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Abstract

Multi-Agent Reinforcement Learning (MARL) algorithms $eif from slow
convergence and even divergence, especially in large-sgatems. In this work,
we develop a supervision framework to speed up the conveegefifMARL algo-
rithms in a network of agents. Our framework defines a maitel organizational
structure for automated supervision and a communicatiotopol for exchanging
information between lower-level agents and higher-leuplesvising agents. The
abstracted states of lower-level agents travel upwardsaohigher-level super-
vising agents generate a broader view of the state of theonletwl his broader
view is used in creating supervisory information which isged down the hier-
archy. The supervisory policy adaptation then integrat@esvisory information
into existing MARL algorithms, guiding agents’ exploratiof their state-action
space. The generality of our framework is verified by its agapions on differ-
ent domains (i.e., distributed task allocation and networking) with different
MARL algorithms. Experimental results show that our fraroganimproves both
the speed and likelihood of MARL convergence.

1 Introduction

A central challenge in multi-agent systems (MAS) reseasdh design distributed co-
ordination mechanisms to agents that have only partial wigftthe whole system to
generate efficient solutions to complex, distributed peoid. To effectively coordi-
nate their actions, agents need estimate the unobsented sfehe system and adapt
their actions to the dynamics of the environment. Multitatgeinforcement learning
(MARL) techniques have been extensively explored in sutinge



To scale up, previous research [2, 16, 4] has distributetetir@ing and restricted
each agent to using the information received only from ithadiate neighbors to up-
date its estimates of the world states (i.e., Q-values ftesiction pairs). However,
this constraint results in long latency to propagate thee stdormation to agents fur-
ther away. Such latency can result in neighborhood infaondieing outdated, hence
leading to mutually inconsistent views among agents. Intewaid updating local es-
timates using information only from immediate neighbors patentially suffer from
the "Count-to-Infinity” problem [12], where agent A's estite of the world state is
calculated from agent B’s estimate, which is calculatedhffoom agent A's estimate.
Therefore, such limited view for each agent and the nonestatity of the environment
(all agents are simultaneously learning their own polictasises MARLSs to converge
slowly and even diverge. Furthermore, the slowness of MARhvergence is wors-
ened by the large policy search space. Each agent’s policgnip includes its local
state and actions but also some characteristics of thes statbactions of its neighbor-
ing agents [2], or the state size of each agent may be propaitto the size of the
system [4].

Two paradigms have been studied to speed up the learninggsocThe first
paradigm is to reduce the policy search space. For exani@elPOT-RL [11] re-
duced the state space by mapping states onto a limited numflaetion-dependent
features. The hierarchical multi-agent reinforcementiizgy [5] used the explicit task
structure to restrict the space of policies, where eachtdg@med joint abstract action-
values by communicating with each other only the state olfittéyel subtasks. The
second paradigm is to use heuristics to guide the policychedrhe work [13] used
both local and global heuristics to accelerate the learpimogess in a decentralized
multirobot system. The local heuristic used only the loo&bimation and the global
heuristic used the information that was shared and requordze exactly the same
among robots. The Heuristically Accelerated Minimax-Q (MQ) [3] incorporated
heuristics into the Minimax-Q algorithm to speed up its cengence rate, which shared
the convergence property with Minimax-Q. HAMMQ was intedder use only in a
two-agent configuration and further the authors had no dsgon how heuristics were
constructed.

This paper presents a supervision framework, called Mident Automated Su-
pervisory Policy Adaptation (MASPA), to accelerate thetiag. MASPA follows the
second paradigm that uses heuristics to guide the poliaglsedhe main contribu-
tion of MASPA is that it defines a decentralized hierarchmgbervision mechanism
to automate the generation of heuristics (also called sigmy information) and uses
a supervisory policy adaptation that integrates heusstito existing unsupervised
MARL algorithms (e.g., GIGA [17], WPL [1], etc.) in a genemeanner to speed up
their convergence. The supervision mechanism is definednwylti-level supervision
organization (a meta-organization built on top of the agemterlay network) and a
communication protocol for exchanging information betwémwver-level agents and
higher-level supervising agents.

The key idea of MASPA is as follows. Each level in the supeovirganization
is an overlay network in itself. For example, Figure 1 showthrae-level supervi-
sion organizational structure. The abstracted statesveéridevel agents travel up-
wards so that higher-level supervising agents can genafateader view of the state
of the network. This broader view comes from not only infotimaabout the states of
lower-level agents but also information from neighboringervising agents. In turn,
this broader view results in creating supervisory infoiipratvhich is passed down the
hierarchy. The supervisory information guides the leagrof agents in collectively
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Figure 1: An organization structure for multi-level sugsion

exploring their state-action spaces more efficiently, amsequently results in faster
convergence. To provide up-to-date supervisory inforomatihe process above is pe-
riodically repeated.

Our approach has a hierarchy of control and data abstraatibith is concep-
tually different from existing hierarchical multi-agemdrning algorithms that uses a
hierarchy of task abstraction. The generality of MASPA isfied by its applications
in different domains (i.e., distributed task allocatiordaretwork routing) with differ-
ent MARL algorithms. Experimental results show that it nolyodramatically speeds
up the rate of MARL convergence, but also increases itsitikeld of convergence.
MASPA also shows robustness when not all supervising agewis properly. To our
knowledge, it is the first work that demonstrates that if appiately exploited a more
global view of network state significantly improves MARL fanmance.

MASPA assumes agents will voluntarily share their staterimiation. It also im-
plicitly assumes the original multi-agent system can benfxt into a nearly decom-
posable hierarchy [9] of at least one level. This assumptigolies that If agents in the
original MAS are far apart in spatial terms, their behavas also far apart in causal
terms. For example, in Figure 1, knowing detail informatadrout agents in cluster
6 will not affect much behaviors of agents in cluster For clarity, this paper limits
the discussion to the case where learning only happens abttam level and super-
vising agents use some heuristics to make decisions, butAAI®es not restrict the
opportunity for supervising agents to learn their supémigolicies.

The rest of the paper is organized as follows. First, we ptessenulti-level organi-
zational structure used by the supervision mechanism. &ltemmunication protocol
is defined for agents at different levels. After that, we diégcthe supervisory policy
adaptation that integrates supervisory information inthR\ll algorithms. MASPA is
then empirically evaluated on DTAP and network routing peah Finally, we con-
cludes this work and discusses some future work.



2 Organizational Supervision

Supervision mechanisms commonly exist in human orgawiaatisuch as enterprises
and governments. The purpose of these mechanisms is to rarganization effec-
tively and efficiently to fulfill the organization goals. Sempision involves gathering
information, making decisions, and providing directionsrégulate and coordinate
actions of organization members. The practical effectigsnof supervision mecha-
nisms in human organizations, especially in large orgdioas, inspired us to intro-
duce a similar mechanism into multi-agent systems in omé@nprove the efficiency
of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay sirectMASPA
adopts a multi-level, clustered organizational structévgents in the original overlay
network, called workers, are clustered based on some neegsgr, geographical dis-
tance). Each cluster is supervised by one agent, calledifferasor, and its member
agents are called subordinates (note that subordinates kiwest level are workers).
The supervisor role can be played by a dedicated agent orfahe avorkers. If the
number of supervisors is large, a group of higher-level stipers can be added, and so
on, forming a multi-level supervision structutdn this paper, our discussion focuses
on the situation where each agent belongs to only one cluster

Two supervisors at the same level are adjacent if and ontyegat one subordinate
of one supervisor is adjacent to at least one subordinateeodther. Communication
links, which can be physical or logical, exist between agljaavorkers, adjacent su-
pervisors, and subordinates and their supervisors. Figsh®ws a three-level organi-
zational structure. The bottom level is the overlay netwafriworkers which forms 9
clusters. A shaded circle represents a supervisor, whrelsmnsible for a correspond-
ing cluster. Note that links between subordinates and theiervisors are omitted in
this figure.

3 Communication Protocol

Three types of communication messages are used in MA&pArt, suggestionand
rule. A worker’s report passes its activity data upwards to pievis supervisor with
a broader view. A supervisor’s report aggregates the indion of reports from its
subordinates. A supervisor sends its report to its adjaagrdrvisors at the same level
in addition to its immediate supervisor (if any). The supgovs view is based on not
only the agents that it supervises (directly or indirectiy) also its neighboring super-
visors. This peer-supervisor communication allows eagiesusor to make rational
local decisions when directions from its immediate supsmvare unavailable. To pre-
vent supervisors from being overwhelmed and reduce the ecoriwation overhead in
the network, the information is summarized ( or abstractedgports. Furthermore,
reports are only sent periodically.

Based upon this information, a supervisor employs its digggrintegrates direc-
tions from its superordinate supervisor, and provides i@y information to its
subordinates. As in human organizations, rules and suggssire used to transmit
supervisory information. We definerale as a tuplgc, F'), where

e c: a condition specifying a set of satisfied states

e F': aset of forbidden actions for states specified:by

1The top supervision level can have multiple supervisors.



A suggestions defined as a tuplg:, A, d), where
e c: a condition specifying a set of satisfied states.
e A: asetof actions
e d: the suggestion degree, whose rande-is, 1].

A suggestion with a negative degree, callatkgative suggestiomirges a subordinate
not to do the specified actions. In contrast, a suggestidmaviiositive degree, called
apositive suggestigrencourages a subordinate to do the specified action. Thtegre
the absolute value of the suggestion degree, the strongémiiact of the suggestion
on the supervised agent.

Each rule contains a condition specifying states wherentmapplied. Subordi-
nates are required to obey rules from their supervisors. tBdkeir imperativeness,
correct rules greatly improve the system efficiency, whileorrect rules can lead to
inefficient policies. Therefore, a supervisor requires donknowledge, in addition
to information from its subordinates, to make rules thatha\positive impact on the
organizational performance.

Rules are “hard” constraints on subordinates’ behaviorcdntrast, suggestions
are “soft” constraints and allow a supervisor to expresgrigderence for subordinates’
behavior. In our example use, a suggestion have a conditainhimg all states. A
supervisor knows that the system performance benefits frembardinate doing a par-
ticular action more frequently. However, due to limited domknowledge or limited
information about the subordinate’s local policy and sunaing environment, a super-
visor can only suggest the subordinate to do more of thadmetithout telling when it
should and when it should not. Therefore, a subordinate aotsgidly adopt sugges-
tions. The effect of a suggestion on a subordinate’s loceistten making may vary,
depending on its current policy and state. A supervisor mgiihe or cancel rules and
suggestions as new or updated information from its subatdgbecome available.

A set of rules are in conflict if they forbid all possible actsoon some state(s). Two
suggestions are in conflict if one is positive and the othereigative and they share
some state(s) and action(s). A rule conflicts with a suggestia state-action pair is
forbidden by the rule but is encouraged by the suggestiooutrsupervision mecha-
nism, we assume each supervisor is rational and will notrgémeules and suggestions
that are in conflict. However, in a multi-level supervisidrusture, a supervisor’s local
decision may conflict with its superordinate direction. &uhave higher priority than
suggestions. There are several strategies for resolvinflicts between rules or be-
tween suggestions, such as always taking its superordinéteal rule, stochastically
selecting a rule, or requesting additional information takena decision. The strategy
choice depends on the application domain. Note that it mayahleays be wise to
select the superordinate decision, because, althouglipfeeardinate supervisor has a
broader view, its decision is based on abstracted infoomatDur strategy for resolv-
ing conflicts picks the most constraining rule and combinggysstions by summing
the degrees of the strongest positive suggestion and thregetst negative suggestion.

The supervisory organization defined above is robust, Blealand immune to
single-point failures, because agents at each level dyedidtributed and able to make
local decision without the supervision of higher-level mige Meanwhile, the super-
vision mechanism allows subordinates to utilize a more gletew through rules and
suggestions from their supervisors in making more inforioed! decisions.
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Figure 2: Unsupervised MARL vs. Supervised MARL with MASPA

4 Supervisory Policy Adaptation

Using MARL, each agent gradually improves its action poésyit interacts with other
agents and the environment. gAire policy deterministically chooses one action for
each state. Anixed or stochastipolicy specifies a probability distribution over the
available actions for each state. Both can be representeduastion(s, a), which
specifies the probability that an agent will execute actiahstates. As argued in [10],
mixed policies can work better than pure policies in pdstiabservable environments,
if both are limited to act based on the current percept. Dypattal observability, most
MARL algorithms are designed to learn mixed policies. Thst o this section shows
how mixed policy MARL algorithms can take advantage of higlegel information
specified by rules and suggestions to speed up convergence.

As shown in Figure 2 (a), a typical unsupervised MARL alduoritcontains two
components: policy (or action-value function) update aaiiba selection based on
the learned policy. One common method to speed up learnitmsspply an agent
with additional reward to encourage some particular ast[6h which is called reward
shaping. This use of the special reward affects both policiate and action selection.
In a single-agent setting, there are potential functiomof reward shaping [6] that
leave the optimal policy/value-function unchanged. Hogvestue to the non-stationary
learning environment in a multi-agent setting, reward sigymay generate a policy
that is undesirable in that they may distract from the maial gehich is supported by
the normal reward.

MASPA directly biases the action selection for exploratisithout changing the
policy update process. As shown in Figure 2 (b), MASPA' susary policy adapta-
tion integrates rules and suggestions into the policy kegby an unsupervised MARL
algorithm and then outputs an adapted policy. This adapikclps intended to control
exploration. Our integration assumes policies learnedrbyresupervised MARL are
stochastic. The report generator summarizes the statethéhagent has experienced
and sends this abstracted state to its supervisor.

Let R andG be the rule set and suggestion set, respectively, that aewvekeived
andr be its learned policy. We defing(s,a) = {r € R| states satisfies the condition



r.canda € r.F}? andG(s,a) = {g € G| states satisfies the conditiog.c and
a € g.A}. Then the adapted policy” for the action selection is generated by the
supervisory policy adaptation:

0 if R(s,a)#0
s,a) = w(s,a)* (1+n(s)* deg(s,a)) else ifdeg(s, a)

A (
7(s,a) + (1 —w(s,a)) * n(s) xdeg(s,a) elseifdeg(s,a)

T <0

>0
wherer(s) is a state-dependent function ranging frfgihnl ], and the functioreg(s, a)
returns the degree of the satisfied suggestion. One as@amipthat a MARL's state
contains enough information for checking whether a rules(mygestion) is satisfied or
not.

We define the functiodeg(s, a) = maxz({g.d > 0|g € G(s,a)}) + min({g.d <
0lg € G(s,a)}).2 With this definition, a subordinate only considers the sjest sug-
gestions, either positive or negative. Conflicting suggestare integrated by summing
the degrees of the strongest positive one and the stronggative one. Note that this
function ensures the degree rangingant|.

As similarly defined in the work [8], the functiof(s) determines the receptivity for
suggestions and allows the agent to selectively accepestiggs based on its current
state. For instance, if an agent becomes more confident effisetiveness of its local
policy on states because it has more experience with it, thés) decreases as learning
progresses. In our experiments, weigat) = k/(k + visits(s)) wherek is a constant
andvisits(s) returns the number of visits on the state

With the supervisory policy adaptation, a rule explicithesifies undesirable ac-
tions for some states and is used to prune the state-actame sfpuggestions, on the
other hand, are used to bias agent exploration. To integtaggestions into MARL
, MASPA uses the strategy that the lower the probability ofedesaction pair, the
greater the effect a positive suggestion has on the pairtenigss the effect a negative
suggestion has on it. The underlying idea is intuitive. H tigent’s local policy al-
ready agrees with the supervisor’s suggestions, as imdidat the policy having high
(or low) probabilities for state-action pairs from the gvg (or negative) suggestions,
it is going to change its local policy very little (if at alljtherwise, the agent follows
the supervisor’s suggestions and makes a more significangehto its local policy.

To normalizer such that it sums to 1 for each state, theit function from
GIGA [17] is applied with minor modifications so that eventian is explored with
minimum probabilitye:

’]TA = lZmlt(ﬂ'A) = argminm:'ualid(z)lﬂ—A - ‘Tl

i.e.,limit(7*) returns a valid policy that is closest1d'.

Our normalization also implicitly solves the issue of ruiesonflict. If a set of
rules forbids all actions on a state, then the probabilitgaxfh action is set to. After
normalization, the probabilities of all actions are equiaét is, the action choice be-
comes completely random. This strategy is reasonable wWieeagent does not know
the consequence of violating each rule.

Although a supervisor provides directions to its subortdiaaia rules and sugges-
tions as defined above, instead of explicit policies, thiefghg proposition holds with
the integration developed above.

2We use " as a projection operator. For example,returns the rule condition of rule
3If G(s, a) is empty, thenleg(s, a) = 0.



Proposition 1. If a supervisor knows the optimal policy for each subordéreatd each
subordinate completely trusts the supervisor's suggest{that is,n(s) = 1, for all
states), then the supervisor can force each subordinate to exebeteptimal policy
via the adapted policy*.

