehensive theory of coordination.

This chapter will first present an outline of the TÆMS framework for building

�To appear in G. O’Hare and N. Jennings (eds.), Foundations of Distributed Artificial Intelligence,
Wiley Inter-Science, 1994.
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models of task environments at multiple levels of abstraction, along with examples
of such models. The next two sections will also describe several short examples of
our experiences in using the framework for modeling domains, analyzing a simple
distributed sensor network, and generalizing the partial global planning algorithm.
Finally the chapter will step back to discuss the current state of TÆMS, and its strengths
and weaknesses.

16.1 The TÆMS Framework

TÆMS (Task Analysis, Environment Modeling, and Simulation) is a framework with
which to model complex computational task environments that is compatible with both
formal agent-centered approaches and experimental approaches. The framework allows
us to both analyze and quantitatively simulate the behavior of single or multi-agent sys-
tems with respect to interesting characteristics of the computational task environments
of which they are part. We believe that it provides the correct level of abstraction for
meaningfully evaluating centralized, parallel, and distributed control algorithms, ne-
gotiation strategies, and organizational designs. No previous characterization formally
captures the range of features, processes, and especially interrelationships that occur
in computationally intensive task environments. TÆMS exists as both a language for
stating general hypotheses or theories and as a system for simulation. The simulator
supports the graphical display of generated task structures, agent actions, and statistical
data collection in CLOS (the Common Lisp Object System) on the TI Explorer Lisp
machine and DEC Alpha.

The basic form of the task environment framework—the execution of interrelated
computational tasks—is taken from several domain environment simulators (Carver &
Lesser 1991, Cohen, Greenberg, Hart & Howe 1989, Durfee, Lesser & Corkill 1987)�.
If this were the only impetus, the result might have been a simulator like Tileworld
(Pollack & Ringuette 1990). However, formal research into multi-agent problem
solving has been productive in specifying formal properties, and sometimes algorithms,
for the control process by which the mental state of agents (termed variously: beliefs,
desires, goals, intentions, etc.) causes the agents to perform particular actions (Cohen
& Levesque 1990, Shoham 1991, Zlotkin & Rosenschein 1991). This research has
helped to circumscribe the behaviors or actions that agents can produce based on
their knowledge or beliefs. The final influence on TÆMS was the desire to avoid the
individualistic agent-centered approaches that characterize most AI and Distributed AI.
The concept of agency in TÆMS is based on simple notions of execution, communication,
and information gathering. An agent is a locus of belief (state) and action. By separating
as much as possible the notion of agency from the model of task environments, we do

�See also the discussion in Chapter 5.
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not have to subscribe to particular agent architectures (which one would assume will be
adapted to the task environment at hand), and we may ask questions about the inherent
social nature of the task environment at hand (allowing that the concept of society may
arise before the concept of individual agents (Gasser 1991)). Thus we might study how
the concept and architecture of agents arises naturally from their task environment,
rather than by starting with a pre-designed agent architecture. Another example is the
search for so-called ‘social laws’ (Shoham & Tennenholtz 1992) that can be derived
from a task environment to reduce coordination overhead by reducing some forms
of uncertainty. The form of the framework is more detailed in structure than many
organizational-theoretic models of organizational environments, such as Thompson’s
notions of pooled, sequential, and reciprocal processes (Thompson 1967), Burton and
Obel’s linear programs (Burton & Obel 1984), or Malone’s queueing models (Malone
1987), but is influenced by them, and by the importance of environmental uncertainty,
variance, and dependency that appear in contingency-theoretic and open systems views
of organizations (Lawrence & Lorsch 1967, Galbraith 1977, Stinchcombe 1990, Scott
1987).

16.1.1 General Framework

The principle purpose of a TÆMS model is to analyze, explain, or predict the perfor-
mance of a system or some component. While TÆMS does not establish a particular
performance criteria, it focuses on providing two kinds of performance information:
the temporal intervals of task executions, and the quality of the execution or its result.
Quality is an intentionally vaguely-defined term that must be instantiated for a par-
ticular environment and performance criteria. Examples of quality measures include
the precision, belief, or completeness of a task result. We will assume that quality is a
single numeric term with an absolute scale, although the algebra can be extended to
vector terms. In a computationally intensive AI system, several quantities—the quality
produced by executing a task, the time taken to perform that task, the time when a
task can be started, its deadline, and whether the task is necessary at all—are affected
by the execution of other tasks. In real-time problem solving, alternate task execution
methods may be available that trade-off time for quality. Agents do not have unlimited
access to the environment; what an agent believes and what is really there may be
different.

