
A Cooperative Repair Method for a Distributed Scheduling System

Daniel E� Neiman and Victor R� Lesser
Computer Science Department
University of Massachusetts

Amherst� MA �����
dann�cs�umass�edu

Abstract

For some time� we have been studying the is�
sues involved in job�shop scheduling in an envi�
ronment of cooperative distributed agents� none
of which has a complete view of the resources
available� or of the tasks to be scheduled� Sched�
ules produced cooperatively by such distributed
agents using constraint satisfaction methods are
often not optimal because of the inherent asyn�
chronicity of the distributed scheduling process�
the bounded rationality of the scheduling agents�
and the di�culty in completely integrating meta�
level heuristics into an agent�s local scheduling
processes� This paper describes a modi�cation to
distributed scheduling in which the loosely cou�
pled distributed processing methods are supple�
mented with a tightly coupled parallel repair pro�
cess� We explore the implications on the repair
process of a distributed environment in which
the designer of the repair algorithm must ad�
dress issues of agent communication and orga�
nization� We describe a search algorithm and
a set of heuristics for guiding the repair process
and present some experimental results in the con�
text of the Distributed ARM� an airline resource
scheduling system�

Introduction

For some time� we have been studying the issues in�
volved in job�shop scheduling in an environment of co�
operative distributed agents� none of which has a com�
plete view of the resources available� or of the tasks
to be scheduled� The focus of this paper is the devel�
opment of tools for examining the trade�o	s between
a loosely�coupled distributed scheduling process and a
more tightly�coupled parallel search method for con�
structing multi�step repair plans for situations that
would otherwise require costly constraint relaxations�
In a previous work
Neiman et al� ����
� we reported

on heuristics for coordinating the scheduling processes
of multiple cooperative agents� During scheduling�
agents regularly transmit abstractions
texture mea�
sures
 of their current resource capabilities and antici�
pated resource requirements to remote agents� Agents

incorporate this information into their scheduling pro�
cesses� using it to determine which tasks to schedule
next using a most�constrained�variable heuristic� which
agents to request resources from� and to select the
methods for scheduling a particular resource� Simi�
lar heuristics for distributed scheduling systems have
been reported by
Yokoo� Ishida� � Kuwabara �����
Sycara et al� ����� Berry� Choueiry� � Friha �����
Burke � Prosser ����
� The use of texture measures
imposes costs upon the distributed scheduler� both
in terms of communication costs and computational
overhead for both the transmitter and receiver of the
abstractions� Agents performing a scheduling action
must determine whether their actions will a	ect other
agents� and which agents would be a	ected� and trans�
mit information accordingly� Agents must also fre�
quently integrate newly received abstractions into their
local planning process� In our micro�opportunistic
scheduling architecture
Sadeh ����
� new information
requires an agent to continually rerate its scheduling
goals in order to focus on the most critical scheduling
tasks� This constant rerating of goals causes the agent
to spend considerable amount of time on meta�control
activities� reducing the amount of time available for
actually performing scheduling activities� Despite this
e	ort� in most cases� the solution produced via dis�
tributed scheduling will be of lower quality than would
be achieved by a centralized agent solving the same
problem� Orders will be later and more constraints
will be violated��

The reasons for the reduction in schedule quality
are manifold� but can primarily be attributed to three
characteristics of distributed scheduling systems� asyn�
chronicity� bounded rationality� and a bias towards
local problem�solving� Asynchronicity exists in dis�
tributed systems because the state of the problem�

�A natural question at this point is �Why not use a
centralized scheduler	
� Our answer is that the distributed
nature of the scheduling process is forced upon us by the
nature of the real world� Resources tend to be physical en�
tities owned or managed by discrete agents that have pro�
prietary knowledge about the capabilities of the resources
and that have sole scheduling privileges for those resources�

solving world changes while an agent is deliberating�
Other agents are simultaneously processing� transmit�
ting messages� and consuming resources� Agents must
therefore continually make decisions based on out�of�
date information� The bounded�rationality of agents
limits the number of solutions that an agent can fea�
sibly explore� The scheduling process is known to be
NP�hard in many cases� For this reason� scheduling
agents seek satis�cing rather than optimal solutions�
The amount of backtracking and the methods available
to agents for resolving constraint violations are delib�
erately restricted in order to produce results within a
reasonable period of time� In a distributed problem�
solver� the area of the solution space that can be ex�
plored is even more limited because of the communica�
tion overhead incurred� Finally� agents tend to have a
bias towards solving problems based on their own local
view� Although global information may be available�
it is di�cult to incorporate it at all levels of the local
problem�solving process�

These observations have led us to the conclusion that
distributed problem solving episodes should have two
components� a fully asynchronous phase� characterized
by loose coordination between agents in which a satis�
�cing solution is developed� followed by a more tightly
coordinated� synchronous phase in which agents co�
operate to increase the quality of problematic aspects
of the solution� This synchronous phase can either
take the form of a post�processing repair episode in
which agents attempt to improve the quality of their
schedules by identifying and repairing those resource
assignments that violate constraints or the form of a
special scheduling method during the formation of the
original process plan in which agents attempt to proac�
tively avoid constraint relaxations� Because the e	ects
of constraint relaxations tend to propagate through�
out a schedule and are di�cult to �unwind�� we have
chosen to implement the latter approach and attempt
to minimize the relaxation of hard constraints during
scheduling�

Iterative schedule repair algorithms have been stud�
ied by many researchers� including
Miyashita �
Sycara ����� Zweben et al� ����
� In a centralized
system� repairs are usually required when jobs to be
scheduled are modi�ed� added� or removed� or when
resources break down or become otherwise unavailable�
Several systems� however� take an approach similar to
ours in that they �rst develop an almost correct sched�
ule and then incrementally repair constraint violations
until a satisfactory schedule is produced
Minton et al�
����� Johnston � Minton ����
�

In the following sections� we discuss how a paral�
lel repair algorithm has been implemented as a sep�
arated scheduling method in a distributed scheduling
environment� We �rst describe our experimental sys�
tem� the Distributed Dynamic Scheduling System
Dis�
tributed DSS
� We then discuss the issues involved in
distributed scheduling and present our heuristics for

guiding the repair process� Finally� we describe our
experimental setup and present some observations on
the performance of the distributed repair system�

Overview� The Distributed Dynamic

Scheduling System

In order to test our approach to solving distributed
resource�constrained scheduling problems� we have de�
signed a distributed version of a reactive� knowledge�
based scheduling system called DSS
the Dynamic
Scheduling System

Hildum ����
� DSS provides
a foundation for representing a wide variety of real�
world scheduling problems� Its �exible scheduling ap�
proach is capable of reactively producing quality sched�
ules within dynamic environments that exhibit unpre�
dictable resource and order behavior� The Distributed
DSS was constructed by partitioning the resource and
order data structures and assigning separate resource
and order partitions to each agent� A communication
facility was added to allow agents to transmit resource
requests and meta�level control information� The pri�
mary form of cooperation in the distributed system is
the lending of resources to satisfy a remote agent�s or�
der�

The Distributed Airport Resource
Management System

The Distributed Airport Resource Management Sys�
tem testbed was constructed using Dis�DSS to study
the roles of coordination and negotiation in a dis�
tributed problem�solver� Dis�ARM solves distributed
Airline Ground Service Scheduling
AGSS
 problems
where the function of each scheduling agent is to en�
sure that each �ight for which it is responsible receives
the ground servicing
gate assignment� baggage han�
dling� catering� fueling� etc�
 that it requires in time
to meet its arrival and departure deadlines� The sup�
plying of a resource is a multi�step task consisting of
setup� travel� and servicing actions� Each resource task
is a subtask of the airplane servicing supertask� There
is considerable parallelism in the task structure� many
tasks can be done simultaneously� for example� planes
can be serviced while baggage is being unloaded and
loaded� The choice of certain resource assignments will
often constrain the start and end times of other tasks�
For example� selection of a speci�c arrival gate for a
plane may limit the choice of servicing vehicles due to
transit time from their previous servicing locations and
may limit refueling options due to the presence or lack
of underground fuel tanks at that gate� For this reason�
all resources of a speci�c type can not be considered
interchangeable in the AGSS domain� Only the agent
that owns the resource can identify all the current con�
straints on that resource and decide whether or not it
can be allocated to meet a speci�c demand�

Orders and Resources

For the purposes of this discussion� it is necessary to
make a clear distinction between two kinds of state
that are maintained by each agent� the agent�s orders
and the agent�s resources�

Orders Orders represent the jobs to be scheduled
by each agent� Each order triggers the generation of a
task network� The task network is a somewhat com�
plex data structure that explicitly represents the tem�
poral constraints between each task in an order� For
each resource�requiring task� the agent creates a ser�
vice goal� This goal explicitly represents the legal re�
sources� the earliest start time
EST
� and latest �nish
time
LFT
 of the servicing task� A reservation rep�
resents an assignment of a resource to a service goal
for an interval
tb� te
 which includes setup� reset� ser�
vice� and travel times
if the resource is movable
� As
reservations are made for related tasks within the net�
work� a goal�s time window may decrease� The DSS
explicitly represents slack time for each task within the
task�network� This is the amount of time that the task
may be shifted to the left
earlier
 or right
later
 in
the schedule without requiring the rescheduling of any
other task in the order and without violating any hard
constraints� Slack is� therefore� a measure of �exibility
in the task network�
Figure � shows the resource assignments for a single

order in a schedule produced within our Distributed
Airport Resource Manager testbed using a three agent
con�guration� The deadline for this order was missed
by a signi�cant amount� �� minutes� The immediate
cause of the delay is a late assignment of the Load�
Baggage task� however� further diagnosis indicates that
this late reservation was forced by the right�shifting
of the prequisite task� UnLoad�Baggage� Examination
of the scheduling history for this task enables us to
plausibly attribute the delay to the asynchronous na�
ture of the scheduling process� During the scheduling
process� scheduling agent � was requested to provide a
baggage truck resource and did so� preempting a previ�
ous reservation for the UnLoad�Baggage task for �ight
���� This preemption was based on the perception
that su�cient global resources remained to allow both
the UnLoad�Baggage and Load�Baggage tasks to be
scheduled� This judgement did not take into account
reservations made and requests generated after the re�
ceipt of the most recent texture measures� By the time
agent � actually scheduled the UnLoad�Baggage task�
the only available reservation was too late to allow
a reservation for the Load�Baggage task to be made
without causing it to be right�shifted� violating the
hard constraint represented by the order�s due date�

Resources In the Distributed DSS� there may be
several resources of the same type� or several resource
types that are capable of carrying out the same task�
Because the DSS represents resource location and
travel time
and� for some applications� resource ca�

pacity
 resources of the same type are not necessar�
ily interchangeable� For each resource� the scheduling
agent maintains a data structure representing reserva�
tions and un�used time periods�
Figure � shows the reservations for the baggage truck

resources for all orders in the schedule of which the
order discussed previously is a part� It can be readily
seen that there is no simple reassignment for the UB���
task that would allow both it and the LB��� task to
meet their deadlines� However� there is considerable
unconsolidated unused time� leading us to believe that
some plan for reassigning resources might result in an
acceptable set of reservations�

Distributed Search Issues In a distributed envi�
ronment� agents are not able to produce complete plans
themselves� Agents cannot generate plans involving re�
sources belonging to another agent and must therefore
request information or planning activities from that
agent� The presence of loaned and�or borrowed re�
sources also complicates the repair process� A reserva�
tion promised to another agent cannot be shifted either
left or right without �rst generating a request to en�
sure that there is su�cient slack in that agent�s tasks�
Conversely� an agent with a borrowed resource does
not have the information locally to determine whether
it can be shifted within the remote agent�s resources�
Agents must therefore cooperate to generate repair
plans� We can structure our algorithms as a parallel
search process and investigate the normal issues that
arise in any distributed system� namely questions of
organization� commitment of e	ort� information trans�
fer� and reasoning under uncertainty�

The Synchronous Schedule Repair

Method

In DSS� the process of securing a resource is achieved
through a series of increasingly costly methods� as�
signment� preemption� and right shifting� These cor�
respond roughly to request satisfaction� backtracking�
and constraint relaxation� Preemption is a conserva�
tive form of backtracking in which a single existing
reservation is preempted in favor of a more constrained
task� Right shifting satis�es otherwise intractable re�
quests by shifting the time interval of the reservation
downstream
later
 until a suitable resource becomes
available� Because this method relaxes the latest �nish
time constraint� it has the potential to seriously de�
crease the quality of a solution� In the AGSS domain�
for example� right shifting a reservation will result in
late aircraft departures� Each of these resource secur�
ing methods is local� At any point during the process
of securing a resource� an agent may choose to generate
a remote request to another agent in an attempt to se�
cure the resource remotely� The remote agent can then
use any of the above methods in an attempt to secure
the resource for the requesting agent
see Figure �
�
Each of the local methods is implemented as a sin�

Figure �� The resource assignments for one order in the Distributed ARM� Setup
S
 and reset
R
 times are shown
in gray� servicing times are shown in white� travel times are shown by vertical striped segments� The dotted lines
below each servicing task shows the available slack for that task� A bracketed number indicates the remote agent
providing the resource� According to the Desired�Actual legend at the top of the �gure� the load baggage task for
this order has been right�shifted beyond its LFT
latest �nish time
� violating a hard deadline constraint�

LB458 is 10 minutes late.

Agent 1's View

Agent 2's View

Agent 3's View

Figure �� The baggage truck assignments for all orders in a schedule� Blank areas represent unused resource
capacity� labeled white areas represent servicing time� gray areas represent setup
S
 and reset
R
 time� The agent
owning the resource is indicated by the number on the left vertical axis� while a bracketed number underneath the
task name indicates the agent to which the resource has been lent�

gle knowledge source that is executed by a single agent
in order to secure a single resource for an order� Be�
cause only the agent owning a resource can assign
it to an order� agents can construct schedules asyn�
chronously without fear that a resource allocation will
interfere with another agent�s processing� In contrast�
the schedule repair method constructs plans consisting
of a sequence of resource cancellations and reassign�
ments� From a distributed processing viewpoint� the
replanning process can be considered as a multi�linked
negotiation� with each scheduling agent committing to
its role in the developing plan� If any other schedul�
ing methods were executed during the course of this
replanning� the assignment of resources might cause
the repair plan to become infeasible� For this reason�
replanning is performed synchronously � agents are al�
lowed to work only on the replanning task under the
control of a single initiating agent�
The schedule repair method is invoked whenever a

scheduling goal can only otherwise be satis�ed by per�
forming a constraint relaxation operation
right�shift
method

see Figure �
� All agents in the system
suspend their current problem�solving activities
after
completing their current knowledge source invocation
and processing all outstanding messages
 and collabo�
ratively search for some reassignment of resources that
would allow the current scheduling goal to be satis�ed
without a constraint relaxation� Although the syn�
chronous replanning method may prove to be compu�
tationally costly� it is guaranteed not to violate any
hard constraints of the existing partial solution � reser�
vations may be swapped� but will not be positioned
out of their legal time windows� One possible future
direction� however� is to modify the parallel search to
look for the least costly possible set of constraint viola�
tions when faced with an intractable set of scheduling
requirements�

The Distributed Search Process

The actual repair process is implemented as a best�
�rst search� The operators applicable to a given search
state are represented as repair goals� specifying the
reservation to be moved� the method to be used� and
the desired time window� shift amount� and shift di�
rection� States in the search space are represented by
repair plans� which specify reservations for the target
goals� Each plan has attached data structures describ�
ing the changes in resources and task assignments that
would be accomplished by executing the steps of the
plan� Each plan maintains an OR tree of repair goals
representing prerequisites that must be achieved in or�
der for the plan to be executable� As repair goals are
generated� they are broadcast to all agents that could
potentially satisfy them� Examples of repair plans and
goals can be seen in Figure ��
Our set of basic repair operators is quite small and

by no means exhaustive� The complexity of the replan�
ning process stems from the large number of possible

plan instantiations possible for each repair goal� In
general� new states are created by either shifting reser�
vations or by assigning tasks to new resources�

� Shift� Reservations may be shifted left or right
ear�
lier or later
 � possibly violating soft constraints and
increasing the cost or lowering the quality of a par�
ticular task�

� Move� A reservation might be moved to another re�
source provider� assuming that space exists� or that
previous steps in the repair plan have created a slot�

� Shift Adjacent Blocking Goal� If a task does
not have adjacent slack to permit a desired shift�
the scheduler may generate a goal to shift an earlier

or later
 reservation in the task�s network�

A completed plan is shown in Figure ��

Rating Repair Goals

In order to reduce the complexity of the search process�
we sought a method of abstracting schedules in such a
way that agents could reliably estimate whether a given
repair goal was feasible� and� if so� which agent would
be most likely to be able to carry out the goal� This
abstraction uses two measures of schedule �exibility�
slack and un�used time�
In the Distributed DSS� each agent represents its re�

sources with a complex data structure� describing the
activity and location of the resource during each time
period as it services each task� This information is too
extensive and specialized to transmit to other agents�
Instead� we have abstracted the time and state infor�
mation for each resource into lists of time intervals�
Each interval is marked as USED or UNUSED� In ad�
dition� each USED interval
which comprises the entire
setup� travel� servicing� and reset times of an activ�
ity
 is also annotated with its slack time� This mea�
sure delimits a time region within which a task can be
shifted without forcing the rescheduling of any other
activity within its supertask� These two measures� un�
used time� and slack� collectively abstract the �exibil�
ity within the system� both in terms of resources and
of tasks� These measures are used in several ways in
the schedule repair process� both to generate heuristics
for the search through sets of possible schedules� and
in generating meta�goals�

Heuristics for Scheduling Repair Activities

At the beginning of a repair episode� the agents trans�
mit their abstracted unused�slack statistics to all other
agents� This allows agents to determine whether a re�
pair goal is heuristically feasible either locally or re�
motely�
As each agent generates a repair goal� it is rated and

assigned to one of several categories�

�� Goals that appear to be immediately satis�able� These
are goals for which a suitable UNUSED time period
seems to be available for some resource�

Standard Assignment

Standard Preemption

Standard Right Shift

Standard Assignment

Standard Preemption

Standard Right Shift

Unable to Secure

Unable to Secure

Request Resource

Request Resource

Request Resource

Local Agent Remote Agent

Synchronous Replanning
Method

All agents suspend processing and
attempt to solve subproblem
cooperatively.

Figure �� In a distributed scheduling system� determining the method by which a resource will be secured is itself
a complex problem� The DSS provides a set of methods of increasing cost for assigning resources� At any time�
an agent may decide to generate a request for a resource rather than attempting a local method� Synchronous
replanning occurs whenever a
costly
 right�shift method is the only remaining possibility for securing a resource�

Prerequisite
Goal: Top-Level-Goal
Service-Goal: SG-233(UB-458)
Delta: 5
Direction: Left
Initiating Agent: 0

Goal: Top-Level-Goal
Service-Goal: RSG-327(LB-458)
Delta: 11
Direction: Left
Initiating Agent: 0

Plan: Move
Service-Goal: SG-103(UB-639)
To: Resource BT-1
Time-slot: (4850 4869)
Servicing: (4856 4862)
Agent: 1

Goal: Move
Service-Goal: SG-134(LB-492)
Delta: 0
Direction: NIL
Initiating Agent: 1

Plan: Move
Service-Goal: SG-134(UB-492)
To: Resource BT-16
Time-slot: (4875 4891)
Servicing: (4885 4891)
Agent: 1

Goal: Move
Service-Goal: SG-103(UB-639)
Delta: 0
Direction: NIL
Initiating Agent: 2

Plan: Move
Service-Goal: SG-233(UB-458)
To: Resource BT-13
Time-slot: (4852 4882)
Servicing: (4859 4868)
Agent: 1

Plan: Move
Service-Goal: RSG-327(LB-458)
To: Resource BT-32
Time-slot: (4881 4905)
Servicing: (4895 4905)
Agent: 2