Proof. The supervisor requires each subordinate to send its lotialo it via report
messages. Consider an arbitrary subordinate. nt‘ébe the optimal policy of this
subordinate, and be its current local policy. To force this subordinate toaie the
optimal policy, for each state-action pdit,a), the supervisor sends a suggestion
s,{a},d > to this subordinate, where the suggestion degdrisadefined as following:

Casel if 7*(s,a) < (s, a), thend = 7*(s,a)/m(s,a) — 1. Since—1 < d < 0, then
W*A((S, a)) = 7(s,a)x(14+n(s)xdeg(s,a)) = n(s,a)x(1+7*(s,a)/7(s,a)—1) =

Case2 if 7*(s,a) > m(s,a), thend = (7*(s,a) — 7(s,a))/(1 — w(s,a)). Since
0 < d < 1, thent?(s,a) = w(s,a) + n(s) * deg(s,a) * (1 — n(s,a)) =
7(s,a) + (1 = w(s,a)) * (7*(s,a) — 7w(s,a))/(1 —w(s,a)) = 7*(s,a).

Note that the proof does not need to use timst function, because the resulting'
is already valid. Therefore, with the supervisor's suggesthe action choice of this
subordinate is based on the optimal policy. O

Based upon the mechanism developed above for integratggestions and rules
into the learning process, both MARL and the organizatigpesuvision mechanism
can affect each other. Rules and suggestions provide hidgls€f@ction choice during
exploration and speed up the learning process. In turn, averiknprove their perfor-
mance through learning and provide supervisors with nearinétion to refine rules
and suggestions. Due to the pruning effect of rules, superyineed to have a mecha-
nism to detect if a rule is overconstraining and then to refieerule to allow workers
to properly explore the environment.

5 Experimental Results

We have tested MASPA in both distributed task allocatiorbfgm (DTAP) and net-
work routing problem. In the following experiments, we malty cluster agents in
the overlay network using Manhattan distance. The agesestdo the center of each
cluster is elected as the supervisor. Supervisors alsctiptayorker role. We assume
that there are links that allows direct communication betwsubordinates and their
supervisors and between adjacent supervisors.

5.1 Distributed Task Allocation Problem

To evaluate MASPA, we extended the simulator of a simplifiddP [2] to incorporate
Poisson task arrival and exponential task service timehérndTAP, agents are orga-
nized in an overlay network. Agentexecutes tasks with rate, work units per time
unit and receives tasks from the environment with rgtéasks per time unit, where
tasks’ work units are under a exponential distribution witban.;. At each time unit,
an agent makes a decision for each task received duringrtésunit whether to ex-
ecute the task locally or send it to a neighboring agent focgssing. A task to be
executed locally will be added to the local queue with urtédiqueue length, where



tasks are executed on a first-come-first-serve basis. Aggatact via communication
messages and communication delay between two agents isrpomal to the Manhat-
tan distance between them, one time unit per distance wagh(agent has a physical
location). The main goal of DTAP is to minimize the total deevtime of all tasks,

averaged by the number of task47 ST = w whereT is the set of
tasks received during a time periecandT'ST'(T) is the total service time that tagk
spends in the system, which includes the routing time in #tevork, waiting time in

the local queue, and execution time.

5.1.1 Implementation

Algorithm 1: WPL: Weighted Policy Learner
begin
r « the reward for actiom at states
update Q-value table using s, a, r >
7« average reware- > _, 7(s,a)Q(s, a)
foreach actiona € A do
Afa) = Q(s,a) =T
if A(a) > 0then A(a) — A(a)(1 —7(a))
else A(a) < A(a)(w(a))
end
m — limit(m + CA)

end

Workers use the Weighted Policy Learner (WPL) algorithmtfillearn task allo-
cation policies. Note that MASPA does not depend on a spedifiRL and the only
requirement is that the MARL can learn mixed policies. Algon 1 describes the
policy update rule of WPL. WPL is a gradient ascent algorithihich is based on the
following strategy: learn fastest when the policy gradidnthanges its direction and
gradually slow down learning if the gradient remains in thme direction. A worker’s
state is defined by a tuplé., 3, Sy, S‘n), wherel,. is the current work load (or total
work units) in the local queuei is the rate of incoming task requests, afidis the
expected service time of a task if forwarded to neighbofFhe state space is contin-
uous and is dynamically discretized with the maximum andimim values of each
vector component, which are updated periodically durirgléarning. The reward for
forwarding a task to neighbaris — ;.

Algorithm 2 shows the decision process that takes placeddt warker on every
cycle. There are three types of messages generated by arwmkelt request and
report A resultmessagei, T, ¢) indicates that task is completed at timeéafter being
sent to neighbot, and is used to calculafST(T") and update’; in the current state
with the following equation (adopted from Q-learning [15§) = « = S; + (1—a)=
TST(T), wherex is the decay rate. A result message for a task will be passeld ba
to all agents on the task routing p&thA requestmessagéi, T;) indicates a request
from neighbori to execute tasik’. A report (i,l,n,7) is generated by agentthat
consists of the average work loadf the workers over a period timeand the number

4The state update mechanism proposed in [2] can reduce thbanwfimessages. This paper mainly
focuses on the supervision mechanism and the use of thidekdnechanism can help eliminate other
potential factors that affect the system performance.



Algorithm 2: Worker’s Decision Making Algorithm

begin
n < the identity of the worker
t. « the current time
if a taskT in the local queue is dornthen
| sendresult{n,T,t.) to theT’s sender
end
MSGS — messages received in this cycle

foreach result(i, T, ¢) € MSGS do
update the current state

if T'is received from agent (j # n) then
| sendresultmessagén,T,t) to j
end
end
Userulesandsuggestionfrom M SG'S to update the integrated poliey*“
foreach requesti, T;) € MSGS do
choose and execute an actiobased onrA¢
update the current state
learn(s, a)
end
collect work load information in the local queue
if t. is a reporting timethen
| generate and send@portto its supervisor
end

end

10



of workersn (which is1 in a worker report). It is possible that more informatiorgisu
as average utilization and task arriving rates, can be afbdaltbw supervisors to make
more informed decisions. An agent sends a report to its sigogreveryr time period.