The model of environmental and task characteristics proposed has three levels:
objective, subjective, and generative. The objective level describes the essential, ‘real’
task structure of a particular problem-solving situation or instance over time. It
is roughly equivalent to a formal description of a single problem-solving situation
such as those presented in (Durfee & Lesser 1991), without the information about
particular agents. The subjective level describes how agents view and interact with the
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problem-solving situation over time (e.g., how much does an agent know about what
is really going on, and how much does it cost to find out—where the uncertainties
are from the agent’s point of view). The subjective level is essential for evaluating
control algorithms, because while individual behavior and system performance can be
measured objectively, agents must make decisions with only subjective information.
In organizational theoretic terms, subjective perception can be used to predict agent
actions or outputs, but unperceived, objective environmental characteristics can still
affect performance (or outcomes) (Scott 1987). Finally, the generative level describes the
statistical characteristics required to generate the objective and subjective situations in
a domain. A generative level model consists of a description of the generative processes
or distributions from which the range of alternative problem instances can be derived,
and is used to study performance over a range of problems in an environment, avoiding
single-instance examples.

16.1.2 Mathematical Framework

The objective level describes the essential structure of a particular problem-solving
situation or instance over time. It focuses on how task interrelationships dynamically
affect the quality and duration of each task. The basic model is that task groups
(problem instances) appear in the environment at some frequency, and induce tasks T
to be executed by the agents under study. Task groups are independent of one another
(except for the use of computational or physical resources), but tasks within a single task
group have interrelationships. Task groups or tasks may have deadlines D�T �. The
quality of the execution or result of each task influences the quality of the task group
result Q�T � in a precise way; these quantities can be used to evaluate the performance
of a system.

An individual task that has no subtasks is called a method M and is the small-
est schedulable chunk of work (though some scheduling algorithms will allow some
methods to be preempted, and some schedulers will schedule at multiple levels of
abstraction). There may be more than one method to accomplish a task, and each
method will take some amount of time and produce a result of some quality. Qual-
ity of an agent’s performance on an individual task is a function of the timing and
choice of agent actions (‘local effects’), and possibly other (previous or future) task
executions (‘non-local effects’). When local or non-local effects exist between tasks that
are known by more than one agent, we call them coordination relationships (Decker &
Lesser 1993a). The basic purpose of the objective model is to formally specify how the
execution and timing of tasks affect this measure of quality.

Local Effects: The Subtask Relationship. Task or task group quality (Q�T �) is based
on the subtask relationship. This quality function is constructed recursively—each
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task group consists of tasks, each of which consists of subtasks, etc.—until individual
executable tasks (methods) are reached. Formally, the subtask relationship is defined
as subtask�T�T� Q �, whereT is the set of all direct subtasks of T and Q is a quality
function Q�T� t� � �tasks� times� �� �quality� that returns the quality associated with
T at time t. In a valid model, the directed graph induced by this relationship is
acyclic (no task has itself for a direct or indirect subtask). The semantics of a particular
environment are modeled by the appropriate choice of the quality function Q (e.g.,
minimum when all tasks need to be done, maximum for just one, summation, etc.).

Local Effects: Method Quality. Each method M at a time t will potentially produce
(if executed by an agent) some maximum quality q�M� t� after some amount of elapsed
time d�M� t�. The execution of methods is interruptible, and if multiple methods for
a single task are available, the agent may switch between them (typically, alternative
methods tradeoff time and quality). We model the effect of interruptions, if any, and
the reuse of partial results as non-local effects.

