
MASPA: Multi-Agent Automated Supervisory
Policy Adaptation

Chongjie Zhang
Computer Science Department

University of Massachusetts Amherst

Sherief Abdallah
Institute of Informatics

British University in Dubai

Victor Lesser
Computer Science Department

University of Massachusetts Amherst
UMass Computer Science Technical Report #08-03

July 21, 2008

Abstract

Multi-Agent Reinforcement Learning (MARL) algorithms suffer from slow
convergence and even divergence, especially in large-scale systems. In this work,
we develop a supervision framework to speed up the convergence of MARL algo-
rithms in a network of agents. Our framework defines a multi-level organizational
structure for automated supervision and a communication protocol for exchanging
information between lower-level agents and higher-level supervising agents. The
abstracted states of lower-level agents travel upwards so that higher-level super-
vising agents generate a broader view of the state of the network. This broader
view is used in creating supervisory information which is passed down the hier-
archy. The supervisory policy adaptation then integrates supervisory information
into existing MARL algorithms, guiding agents’ exploration of their state-action
space. The generality of our framework is verified by its applications on differ-
ent domains (i.e., distributed task allocation and networkrouting) with different
MARL algorithms. Experimental results show that our framework improves both
the speed and likelihood of MARL convergence.

1 Introduction

A central challenge in multi-agent systems (MAS) research is to design distributed co-
ordination mechanisms to agents that have only partial views of the whole system to
generate efficient solutions to complex, distributed problems. To effectively coordi-
nate their actions, agents need estimate the unobserved states of the system and adapt
their actions to the dynamics of the environment. Multi-agent reinforcement learning
(MARL) techniques have been extensively explored in such setting.

1

To scale up, previous research [2, 16, 4] has distributed thelearning and restricted
each agent to using the information received only from its immediate neighbors to up-
date its estimates of the world states (i.e., Q-values for state-action pairs). However,
this constraint results in long latency to propagate the state information to agents fur-
ther away. Such latency can result in neighborhood information being outdated, hence
leading to mutually inconsistent views among agents. In addition, updating local es-
timates using information only from immediate neighbors can potentially suffer from
the ”Count-to-Infinity” problem [12], where agent A’s estimate of the world state is
calculated from agent B’s estimate, which is calculated from from agent A’s estimate.
Therefore, such limited view for each agent and the non-stationarity of the environment
(all agents are simultaneously learning their own policies) causes MARLs to converge
slowly and even diverge. Furthermore, the slowness of MARL convergence is wors-
ened by the large policy search space. Each agent’s policy not only includes its local
state and actions but also some characteristics of the states and actions of its neighbor-
ing agents [2], or the state size of each agent may be proportional to the size of the
system [4].

Two paradigms have been studied to speed up the learning process. The first
paradigm is to reduce the policy search space. For example, the TPOT-RL [11] re-
duced the state space by mapping states onto a limited numberof action-dependent
features. The hierarchical multi-agent reinforcement learning [5] used the explicit task
structure to restrict the space of policies, where each agent learned joint abstract action-
values by communicating with each other only the state of high-level subtasks. The
second paradigm is to use heuristics to guide the policy search. The work [13] used
both local and global heuristics to accelerate the learningprocess in a decentralized
multirobot system. The local heuristic used only the local information and the global
heuristic used the information that was shared and requiredto be exactly the same
among robots. The Heuristically Accelerated Minimax-Q (HAMMQ) [3] incorporated
heuristics into the Minimax-Q algorithm to speed up its convergence rate, which shared
the convergence property with Minimax-Q. HAMMQ was intended for use only in a
two-agent configuration and further the authors had no discussion how heuristics were
constructed.

This paper presents a supervision framework, called Multi-Agent Automated Su-
pervisory Policy Adaptation (MASPA), to accelerate the learning. MASPA follows the
second paradigm that uses heuristics to guide the policy search. The main contribu-
tion of MASPA is that it defines a decentralized hierarchicalsupervision mechanism
to automate the generation of heuristics (also called supervisory information) and uses
a supervisory policy adaptation that integrates heuristics into existing unsupervised
MARL algorithms (e.g., GIGA [17], WPL [1], etc.) in a genericmanner to speed up
their convergence. The supervision mechanism is defined by amulti-level supervision
organization (a meta-organization built on top of the agents’ overlay network) and a
communication protocol for exchanging information between lower-level agents and
higher-level supervising agents.

The key idea of MASPA is as follows. Each level in the supervision organization
is an overlay network in itself. For example, Figure 1 shows athree-level supervi-
sion organizational structure. The abstracted states of lower-level agents travel up-
wards so that higher-level supervising agents can generatea broader view of the state
of the network. This broader view comes from not only information about the states of
lower-level agents but also information from neighboring supervising agents. In turn,
this broader view results in creating supervisory information which is passed down the
hierarchy. The supervisory information guides the learning of agents in collectively

2

Figure 1: An organization structure for multi-level supervision

exploring their state-action spaces more efficiently, and consequently results in faster
convergence. To provide up-to-date supervisory information, the process above is pe-
riodically repeated.

Our approach has a hierarchy of control and data abstraction, which is concep-
tually different from existing hierarchical multi-agent learning algorithms that uses a
hierarchy of task abstraction. The generality of MASPA is verified by its applications
in different domains (i.e., distributed task allocation and network routing) with differ-
ent MARL algorithms. Experimental results show that it not only dramatically speeds
up the rate of MARL convergence, but also increases its likelihood of convergence.
MASPA also shows robustness when not all supervising agentswork properly. To our
knowledge, it is the first work that demonstrates that if appropriately exploited a more
global view of network state significantly improves MARL performance.

MASPA assumes agents will voluntarily share their state information. It also im-
plicitly assumes the original multi-agent system can be formed into a nearly decom-
posable hierarchy [9] of at least one level. This assumptionimplies that If agents in the
original MAS are far apart in spatial terms, their behaviorsare also far apart in causal
terms. For example, in Figure 1, knowing detail informationabout agents in cluster
6 will not affect much behaviors of agents in cluster1. For clarity, this paper limits
the discussion to the case where learning only happens at thebottom level and super-
vising agents use some heuristics to make decisions, but MASPA does not restrict the
opportunity for supervising agents to learn their supervision policies.

