
Efficient Multi-Agent Reinforcement Learning through
Automated Supervision

(Short Paper)
Chongjie Zhang
Computer Science

Department
140 Governors Drive

University of Massachusetts
Amherst, MA 01002-9264

chongjie@cs.umass.edu

Sherief Abdallah
Institute of Informatics

British University in Dubai
Knowledge Village, Block 17
Dubai, United Arab Emirates

sherief.abdallah@buid.ac.ae

Victor Lesser
Computer Science

Department
140 Governors Drive

University of Massachusetts
Amherst, MA 01002-9264
lesser@cs.umass.edu

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) algorithms
suffer from slow convergence and even divergence, especially
in large-scale systems. In this work, we develop a supervi-
sion framework to speed up the convergence of MARL al-
gorithms in a network of agents. The framework defines
an organizational structure for automated supervision and
a communication protocol for exchanging information be-
tween lower-level agents and higher-level supervising agents.
The abstracted states of lower-level agents travel upwards
so that higher-level supervising agents generate a broader
view of the state of the network. This broader view is used
in creating supervisory information which is passed down
the hierarchy. We present a generic extension to MARL
algorithms that integrates supervisory information into the
learning process, guiding agents’ exploration of their state-
action space.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Multiagent Systems, Supervision,
Heuristics

1. INTRODUCTION
The main contribution of this paper is the development

of a framework that speeds up the convergence of Multi-
Agent Reinforcement Learning (MARL) algorithms [2, 6] in
a network of agents. Each agent’s learning occurs in the con-
text of a limited set of agents. We call this set of agents the
agent’s neighborhood that is specified as an overlay network.

Cite as: Efficient Multi-Agent Reinforcement Learning through Auto-
mated Supervision (Short Paper), Chongjie Zhang, Sherief Abdallah, Vic-
tor Lesser, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: An organization structure for multi-level
supervision

The slowness of MARL convergence is due to the large policy
search space. Each agent’s policy not only includes its local
state and actions but also some characteristics of the states
and actions of its neighboring agents [2], or the state size of
each agent may be proportional to the size of the system [6].
Convergence is also affected by the non-stationarity of the
environment (other agents are simultaneously learning their
own policies).

Our framework consists of three main components: a multi-
level supervision organization (a meta-organization built on
top of the agents’ overlay network), a communication pro-
tocol for exchanging information between lower-level agents
and higher-level supervising agents, and a generic extension
to MARL algorithms that integrates supervisory informa-
tion into the learning process. The key idea of our frame-
work is as follows. Each level in the supervising organization
is an overlay network in itself. For example, Figure 1 shows
a three-level supervision organizational structure. The ab-
stracted states of lower-level agents travel upwards so that
higher-level supervising agents can generate a broader view
of the state of the network. This broader view comes from
not only information about the states of lower-level agents
but also information from neighboring supervising agents.
In turn, this broader view results in creating supervisory
information which is passed down the hierarchy. The su-
pervisory information guides agents in collectively exploring
their state-action spaces more efficiently, and consequently
results in faster convergence.

Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp. 1365-1368.

2. RELATED WORK
Two paradigms have been studied to speed up the learning

process. The first paradigm is to reduce the policy search
space. For example, the TPOL-RL [10] reduced the state
space by mapping states onto a limited number of action-
dependent features. The hierarchical multi-agent reinforce-
ment learning [7] used the explicit task structure to restrict
the space of policies, where each agent learned joint abstract
action-values by communicating with each other only the
state of high-level subtasks. The second paradigm is to use
heuristics to guide the policy search. The work described
in [11] used both local and global heuristics to accelerate
the learning process in a decentralized multirobot system.
The local heuristic used only the local information and the
global heuristic used the information that was shared and
required to be exactly the same among robots. The Heuris-
tically Accelerated Minimax-Q (HAMMQ) [4] incorporated
heuristics into the Minimax-Q algorithm to speed up its con-
vergence rate, which shared the convergence property with
Minimax-Q. HAMMQ was intended for a two-agent configu-
ration and further the authors had no discussion about how
heuristics were constructed.

Our approach follows the second paradigm that uses heuris-
tics to guide the policy search. However, it differs from other
approaches in a key respect that it defines a decentralized
hierarchical supervision mechanism to automate the gener-
ation of heuristics and integrates heuristics into existing un-
supervised MARL algorithms (e.g., ReDVaLeR [3], WoLF-
GIGA [5], WPL [1], etc.) in a generic manner to speed up
their convergence.

3. ORGANIZATIONAL SUPERVISION
Supervision mechanisms commonly exist in human orga-

nizations (e.g., enterprises and governments), whose pur-
pose is to run an organization effectively and efficiently to
fulfill organizational goals. Supervision involves gathering
information, making decisions, and providing directions to
regulate and coordinate actions of organization members.
The practical effectiveness of the supervision in human or-
ganizations, especially in large organizations, inspired us to
introduce a similar mechanism into multi-agent systems to
improve the efficiency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay
structure, we adopt a multi-level, clustered organizational
structure. Agents in the original overlay network, called
workers, are clustered based on some measure (e.g., geo-
graphical distance). Each cluster is supervised by one agent,
called the supervisor, and its member agents are called sub-
ordinates. The supervisor role can be played by a dedicated
agent or one of the workers. If the number of supervisors
is large, higher-level supervisors can be added, and so on,
forming a multi-level supervision structure.