Let Progress�M� t� be the amount of progress at time t on the execution of M . If
M were not interruptible and Start�M� and Finish�M� were the execution start time
and finish time, respectively, of M , then:

Progress�M� t� �

���
��

� t � Start�M�
t � Start�M� Start�M� � t � Finish�M�
Finish�M�� Start�M� t � Finish�M�

We could model the quality produced by a method Q�M� t� using a linear growth
function Qlin:

Qlin�M� t� �

�
Progress�M�t�

d�M�t� �q�M� t�� Progress�M� t� � d�M� t�

q�M� t� Progress�M� t� � d�M� t�

Other models (besides linear quality functions) have been proposed and are used, to
represent anytime (Boddy & Dean 1989), contract anytime (Russell & Zilberstein
1991), mandatory/optional (Liu, Lin, Shih, Yu, Chung & Zhao 1991), or design-to-
time approachs (Garvey & Lesser 1993).

Non-local Effects. Any task T containing a method that starts executing before the
execution of another method M finishes may potentially affect M ’s execution through
a non-local effect e. We write this relation nle�T�M� e� p�� p�� � � ��, where the p’s are
parameters specific to a class of effects. There are precisely two possible outcomes of the
application of a non-local effect on M under our model: duration effects whered�M� t�
(duration) is changed, and quality effects whereq�M� t� (maximum quality) is changed.
An effect class e is thus a function e�T�M� t� d� q� p�� p�� � � �� � �task�method�time�
duration� quality� parameter 1� parameter 2� � � �� �� �duration� quality�.
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Some effects depend on the availability of information to an agent. For defining
effects that depend on the availability of information, we define the helper function
Qavail�T� t�A� that represents the quality of a task T ‘available’ to agentA at time t. IfT
was executed at A, Qavail�T� t�A� � Q�T� t�. If T was executed (or is being executed)
by another agent, then the ‘available’ quality is calculated from the last communication
about T received at agent A prior to time t. Thus the local, subjective quality of
a task result received by a remote agent may be different from the current quality at
another agent—this is one of the important types of environmental uncertainty that our
framework can express and for which we can develop coordination algorithm support.

Non-local effects are the most important part of the TÆMS framework, since they
supply most of the characteristics that make one task environment unique and different
from another. Typically a model will define different classes of effects, such as causes,
facilitates, cancels, constrains, inhibits, and enables (Decker & Lesser 1992). This section
contains a definition for one common class of effect that has been useful in modeling
different environments; another definition will be presented in Section 16.1.4; see
Decker & Lesser (1993e) for a more complete set of definitions. When non-local effects
occur between methods associated with different agents, we call them coordination
relationships (Decker & Lesser 1993a, Decker & Lesser 1992).

An important effect, used by the Partial Global Planning (PGP) algorithm (see
Chapter 8 and Durfee & Lesser (1991)) but never formally defined, is the facilitates
effect. Computationally, facilitation occurs when information from one task, often in
the form of constraints, is provided that either reduces or changes the search space to
make some other task easier to solve. For example, searching for a new book in the
library will be faster after the book has been properly shelved, but you could search
in the unordered stack of new books if you needed to. In our framework, one task
may provide results to another task that facilitate the second task by decreasing the
duration or increasing the quality of its partial result. Therefore the facilitates effect has
two parameters (called power parameters) � � �d � � and � � �q � �, that indicate
the effect on duration and quality respectively. The effect varies not only through the
power parameters, but also through the quality of the facilitating task available when
work on the facilitated task starts (the ratio R). Remember that q�M� t� refers to the
maximum quality possible to achieve at methodM , and note that before work is started
on a method, Start�M� � t (i.e. formulae are evaluated as if execution were about to
start).

R�Ta� s� �
Qavail�Ta� s�

q�Ta� s�

facilitates�Ta�M� t� d� q� �d� �q� � �d��� �dR�Ta� Start�M����

q�� � �qR�Ta� Start�M���	 (16.1)

So ifTa is completed with maximal quality, and the result is receivedbeforeM is started,
then the durationd�M� t� will be decreased by a percentage equal to the duration power
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�d of the facilitates effect, and similarly the maximum quality q�M� t� will be increased
by a percentage equal to the quality power �q. The use of Start�M� in the definition
indicates that communications about Ta received after the start of processing have no
effect. In other work (Decker & Lesser 1993a) we explored the effects on coordination
of a facilitates effect with varying duration power �d, and with �q � �.