The rest of the paper is organized as follows. First, we present a multi-level organi-
zational structure used by the supervision mechanism. Thena communication protocol
is defined for agents at different levels. After that, we describe the supervisory policy
adaptation that integrates supervisory information into MARL algorithms. MASPA is
then empirically evaluated on DTAP and network routing problem. Finally, we con-
cludes this work and discusses some future work.

3

2 Organizational Supervision

Supervision mechanisms commonly exist in human organizations, such as enterprises
and governments. The purpose of these mechanisms is to run anorganization effec-
tively and efficiently to fulfill the organization goals. Supervision involves gathering
information, making decisions, and providing directions to regulate and coordinate
actions of organization members. The practical effectiveness of supervision mecha-
nisms in human organizations, especially in large organizations, inspired us to intro-
duce a similar mechanism into multi-agent systems in order to improve the efficiency
of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay structure, MASPA
adopts a multi-level, clustered organizational structure. Agents in the original overlay
network, called workers, are clustered based on some measure (e.g., geographical dis-
tance). Each cluster is supervised by one agent, called the supervisor, and its member
agents are called subordinates (note that subordinates at the lowest level are workers).
The supervisor role can be played by a dedicated agent or one of the workers. If the
number of supervisors is large, a group of higher-level supervisors can be added, and so
on, forming a multi-level supervision structure.1 In this paper, our discussion focuses
on the situation where each agent belongs to only one cluster.

Two supervisors at the same level are adjacent if and only if at least one subordinate
of one supervisor is adjacent to at least one subordinate of the other. Communication
links, which can be physical or logical, exist between adjacent workers, adjacent su-
pervisors, and subordinates and their supervisors. Figure1 shows a three-level organi-
zational structure. The bottom level is the overlay networkof workers which forms 9
clusters. A shaded circle represents a supervisor, which isresponsible for a correspond-
ing cluster. Note that links between subordinates and theirsupervisors are omitted in
this figure.

3 Communication Protocol

Three types of communication messages are used in MASPA:report, suggestion, and
rule. A worker’s report passes its activity data upwards to provide its supervisor with
a broader view. A supervisor’s report aggregates the information of reports from its
subordinates. A supervisor sends its report to its adjacentsupervisors at the same level
in addition to its immediate supervisor (if any). The supervisor’s view is based on not
only the agents that it supervises (directly or indirectly)but also its neighboring super-
visors. This peer-supervisor communication allows each supervisor to make rational
local decisions when directions from its immediate supervisor are unavailable. To pre-
vent supervisors from being overwhelmed and reduce the communication overhead in
the network, the information is summarized (or abstracted)in reports. Furthermore,
reports are only sent periodically.

Based upon this information, a supervisor employs its expertise, integrates direc-
tions from its superordinate supervisor, and provides supervisory information to its
subordinates. As in human organizations, rules and suggestions are used to transmit
supervisory information. We define arule as a tuple〈c, F 〉, where

• c: a condition specifying a set of satisfied states

• F : a set of forbidden actions for states specified byc

1The top supervision level can have multiple supervisors.

4

A suggestionis defined as a tuple〈c, A, d〉, where

• c: a condition specifying a set of satisfied states.

• A: a set of actions

• d: the suggestion degree, whose range is[−1, 1].

A suggestion with a negative degree, called anegative suggestion, urges a subordinate
not to do the specified actions. In contrast, a suggestion with a positive degree, called
a positive suggestion, encourages a subordinate to do the specified action. The greater
the absolute value of the suggestion degree, the stronger the impact of the suggestion
on the supervised agent.

Each rule contains a condition specifying states where it can be applied. Subordi-
nates are required to obey rules from their supervisors. Dueto their imperativeness,
correct rules greatly improve the system efficiency, while incorrect rules can lead to
inefficient policies. Therefore, a supervisor requires domain knowledge, in addition
to information from its subordinates, to make rules that have a positive impact on the
organizational performance.

Rules are “hard” constraints on subordinates’ behavior. Incontrast, suggestions
are “soft” constraints and allow a supervisor to express itspreference for subordinates’
behavior. In our example use, a suggestion have a condition matching all states. A
supervisor knows that the system performance benefits from asubordinate doing a par-
ticular action more frequently. However, due to limited domain knowledge or limited
information about the subordinate’s local policy and surrounding environment, a super-
visor can only suggest the subordinate to do more of that action without telling when it
should and when it should not. Therefore, a subordinate doesnot rigidly adopt sugges-
tions. The effect of a suggestion on a subordinate’s local decision making may vary,
depending on its current policy and state. A supervisor willrefine or cancel rules and
suggestions as new or updated information from its subordinates become available.

A set of rules are in conflict if they forbid all possible actions on some state(s). Two
suggestions are in conflict if one is positive and the other isnegative and they share
some state(s) and action(s). A rule conflicts with a suggestion if a state-action pair is
forbidden by the rule but is encouraged by the suggestion. Inour supervision mecha-
nism, we assume each supervisor is rational and will not generate rules and suggestions
that are in conflict. However, in a multi-level supervision structure, a supervisor’s local
decision may conflict with its superordinate direction. Rules have higher priority than
suggestions. There are several strategies for resolving conflicts between rules or be-
tween suggestions, such as always taking its superordinateor local rule, stochastically
selecting a rule, or requesting additional information to make a decision. The strategy
choice depends on the application domain. Note that it may not always be wise to
select the superordinate decision, because, although the superordinate supervisor has a
broader view, its decision is based on abstracted information. Our strategy for resolv-
ing conflicts picks the most constraining rule and combines suggestions by summing
the degrees of the strongest positive suggestion and the strongest negative suggestion.

The supervisory organization defined above is robust, scalable, and immune to
single-point failures, because agents at each level are fully-distributed and able to make
local decision without the supervision of higher-level agents. Meanwhile, the super-
vision mechanism allows subordinates to utilize a more global view through rules and
suggestions from their supervisors in making more informedlocal decisions.

5

Figure 2: Unsupervised MARL vs. Supervised MARL with MASPA

4 Supervisory Policy Adaptation

Using MARL, each agent gradually improves its action policyas it interacts with other
agents and the environment. Apure policy deterministically chooses one action for
each state. Amixed or stochasticpolicy specifies a probability distribution over the
available actions for each state. Both can be represented asa functionπ(s, a), which
specifies the probability that an agent will execute actiona at states. As argued in [10],
mixed policies can work better than pure policies in partially observable environments,
if both are limited to act based on the current percept. Due topartial observability, most
MARL algorithms are designed to learn mixed policies. The rest of this section shows
how mixed policy MARL algorithms can take advantage of higher-level information
specified by rules and suggestions to speed up convergence.

As shown in Figure 2 (a), a typical unsupervised MARL algorithm contains two
components: policy (or action-value function) update and action selection based on
the learned policy. One common method to speed up learning isto supply an agent
with additional reward to encourage some particular actions [6], which is called reward
shaping. This use of the special reward affects both policy update and action selection.
In a single-agent setting, there are potential function forms of reward shaping [6] that
leave the optimal policy/value-function unchanged. However, due to the non-stationary
learning environment in a multi-agent setting, reward shaping may generate a policy
that is undesirable in that they may distract from the main goal, which is supported by
the normal reward.

MASPA directly biases the action selection for explorationwithout changing the
policy update process. As shown in Figure 2 (b), MASPA’ supervisory policy adapta-
tion integrates rules and suggestions into the policy learned by an unsupervised MARL
algorithm and then outputs an adapted policy. This adapted policy is intended to control
exploration. Our integration assumes policies learned by an unsupervised MARL are
stochastic. The report generator summarizes the states that the agent has experienced
and sends this abstracted state to its supervisor.

Let R andG be the rule set and suggestion set, respectively, that a worker received
andπ be its learned policy. We defineR(s, a) = {r ∈ R| states satisfies the condition

6

r.c anda ∈ r.F}2 and G(s, a) = {g ∈ G| states satisfies the conditiong.c and
a ∈ g.A}. Then the adapted policyπA for the action selection is generated by the
supervisory policy adaptation:

πA(s, a) =

0 if R(s, a) 6= ∅
π(s, a) ∗ (1 + η(s) ∗ deg(s, a)) else ifdeg(s, a) ≤ 0
π(s, a) + (1− π(s, a)) ∗ η(s) ∗ deg(s, a) else ifdeg(s, a) > 0

whereη(s) is a state-dependent function ranging from[0, 1], and the functiondeg(s, a)
returns the degree of the satisfied suggestion. One assumption is that a MARL’s state
contains enough information for checking whether a rule (orsuggestion) is satisfied or
not.

We define the functiondeg(s, a) = max({g.d > 0|g ∈ G(s, a)}) + min({g.d <
0|g ∈ G(s, a)}).3 With this definition, a subordinate only considers the strongest sug-
gestions, either positive or negative. Conflicting suggestions are integrated by summing
the degrees of the strongest positive one and the strongest negative one. Note that this
function ensures the degree ranging in[0, 1].

As similarly defined in the work [8], the functionη(s) determines the receptivity for
suggestions and allows the agent to selectively accept suggestions based on its current
state. For instance, if an agent becomes more confident in theeffectiveness of its local
policy on states because it has more experience with it, thenη(s) decreases as learning
progresses. In our experiments, we setη(s) = k/(k + visits(s)) wherek is a constant
andvisits(s) returns the number of visits on the states.

With the supervisory policy adaptation, a rule explicitly specifies undesirable ac-
tions for some states and is used to prune the state-action space. Suggestions, on the
other hand, are used to bias agent exploration. To integratesuggestions into MARL
, MASPA uses the strategy that the lower the probability of a state-action pair, the
greater the effect a positive suggestion has on the pair and the less the effect a negative
suggestion has on it. The underlying idea is intuitive. If the agent’s local policy al-
ready agrees with the supervisor’s suggestions, as indicated by the policy having high
(or low) probabilities for state-action pairs from the positive (or negative) suggestions,
it is going to change its local policy very little (if at all);otherwise, the agent follows
the supervisor’s suggestions and makes a more significant change to its local policy.

To normalizeπA such that it sums to 1 for each state, thelimit function from
GIGA [17] is applied with minor modifications so that every action is explored with
minimum probabilityǫ:

πA = limit(πA) = argminx:valid(x)|π
A − x|

i.e., limit(πA) returns a valid policy that is closest toπA.
Our normalization also implicitly solves the issue of rulesin conflict. If a set of

rules forbids all actions on a state, then the probability ofeach action is set to0. After
normalization, the probabilities of all actions are equal,that is, the action choice be-
comes completely random. This strategy is reasonable when the agent does not know
the consequence of violating each rule.

Although a supervisor provides directions to its subordinates via rules and sugges-
tions as defined above, instead of explicit policies, the following proposition holds with
the integration developed above.

2We use ”.” as a projection operator. For example,r.c returns the rule condition of ruler.
3If G(s, a) is empty, thendeg(s, a) = 0.

7

Proposition 1. If a supervisor knows the optimal policy for each subordinate and each
subordinate completely trusts the supervisor’s suggestions (that is,η(s) = 1, for all
states), then the supervisor can force each subordinate to executethe optimal policy
via the adapted policyπA.

Proof. The supervisor requires each subordinate to send its local policy to it via report
messages. Consider an arbitrary subordinate. Letπ∗ be the optimal policy of this
subordinate, andπ be its current local policy. To force this subordinate to execute the
optimal policy, for each state-action pair(s, a), the supervisor sends a suggestion<
s, {a}, d > to this subordinate, where the suggestion degreed is defined as following:

Case 1 if π∗(s, a) ≤ π(s, a), thend = π∗(s, a)/π(s, a)− 1. Since−1 ≤ d ≤ 0, then
πA(s, a) = π(s, a)∗(1+η(s)∗deg(s, a)) = π(s, a)∗(1+π∗(s, a)/π(s, a)−1) =
π∗(s, a).

Case 2 if π∗(s, a) > π(s, a), thend = (π∗(s, a) − π(s, a))/(1 − π(s, a)). Since
0 < d ≤ 1, thenπA(s, a) = π(s, a) + η(s) ∗ deg(s, a) ∗ (1 − π(s, a)) =
π(s, a) + (1− π(s, a)) ∗ (π∗(s, a)− π(s, a))/(1− π(s, a)) = π∗(s, a).