Algorithm 3: Supervisor’s Decision Making Algorithm
begin
sr keeps the latest rule received from its superordinate sigmer
ss keeps the latest suggestions received from its superdedingervisor

if all subordinates’ reports for the current period are reasilthen
generate an aggregated repai

addrep to repList

r «— generate Rule(repList)

r «— combine(r, sr)

distribute(r)

sendrep to all peer supervisors and its superordinate supervisor

end
if all peer supervisors’ reports for the current period are edéedthen
hc « clusters with higher average load
lc — clusters with lower average load
foreach clusterc € he do
| sendNegativeSuggestions(c, ss)
end
stochastically choose one clusten /¢ and
sendPositiveSuggestion(c, ss)

end

end

Algorithm 3 shows the decision process that takes placecht®gervisor on every
cycle. Three types of messages are generated by supervisoost, rule, andsugges-
tion. The creation of both reports and rules are based on sulatedirreports. Let
reps be the set of reports from subordinates. A supervisor'sntepoaggregates data
in subordinates’ reports, whesp.n = > . rn, spl =37 o (rlxrn)/spn
andsp.7 = r.7 for anr € reps.

We define one rule for DTAP, calleldad limit rule (limit), that specifies, for
all states whose work load excedds:it, a worker should not add a new task to the
local queue. Thdimit is set with the information about the average load within a
cluster, so this rule helps balance load within the clus@n the other hand, since
the worker’s state contains the load information, this itde reduce the state-action
space for the MARL exploration. To generate a stable andrateuule, a super-
visor keeps its own aggregated reportsripList, a fixed-length list. The function
generateRule(repList) returns aload limit rulglimit), wherelimit = 3 .., 7.l/m
andm is the size of-epList. The functioncombine(r, rs) chooses a more constrained
rule (i.e., with a lower load limit) between the local ruland the superordinate rue.
The functiondistribute(r) sends rule- to subordinates. In order to avoid excessive
sending of rule messages, a supervisor sends a new rule difference of load limits
between the new rule and the current rule exceeds a certeshiid.

The load limit rule forbids adding a task to the local queuly @rthe current load
is already greater than the limit. Therefore, it is possthi the work load in local
gueue of a worker is greater than the load limit. For examglgpose agents in a

11



cluster do not receive external tasks by themselves. ligjtthe cluster has few tasks
forwarded from its neighboring clusters and thus has a \@waverage load (e.g., 3),
from which arule is generated. As time goes on, more and naskestare forwarded to
the cluster and each agent is more likely to add tasks todt lpueue, whose load is
close to 3. As a result, each local load is frequently grehter the load limit and the
average load of the cluster increases. From report messagesupervisor can detect
that the current rule is over-constraining and generatssdenstraining rule with a
higher load limit.

We utilize suggestions to balance the load across clusiins. creation of sug-
gestions is based on reports from peer supervisors.rdzgtandrep, be the report
of supervisori and its neighboring supervisarrespectivelyc; andc; be the cluster
supervised by supervisarand k respectively,n; be the number of subordinates of
clustere; that are adjacent to cluster, andcom _cost;, be the communication cost be-
tween supervisor and supervisok, which can be estimated from the communication
between them.

If repy.l — rep;.l > 0, supervisor; considers clustee;, having a higher load.
FunctionsendNegativeSuggestions(ck, ss) creates a negative suggestion with de-
greend = (rep;.l/repy.l
—1)/m; to discourage forwarding tasks to clustgr combining it with the matching
suggestion (if exists) ins from its superordinate supervisor, and then sending the com
bined suggestion to subordinates adjacent to clust&wo suggestions match if they
share the same action set (i.e., both local decision and@uieate decision suggest
forwarding tasks to clustef,) and some state(s). Our combination strategy is that if
the degrees of two matching suggestions have the samelsigini¢grated suggestion
uses the degree of the stronger suggestion; otherwiseesttbe sum of two degrees.

If dif fi = rep;.l —repy.l — com_cost, > 0, then cluster; considers clustet;,
has a lower average load. In order to avoid “hot spot” prolslesapervisoi proba-
bilistically selects one from the set of neighboring clusteith lower load, where the
probability of selecting cluster is given by Pr(k) = s~ dif i where

nencighbors(i) 44 fn’
the functionneighbors(i) returns all neighboring clusters ofgsupe(r>vis!orFunction
sendPositiveSuggestion(cy, ss) does the same thing asnd Negative Suggestions(cg, ss)
except that it sends a positive suggestion with degree= dif fi./rep;.l/m;. To
strengthen the effect of suggestions, if a suggestion vatrekd is sent to subordinate
j and its neighbon doesn’t receive the same suggestion, then a suggestiodegtiee
&d and actiory is sent ton, where¢ is the suggestion decay rate. To reduce network
overhead, a suggestion with degree less than a threshgld@#5) will not be sent to
subordinates.