Enables

Figure �� A plan�tree developed by the distributed repair mechanism for the LB��� ARM scenario� The repair
process was initiated by Agent �� who determined that the goal LB��� must be shifted �� minutes to the left� A
prerequisite� developed by the operator� move�blocking�task� is to shift the immediately adjacent upstream task�
UB���� to a reservation at least � minutes earlier� Agent � receives the repair goal and is able to satisfy it by
shifting the service goal SG���� to a new resource� BT���� and UB���� to BT��� at an earlier time� This allows the
system to develop a plan for assigning a reservation to the LB��� task within the due date of the Flight ��� order�

�� Goals that appear to be feasible
 These are goals for
which there exists some resource such that the sum of
UNUSED time plus the slack time of adjacent resources
is greater or equal to the amount of time required for
the reservation� The goal could therefore be potentially
satis�ed by either a shift or a move operation�

�� Goals that are potentially feasible� These are goals for
which the total amount of UNUSED time and slack for
all resources are greater than required�

�� Goals that appear not to be feasible� These are goals for
which the sum of UNUSED and slack time is less than
the amount of time required� In the best case� satisfying
this goal would require shifting the left predecessor of
some goal in order to increase the amount of slack time
in the region� In the worst case� this implies that there
is no further �exibility in the schedule and no plan can
be developed without relaxing hard constraints�

Within each category� goals are grouped according
to heuristics designed to improve the quality of the
�nal solution and the performance of the distributed
replanning system� First� goals are ordered to re�ect
the time�shift preferences of the tasks themselves� For
example� tasks with preferences to be scheduled as late
as possible are rated highly if they are to be shifted
later� and lower if they are to be shifted to an earlier
time slot�
The heuristics for rating goals to improve dis�

tributed performance vary according to the organiza�
tional structure used in problem solving� but essen�
tially� the object is to favor plans that involve the orig�
inating agent or plans that can be further developed
locally� The �rst heuristic will minimize the cost of ac�
tually implementing the �nal repair plan� because the
majority of the tasks will be able to be carried out by
the initiating agent� This also has the bene�t of re�
ducing that agent�s obligations to other agents� The
second heuristic� favoring plans that can be developed
locally� reduces the communication overhead�

Experimental Results

The distributed schedule repair method was tested us�
ing several order sets developed for a three agent con�
�guration of the DIS�ARM distributed scheduler as
reported in
Neiman et al� ����
� We chose three
order sets displaying considerable tardiness under dis�
tributed scheduling despite the use of texture�based
scheduling heuristics� For each order set� we generated
ten test cases by randomly assigning resources and or�
ders to each of the three agents� The total number of
resources provided for these order sets were designed
to be minimally su�cient to allow all the jobs to be
scheduled � at least one resource type proves to be a
bottleneck in each environment� Our results are pre�
sented in the table in Figure �� As measured by to�
tal tardiness and number of late orders� the results of
the distributed repair process are superior not only to
those produced by the distributed scheduler alone� but
quite often to the results produced by the centralized

Table �� The results of the distributed repair algorithm
compared with schedules developed by both central�
ized and distributed schedulers for three large
���
jobs
 order sets in the ARM testbed� Results are pre�
sented in terms of total minutes past the due date for
the entire set of orders followed by the number of tardy
orders in parentheses�

Scheduler Environment
���� ���� ����

Centralized ���� ����� �����
Distributed ���� ����� �� ����� ���� �����
Distributed
with Repair �� ����� ���� ����� ���� �����

scheduler� In the schedules in which repair plans were
produced� the number of right shift methods was re�
duced by ���� Although the set of scheduling appli�
cations explored is not yet large enough to allow us to
make sweeping generalizations� we have observed that
the UNUSED�slack heuristic is an excellent predictor
of whether or not a schedule is repairable� Intervals
lacking either tasks with a high degree of slack time or
resources with signi�cant unused capacity proved to
be intractable for rescheduling purposes� Conversely�
the presence of intervals with signi�cant slack or un�
used times led to the rapid formation of plan trees with
very few steps�

Conclusions

This work was motivated largely by our realization that
we had reached the point of diminishing returns in at�
tempting to improve the performance of distributed
schedulers by increasing the quality of the heuristics
and the amount of meta�level information available to
the agents� The amount of e	ort agents were spend�
ing generating� communicating� and integrating meta�
level information into their processing was becoming
increasingly burdensome� and the increase in schedule
quality due to exploiting this information had become
increasingly di�cult to obtain� Our results indicate
that an alternative approach may be appropriate for
the distributed scheduling domain� namely� to allow
agents to develop initial approximations of schedules
while coordinating only loosely� A more tightly cou�
pled processing phase can then be performed in which
the agents coordinate very closely to avoid costly con�
straint relaxations caused by lack of coordination be�
tween the distributed agents�
Considerable work remains to be done� In particular�

we would like to determine whether we can signi�cantly
reduce the overhead of texture communications by
performing infrequent but computation�intensive and
communication�intensive repair operations� This will
require empirically measuring the relative cost of the
synchronous repair mechanism as compared with the
overhead of continuous coordination between agents�

In the near term� we intend to continue testing the
synchronous repair method on a wider range of sched�
ules and application domains and to investigate the
trade�o	s between performing repair as a synchronous
scheduling method and as a separate post�processing
episode�

Acknowledgments

This work was partly supported by DARPA contract
N���������J����� and NSF grant IRI��������� The
content of this paper does not necessarily re�ect the
position or the policy of the Government and no of�
�cial endorsement should be inferred� We would like
to thank Dr� David Hildum for his work in developing
the centralized and distributed versions of the DSS�

References

Berry� P� M�� Choueiry� B� Y�� and Friha� L� �����
A distributed approach based on temporal abstrac�
tions fr planning scheduling and resource allocation�
In Workshop Notes of the IJCAI��� Workshop on
Knowledge�based Production Planning� Scheduling�
and Control� pp ������

Burke� P�� and Prosser� P� ����� The distributed asyn�
chronous scheduler� In Zweben� M�� and Fox� M� S��
eds�� Intelligent Scheduling� Morgan Kaufmann� chap�
ter ���

Hildum� D� W� ����� Flexibility in a Knowledge�
Based System for Solving Dynamic Resource�
Constrained Scheduling Problems� Ph�D� Disserta�
tion� Computer Science Dept�� University of Mas�
sachusetts� Amherst� MA ������

Johnston� M� D�� and Minton� S� ����� Analyz�
ing a heuristic strategy for constraint�satisfaction and
scheduling� In Zweben� M�� and Fox� M� S�� eds�� In�
telligent Scheduling� Morgan Kaufmann� chapter ��

Minton� S�� Johnston� M� D�� Philips� A� B�� and
Laird� P� ����� Solving large�scale constraint sat�
isfaction and scheduling problems using a heuristic
repair method� In Proceedings of the Eighth National
Conference on Arti�cial Intelligence� ������

Miyashita� K�� and Sycara� K� ����� Adaptive case�
based control of schedule revision� In Zweben� M��
and Fox� M� S�� eds�� Intelligent Scheduling� Morgan
Kaufmann� chapter ���

Neiman� D�� Hildum� D�� Lesser� V�� and Sand�
holm� T� ����� Exploiting meta�level information
in a distributed scheduling system� In Proceedings of
the Twelfth National Conference on Arti�cial Intelli�
gence� ��������

Sadeh� N� ����� Look�Ahead Techniques for Micro�
Opportunistic Job Shop Scheduling� Ph�D� Disserta�
tion� Carnegie Mellon University� Pittsburgh PA�

Sycara� K�� Roth� S�� Sadeh� N�� and Fox� M�
����� Distributed constrained heuristic search� IEEE

Transactions on Systems� Man� and Cybernetics
��
�
�����������

Yokoo� M�� Ishida� T�� and Kuwabara� K� ����� Dis�
tributed constraint satisfaction for DAI problems� In
Proceedings of the �	th International Workshop on
Distributed Arti�cial Intelligence�

Zweben� M�� Daun� B�� Davis� E�� and Deale� M� �����
Scheduling and rescheduling with iterative repair� In
Zweben� M�� and Fox� M� S�� eds�� Intelligent Schedul�
ing� Morgan Kaufmann� chapter ��

