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Abstract

The organizational design of a distributed system defines
how entities act and interact to achieve local and global ob-
jectives. We describe how a system employing different types
of organizational techniques has been used to address the
challenges posed by a distributed sensor network environ-
ment. The high-level, multi-agent architecture of this real-
world system is given in detail, and we provide empirical re-
sults demonstrating the effects the organization has on the
system's performanceacross several different metrics. Aswith
any design, the particular approach that is employed makes
trade-offs, some of which are obvious and some more sub-
tle. The presence of such trade-offs motivates the need for a
better understanding of precisely how the organization influ-
ences large and small-scale behaviors. To address this need,
we first demonstrate how a collection of analytic models
can be developed to predict such effects. This experience is
then used to ground the presentation of a more comprehen-
sive, domain-independent organizational modeling language
called ODML. The structure and capabilities of ODML are
explained through the construction of a unified model of our
sensor network organization. We then show that this model
provides an accurate prediction of the original empirical re-
sults.
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1. Introduction

Distributed vehicle monitoring as an example application
of distributed situation assessment and more generaly dis-
tributed resource allocation has been studied in the multi-
agent systems community since its infancy [21, 13]. Thisen-
vironment is particularly interesting when investigating issues
of scale, because practical scenarios can be envisioned em-
ploying distributed sensor networks that are arbitrarily large
both in number and geographic size, making purely central-
ized control inefficient. Each network member would have
some type of data producing or interpretation capabilities, re-
sulting in a potentially overwhelming amount of information
requiring analysis. Shared resources, potentially conflicting
goals and the need to adapt sensing policies in real time to
emerging phenomenaadd further complications. These chal-
lenges make it an ideal candidate for multi-agent techniques.

Our solution, which we will describe in detail in Section
2, uses organizational structures as a key component to ad-
dress these problems. Rather than employing a single organi-
zational scheme, we have found that exploiting the strengths
of acollection of different organizational styles can be quite
effective. Our choice was based on our experiences working
with a large-scale, redlistic distributed sensor network over
the past four years, both in detailed simulations and on real
hardware[14].

The organizational design used in our solution is intended
to address the challenges that arise through scale, by exploit-
ing locality of reference and organizational constraintsto im-
pose limits on how far classes of both control and data mes-
sages propagate. The environment’s most limiting resource
is the wireless communication medium, and we will there-
fore use this resource throughout the paper to describe the ef-
fects of the organization. Our design uses environmental par-
titioning to create localized regions of interaction, called sec-
tors. Within these sectors, agents take on different responsi-
bilities that dictate their individual behaviors. A consequence
of this approach is that the number of sensors in these sec-
tors affects how efficient the system is, since large regions
may create unwelcome disparities in communicative or pro-



cessor load, and small regions cause amore global increasein
overhead. Specifically, we will see how sector size affects the
overall communication load, load disparity between agents,
average communication distance, and the quality of tracking.
By varying just this one aspect of the organization, we will
show that the performance of the system can be greatly influ-
enced by the organization’s design parameters.

The notion of “organizational design” is used in many dif-
ferent fields, and generally refersto how members of asociety
act and relate with one another. Thisisal so true of multi-agent
systems, where the organizational design of a system can in-
clude a description of what types of agents exist in the envi-
ronment, what roles they take on, and how they interact with
one another. The objectives of aparticular design will depend
on the desired solution characteristics, so for different prob-
lems one might specify organizationswhich aim toward scala-
bility, reliability, speed, or efficiency, among other things. To
date, relatively little work has been done in the multi-agent
community analyzing the characteristics and tradeoffs of dif-
ferent organizational types.

Complicating the design process is the fact that many po-
tentially important characteristics can be subtle, and not read-
ily identified as the system is being devel oped. For example,
as aluded to above, certain global characteristics improve as
we vary the sensor network organization, while other local
characteristics degrade. The underlying mechanisms causing
this can be complex and interdependent, making it difficult
to create the correct design for a particular working environ-
ment.

It is our belief that understanding the root causes of these
characteristics and devel oping accurate quantitative model s of
their effects are both critical to selecting an appropriate de-
sign, particularly as the agent population grows in scale or
complexity. Once derived, this same knowledge can aso be
put to good usein verifying and changing the organization at
runtime in response to changing conditions, creating a more
robust and adaptive system. We will demonstrate how ana-
lytic models of our organization can be devised to help ob-
tain this understanding. We will then build upon these ad hoc
model s by introducing a new language designed to capture or-
ganizational information in a single unified, predictive struc-
ture. Such models can help answer the questionsthat we have
posed, by using quantitative knowledge to represent interde-
pendencies, predict performance, and allow subtle effects to
become more transparent.