5.1.2 Results & Discussions

We have tested MASPA in the DTAP simulation mentioned abedesre three mea-
surements are evaluated: the average total service tim8TAThe average number
of messages (AMSG) per task, and the time of convergence JTAIGGT indicates
the overall system performance, which can reflect the éffmogss of learning and su-
pervision mechanism and can also be used to verify systdsilitstéconvergence) by
showing monotonic decrease in ATST as agents gain moreiexpes. AMSG shows
the overall communication overhead for finishing one taskcdlculate TOC, we take
10 sequential ATST values and then calculate the ratio of tlvakges’ deviation to
their mean. If the ratio is less than a threshold (we use (,Q88n we consider the
system stable. TOC is the start time of the selected points.
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MASPA does not pose any constraint on the network structdosvever, as men-
tioned, we do implicitly assume the system is nearly-deamsaple with a hierarchy
of at least one level. For clarity, Experiments were conedaising uniform two-
dimension grid networks of agents with different sizes: 64810, and 27x27, all of
which show similar results. But as the size of the systenemees, the MASPA impact
on the system performance becomes greater. For brevitynlygeesent here the re-
sults for the 27x27 grid. In each simulation run, ATST and A& e computed every
1000 time units to measure the progress of the system peafaren Results are then
averaged over 10 simulation runs and the variance is cord@aess the runs. All
agents use WPL with learning raie®01. Workers send reports to their supervisors ev-
ery 500 time units. Our experiments use the paramgter= 1000/(1000+wvisits(s))
and the suggestion decay rate- 0.5.

For simplicity, we assume that all agents have the same @®acate,Vi : w; = 1,
and that tasks are not decomposable. The service time of taskunder a Poisson
distribution with mearnu = 10. We tested three patterns of task arrival rates over the
27x27 grid:

Boundary Load where the 200 outermost agents receive tasks witk 0.33 and
other agents receive no tasks from the external environment

Center Load where the 121 agents in the centric 11x11 grid receive tastks w=
0.5 and other agents receive no tasks from the external envntm

Uniform Load where all 729 agents receive tasks witk= 0.09.

We compared four structureso supervision, local supervision, one-level supervi-
sion, and two-level supervision thelocal supervisiorstructure, agents are their own
supervisors. With this structure, each agent gains a vidyairout itself and its neigh-
bors, which is not much different from its view in the orgaatinn without supervision.
So we use théocal supervisiorstructure to evaluate whether domain knowledge com-
bined with a limited view, which is used to create rules angb®stions, still improves
the system performance. In contrast, the performance dinbdollowing structures
with supervision show the benefits of having a broader viemhioed with domain
knowledge. Th®ne-level supervisiostructure has 81 clusters, each of which is a 3x3
grid and the agent at each cluster center is elected as tleevésgr. Thetwo-level
supervisionstructure forms from thene-level supervisiostructure by grouping 81
supervisors into 9 clusters, each of which is a 3x3 grid. Tipesvision structures with
three or more levels did not show further improvement overttto-level supervision
in our DTAP experiments. This is because a wide-range tasister causes a long
routing time which offsets the reduction of the queuing timeach agent.

Figure 3 plots the trend of ATST for different structures geras learn. As ex-
pected, systems witbne-level supervisionr two-level supervisiorronverge much
faster than that without supervision. The system witb-level supervisioperforms
better than withone-level supervisigrbecause bottom-level supervisors create more
accurate rules and suggestions for workers by combinirg] iecisions with superor-
dinate decisions which are based on a broader view. But asyliem stabilizes, the
system load tends to be smoothly distributed among the sget the broader view
of higher-level supervisors does not provide more inforarethan that of lower-level
supervisors. Thereforsvo-level supervisiomnd one-level supervisioshow almost
the same performance after stabilization.
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Interestinglylocal supervisionmproves its performance only after a certain period
of time, and at an early stage, it may even decrease systdormance. Withlocal
supervisioneach worker is a supervisor, so a supervisor's suggestibased only on
the load information of its immediate neighboring workevijch can be incorrect at
early stages. For example, workéwvith a high load has two neighbors work@r with
alow load, and workef’, with a high load. As a result, worker will create a positive
suggestion to itself to send more tasks to workeand a negative suggestion to send
less tasks to worket'. In fact, all other neighbors of worké?® have a very high load
and all other neighbors of woik have a very low load. Misleading suggestions based
on these incorrect information cause oscillation in wopd@icies and severely degrade
the normal learning process, resulting in a decreased npeaftce. However, as time
passes, each agent learns a better policy; meanwlid¢ decreases and suggestions
have a less impact on the action choice. On the other hankhatidimit rule, based on
its own load history, can reduce the exploration spaceltiegun faster convergence.

Under the boundary-load and uniform-load pattern, alleyst show monotonic
decrease in ATST after a certain period of time, which indisahe stability (conver-
gence) of these systems. However, under the center-lotetpathe system without
supervision crashes and runs out of the computing resobefese showing signs of
convergence. This happens because, using random expfgratients in the inner
layer do not learn and propagate quickly enough knowledgeaents in the outside
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layer are light-loaded. As a result, more and more tasks &mpreside in the center
11x11 grid where agents receive external tasks. This maleesytstem load severely
unbalanced and the system capability not well utilized. dntrast, the supervisory
information guides and coordinates the exploration of &gand allows them to learn
quickly to effectively route tasks.

Under the uniform-load pattern, the system load is actuadlyevenly distributed,
with a higher load around the center and a lower load on thedeny, but the load
difference is not as significant as that under boundary-aticenter-load patterns.
Therefore supervision with a broader view improves theqgrarince, though not as
significantly.

Figure 4 illustrates the communication overhead for défferstructures. Initially,
the system without supervision has lower AMSG. This is beeawupervision mecha-
nism increases the communication overhead for sendingteepoles and suggestions
and its encouragement of exploration at the early stageratseases the number -
guestandresultmessages. However, under the boundary-load and centepéaierns,
the supervision mechanism leads workers to learn how te tasks effectively to bal-
ance the load much more quickly, which dramatically redubesnumber ofequest
andresult messages. As a result, these systems with supervision mesghabtain
lower AMSG after a short period, as shown in the Figure 4. Wilde uniform-load
pattern, the system does not benefit enough from superviségmianism to offset the
communication overhead caused by the supervision mechanis

Table 1, Table 2, and Table 3 show the different measuresagfants have learned
for 100000 time units. Here ATST and AMSG are measured fan eapervision struc-
ture at their own convergence time point. Although, in soame¢wo-level supervision
has a slightly higher ATST than that ohe-level supervisioat their own convergence
time points, it has actually a lower or almost same AT®BiE-level supervisiowhen
evaluated at the same time point.