Note that the proof does not need to use thislimit function, because the resultingπA

is already valid. Therefore, with the supervisor’s suggestion, the action choice of this
subordinate is based on the optimal policy.

Based upon the mechanism developed above for integrating suggestions and rules
into the learning process, both MARL and the organization supervision mechanism
can affect each other. Rules and suggestions provide bias for the action choice during
exploration and speed up the learning process. In turn, workers improve their perfor-
mance through learning and provide supervisors with new information to refine rules
and suggestions. Due to the pruning effect of rules, supervisors need to have a mecha-
nism to detect if a rule is overconstraining and then to refinethe rule to allow workers
to properly explore the environment.

5 Experimental Results

We have tested MASPA in both distributed task allocation problem (DTAP) and net-
work routing problem. In the following experiments, we manually cluster agents in
the overlay network using Manhattan distance. The agent closest to the center of each
cluster is elected as the supervisor. Supervisors also playthe worker role. We assume
that there are links that allows direct communication between subordinates and their
supervisors and between adjacent supervisors.

5.1 Distributed Task Allocation Problem

To evaluate MASPA, we extended the simulator of a simplified DTAP [2] to incorporate
Poisson task arrival and exponential task service time. In the DTAP, agents are orga-
nized in an overlay network. Agenti executes tasks with rateωi work units per time
unit and receives tasks from the environment with rateλi tasks per time unit, where
tasks’ work units are under a exponential distribution withmeanµi. At each time unit,
an agent makes a decision for each task received during this time unit whether to ex-
ecute the task locally or send it to a neighboring agent for processing. A task to be
executed locally will be added to the local queue with unlimited queue length, where

8

tasks are executed on a first-come-first-serve basis. Agentsinteract via communication
messages and communication delay between two agents is proportional to the Manhat-
tan distance between them, one time unit per distance unit (each agent has a physical
location). The main goal of DTAP is to minimize the total service time of all tasks,

averaged by the number of tasks,ATST =
P

T∈T̄τ
TST (T)

|T̄τ |
, whereT̄τ is the set of

tasks received during a time periodτ andTST (T) is the total service time that taskT
spends in the system, which includes the routing time in the network, waiting time in
the local queue, and execution time.

5.1.1 Implementation

Algorithm 1: WPL: Weighted Policy Learner

begin
r ← the reward for actiona at states
update Q-value table using< s, a, r >
r̄ ← average reward=

∑

a∈A π(s, a)Q(s, a)
foreach actiona ∈ A do

∆(a)← Q(s, a)− r̄
if ∆(a) > 0 then ∆(a)← ∆(a)(1 − π(a))
else ∆(a)← ∆(a)(π(a))

end
π ← limit(π + ζ∆)

end

Workers use the Weighted Policy Learner (WPL) algorithm [1]to learn task allo-
cation policies. Note that MASPA does not depend on a specificMARL and the only
requirement is that the MARL can learn mixed policies. Algorithm 1 describes the
policy update rule of WPL. WPL is a gradient ascent algorithmwhich is based on the
following strategy: learn fastest when the policy gradient∆ changes its direction and
gradually slow down learning if the gradient remains in the same direction. A worker’s
state is defined by a tuple〈lc, β, S̃1, . . . , S̃n〉, wherelc is the current work load (or total
work units) in the local queue,β is the rate of incoming task requests, andS̃i is the
expected service time of a task if forwarded to neighbori. The state space is contin-
uous and is dynamically discretized with the maximum and minimum values of each
vector component, which are updated periodically during the learning. The reward for
forwarding a task to neighbori is−S̃i.

Algorithm 2 shows the decision process that takes place at each worker on every
cycle. There are three types of messages generated by a worker: result, request, and
report. A resultmessage〈i, T, t〉 indicates that taskT is completed at timet after being
sent to neighbori, and is used to calculateTST (T) and updatẽSi in the current state
with the following equation (adopted from Q-learning [15]): S̃i = α ∗ S̃i + (1 − α) ∗
TST (T), whereα is the decay rate. A result message for a task will be passed back
to all agents on the task routing path.4 A requestmessage〈i, Ti〉 indicates a request
from neighbori to execute taskT . A report 〈i, l, n, τ〉 is generated by agenti that
consists of the average work loadl of the workers over a period timeτ and the number

4The state update mechanism proposed in [2] can reduce the number of messages. This paper mainly
focuses on the supervision mechanism and the use of this feedback mechanism can help eliminate other
potential factors that affect the system performance.

9

Algorithm 2: Worker’s Decision Making Algorithm

begin
n← the identity of the worker
tc ← the current time
if a taskT in the local queue is donethen

sendresult〈n, T, tc〉 to theT ’s sender
end
MSGS ← messages received in this cycle
foreach result〈i, T, t〉 ∈MSGS do

update the current states
if T is received from agentj (j 6= n) then

sendresultmessage〈n, T, t〉 to j
end

end
Userulesandsuggestionsfrom MSGS to update the integrated policyπAC

i

foreach request〈i, Ti〉 ∈MSGS do
choose and execute an actiona based onπAC

i

update the current states
learn(s, a)

end
collect work load information in the local queue
if tc is a reporting timethen

generate and send areport to its supervisor
end

end

10

of workersn (which is1 in a worker report). It is possible that more information, such
as average utilization and task arriving rates, can be addedto allow supervisors to make
more informed decisions. An agent sends a report to its supervisor everyτ time period.

Algorithm 3: Supervisor’s Decision Making Algorithm

begin
sr keeps the latest rule received from its superordinate supervisor
ss keeps the latest suggestions received from its superordinate supervisor
if all subordinates’ reports for the current period are received then

generate an aggregated reportrep
addrep to repList
r ← generateRule(repList)
r ← combine(r, sr)
distribute(r)
sendrep to all peer supervisors and its superordinate supervisor

end
if all peer supervisors’ reports for the current period are receivedthen

hc← clusters with higher average load
lc← clusters with lower average load
foreach clusterc ∈ hc do

sendNegativeSuggestions(c, ss)
end
stochastically choose one clusterc in lc and
sendPositiveSuggestion(c, ss)

end
end

Algorithm 3 shows the decision process that takes place at each supervisor on every
cycle. Three types of messages are generated by supervisors: report, rule, andsugges-
tion. The creation of both reports and rules are based on subordinates’ reports. Let
reps be the set of reports from subordinates. A supervisor’s report sp aggregates data
in subordinates’ reports, wheresp.n =

∑

r∈reps r.n, sp.l =
∑

r∈reps(r.l ∗ r.n)/sp.n
andsp.τ = r.τ for anr ∈ reps.