The remainder of the paper is divided into four main sec-
tions. In Section 2, we will describe the sensor network do-
main and our organization-based solution in more detail. Fol-
lowing this, we will describe a series of tests that were per-
formed to evaluate the effect the organization has on the sys-
tem’s performance across a range of metrics. In Section 4,
we will show how these characteristics can be quantitatively
modeled with a set of equations. Finally, in Section 5, we will
introduce ODML, a domai n-i ndependent organi zational mod-

eling language. We will use ODML to create a unified model
of the sensor network organization, and show how it can be
used to predict both large and small-scale organizational ef-
fects.

2. Domain and Organization Overview

The goal of adistributed sensor network is most generally
to employ apopulation of sensorsto obtain information about
an environment. In this paper, we will focus on using such a
network to track one or moretargetsthat move along arbitrary
paths in an area. A collection of three-head, MTI Doppler
radars make up this network [14]. They are each fixed in posi-
tion and have awired power source. Each sensor is equipped
with aprocessor, on which isrunasingle processthat controls
the sensor. We will call this local process an agent. The sen-
sors are connected with a FM-based wireless network, which
is divided into eight communication channels. Each channel
has limited capacity, and agents may communicate over only
one channel at atime.

Individual sensors can return only simple amplitude and
frequency values, so a sensor is incapable of determining the
absolute position of a target by itself. In addition, because
only one of a sensor’s three heads may be in use at atime,
each sensor’s scanning policy must be adapted based on cur-
rent needs. To track under these conditions, the sensors must
be organized and coordinated in a manner that permits their
measurements to be used for triangulation, and geographi-
cally distinct groups of such coordinated sensors used to pro-
duce a continuous track as the target moves. More measure-
ments, and particularly more measurements taken in groups
in the same area at approximately the same time, will lead to
better triangulation and a higher resolution track. To accom-
plish this, our architecture employs closed-loop control; the
measurements and estimated target locations are used by the
sensor agents to eval uate and adapt the network’s subsequent
scanning strategies. Consequently, any processing, decisions
making and communication that occurs to enact this control
has to take place in real time, or the target may be lost. Ad-
ditional hurdlesinclude alack of reliable communication, the
need to scale to hundreds or thousands of sensor platforms
over awide area, and an uncertain, noisy operating environ-
ment. The architecture, implemented in roughly 40,000 lines
of Java code, has been demonstrated successfully in both sim-
ulation and real-world experiments. A more detailed descrip-
tion of the entire framework and the environment it operates
in can befoundin [14].

As mentioned above, we have employed an explicit orga-
nizational design in an effort to reduce overhead without neg-
atively impacting performance. There are three types of re-
sponsihilities, or roles, that agents may take on: sector man-
ager, track manager and sensor manager. Sector managers
are created for each sector in the environment, and serveasin-
termediaries for much of the local activity. For example, they



Figure 1. High-level architecture. A: sectoriza-
tion of the environment, B: distribution of the
scan schedule, C: negotiation over tracking
measurements, D: tracking data fusion.

generate and distribute plans needed to scan for new targets,
store and provide local sensor information as part of a direc-
tory service, and assign track managers. Each detected target
has such a track manager, which is responsible for identify-
ing the sensors needed to gather target information, gathering
the resulting data, and fusing it into a continuous track. Track
managers obtain some information from their originating sec-
tor manager, but can also interact directly with other sector
and track managers. The sensor manager role controls how
thelocal sensor isused. In responseto sector or track manager
requests, it takes measurements at specified times and places,
and reports back the resulting data. Each of these three re-
sponsihilities correspondsto arolein the organization, which
must be assigned to a particular agent. Agents may work con-
currently on one or more of these roles, so a viable organi-
zationa design must ensure that each agent has sufficient re-
sources to meet the combined demands of the rolesiit is as-
signed.

As we will show, some aspects of this design are static,
such as the partitioning and sector manager assignment, and
defined as the sensors are deployed in the environment. Other
aspects are dynamic, such as the track manager assignment
and sensor selection, requiring the agents to self-organize in
response to new events. This blend of styles takes advantage
of characteristics of the environment that are invariant, with-
out giving up the ability to react appropriately as conditions
change.

To see how the organi zation worksin practice, consider the
scenario in Figure 1. The environment is first divided by the
agentsinto a series of sectors, each a non-overlapping, identi-
cally sized, rectangular portion of the available area as shown
in Figure 1A. In other work we have also explored the use of
heterogeneously-sized sectors [20]. The intent of these divi-
sions is to limit the interactions needed between sensors, to
reduce and distribute the overall communication load. As we
will show in Section 3, this strategy does not always have the

desired effect.

Each sensor has a local agent that takes on a sensor man-
ager role. A single agent in each sector al so takes on the sector
manager role, represented by shaded inner circles in Figure
1A. Sensor managers begin their existence by finding their |o-
cal sector manager, and sending it a description of the sensor’'s
capabilities. These include the sensor’s position, range, ori-
entation and preferred communication channel. When com-
pleted, the sector manager will possess a complete picture
of the sensing capabilities within its sector, which it offers
to other agents in the form of a directory service. The sec-
tor manager also uses this information to generate a scanning
schedule for detecting new targets, which it disseminates to
the local sensorsin Figure 1B.

Oncethe scanisin progress, individual sensorsreport pos-
itive detection measurementsto their sector manager. The sec-
tor manager, through interactionswith nearby track managers,
maintains alist of targets currently close to or within its sec-
tor. By comparing the measurement with that target list, the
sector manager can determine if a new target was found, or
if it is more likely the measurement was of an existing tar-
get. If it determines a new target was found, the manager se-
lects an agent from its sector to be the track manager for that
target. Not all agents are equally qualified for this role, and
an uninformed choice can lead to very poor tracking behav-
ior if the selected agent is aready busy or shares communica-
tion bandwidth with garrulous agents. For example, if wesim-
ply collocated the track manager and sector manager roles at
the same agent, the combined communication load will gen-
erally exceed capacity. Conversely, if an agent who has pre-
viously acted as a track manager is chosen, some of the en-
vironmental state that agent had accumulated may be reused,
which reduces its communication needs. Therefore, in mak-
ing this selection, the sector manager considers each of its
agents' estimated load, communication channel assignment,
geographic location and history. Recognizing such ramifica-
tions of role assignment will be an important aspect of the
analysis we present in Section 5.

The track manager role, depicted in Figure 1C with a
blackened inner circle, is responsible for tracking the target
assigned to it. To do this, it first discovers sensors capable of
detecting the target, and then negotiates with members of that
group to gather the necessary data. Discovery is done using
the directory service provided by the sector managers. Asthe
target approaches a previously unknown area, the track man-
ager will query the appropriate sector manager to determine
the available local sensing capabilities. The track manager
uses this knowledge to determine from where and when the
data should be collected, and sends measurement requests to
the sensor managersit selects (see Figure 1C). Because those
sensors may be servicing tasks from other sector or track man-
agers, conflicts can arise between the new task and previ-
ously existing commitments. The sensor agent will address
such conflicts as best it can locally by using priorities to de-



vise a round-robin schedule, but will also notify the conflict-
ing managers of the problem. Because these managers have
amore global view of the situation, they are in a more suit-
able position to resolveit. For example, they may negotiate to
use other sensing resources, or offer concessions in the form
of reduced quality. This processis described in detail in [15].

The data produced by the sensorsis collected and analyzed
(see Figure 1D). Although this activity is logically a separate
role, it isarelatively lightweight process, and as asimplifica-
tion our organizational design implicitly incorporates it into
the track manager’s responsibilities. Once the track manager
has received the measurements, the data are fused in a trian-
gulation process. Amplitude and frequency values can place
the target’s location and heading relative to their source sen-
sor, and severa of these relative values can be combined to
derive an absolute position. The data point is then added to
the track, which is used to predict the target’s future location.
Itis aso used to periodically notify nearby sector managers
of the target’slocation.

At this point the track manager must again decide which
sensors are needed and where they should take measurements.
Under most situations, the process described above is simply
repeated. However, if the target has moved far from where
the track manager is, the track managing role may be mi-
grated to a new agent in a different sector. This is done to
avoid penalties associated with long-distance wireless com-
munication, which may cause unwanted latency or unrelia-
bility transferring information. This technique is covered in
more detail in Section 3.3.

3. Empirical Evaluation

The two primary organizational features used by this sys-
tem can be thought of as geographic coalitionsand functional
differentiation. The first describes the partitioning process,
while the second is a result of the heterogeneous assignment
of rolesto agents. An integral part of each isthe notion of lo-
cality. Information propagates and is made available to only
the agents which have need of it. In some cases, such as with
the environmental sectorization, artificial boundaries are cre-
ated to encouragelocality at the expense of time or flexibility.
In other cases, as with the target tracking role, locality is ex-
hibited naturally through the domain.

There are many dataflows and interactionsthat are encour-
aged and restricted by this design. As we will demonstrate,
these characteristics affect the quantitative performance of
both individuals and the system as a whole in a variety of
ways. We will informally describe these effects below, and
provide more concrete descriptionsin Sections 4 and 5.

In the following sections, we will show empirical evidence
exhibiting these characteristics, and explain how they drive
the selection of an organizational design. Our experimental
scenario consisted of a group of 36 sensors and 4 mobile tar-
gets. Different sized sectors weretested in this scenario, rang-
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Figure 2. Affect of sector size on messaging.

ing from 36 very small sectors each containing just one sen-
sor, to a single sector encompassing the entire area. All sec-
tors shared the same size within any given test. Our initial hy-
pothesis was a reasonable sector in our environment would
contain from 6 to 10 sensors. We will show later that “rea-
sonable” in this sense depends on a number of factors, in-
cluding the density of the sensors, sensor range, communi-
cation medium characteristics and target speed, among other
things. The sensors were arranged in a grid pattern and the
targets' locations and movement spread evenly through the
environment to normalize results and simplify analysis. Tar-
gets moved with constant speed. The results were then ob-
served over 10 runs per configuration in asimulation environ-
ment called Radsim, which closely models the performance
of the physical MTI sensors [11]. The same agent code was
used for both simulation runs and actual hardware tests. Each
run lasted approximately 140 seconds.

3.1. Geographic Coalitions

Our first evaluation metric is the total amount of commu-
nication that occursin the system. Figure 2 shows that as the
number of agents in each sector increases, and there are cor-
respondingly fewer sectors overall, the amount of communi-
cation traffic decreases. Because each sector requires a cer-
tain amount of control messages, the total number of mes-
sages is reduced as the number of sectors decreases. A more
detailed view of the effects this change has on messaging will
be shown later in Figure 4.

Recall that our initial intent behind creating these sectors
was to reduce the communication burden. The resultsin Fig-
ure 2 are in some sense contradictory of this goal, because
they show that the unpartitioned environment had the lowest
communication overhead. The partitioning process described
in Section 2 results in the creation of loose coalitions of sen-
sors based on geographic location. Sector directory informa:
tion, new target scan schedules, discovery measurements and
certain tracking control messages are all contained within or
directed to these coalitions. Because the manner in which this
information being communicated is determined by the sec-
tors, the sectors’ average size and shape has a tangible effect
on some aspects of the system’s performance. If the sector



70

60
SOW
40

30
20

10 +

Message Volume Standard Deviation

T T T T T 1
0 5 10 15 20 25 30 35 40

Agents per Sector

Figure 3. Messaging disparity vs. sector size.

is too large, and contains many sensors, then the communi-
cation channel used by the sector manager may become sat-
urated. If the sector is too small, then track managers may
expend a great deal of time and bandwidth updating sector
managers as its target moves through the environment. So,
athough these result show that large sectors have lower to-
tal overhead, the individual picture is not so straightforward.
Thisis covered in more detail below.

Although not shown in this figure, partitioning can also
affect reactivity, because time may need to be expended to
discover sector information. A track manager, for example,
must perform queriesto obtain sensor information asitstarget
moves to new sectors. Smaller, more numerous sectors will
result in delays caused by the additional queries, which ulti-
mately affects the number of measurements it receives. This
delay will be revisited in Section 4.

3.2. Functional Differentiation

The varied assignment of roles forms a different, func-
tional organization [5] in the system. Agents specialize their
functionality in order to restrict the type of interactionswhich
must take place between agents. For example, to obtain in-
formation about available sensors, a track manager must only
contact the relevant sector managers, instead of blindly broad-
casting to all sensors [22]. Concentrating the track manage-
ment functionality into individual agents servesasimilar role,
by limiting the number of interactions necessary to resolve
conflictsin sensor usage.

Although this type of functional decomposition does re-
duce the total number of interactions an agent might need
to make, it can also increase that number for particular in-
dividualsin the environment. For example, we have seen how
the sector manager is responsible for disbursing information
about the sensorsin its sector, which facilitates the track man-
ager’s discovery process. However, by serving in this capac-
ity, it also makes itself a center of attention, which can result
in unreasonable load when demand is high.

Consider Figure 3, which shows how much agents in the
population differ from one another in their communication
habits, as the sector size changes. This notion is captured
by measuring the standard deviation in communication ac-

tivity (total messages sent) exhibited by individual agents. If
al agents are roughly the same they will have a low devia-
tion, while a population that has a handful of outlier agents
with significantly higher message traffic will have a high de-
viation. Asthe number of agentsin each sector increases, this
graph shows an increase in disparity, because a few agents
are communicating more than their peers. Since the environ-
ment and target spacing are uniform, the differences can be at-
tributed to the roles those agentstake on. Therisein deviation
when there is a single agent per sector represents the coexis-
tence of the sector and track manager roles, because all agents
act as sector managers when there is only one agent in each
sector. This trend demonstrates that as the sector size grows,
specialized agents such as sector and track managers can be-
come “hotspots’ of activity. In a bounded environment with
unreliable communication this concentration of activity could
lead to reduced performance and data loss if the communica-
tion channel becomes overloaded.

A growing tension between sector sizes is made appar-
ent by these results: Figure 2 shows that smaller sectors lead
to increased message traffic, and while Figure 3 shows that
larger sectors imbalance load in the population. Although not
shown, similar trends were observed in agents' local work-
load levels, which track the number of non-communicative
actions being performed. Both characteristics are bad, so a
compromise must be sought between them in the selected or-
ganizational design.

3.3. Organizational Maintenance

As insinuated above, there are costs associated with creat-
ing and maintaining the organizations employed by this de-
sign. The most frequently updated aspect of the organiza-
tion is the relationship formed between track and sector man-
agers, because the sectors interacted with by the track man-
ager change as the target moves. This results in a class of
control messages dependent on sector size. For example, as
the target moves into part of the environment the track man-
ager is not familiar with, the manager must query the sec-
tor manager of that areato discover local sensors. Once those
sensors are known, data collection commitments can be es-
tablished. Asthetarget istracked, the nearby sector managers
must also be notified of the target’s estimated position.

Figure 4 provides a quantitative view of this overhead.
As sector size increases, fewer directory and tracking con-
trol messages are necessary, because there are a fewer sec-
torsto interact with as the target moves. In addition, the num-
ber of measurements increases as the sector size increases,
because the reduced time spent by the track manager inter-
acting with the additional sector managers allows more time
to be spent requesting data. More measurements results in a
lower root-mean-squared (RMS) error between the measured
and actual track, as seen in Figure 5.

The technique of migrating the tracking responsibility
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through the agent population as the target moves is another
example of how locality can be exploited. Signal attenuation
conspires to make communication less reliable as distance in-
creases. Multi-hop protocols can maintain reliability, but will
increase end-to-end latency at each hop. Lacking the capac-
ity for movement, the initial manager selected to track atarget
will therefore become less effective as the target moves awvay
fromit. By migrating thistask to follow the target, the organi-
zationisableto retain locality despite the fact that the sensors
themselvesareimmobile. Thisresultsin areductioninthe av-
erage distance that messages must travel.

Figure 6 shows the effect track manager migration has on
the average distance of communication. Because migrationis
triggered by sector boundaries, the tracking task will migrate
less frequently when sectors are large, simply because they
cover more area. Conversely, alower average communication
distance is observed when sectors are smaller. The lower mi-
gration rates also contribute to the increased measurement to-
tals from Figure 4. Each migration interrupts the collection
process as the role is moved from one agent to another, so the
more frequently this transfer takes place, the more the aver-
age overall collection rate will be reduced.

These metrics contribute to the organizational tension.
Large sectors improve the system’s RMS error rate, while
smaller sectors exhibit better communication locality.

3.4. Scalability Results

To explore the generality of these trends, we performed an
additional set of experiments that varied numbers of targets.
Each test contained between 1 and 24 equally distributed tar-

gets, al of which moved concurrently through the environ-
ment for the duration of the experiment. The scenario was
otherwise identical to those in Section 3. Figure 7 shows that
our original communication disparity profile from Figure 3is
maintained as the target density is varied, and the amount of
disparity increases with the number of targets. Intuitively, this
is because the amount of work particular agents are perform-
ing is tied to the number of targets in the environment. The
communication load of the sector managers, for example, is
directly proportional to the number of track managersit must
interact with. This is particularly true as the sector size in-
creases — in the most extreme case a single sector manager
must support all 24 track managers.

Similarly consistent results are seen for the systems RMS
error, in Figure 8. The RMS error profile is maintained, al-
though the baseline RM S error increases because the bounded
sensing capabilities result in fewer average measurements per
target. Notice how the RM S value for 6 and fewer targets are
clustered together, while those with 8 or more become pro-
gressively worse. Thisis caused by a phase transition that oc-
curs between 6 and 8 targets, when the number available sen-
sors is no longer sufficient to meet demand. The inevitable
reduction in the number of measurements track managers re-
ceive leadsto an increasein RMS error.

Additional tests were performed which also varied the
number of sensorsin the environment, using six different con-
figuration with between 9 and 81 sensors [7]. Results from
those experiments concur with the trends outlined above.

The conclusion we draw from these experiments is that a
tradeoff exists between communication volume and its distri-
bution over the agent population. Message volume decreases
when there are more agents per sector because fewer inter-
actions are needed to obtain information, as shown in Figure
2. However, this shift can cause individual agents to incur a
disproportionate communication burden, as shown in Figures
3 and 7. Figures 4, 5, and 6 show that organizational main-
tenance causes a similar tradeoff - larger sectors have lower
overhead and better RMS error, while more track migration
in smaller sectors increases communication reliability.
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4. Discrete Analytic Models

Our long-term objective is to use results such as these to
make architectural design decisions. A simple strategy might
compare the metrics graphically, and select a point which
seems appropriate for the expected conditions. Normalizing
and overlapping the trends from Section 3, producesthe graph
in Figure 9. By searching for a common inflection point in
this diagram, we can conclude that a sector size between 4
and 9 strikes an acceptable balance between the competing
positive and negative characteristics. This supports our hy-
pothesis that a sector size between 6 and 10 was a reason-
able choice. However, the notion of “reasonable” is problem-
specific, depending on the characteristics of the agents, the re-
sources they use, and the environment. For instance, if more
robust managers were available to handle the increased load,
this graph also shows that better RMS performance can be
obtained by using larger sector sizes. In general, the require-
mentsimposed by goals and the capabilities of the system and
environment guide an appropriate selection, and these exper-
iments only suggest a course of action for a particular config-
uration.

The use of a more formal, analytic model that incorpo-
rates the various characteristics can evaluate a wider range of
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Figure 9. Finding the appropriate configuration
from normalized results.

candidate designs. Instead deducing metrics from a graph as
above, one can create a function that takes regquirements and
characteristics as inputs, and produces a prediction or rating
as output. To do this, one must capture the system’s behav-
iors in an abstract, quantitative model that provides a good
approximation of the real system. We will do so by predict-
ing role-specific values over the lifetime ¢ of the role. As be-
fore, we assume that the sensors and targets are uniformly
distributed in the environment, and targets move with con-
stant velocity. One could relax these assumptions by estimat-
ing interaction probabilities; although the calcul ations would
be more complex, the spirit of the analysis would remain the
same. Similarly, one could determine worst-case peak perfor-
mance by assuming worst-case densities. The formulas pre-
sented below do not represent actual message totals, but are
meant to reflect relative growth rates. Aswe will show in Fig-
ure 10, quantitative results can be obtained through the addi-
tion of appropriate constants.

Consider the sensor manager. We will define the number
of measurement messages sent by the sensor manager as its
measurement load (M). Measurements are taken in response
to track manager requests, which are in turn prompted by tar-
gets in range of the sensor. M is therefore dependent on the
likelihood that a target is within its range r. Assume T' tar-
getsin an environment of area A, each with m measurements
per time unit. M can then be approximated with the follow-
ing equation:

72
M = Z mm(TTm, m) (1)

t

So, as the number of targets increase, or the environments
area decreases, the number of measurements will approach
tm. This model is an upper bound, however, as it does not
take into account track managers specific behaviors, such as
delaysor inefficienciesthat could affect therate at which mea-
surements are requested. These will be made more explicit in
our model of the tracking process below.