Much more detail on the formal definitions of TÆMS objective, subjective, and
generative structures, including the representation of the use of physical resources, can
be found in Decker & Lesser (1993e).

16.1.3 Distributed Sensor Network Example

This example grows out of the set of single instance examples—Distributed Vehicle
Monitoring Testbed (DVMT) scenarios—presented in (Durfee et al. 1987) (see also
the discussion of the DVMT in Chapter 5). The authors of that paper compared
the performance of several different coordination algorithms on these examples, and
concluded that no one algorithm was always the best—not a very surprising result
and one that can be viewed as the central tenet of contingency theory. This is the
classic type of result that the TÆMS framework was created to address—we wish to
explain this result, and better yet, to predict which algorithm will do the best in each
situation. Here we do this by extending the analysis to take into account a statistical
view of the environmental characteristics. The level of detail to which you build a
model in TÆMS will depend on the question you wish to answer—here we wish to
identify the characteristics of the Distributed Sensor Network (DSN) environment, or
the organization of the agents, that cause one coordination algorithm to outperform
another.

In a DSN problem like the DVMT (see Chapter 3), the movements of several
independent vehicles will be detected over a period of time by one or more distinct
sensors, where each sensor is associated with an agent. The performance of agents in
such an environment is based on how long it takes them to create complete vehicle
tracks, including the cost of communication. The organizational structure of the agents
will imply the portions of each vehicle track that are sensed by each agent.

In our model of DSN problems, each vehicle track is modeled as a task group
(problem instance). Several task groups (vehicle tracks) may occur simultaneously in
a single problem solving episode. The simplest objective model is that each task group
Ti is associated with a track of length li and has the following objective structure,
based on a simplified version of the DVMT: (li) Vehicle Location Methods (VLM) that
represent processing raw signal data at a single location resulting in a single vehicle
location hypothesis; (li � �) Vehicle Tracking Methods (VTM) that represent short
tracks connecting the results of the VLM at time t with the results of the VLM at
time t	�; and one Vehicle-track Completion Method (VCM) that represents merging
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all the VTMs together into a complete vehicle track hypothesis. Non-local effects,
which relate the executions of tasks to one another, exist as shown in Figure 16.1—two
VLMs enable each VTM, and all VTMs enable the lone VCM. This structure is fairly
common in many other environments, where a large amount of detailed work needs to
be done, the results of which are collected at a single location or agent and processed
again (integrated), and so on up a hierarchy. The question is: to achieve a particular
level of performance, how many agents are needed and how should they be organized
in their unique and/or overlapping capabilities for accomplishing the necessary tasks.
Coordination is used not only to accomplish the necessary transfer of results from one
agent to another, but to avoid redundant work on the part of agents with overlapping
capabilities, and also to potentially balance the workloads.

VTM

VCM

VLM
VLM

VLM
VLM

T
min

VTM

VTM

T
minT

min

T
min

T
min

method (executable task)

task with quality 
accrual function min

subtask relationship

enables relationship

Figure 16.1: Objective task structure associated with a single vehicle track.

We have used this model to develop expressions for the expected value of, and
confidence intervals on, the time of termination of a set of agents in any arbitrary DSN
environment that has a static organizational structure and coordination algorithm
(Decker & Lesser 1993b, Decker & Lesser 1993c). We have also used this model
to analyze a dynamic, one-shot reorganization algorithm (and have shown when the
extra overhead is worthwhile versus the static algorithm). In each case we can predict
the effects of adding more agents, changing the relative cost of communication and
computation, and changing how the agents are organized (in the range and overlap of
their capabilities). These results were achieved by direct mathematical analysis of the
model and verified through simulation in TÆMS.
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Decker & Lesser (1993d) adds significant complexity to this basic model, making
it more like the DVMT. For example, it adds the characteristic that each agent has two
methods with which to deal with sensed data: a normal VLM and a ‘level-hopping’
VLM (the level-hopping VLM produces less quality than the full method but requires
less time; see (Decker, Lesser & Whitehair 1990, Decker, Garvey, Humphrey & Lesser
1993) for this and other approximate methods; a similar technique can be used to
model agents who have different capabilities such as processor speed). It also adds a
representation of faulty sensors (a subjective level effect), and result sharing, as well
as modeling the relationships that low quality results early on tend to make things
harder to process at higher levels, that the first VLM execution provides information
that slightly shortens the executions of other VLMs in the same vehicle track�, and
that a similar facilitation effect occurs at the tracking level (tracking gets easier as more
of the track is completed). We can also represent subjective features such as faulty
sensors, external noise, and ‘ghost’ tracks (like the example in Chapter 5). In general,
having different subjective mappings for different agents or classes of agents allows us
to model situations where some agents are more, less, or simply differently ‘informed’
than others.