Two supervisors at the same level are adjacent if and only
if at least one subordinate of one supervisor is adjacent
to at least one subordinate of the other. Communication
links, which can be physical or logical, exist between ad-
jacent workers, adjacent supervisors, and subordinates and
their supervisors. Figure 1 shows a three-level organiza-
tional structure. The bottom level is the overlay network of
workers which forms 9 clusters. A shaded circle represents a
supervisor, which is responsible for a corresponding cluster.
Note that links between subordinates and their supervisors

are omitted in this figure.

4. COMMUNICATION PROTOCOL
Three types of communication messages, report, sugges-

tion, and rule, are used. A worker’s report passes its activ-
ity data upwards to provide its supervisor with a broader
view. A supervisor’s report aggregates the information of
reports from its subordinates. A supervisor sends its report
to its adjacent supervisors at the same level in addition to
its immediate supervisor (if any). The supervisor’s view is
based on not only the agents that it supervises (directly or
indirectly) but also its neighboring supervisors. This peer-
supervisor communication allows each supervisor to make
rational local decisions when directions from its immediate
supervisor are unavailable. To prevent supervisors from be-
ing overwhelmed and reduce the communication overhead in
the network, the information is summarized (abstracted) in
reports. Furthermore, reports are only sent periodically.

Based upon this information, a supervisor employs its ex-
pertise, integrates directions from its superordinate super-
visor, and provides supervisory information to its subordi-
nates. As in human organizations, rules and suggestions are
used to transmit supervisory information. A rule is defined
as a tuple 〈c, F 〉, where

• c: a condition specifying a set of satisfied states

• F : a set of forbidden actions for states specified by c

A suggestion is defined as a tuple 〈c, A, d〉, where

• c: a condition specifying a set of satisfied states.

• A: a set of actions

• d: the suggestion degree, whose range is [−1, 1].

A suggestion with a negative degree, called a negative sug-
gestion, urges a subordinate not to do the specified actions.
In contrast, a suggestion with a positive degree, called a pos-
itive suggestion, encourages a subordinate to do the speci-
fied action. The greater the absolute value of the suggestion
degree, the stronger the impact of the suggestion on the su-
pervised agent.

Each rule contains a condition specifying states where it
can be applied. Subordinates are required to obey rules from
their supervisors. Due to their imperativeness, correct rules
greatly improve the system efficiency, while incorrect rules
can lead to inefficient policies. In contrast, suggestions are
used to express a supervisor’s preference for subordinates’
behavior, which may not be completely correct. Therefore,
a subordinate does not rigidly adopt suggestions. The effect
of a suggestion on a subordinate’s local decision making may
vary, depending on its current policy and state. A supervisor
will refine or cancel rules and suggestions as new or updated
information from its subordinates become available.

A set of rules are in conflict if they forbid all possible
actions on some state(s). Two suggestions are in conflict if
one is positive and the other is negative and they share some
state(s) and action(s). A rule conflicts with a suggestion if a
state-action pair is forbidden by the rule but is encouraged
by the suggestion. In our supervision mechanism, we assume
each supervisor itself is rational and will not generate rules
and suggestions that are in conflict. However, in a multi-
level supervision structure, a supervisor’s local decision may

conflict with its superordinate direction. Rules have higher
priority than suggestions. There are several strategies for re-
solving conflicts between rules or between suggestions, such
as always taking its superordinate or local rule, stochasti-
cally selecting a rule, or requesting additional information
to make a decision. The strategy choice depends on the
application domain. Note that it may not always be wise
to select the superordinate decision, because, although the
superordinate supervisor has a broader view, its decision is
based on abstracted information. Our strategy for resolving
conflicts picks the most constraining rule and combines sug-
gestions by summing the degrees of the strongest positive
suggestion and the strongest negative suggestion.

5. MARL UNDER SUPERVISION
Using MARL, each agent gradually improves its action

policy as it interacts with other agents and the environment.
A pure policy deterministically chooses one action for each
state. A mixed policy specifies a probability distribution
over the available actions for each state. Both can be repre-
sented as a function π(s, a), which specifies the probability
that an agent will execute action a at state s. As argued
in [9], mixed policies can work better than pure policies in
partially observable environments, if both are limited to act
based on the current percept. Due to partial observability,
most MARL algorithms are designed to learn mixed poli-
cies. The rest of this section shows how MARL algorithms
learning mixed policies can take advantage of higher-level
information specified by rules and suggestions to speed up
convergence.

A typical MARL algorithm contains two components: pol-
icy (or action-value function) updating and action choice
based on the learned policy. One common method to speed
up learning is to supply an agent with additional reward to
encourage some particular actions [8]. The use of the special
reward affects both policy updating and action choice. In
a multi-agent context, special rewards may generate a pol-
icy that is undesirable in that they may distract from the
main goal, which is supported by the normal reward. In
contrast, our approach directly biases the action selection
for exploration without changing the policy update process.
Hence its effect on the final learned policy is transient (can
be turned off at any time), while reward shaping has a per-
manent effect.