Supervision ATST AMSG TOC
No 60.75+1.10 | 8.80+0.22 | 61000
Local 37.444+0.51 | 7.27£0.08 | 37000
One-level | 35.38 £0.64 | 7.39+0.24 | 16000
Two-level | 35.96 +£0.62 | 7.56 = 0.17 | 14000

Table 1: Performance of different structures with boundaag

Supervision ATST AMSG TOC

No N/A N/A N/A
Local 1328 £33 | 32.89+3.15 | 30000
One-level | 36.95+0.45 | 10.24 £0.17 | 14000
Two-level | 37.124+0.81 | 11.07+0.45 | 12000

Table 2: Performance of different structures with centadlo

To show the robustness of the multi-level supervision, wauated MASPA when
not all supervisors worked properly. Each supervisor haobability fp of failing to
function during a report period. We assume that, when itestgor fail to function,
a worker will use rules and suggestions last received frensujpervisor. We tested
both one-level supervision and two-level supervision d&y tshowed similar results.
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Supervision ATST AMSG TOC
No 28.57+0.68 | 1.89+0.13 | 21000
Local 22.36 +0.42 | 2.17£0.08 | 19000

One-level | 24.46 +0.61 | 3.83+£0.38 | 9000

Two-level | 24.34 +0.59 | 3.75+0.41 | 8000

Table 3: Performance of different structures with unifooad

Figure 5 shows the performance of one-level supervisioh differencefp values. It
can be seen that MASPA still improves the learning in a realslendegree when each
supervisor works properly with only one half probabitity

In our simulation, we observed that supervisory informatiorresponding to coarse-
grained control tend to be more helpful than that correspayiw fine-grained control
in improving the system performance. Moreover, fine-gradimay even decrease sys-
tem performance. Coarse-grained control considers angigseon the whole cluster
as one entity, while fine-grained control operates on imldial cluster members. “Mov-
ing more tasks from my cluster to one of neighboring clustans “balancing the load
within the cluster” are examples of coarse-grained contfidloving more tasks from a
high-loaded agent to a low-loaded agent along the shoratist [ an example of fine-
grained control. One explanation for this observation & gBupervisory information
corresponding to coarse-grained control results in mooedination among agents’
exploration, speeding up the learning convergence. Inrasftin our simulation, due
to lack of detailed information of each cluster member, finained control for some
individual members is not able to fully evaluate the impatiand from other agents.
As a result, the fine-grained control may interfere with thenmal learning process of
other agents and the dynamics of other agents may degratieglgrained control.

We have explored different values of cluster size and folvad $ystem perfor-
mance decreases with cluster size that are either too smbdarge . This is be-
cause, with too small a cluster size, supervisors do noécodinough information to
create correct rules and suggestions. With too large aetlsite, they are not able to
create rules and suggestions that are suitable for eveordinlate. Therefore, there is
a trade-off for the cluster size.

Similarly, there is a trade-off for the length of the repcetipd. A too short report
period causes a large variance of the abstracted stateif@lemses communication
overhead) and results in oscillating suggestions and.rifetoo long report period
causes the supervisory information received by workergtout-dated and as a result,
decreases the convergence rate.

5.2 Network Routing

We also evaluate our framework using a network routing sanounladopted from Boyan
and Littman [4]. Itis a discrete time simulator of communigca networks with various
topologies. A communication network consists of a homogeseset of nodes (or
agents) and links between them. Packets are periodicatlydnced into the network
under a Poisson distribution with a random origin and desitin. No packets have the
same agent as their origin and destination. When a packetsiat an agent, the agent
puts it into the local FIFO (first in first out) queue. At eacimdi, an agent makes its
routing decision to forward the top packet in the queue todafnes neighbors. Once a

5This result may compromise when the task arriving patteahaging continuously
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packet reaches its destination, it is removed from the ndtwa our experiments, we
set the time cost of sending a packet down a link as a unit 8asthe delivery time of
packet consists of its transmission cost and its waiting timqueues. The main goal
of a network routing algorithm is to minimize the Average ety Time (ADT) of all
packets.

5.21 Implementation

Algorithm 4: Policy Gradient Descent (PGD) Algorithm
begin

r « the cost for action at states

update Q-value table using s, a, r >

t < summed cost » _, Q(s,a)

T < average cost ), 7(s,a)Q(s,a)

foreach actiona € A do
| A(s, a) — ¢(Q(s, a) - F)/t

end

m(s) «— limit(m(s) — A(s))

end

To minimize the time cost of delivering packets, each ageasa Policy Gradient
Descent(PGD) algorithm to learn its routing policies. Algfum 4 describes its policy
update rule, wheré is the policy learning rate. PGD learns stochastic poljdies,
unlike multi-agent OLPOMPD [14] and GAPS [7], PGD does najuiee a global
reward signal. The stateis defined by the destination of the packet that an agent is
forwarding. We defin€),.(s, a) as the estimated time that an agertakes to deliver
a packet to the destinatienthrough its neighbod, including any time that the packet
would have to spend in the ageris queue. Upon sending a packetita: immediately
gets back:’s estimate for the time remaining in the trip, namely

Ga = QU(Sv a)

min
a€neighbors of
Then the "cost signal?(s, ) for forwarding a packet with destinatiarto its neighbor
ais g, + w + t, wherew is the waiting time of the packet in’s queue and is the
transmission time between agenénda. The Q-learning algorithm is used to update
2's estimate:
Q.(s,a) = (1 —a) *Qu(s,a) +axr

whereq is a learning rate (usually 0.5 in our experiments). Withatpd Q-values, the
PGD algorithm revises its policy.