16.1.4 Hospital Patient Scheduling Example

Let’s look at a second example in a completely different domain, hospital patient
scheduling. The following description is from an actual case study (Ow, Prietula &
Hsu 1989):

Patients in General Hospital reside in units that are organized by branches of
medicine, such as orthopedics or neurosurgery. Each day, physicians request
certain tests and/or therapy to be performed as a part of the diagnosis and
treatment of a patient. [� � � ] Tests are performed by separate, independent,
and distally located ancillary departments in the hospital. The radiology
department, for example, provides X-ray services and may receive requests from
a number of different units in the hospital.

Furthermore, each test may interact with other tests in relationships such as enables,
requires (must be performed after), and inhibits (test A’s performance invalidates test
B’s result if A is performed during specified time period relative to B). Note that the
unit secretaries (as scheduling agents) try to minimize the patients’ stays in the hospital,
while the ancillary secretaries (as scheduling agents) try to maximize equipment use
(throughput) and minimize setup times.

�This is because the sensors have been properly configured with the correct signal processing algorithm
parameters with which to sense that particular vehicle.
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Figure 16.2 shows an subjective TÆMS task structure corresponding to an episode in
this domain, and the subjective views of the unit and ancillary scheduling agents after
four tests have been ordered. Note that quite a bit of detail can be captured in just the
‘computational’ aspects of the environment—in this case, the tasks use people’s time,
not a computer’s. However, TÆMS can model in more detail the physical resources
and job shop characteristics of the ancillaries if necessary (Decker & Lesser 1993e).
Such detail is not necessary to analyze the solution presented by Ow et al. (1989), who
propose a primary unit-ancillary protocol and a secondary ancillary-ancillary protocol.

min task with quality 
accrual function min

subtask relationship

enables relationship

method (executable task)type

min

Barium X-Ray
Physical
Therapy

min

Draw
Blood

Test 1

Test 2

min

min

min min min min min

min

Nursing Unit 1
min

min min min min min

min

min

Barium X-Ray

Ancillary 1 Ancillary 2 Ancillary 3

min task already communicated 
to ancillary

requires delay

inhibits

Nursing Unit 1

Figure 16.2: High-level, subjective task structure for a typical hospital patient scheduling
episode. The top task in each ancillary is really the same objective entity as the unit task it
is linked to in the diagram.

We use min (AND) to represent quality accrual because in general neither the
nursing units nor ancillaries can change the doctor’s orders—all tests must be done as
prescribed. We have added two new non-local effects: requires-delay and inhibits. The
first effect says that a certain amount � of time must pass after executing one method
before the second is enabled. We could define it mathematically as follows:

requires-delay�Ta�M� t� d� q� �� �

�
�d��M�� �	 Start�M� � Finish�TA� � �

�d��M��q��M�	 Start�M� � Finish�TA� � �

(16.2)
The second relationship, A inhibits B, means that B will not produce any quality if
executed in a certain window of time relative to the execution of A, and can be defined
in a similar manner to the previous example.
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16.2 Using TÆMS: Experiences