As described previously, a rule explicitly specifies undesir-
able actions for some states and is used to prune the state-
action space. Suggestions, on the other hand, are used to
bias agent exploration. The strategy adopted for integrating
suggestions into MARL is that the lower the probability of a
state-action pair, the greater the effect a positive suggestion
has on it and the less the effect a negative suggestion has
on it. The underlying idea is intuitive. If the agent’s local
policy already agrees with the supervisor’s suggestions, it is
going to change its local policy very little (if at all); oth-
erwise, the agent follows the supervisor’s suggestions and
make a more significant change to its local policy.

Let R and G be the rule set and suggestion set, respec-
tively, that a worker received and π be its policy. We define
R(s, a) = {r ∈ R| state s satisfies the condition r.c and
a ∈ r.F}1 and G(s, a) = {g ∈ G| state s satisfies the con-

1We use ”.” as a projection operator. For example, r.c re-
turns the rule condition of rule r.

dition g.c and a ∈ g.A}. Then a new function πAC for the
action choice is defined as:

πA(s, a) =

8>>><>>>:
0 if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

∗ deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a))

∗ η(s) ∗ deg(s, a) else if deg(s, a) > 0

where deg(s, a) and η(s) are defined as following.
The function deg(s, a) determines the impact of sugges-

tions. We define deg(s, a) = max({g.d > 0|g ∈ G(s, a)}) +
min({g.d < 0|g ∈ G(s, a)}).2 With this definition, a worker
only considers the strongest suggestion, either positive or
negative. This definition is also used to resolve conflict-
ing suggestions (in a multi-level supervision organization)
by summing the degrees of the strongest positive suggestion
and the strongest negative suggestion.

The function η(s) is state-dependent and ranges from [0, 1].
It determines the receptivity for suggestions and allows the
agent to selectively accept suggestions based on its current
state. For instance, if an agent becomes more confident in
the effectiveness of its local policy on state s because it has
more experience with it, then η(s) decreases as learning pro-
gresses. For example, we set η(s) = k/(k+ visits(s)) where
k is a constant and visits(s) returns the number of visits on
the state s.

To normalize πAC such that it sums to 1 for each state,
the limit function from GIGA [13] is applied with minor
modifications so that every action is explored with minimum
probability ε:

πAC = limit(πAC) = argminx:valid(x)|πAC − x|

i.e., limit(πAC) returns a valid policy that is closest to πAC .
We have tested our approach in a distributed task alloca-

tion problem. Experimental results show that our approach
incorporated with some simple domain knowledge not only
dramatically speeds up the convergence rate, but also in-
creases the likelihood of convergence when an unsupervised
MARL algorithm fails to converge. Due to the space limit,
we describe our experiments in the technical report [12].

6. CONCLUSIONS
This work presents a scalable and robust framework that

enables efficient learning in large-scale multi-agent systems.
In our framework, the automated supervision mechanism
fuses activity information of lower-level agents and generates
supervisory information that guides and coordinates agents’
learning process. This supervision mechanism continuously
interacts with the learning process to accelerate the conver-
gence.

7. REFERENCES
[1] S. Abdallah and V. Lesser. Learning the task

allocation game. In AAMAS’06, 2006.

[2] S. Abdallah and V. Lesser. Multiagent reinforcement
learning and self-organization in a network of agents.
In AAMAS’07, 2007.

[3] B. Banerjee and J. Peng. Performance bounded
reinforcement learning in strategic interactions. In
AAAI’04, pages 2–7, 2004.

2If G(s, a) is empty, then deg(s, a) = 0.

[4] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R.
Costa. Heuristic selection of actions in multiagent
reinforcement learning. In IJCAI’07, Hyderabad,
India, 2007.

[5] M. Bowling. Convergence and no-regret in multiagent
learning. In NIPS’05, pages 209–216, 2005.

[6] J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement
learning approach. In NIPS’94, volume 6, pages
671–678, 1994.

[7] R. Makar, S. Mahadevan, and M. Ghavamzadeh.
Hierarchical multi-agent reinforcement learning. In
Autonomous Agents’01, pages 246–253, 2001.

[8] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: theory and application
to reward shaping. In ICML’99, pages 278–287, 1999.

[9] S. P. Singh, T. Jaakkola, M. L. Littman, and
C. Szepesvari. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287–308, 2000.

[10] P. Stone and M. Veloso. Team-partitioned,
opaque-transition reinforcement learning. In
Autonomous Agents’99, pages 206–212, 1999.

[11] P. Tangamchit, J. Dolan, and P. Khosla.
Learning-based task allocation in decentralized
multirobot systems. In DARS’00, pages 381–390, 2000.

[12] C. Zhang, S. Abdallah, and V. Lesser. Improving
multi-agent learning through automated supervisory
policy adaptation. In University of Massachusetts
Amherst Computer Science Technical Report #08-03,
2008.

[13] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML’03,
pages 928–936, 2003.