The MASPA implementation in the network routing is similarthat in DTAP, and
the main difference is the way of generating MASPA messalyethe network rout-
ing problem, we do not use rules. A worker’s report contaime@&or (t1, ta, . .., tm),
wheret; is the average estimated time that a worker takes to delpacket to destina-
tion agents in cluster. A supervisor aggregates its subordinates’ reports anergtes
its own report by averaging their estimated delivery timang destination cluster.

Lett¢ be the estimated time for clustéto deliver a packet to destinations cluster
d. Let N.. be the neighbor set of cluster For each clusted, if t¢ > t¢, wheren is a
neighboring cluster of, then the supervisor of clustemprovides positive suggestions
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Figure 6: The 10 x 10 grid toplogy

to its boundary members to encourage forwarding packetsdeistinations in cluster
d to clustern. The positive suggestion degree is calculated:

te —th

Zt§>t§,ieN(tg - t;'i)

deg =

If t4 < ¢, then supervisor sends out negative suggestions, whose degree is

te —ty

Zt§<t§,ieN(t§1 - tg)

Similar to our implementation for DTAP, non-boundary memsireceive suggestions,
but with decayed degrees.

deg =

5.2.2 Results& Discussions

We have tested the PGD algorithm with and without MASPA onesalvnetwork
topologies with various number of nodes, all of which shawikir results. For brevity,
we concentrate on the result analysis for the 10 x 10 grid ostyictured in Figure 6.
The Q-routing [4] algorithm is used as baseline, which Isataterministic policies.
. Two measurements are evaluated: the average delivery(iD€) and the time of
convergence (TOC). The ADT is computed every 1000 time ufidscalculate TOC,
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Figure 7: Performance under network load = 7.0

we take50 sequential ADT values and then calculate the ratio of thesees’ devia-
tion to their mean. If their mean is less than the maximum etqueADT (we use 300)
and the ratio is less than a threshold (we use 0.05), then nsd=r the system stable.
TOC is the start time of the selected points.

Results are then averaged over 10 simulation runs. All agesd the PGD algo-
rithm with a learning raté = 0.1. Workers send reports to their supervisors every 500
time units. Our experiments use the paramefej = 20000/ (20000 + visits(s)) and
the suggestion decay rage= 0.5.

Figure 7 shows the performance trend as agents learn un@nkdoad= 7.0. All
three algorithms, after initial periods of inefficiency thg which they randomly ex-
plore the environment, gradually improve their perforn@and stabilize. At the very
early period, MASPA does not improve the performance mudfis & because, due
to almost complete random exploration, subordinates dpraside accurate environ-
ment information to their supervisor, which may result imsoimproper suggestions.
As information accuracy increases, MASPA properly biabespolicy search of the
PGD algorithm and speeds up the convergence. Due to polifadi®n, Q-routing
shows slow convergence.

Figure 8 shows the TOC of three algorithms under various ostioads. As
expected, MASPA consistently speeds up the convergentbe &&D algorithm. The
higher the network load, the greater the speed improvenkemtexample, when load
> 5.5, MASPA decreases the TOC by arowtit$s or more. Under low network loads,
optimal policies usually follows shortest paths, so they @eterministic. The PGD
algorithms use gradient update and gradually converget&rdaistic policies, slower
than Q-routing that directly learns deterministic polgciddowever, under high loads,
where optimal policies are usually stochastic, the Q-raupolicies show oscillation
during the learning and the PGD algorithm with MASPA conesrfaster to stochastic
policies.

Figure 9 shows the ADT at the convergence time point undéswanetwork loads.
Under low loads, as both PGD algorithms with and without MAS®nverge deter-
ministic policies, they shows almost the same performaboe.to random exploration
with some probability, they performs slightly worse tharr@ting. However, under
high loads, MASPA improves the PGD performance. For examgben load> 6.5,

21



500000

400000

300000

200000

Time of Convergence

100000

350

Average Delivery Time

300 —

250

200 —

150 —

100 —

50

-O0——LF Q-Routing
-A—/ PGD without Supervision
~>——=> PGD with Supervision

Network Load

Figure 8: Time of Convergence at various loads

-0——F Q-Routing
~A——7/x pGD without Supervision
~>——=<> PGD with Supervision

I I I I I T T T
1 2 3 4 5 6 7 8

Network Load

Figure 9: Delivery time at various loads

22



MASPA decreases the ADT by at leds$t%, and when load= 8.0, MASPA reduces
the ADT by around30%. As both PGD algorithms converge to stochastic policies,
which allows agents to simultaneously exploit multiplehzato deliver packets to a
single destination, they perform much better than Q-ragutinder high loads.

6 Conclusion

This work presents MASPA, a scalable and robust supervismmework, that en-
ables efficient learning in large-scale multi-agent system MASPA, the automated
supervision mechanism fuses activity information of lowexel agents and generates
supervisory information that guides and coordinates a&jéearning process. This
supervision mechanism continuously interacts with thenlieg process. Simulation
results obtained in two different application domains fyettie generality of MASPA
and demonstrate that MASPA significantly accelerates #imaieg process and reduces
the communication overhead due to the earlier convergence.

Future work includes providing a distributed algorithm forming supervision
organizations (addressing agent clustering and supergigotion). The supervision
mechanism generates a broader view which potentially kerib& restructuring pro-
cess in the underlying network. Thus, another future diveds to explore an adaptive
reorganization algorithm that exploits information frometsupervision mechanism. In
this work, learning only takes place in workers’ decisiorking. It would be interest-
ing to allow workers to learn how to integrate rules and sstigas and supervisors to
learn how to make rules and provide suggestions.
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