The first step in using TÆMS is to build a model of the environment of interest. Often
the easiest way to go about this is to first model a single, detailed episode at the
objective and subjective levels, and then to use that as a basis for a generative level
model. TÆMS supplies several quality accumulation functions (min, max, mean, and
sum) and predefined non-local effects (enables, precedes, facilitates, and hinders for tasks;
uses and limits for resources), but you can extend the set. If you are interested only in
general coordination problems, comparing architectures, etc., there is also a random
structure generator. It takes parameters such as mean branching factor (Poisson),
mean depth (Poisson), mean duration (exponential), user defined quality accumulation
function distributions, etc. This basic structure can then be extended by patterns, such
as ‘random but consistent hard non-local effects’ or ‘fast fallback methods’, each of
which will take other parameters. The set of pre-defined patterns can also be extended.
Several different task group templates can be defined with specified inter-arrival times
for each, and the random structures can be recreated for paired-response experiments
(running several algorithms or architectures on the same randomly-generated episode).
At this point the analysis of the endogenous features of individual episodes, given
generative parameters, can take place. If the model is of a real domain, a verification
phase would also be mandatory.

TÆMS assumes only a simple view of agents as loci of belief (state) and action. A
mathematical analysis will usually proceed with a formal specification of what actions an
agent will take based on its current beliefs (for example, the agent-oriented programming
model of Shoham (1991)). TÆMS provides a meta-structure for the agent’s state-
transition function that is divided into the following 4 parts: control, information
gathering, communication, and method execution. First the control mechanisms
assert (commit to) information-gathering, communication, and method execution
actions and then these actions are computed one at a time, after which the cycle of
meta-states repeats. Predefined information gathering actions in TÆMS (which trade
computational time for information about the current task structure) include accessing
newly arrived subjective task structures and uncovering coordination relationships to
other agents’ tasks. Predefined communication actions include trasmitting the current
result of a method execution (or task), transmitting parts of the task structure, and
meta-level communications. Method execution actions are, of course, the execution
of methods in the structure by agents. TÆMS currently supports simple sequential
execution, execution with monitoring, suspension, and preemption of methods, and is
being extended to interruptable execution and internal agent parallelism.

We will briefly describe some of our experiences with TÆMS in distributed problem
solving situations; we have also been using it to examine issues in single agent real-
time scheduling and parallel scheduling (Garvey, Humphrey & Lesser 1993, Garvey &
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Lesser 1993).

16.2.1 Analyzing a Simple Distributed Sensor Network

We have been developing a methodology for analyzing, explaining, and predicting
behavior that focuses on chaining models of the environment, of coordination mecha-
nisms, and of principled agent construction together and examining the flow of various
uncertainties from the external environment through the models to the collective agent
behaviors. We illustrated this with a mathematical analysis of a simplified distributed
sensor network problem, verified through simulation (Decker & Lesser 1993b, Decker
& Lesser 1993c).

The methodology we have been building uses the TÆMS framework and other DAI
formalisms to build and chain together statistical models of coordination behavior that
focus on the sources of uncertainty or variance in the environment and agents, and their
effect on the (potentially multi-criteria) performance of the agents. We have used this
methodology to develop expressions for the expected value of, and confidence intervals
on, the time of termination of a set of agents in any arbitrary simple DSN environment
that has a static organizational structure and coordination algorithm (Decker & Lesser
1993b). This paper shows how the distributions of objective parameters such as “the
number of VLM methods seen by the maximally loaded agent” ( 
S) and “the max
number of task groups seen by the same agent” ( 
N ) can be defined from just the
generative parameters D �� A� �� r� o�T �.�

For example, the total time until termination for an agent receiving an initial data
set of size 
S is the time to do local work, combine results from other agents, and build
the completed results, plus two communication and information gathering actions:

�Sd��VLM��� �S� �N�d��VTM���a��� �Nd��VTM�� �Nd��VCM���d��I���d��C� (16.3)

We can use Eq. 16.3 as a predictor by combining it with the probabilities for the
values of 
S and 
N . Decker & Lesser (1993b) verify this model using the simulation
component of TÆMS.