The sector manager’s load (S) is dependent on both the
size of the sector and the number of targets. As we have ob-
served earlier, larger sectors mean more sensors must be reg-



istered, aswell as an increased probability that atarget will be
inthearea. S can be broken down into the one-time costs as-
sociated with sector creation, when the sensors send descrip-
tions of themselves to their sector manager, and the continu-
ing costs derived from targets moving though the sector:

S S v S
S=—N+ —Tu+ —=—N
A zt: (A VS A )

N is the total number of sensors in the environment, and
u 1S the frequency at which target updates are supplied to the
sector manager by the track manager. S is the actual size of
the sector’s area, while S is the effective size of the sector’s
area. S and S are differentiated by what they represent. S is
the strict bounding area of the sector we have been discussing
thus far; membership in the sector is defined by containment
within that area. S is the potentially larger area over which
measurements can be taken by sensorsin that sector. If for ex-
ample each sensor has arange of » = 20, then S will be the
area bounded by S unioned with a perimeter of width 20 sur-
rounding S. Because it is this effective area that determines
when a track manager provides the sector manager with tar-
get location updates, S grows in proportion with 5. The sec-
ond term in the summation represents the directory queriesit
must respond to as targets enter its sector, which depends on
the velocity of the target v and the average distance the target
must cross before it reaches a new sector. This latter term de-
pends on the probability of target turns and the shape of the
sector itself; wemodel it with avery coarse estimate of the av-
erage chord length in the sector v/S.

Ignoring the effects of uncertain measurements or faulty
data fusion, and assuming a reasonable choice of sensors are
requested, the RMS error of the tracking process is primar-
ily dependent on the number of measurements R that are re-
ceived over the lifetime of the track. In the absence of hinder-
ing factors, the track will receive measurements at a uniform
rate m from each of ¢ sensors used (we assume c is sufficient
for triangulation purposes). The actual rate of measurements
will be less than this, affected by the number of sensors that
are used and any delays incurred by overhead tasks. In partic-
ular, the collection of sector directory information, and task
migration when the target has grown too distant can reduce
the total number of measurements that are obtained. Compe-
tition for sensors by other targets can aso reduce the mea-
surement rate.
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Figure 10. Comparison of predicted and actual
results of R for 2,4 and 12 targets. Solid lines
are predicted, dashed are actual.

Equation 3 defines ¢, the number of sensors that will actu-
aly be used to track the target. It is bounded above by the de-
sired quantity ¢, and below by the expected proportion of the
total number of sensorsthat are in range of the target with ra-
diusb. Thiscapturesthe effect that sensor density hason track
quality. s models the proportion of a potentially contended
sensor’s time usable by the target. If we assume the sensor is
shared equally among targets, then the measurement rate ob-
tained by antarget will beinversely proportional to target den-
sity. As sensors come under contention, an alocation strat-
egy must be employed to resolve the conflict [15]. An addi-
tional reducing factor models this optimization process; [ es-
timates the amount of conflict, while A controlshow much the
conflict degrades performance. When the target movesinto a
new area, there will be adelay d before the appropriateinfor-
mation is received. An additional delay ¢ is incurred during
track migrations when the target has moved two sectors away
from that of the track manager. The net effect ¢ of these de-
lays and the corresponding increase in measurements when
sector sizes grow is supported by Figures 4 and 5.

To evaluate the accuracy of track measurement model, val-
ues were determined for each of the variables R is depen-
dent on. Most could be determined directly from the system’s
configuration (e.g. the number of sensors N), through sim-
ple measurements (e.g. the directory service delay d), or by
estimation (e.g. the average cross-sector distance v/S). The
degradation constant \ required a more detailed performance
evaluation to find an appropriate value. In practice, if acom-
plete prototype is not available to make a determination, one
could approximate such values through targeted simulation
of the appropriate subsystem [8], through formal analysis of
the algorithm or technique in question, or by using a back-
of-the-envel ope estimate that is revised as additional data is
available. Figure 10 shows a comparison of the previously ob-
served number of measurements and the predicted R obtained
from Equation 7 using these values.

Although the detailed results are not presented here, simi-
lar analytic models were also created for estimating the load
placed on track managers[7].