We define one rule for DTAP, calledload limit rule 〈limit〉, that specifies, for
all states whose work load exceedslimit, a worker should not add a new task to the
local queue. Thelimit is set with the information about the average load within a
cluster, so this rule helps balance load within the cluster.On the other hand, since
the worker’s state contains the load information, this rulecan reduce the state-action
space for the MARL exploration. To generate a stable and accurate rule, a super-
visor keeps its own aggregated reports inrepList, a fixed-length list. The function
generateRule(repList) returns a load limit rule〈limit〉, wherelimit =

∑

r∈repList r.l/m
andm is the size ofrepList. The functioncombine(r, rs) chooses a more constrained
rule (i.e., with a lower load limit) between the local ruler and the superordinate rulesr.
The functiondistribute(r) sends ruler to subordinates. In order to avoid excessive
sending of rule messages, a supervisor sends a new rule iff the difference of load limits
between the new rule and the current rule exceeds a certain threshold.

The load limit rule forbids adding a task to the local queue only if the current load
is already greater than the limit. Therefore, it is possiblethat the work load in local
queue of a worker is greater than the load limit. For example,suppose agents in a

11

cluster do not receive external tasks by themselves. Initially, the cluster has few tasks
forwarded from its neighboring clusters and thus has a very low average load (e.g., 3),
from which a rule is generated. As time goes on, more and more tasks are forwarded to
the cluster and each agent is more likely to add tasks to its local queue, whose load is
close to 3. As a result, each local load is frequently greaterthan the load limit and the
average load of the cluster increases. From report messages, the supervisor can detect
that the current rule is over-constraining and generate a less constraining rule with a
higher load limit.

We utilize suggestions to balance the load across clusters.The creation of sug-
gestions is based on reports from peer supervisors. Letrepi andrepk be the report
of supervisori and its neighboring supervisork respectively,ci andck be the cluster
supervised by supervisori andk respectively,mi be the number of subordinates of
clusterci that are adjacent to clusterck, andcom costk be the communication cost be-
tween supervisori and supervisork, which can be estimated from the communication
between them.

If repk.l − repi.l > 0, supervisori considers clusterck having a higher load.
FunctionsendNegativeSuggestions(ck, ss) creates a negative suggestion with de-
greend = (repi.l/repk.l
−1)/mi to discourage forwarding tasks to clusterck, combining it with the matching
suggestion (if exists) inss from its superordinate supervisor, and then sending the com-
bined suggestion to subordinates adjacent to clusterc. Two suggestions match if they
share the same action set (i.e., both local decision and superordinate decision suggest
forwarding tasks to clusterck) and some state(s). Our combination strategy is that if
the degrees of two matching suggestions have the same sign, the integrated suggestion
uses the degree of the stronger suggestion; otherwise, it uses the sum of two degrees.

If diffk = repi.l − repk.l − com costk > 0, then clusterci considers clusterck

has a lower average load. In order to avoid “hot spot” problems, supervisori proba-
bilistically selects one from the set of neighboring clusters with lower load, where the
probability of selecting clusterck is given byPr(k) = diffk

P

n∈neighbors(i) diffn
, where

the functionneighbors(i) returns all neighboring clusters of supervisori. Function
sendPositiveSuggestion(ck, ss) does the same thing assendNegativeSuggestions(ck, ss)
except that it sends a positive suggestion with degreepd = diffk/repi.l/mi. To
strengthen the effect of suggestions, if a suggestion with degreed is sent to subordinate
j and its neighborn doesn’t receive the same suggestion, then a suggestion withdegree
ξd and actionj is sent ton, whereξ is the suggestion decay rate. To reduce network
overhead, a suggestion with degree less than a threshold (e.g., 0.05) will not be sent to
subordinates.

5.1.2 Results & Discussions

We have tested MASPA in the DTAP simulation mentioned above,where three mea-
surements are evaluated: the average total service time (ATST), the average number
of messages (AMSG) per task, and the time of convergence (TOC). ATST indicates
the overall system performance, which can reflect the effectiveness of learning and su-
pervision mechanism and can also be used to verify system stability (convergence) by
showing monotonic decrease in ATST as agents gain more experiences. AMSG shows
the overall communication overhead for finishing one task. To calculate TOC, we take
10 sequential ATST values and then calculate the ratio of thosevalues’ deviation to
their mean. If the ratio is less than a threshold (we use 0.025), then we consider the
system stable. TOC is the start time of the selected points.

12

MASPA does not pose any constraint on the network structure.However, as men-
tioned, we do implicitly assume the system is nearly-decomposable with a hierarchy
of at least one level. For clarity, Experiments were conducted using uniform two-
dimension grid networks of agents with different sizes: 6x6, 10x10, and 27x27, all of
which show similar results. But as the size of the system increases, the MASPA impact
on the system performance becomes greater. For brevity, we only present here the re-
sults for the 27x27 grid. In each simulation run, ATST and AMSG are computed every
1000 time units to measure the progress of the system performance. Results are then
averaged over 10 simulation runs and the variance is computed across the runs. All
agents use WPL with learning rate0.001. Workers send reports to their supervisors ev-
ery 500 time units. Our experiments use the parameterη(s) = 1000/(1000+visits(s))
and the suggestion decay rateξ = 0.5.

For simplicity, we assume that all agents have the same execution rate,∀i : ωi = 1,
and that tasks are not decomposable. The service time of tasks are under a Poisson
distribution with meanµ = 10. We tested three patterns of task arrival rates over the
27x27 grid:

Boundary Load where the 200 outermost agents receive tasks withλ = 0.33 and
other agents receive no tasks from the external environment.

Center Load where the 121 agents in the centric 11x11 grid receive tasks with λ =
0.5 and other agents receive no tasks from the external environment.

Uniform Load where all 729 agents receive tasks withλ = 0.09.