We have also used this model to analyze a dynamic, one-shot negotiated reorgani-
zation algorithm (and have shown when the extra overhead is worthwhile versus the
static algorithm) (Decker & Lesser 1993c). In each case we can predict the effects of
adding more agents, changing the relative cost of communication and computation,
and changing how the agents are organized (in this case, by changing the range and

�A DSN environment D can be described by the following parameters: A, the number of sensor
agents; �, the average number of vehicle tracks in an episode; r, the range of the agents’ sensors; o, the
amount of overlap between agent sensors; T , which describes the task structure induced by each track
given its length (derived from the other parameters).
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overlap of their capabilities). These results were achieved by direct mathematical anal-
ysis of the model and verified through simulation in TÆMS. The interested reader will
find the details in our papers (Decker & Lesser 1993b, Decker & Lesser 1993c).

16.2.2 Generalizing the Partial Global Planning Algorithm

The partial global planning (PGP) approach to distributed coordination (Durfee &
Lesser 1991), also described in Chapter 8, increased the coordination of agents in a
network by such methods as scheduling the timely generation of partial results, avoiding
redundant activities, shifting tasks to idle nodes, and indicating compatibility between
goals. It achieved this by recognizing certain coordination relationships (non-local effects
across agents) among tasks in the Distributed Vehicle Monitoring Testbed (DVMT)
environment and producing the appropriate scheduling constraints. In fact, because
the local scheduler was so simple, the PGP mechanism supplanted it, recording and
responding to many of the appropriate scheduling constraints itself. This work has
had the characteristic of showing coordination techniques that are helpful, but not
providing a deep analysis of when and why they are appropriate.

Generalized Partial Global Planning (GPGP) is really a family of algorithms; it
is a extendable set of cooperative (team-oriented) coordination mechanisms built of
modular components that work in conjunction with, but do not replace, a fully
functional agent with a local scheduler. Each component can be added as required
in reaction to the environment in which the agents find themselves a part. We have
analyzed the performance of several GPGP family members through simulation in
conjunction with a heuristic real-time local scheduler and randomly generated abstract
task environments.

This approach views the coordination mechanism as modulating local control, not
supplanting it — a two level process that makes a clear distinction between coordination
behavior and local scheduling (Corkill & Lesser 1983). By concentrating on the creation
of local scheduling constraints, we avoid the sequentiality of scheduling in partial
global planning that occurs when there are multiple plans. By separating coordination
from local scheduling, we can also take advantage of advances in real-time scheduling
algorithms to produce CDPS systems that respond to real-time deadlines. We can
also take advantage of local schedulers that have a great deal of domain scheduling
knowledge already encoded within them. Finally, we can rely on humans as well in
making local scheduling decisions. Our approach allows consideration of termination
issues that were glossed over in the PGP work (where termination was handled by an
external oracle).

The GPGP approach specifies three basic areas of the agent’s coordination behavior:
how and when to communicate and construct non-local views of the current problem
solving situation; how and when to exchange the partial results of problem solving;
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how and when to make and break commitments to other agents about what results
will be available and when. The GPGP approach of recognizing and reacting to
the characteristics of certain coordination relationships is shared with Von Martial’s
work on the favor relationship (v. Martial 1992). The use of commitments in the
GPGP family of algorithms is based on the ideas of many other researchers (Cohen &
Levesque 1990, Shoham 1991, Castelfranchi 1993, Jennings 1993). Each agent also
has a heuristic local scheduler that decides what actions the agent should take and when,
based on its current view of the problem solving situation (including the commitments
it has made), and a utility function. The coordination mechanisms supply non-local
views of problem solving to the local scheduler, including what non-local results will
be available locally, and when they will be available. The local scheduler creates (and
monitors the execution of) schedules that attempt to maximize system-wide quality
through both local action and the use of non-local actions (committed to by other
agents) without resorting to a complete global problem view.

One question that we have examined in TÆMS is the effects of agents exchanging
non-local views (one of the GPGP coordination mechanisms—see Figure 16.3), and the
decomposability of tasks in the environment (expressed as a probability on non-local
effects), on system performance in terms of communication, total agent workloads,
overall solution quality, and termination time. We showed that there were significant
differences in communication and agent workloads due to both task decomposability
and exchange of non-local views (but no interaction effects).

Another question we have examined is the effect of task structure variance on the
performance of load balancing algorithms. This work is a logical follow-on to the
analysis of static and dynamic negotiated reorganization summarized in the last section.
A static organization divides the load up a priori—in this case, by randomly assigning
redundant tasks to agents. A one-shot dynamic reorganization, like that analyzed by
Decker & Lesser (1993c), negotiates the handling of redundant tasks on the basis of
the expected load on other agents. A meta-level communication (MLC) reorganization
negotiates the handling of redundant tasks on the basis of actual information about the
particular problem-solving episode at hand. Because it requires extra communication,
the MLC reorganization is more expensive, but the extra information pays off as
the variance in static agent loads grows. Figure 16.4 shows how the probability of
terminating more quickly with the MLC load balancing mechanism grows as the
standard deviation in the total durations of redundant tasks at each agent grows.

More information about Generalized Partial Global Planning, including the formal
definition of five example coordination mechanisms and experimental methodology
for determining when a mechanism is appropriate, can be found in Decker & Lesser
(1994).
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16.3 Summary and Future Work

TÆMS is a framework for modeling complex task environments. TÆMS exists as both a
language for stating general hypotheses or theories and as a system for simulation. The
important features of TÆMS include its layered description of environments (objective
reality, subjective mapping to agent beliefs, generative description of the other levels
across single instances); its acceptance of any performance criteria (based on temporal
location and quality of task executions); and its non-agent-centered point of view that
can be used by researchers working in either formal systems of mental-state-induced
behavior or experimental methodologies. TÆMS provides environmental and behavioral
structures and features with which to state and test theories about the control of agents
in complex computational domains, such as how decisions made in scheduling one
task will affect the utility and performance characteristics of other tasks.

TÆMS is not only a mathematical framework, but also a simulation language for
executing and experimenting with models directly. The TÆMS simulator supports the
graphical display of generated subjective and objective task structures, agent actions, and
statistical data collection in CLOS on the TI Explorer and DEC Alpha. These features
help in both the model-building stage and the verification stage. The TÆMS simulator
is being used not only for research into the coordination of distributed problem solvers,
but also for research into real-time scheduling of a single agent (Garvey & Lesser 1993),
scheduling at an agent with parallel processing resources available, learning coordination
relationships, and computational organizational design.

TÆMS does not at this time automatically learn models or automatically verify
them. While we have taken initial steps at designing a methodology for verification
(see (Decker & Lesser 1993b)), this is still an open area of research (Cohen 1991).
Work now being done includes building new models of different environments that
include physical resource constraints, such as hospital patient scheduling and airport
resource scheduling. Other extensions we are now working on include more helpful
facilities for specifying dynamic objective and subjective models that change structure
as the result of agent actions (like the Tower of Babel (Ishida 1992)). Such models add
yet another important source of uncertainty that can be a factor in influencing agent
organization.

Current applications being developed using TÆMS and the GPGP approach include
distributed support for human scheduling in concurrent engineering environments like
the ARCADIA software engineering development environment (Taylor, Belz, Clarke,
Osterweil, Selby, Wileden, Wolfe & Young 1988). Part of the ARCADIA environment
is directly concerned with representing and tracking the state of: software development
processes (including interrelationships), the products being produced, and the resources
available. This information can be used to assist users in task selection by developing
a User Coordination Assistant Agent (UCAA) that keeps track of a workstation user’s
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current agenda of tasks and presents a possible schedule (ordering) of these tasks
according to user- and domain-directed preferences. Such an agenda is not developed
in isolation, but rather through a distributed coordination process using multiple
coordination mechanisms triggered by the coordination relationships between the task
structures of the different agents involved.

Another application being developed is one using TÆMS to represent and reason
about multi-agent information retrieval on the Internet. The idea here is to have teams
of agents search for useful information. The results of some team member’s searches
will have an impact on other team members in a way that can be modeled with /tems/.
Algorithms, such as new GPGP mechanisms, can then be developed to take advantage
of these opportunities. Another direction we are pursuing is to use /tems/ to build
computational versions of organizational theories, such as Williamson’s Transaction
Cost Economics (Williamson 1975). Finally, we wish to expand our analyses beyond
the questions of scheduling and coordination to questions about negotiation strategies,
emergent agent/society behavior, and organizational self-design.
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