We compared four structures:no supervision, local supervision, one-level supervi-
sion, and two-level supervision. In thelocal supervisionstructure, agents are their own
supervisors. With this structure, each agent gains a view only about itself and its neigh-
bors, which is not much different from its view in the organization without supervision.
So we use thelocal supervisionstructure to evaluate whether domain knowledge com-
bined with a limited view, which is used to create rules and suggestions, still improves
the system performance. In contrast, the performance of thetwo following structures
with supervision show the benefits of having a broader view combined with domain
knowledge. Theone-level supervisionstructure has 81 clusters, each of which is a 3x3
grid and the agent at each cluster center is elected as the supervisor. Thetwo-level
supervisionstructure forms from theone-level supervisionstructure by grouping 81
supervisors into 9 clusters, each of which is a 3x3 grid. The supervision structures with
three or more levels did not show further improvement over the two-level supervision
in our DTAP experiments. This is because a wide-range task transfer causes a long
routing time which offsets the reduction of the queuing timein each agent.

Figure 3 plots the trend of ATST for different structures as agents learn. As ex-
pected, systems withone-level supervisionor two-level supervisionconverge much
faster than that without supervision. The system withtwo-level supervisionperforms
better than withone-level supervision, because bottom-level supervisors create more
accurate rules and suggestions for workers by combining local decisions with superor-
dinate decisions which are based on a broader view. But as thesystem stabilizes, the
system load tends to be smoothly distributed among the agents and the broader view
of higher-level supervisors does not provide more information than that of lower-level
supervisors. Thereforetwo-level supervisionandone-level supervisionshow almost
the same performance after stabilization.

13

Figure 3: ATST for different structures, boundary load: top, center load: medium,
uniform load: bottom

14

Figure 4: AMSG for different structures, boundary load: top, center load: medium,
uniform load: bottom

Interestingly,local supervisionimproves its performance only after a certain period
of time, and at an early stage, it may even decrease system performance. Withlocal
supervision, each worker is a supervisor, so a supervisor’s suggestion is based only on
the load information of its immediate neighboring workers,which can be incorrect at
early stages. For example, workerA with a high load has two neighbors workerB, with
a low load, and workerC, with a high load. As a result, workerA will create a positive
suggestion to itself to send more tasks to workerB and a negative suggestion to send
less tasks to workerC. In fact, all other neighbors of workerB have a very high load
and all other neighbors of workC have a very low load. Misleading suggestions based
on these incorrect information cause oscillation in workerpolicies and severely degrade
the normal learning process, resulting in a decreased performance. However, as time
passes, each agent learns a better policy; meanwhile,η(s) decreases and suggestions
have a less impact on the action choice. On the other hand, theload limit rule, based on
its own load history, can reduce the exploration space, resulting in faster convergence.

Under the boundary-load and uniform-load pattern, all systems show monotonic
decrease in ATST after a certain period of time, which indicates the stability (conver-
gence) of these systems. However, under the center-load pattern, the system without
supervision crashes and runs out of the computing resourcesbefore showing signs of
convergence. This happens because, using random exploration, agents in the inner
layer do not learn and propagate quickly enough knowledge that agents in the outside

15

layer are light-loaded. As a result, more and more tasks loopand reside in the center
11x11 grid where agents receive external tasks. This makes the system load severely
unbalanced and the system capability not well utilized. In contrast, the supervisory
information guides and coordinates the exploration of agents and allows them to learn
quickly to effectively route tasks.

Under the uniform-load pattern, the system load is actuallynot evenly distributed,
with a higher load around the center and a lower load on the boundary, but the load
difference is not as significant as that under boundary-loadand center-load patterns.
Therefore supervision with a broader view improves the performance, though not as
significantly.

Figure 4 illustrates the communication overhead for different structures. Initially,
the system without supervision has lower AMSG. This is because supervision mecha-
nism increases the communication overhead for sending reports, rules and suggestions
and its encouragement of exploration at the early stage alsoincreases the number ofre-
questandresultmessages. However, under the boundary-load and center-load patterns,
the supervision mechanism leads workers to learn how to route tasks effectively to bal-
ance the load much more quickly, which dramatically reducesthe number ofrequest
and result messages. As a result, these systems with supervision mechanism obtain
lower AMSG after a short period, as shown in the Figure 4. Under the uniform-load
pattern, the system does not benefit enough from supervisionmechanism to offset the
communication overhead caused by the supervision mechanism.

Table 1, Table 2, and Table 3 show the different measures after agents have learned
for 100000 time units. Here ATST and AMSG are measured for each supervision struc-
ture at their own convergence time point. Although, in some case,two-level supervision
has a slightly higher ATST than that ofone-level supervisionat their own convergence
time points, it has actually a lower or almost same ATSTone-level supervisionwhen
evaluated at the same time point.

Supervision ATST AMSG TOC
No 60.75± 1.10 8.80± 0.22 61000

Local 37.44± 0.51 7.27± 0.08 37000
One-level 35.38± 0.64 7.39± 0.24 16000
Two-level 35.96± 0.62 7.56± 0.17 14000

Table 1: Performance of different structures with boundaryload

Supervision ATST AMSG TOC
No N/A N/A N/A

Local 1328± 33 32.89± 3.15 30000
One-level 36.95± 0.45 10.24± 0.17 14000
Two-level 37.12± 0.81 11.07± 0.45 12000

Table 2: Performance of different structures with center load

To show the robustness of the multi-level supervision, we evaluated MASPA when
not all supervisors worked properly. Each supervisor has a probability fp of failing to
function during a report period. We assume that, when its supervisor fail to function,
a worker will use rules and suggestions last received from its supervisor. We tested
both one-level supervision and two-level supervision and they showed similar results.

16

Figure 5: Performance with different failure probabilities of supervisors, boundary
load: top, center load: bottom

17

Supervision ATST AMSG TOC
No 28.57± 0.68 1.89± 0.13 21000

Local 22.36± 0.42 2.17± 0.08 19000
One-level 24.46± 0.61 3.83± 0.38 9000
Two-level 24.34± 0.59 3.75± 0.41 8000

Table 3: Performance of different structures with uniform load

Figure 5 shows the performance of one-level supervision with differencefp values. It
can be seen that MASPA still improves the learning in a reasonable degree when each
supervisor works properly with only one half probability5.

In our simulation, we observed that supervisory information corresponding to coarse-
grained control tend to be more helpful than that corresponding to fine-grained control
in improving the system performance. Moreover, fine-grained may even decrease sys-
tem performance. Coarse-grained control considers and operates on the whole cluster
as one entity, while fine-grained control operates on individual cluster members. “Mov-
ing more tasks from my cluster to one of neighboring clusters” and “balancing the load
within the cluster” are examples of coarse-grained control. “Moving more tasks from a
high-loaded agent to a low-loaded agent along the shortest path” is an example of fine-
grained control. One explanation for this observation is that supervisory information
corresponding to coarse-grained control results in more coordination among agents’
exploration, speeding up the learning convergence. In contrast, in our simulation, due
to lack of detailed information of each cluster member, fine-grained control for some
individual members is not able to fully evaluate the impact on and from other agents.
As a result, the fine-grained control may interfere with the normal learning process of
other agents and the dynamics of other agents may degrade thefine-grained control.

We have explored different values of cluster size and found that system perfor-
mance decreases with cluster size that are either too small or too large . This is be-
cause, with too small a cluster size, supervisors do not collect enough information to
create correct rules and suggestions. With too large a cluster size, they are not able to
create rules and suggestions that are suitable for every subordinate. Therefore, there is
a trade-off for the cluster size.

Similarly, there is a trade-off for the length of the report period. A too short report
period causes a large variance of the abstracted state (alsoincreases communication
overhead) and results in oscillating suggestions and rules. A too long report period
causes the supervisory information received by workers to be out-dated and as a result,
decreases the convergence rate.

5.2 Network Routing

We also evaluate our framework using a network routing simulator adopted from Boyan
and Littman [4]. It is a discrete time simulator of communication networks with various
topologies. A communication network consists of a homogeneous set of nodes (or
agents) and links between them. Packets are periodically introduced into the network
under a Poisson distribution with a random origin and destination. No packets have the
same agent as their origin and destination. When a packet arrives at an agent, the agent
puts it into the local FIFO (first in first out) queue. At each time, an agent makes its
routing decision to forward the top packet in the queue to oneof its neighbors. Once a

5This result may compromise when the task arriving pattern ischanging continuously

18

packet reaches its destination, it is removed from the network. In our experiments, we
set the time cost of sending a packet down a link as a unit cost.So the delivery time of
packet consists of its transmission cost and its waiting time in queues. The main goal
of a network routing algorithm is to minimize the Average Delivery Time (ADT) of all
packets.

5.2.1 Implementation

Algorithm 4: Policy Gradient Descent (PGD) Algorithm

begin
r ← the cost for actiona at states
update Q-value table using< s, a, r >
t← summed cost=

∑

a∈A Q(s, a)
r̄ ← average cost=

∑

a∈A π(s, a)Q(s, a)
foreach actiona ∈ A do

∆(s, a)← ζ(Q(s, a)− r̄)/t
end
π(s)← limit(π(s)−∆(s))

end

To minimize the time cost of delivering packets, each agent uses a Policy Gradient
Descent(PGD) algorithm to learn its routing policies. Algorithm 4 describes its policy
update rule, whereζ is the policy learning rate. PGD learns stochastic policies, but,
unlike multi-agent OLPOMPD [14] and GAPS [7], PGD does not require a global
reward signal. The states is defined by the destination of the packet that an agent is
forwarding. We defineQx(s, a) as the estimated time that an agentx takes to deliver
a packet to the destinations through its neighbora, including any time that the packet
would have to spend in the agentx’s queue. Upon sending a packet toa, x immediately
gets backa’s estimate for the time remaining in the trip, namely

qa = min
a∈neighbors ofy

Qy(s, a)

Then the ”cost signal”r(s, a) for forwarding a packet with destinations to its neighbor
a is qa + w + t, wherew is the waiting time of the packet inx’s queue andt is the
transmission time between agentx anda. The Q-learning algorithm is used to update
x’s estimate:

Qx(s, a) = (1 − α) ∗Qx(s, a) + α ∗ r

whereα is a learning rate (usually 0.5 in our experiments). With updated Q-values, the
PGD algorithm revises its policy.

The MASPA implementation in the network routing is similar to that in DTAP, and
the main difference is the way of generating MASPA messages.In the network rout-
ing problem, we do not use rules. A worker’s report contains avector〈t1, t2, . . . , tm〉,
whereti is the average estimated time that a worker takes to deliver apacket to destina-
tion agents in clusteri. A supervisor aggregates its subordinates’ reports and generates
its own report by averaging their estimated delivery time toany destination cluster.

Let tdi be the estimated time for clusteri to deliver a packet to destinations cluster
d. Let Nc be the neighbor set of clusterc. For each clusterd, if tdc > tdn, wheren is a
neighboring cluster ofc, then the supervisor of clusterc provides positive suggestions

19

Figure 6: The 10 x 10 grid toplogy

to its boundary members to encourage forwarding packets with destinations in cluster
d to clustern. The positive suggestion degree is calculated:

deg =
tdc − tdn

∑

td
c>td

i
,i∈N (tdc − tdi)

If tdc < tdn, then supervisorc sends out negative suggestions, whose degree is

deg =
tdc − tdn

∑

td
c<td

i
,i∈N (tdi − tdc)

Similar to our implementation for DTAP, non-boundary members receive suggestions,
but with decayed degrees.

5.2.2 Results & Discussions

We have tested the PGD algorithm with and without MASPA on several network
topologies with various number of nodes, all of which show similar results. For brevity,
we concentrate on the result analysis for the 10 x 10 grid network pictured in Figure 6.
The Q-routing [4] algorithm is used as baseline, which learns deterministic policies.
. Two measurements are evaluated: the average delivery time(ADT) and the time of
convergence (TOC). The ADT is computed every 1000 time units. To calculate TOC,

20

Time
0 100000 200000 300000 400000 500000

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

2000

4000

6000

8000

10000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 7: Performance under network load = 7.0

we take50 sequential ADT values and then calculate the ratio of those values’ devia-
tion to their mean. If their mean is less than the maximum expected ADT (we use 300)
and the ratio is less than a threshold (we use 0.05), then we consider the system stable.
TOC is the start time of the selected points.

Results are then averaged over 10 simulation runs. All agents use the PGD algo-
rithm with a learning rateζ = 0.1. Workers send reports to their supervisors every 500
time units. Our experiments use the parameterη(s) = 20000/(20000+visits(s)) and
the suggestion decay rateξ = 0.5.

Figure 7 shows the performance trend as agents learn under network load= 7.0. All
three algorithms, after initial periods of inefficiency during which they randomly ex-
plore the environment, gradually improve their performance and stabilize. At the very
early period, MASPA does not improve the performance much. This is because, due
to almost complete random exploration, subordinates do notprovide accurate environ-
ment information to their supervisor, which may result in some improper suggestions.
As information accuracy increases, MASPA properly biases the policy search of the
PGD algorithm and speeds up the convergence. Due to policy oscillation, Q-routing
shows slow convergence.

Figure 8 shows the TOC of three algorithms under various network loads. As
expected, MASPA consistently speeds up the convergence of the PGD algorithm. The
higher the network load, the greater the speed improvement.For example, when load
≥ 5.5, MASPA decreases the TOC by around40% or more. Under low network loads,
optimal policies usually follows shortest paths, so they are deterministic. The PGD
algorithms use gradient update and gradually converge to deterministic policies, slower
than Q-routing that directly learns deterministic policies. However, under high loads,
where optimal policies are usually stochastic, the Q-routing policies show oscillation
during the learning and the PGD algorithm with MASPA converges faster to stochastic
policies.

Figure 9 shows the ADT at the convergence time point under various network loads.
Under low loads, as both PGD algorithms with and without MASPA converge deter-
ministic policies, they shows almost the same performance.Due to random exploration
with some probability, they performs slightly worse than Q-routing. However, under
high loads, MASPA improves the PGD performance. For example, when load≥ 6.5,

21

Network Load
0 1 2 3 4 5 6 7 8 9

T
im

e
of

 C
on

ve
rg

en
ce

0

100000

200000

300000

400000

500000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 8: Time of Convergence at various loads

Network Load
0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

50

100

150

200

250

300

350
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 9: Delivery time at various loads

22

MASPA decreases the ADT by at least10%, and when load= 8.0, MASPA reduces
the ADT by around30%. As both PGD algorithms converge to stochastic policies,
which allows agents to simultaneously exploit multiple paths to deliver packets to a
single destination, they perform much better than Q-routing under high loads.

6 Conclusion

This work presents MASPA, a scalable and robust supervisionframework, that en-
ables efficient learning in large-scale multi-agent systems. In MASPA, the automated
supervision mechanism fuses activity information of lower-level agents and generates
supervisory information that guides and coordinates agents’ learning process. This
supervision mechanism continuously interacts with the learning process. Simulation
results obtained in two different application domains verify the generality of MASPA
and demonstrate that MASPA significantly accelerates the learning process and reduces
the communication overhead due to the earlier convergence.

Future work includes providing a distributed algorithm forforming supervision
organizations (addressing agent clustering and supervisor election). The supervision
mechanism generates a broader view which potentially benefits the restructuring pro-
cess in the underlying network. Thus, another future direction is to explore an adaptive
reorganization algorithm that exploits information from the supervision mechanism. In
this work, learning only takes place in workers’ decision making. It would be interest-
ing to allow workers to learn how to integrate rules and suggestions and supervisors to
learn how to make rules and provide suggestions.

References

[1] Sherief Abdallah and Victor Lesser. Learning the task allocation game. InAA-
MAS’06, 2006.

[2] Sherief Abdallah and Victor Lesser. Multiagent reinforcement learning and self-
organization in a network of agents. InAAMAS’07, 2007.

[3] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. R. Costa. Heuristic se-
lection of actions in multiagent reinforcement learning. In IJCAI’07, Hyderabad,
India, 2007.

[4] Justin A. Boyan and Michael L. Littman. Packet routing indynamically changing
networks: A reinforcement learning approach. InNIPS’94, volume 6, pages 671–
678, 1994.

[5] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical
multi-agent reinforcement learning. InAutonomous Agents’01, pages 246–253,
2001.

[6] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: theory and application to reward shaping. In ICML’99, pages
278–287, 1999.

[7] Leonid Peshkin and Virginia Savova. Reinforcement learning for adaptive rout-
ing. In International Joint Conference on Neural Networks (IJCNN), 2002.

23

[8] Michael T. Rosenstein and Andrew G. Barto. Supervised actor-critic reinforce-
ment learning. In J. Si, A. Barto, W. Powell, and D. Wunsch, editors, Learning
and Approximate Dynamic Programming: Scaling Up to the RealWorld, pages
359–380. John Wiley and Sons, 2004.

[9] H. A. Simon. Nearly-decomposable systems. InThe Sciences of the Artificial,
pages 99–103. MIT Press, 1969.

[10] Satinder P. Singh, Tommi Jaakkola, Michael L. Littman,and Csaba Szepesvari.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287–308, 2000.

[11] Peter Stone and Manuela Veloso. Team-partitioned, opaque-transition reinforce-
ment learning. InAutonomous Agents’99, pages 206–212, 1999.

[12] A. S. Tanenbaum.Computer Networks. Prentice Hall PTR, New York, 4th edition
edition, 2003.

[13] P. Tangamchit, J. Dolan, and P. Khosla. Learning-basedtask allocation in decen-
tralized multirobot systems. InDARS’00, pages 381–390, 2000.

[14] Nigel Tao, Jonathan Baxter, and Lex Weaver. A multi-agent policy-gradient ap-
proach to network routing. InICML ’01, pages 553–560, 2001.

[15] C. J. C. H. Watkins and P. Dayan. Q-learning.Machine Learning, 8(3/4):279–
292, 1992.

[16] Haizheng Zhang and Victor Lesser. A reinforcement learning based distributed
search algorithm for hierarchical content sharing systems. In Proceedings of the
Sixth International Joint Conference on Autonomous Agentsand Multi-Agent Sys-
tems, 2007.

[17] Martin Zinkevich. Online convex programming and generalized infinitesimal gra-
dient ascent. InICML’03, pages 928–936, 2003.

24