5. Unified Organizational Modeling

The analytic models presented in the previous section, al-
though individually precise, lack the cohesion necessary to
create a complete prediction of system performance. There
is no strong notion that particular and distinct entities exist
with associated characteristics. There is no well-defined way
of specifying what decisions must be made, what values must
be optimized over, or what constraints must be respected. In-
stead, such individual expressions provide performance char-
acteristics piecemeal, and comparative analysis of entire sys-
tems is performed later in an ad hoc manner. For example,
note the discontinuity between the measurement requests pre-
dicted by Equations 1 and 7. While we could copy the appro-
priate logicinto Equation 1, this duplication of effort is some-
how dissatisfying, and the resulting equations would still fail
to capture the underlying relationship at the root of the prob-
lem. Finally, while the provided equations are able to model
the effects of achanging sector size, we believeasingle, static
set of equationswill be unable to represent al the alternative
ways that a structure might be created in a concrete and ac-
curate manner. For example, consider if there were a choice
of the type of sensor or agent available for use in the envi-
ronment, or different tracking techniques that might be em-
ployed, or an optiona information aggregation hierarchy of
arbitrary height and width. While one could create individ-
ual models for each dimension, combining them together in
a coherent and expressive way would be challenging. It is for
this reason that we view tools that operate principally on such
representations, such as nonlinear solvers and queuing net-
works, as too limiting for our purposes (although we believe
they may play arolein certain aspects of design evaluation).

To address this deficiency, we have developed a more ro-
bust set of tools to capture organizational information in a
single, unified structure. The Organizational Design Model-
ing Language (ODML) provides domain-independent mech-
anismsto model, evaluate and compare a variety of organiza-
tional styles, including the sensor network we have described
in this paper. As we will show, ODML incorporates quantita-
tiveinformationin the form of mathematical expressionssim-
ilar to those used above. These expressions are grouped into
organizational constructs, connected via a graph of relation-
ships, and ultimately used to represent and predict both the
localized and global characteristics of an organization.

The immediate benefits of such a language are twofold.
First, by incorporating quantitative information about the en-
vironment, resources, agents, tasks, goals, or any other ob-
ject relevant to the system’s performance, candidate organiza-
tions may be tailored and evaluated in a context-specific way.
For example, we may directly embed information about sen-
sor density, target velocity, communication limitations, and
thelike. Thismodel can then be used to determine the organi-
zation which is most appropriate for that context, given a par-
ticular definition of utility. Second, once a suitable model has

beenfound, it can serve as an explicit organi zational represen-
tation, guiding agents’ local decisionsin a manner consistent
with global objectives. The longer-term benefits of the organi-
zational model include being able to make predictions about
runtime performance, which can be used to isolate and diag-
nose system failures and deficiencies. This same information
can also be used to support adaptation of the system, by incor-
porating learned knowledge into the existing model and ana-
lyzing the resulting structure.

5.1. ODML

An organizational model, as we envision it, servesin sev-
eral different capacities. At design time, it should be possi-
ble to use the structure to create and evaluate not just a sin-
gle organizational instance, but an entire family of organiza-
tional possibilities. At runtime, it should accurately describe
the current organization. In both cases, the model must be suf-
ficiently descriptive and quantitative that one can evaluate the
organization’s effectiveness, and rank alternatives according
to some specified criteria. Below, we enumerate the desired
capabilities and characteristics a modeling language should
possess to satisfy our requirements:

1. Represent a particular organizational structure. This
would include roles, interactions and associations (e.g.,
coalitions or teams). Different flows in the organiza-
tion, such as communication and resources, should be
representable.

2. Represent the range of organizational possibilities, by
identifying general classes of organizations and the pa-
rametersthat influencetheir behavior. Different elements
should be modelable at different levels of abstraction.
Identify which characteristics are under deliberate con-
trol, and which are derived from external factors.

3. Enable concrete performance predictions and alow de-
ductive analysis by quantitatively describing the relevant
characteristics exhibited by the structure, the manner in
which those characteristics interact, and the constraints
they are affected by. For example, both communication
overhead and the effect that overhead has on work load
should be representable.

Many different organizational representation
schemes have been developed by researchers
[1,2,3,4,9, 12, 16,17, 18, 19, 24]. Most, if not al these rep-
resentations can satisfy the first two points to varying
degrees, but none are able to incorporate quantitative knowl-
edge in such a way that concrete, organization-centric pre-
dictions can be made directly from the model itself. In this
section we describe a new formalism called ODML that ex-
plores how such information can be modeled and used.

Most existing representations fall into one of two cate-
gories. either they represent a wide range of organizational
characteristics abstractly, or they can capture a smaller set of



characteristics concretely. Theformer are usually good at rep-
resenting what entities or relationshipsexist or could exist, but
cannot compare alternatives in a quantitative way. The latter
may contain quantitative knowledge, but have difficulty relat-
ing that knowledge to specific organizational concepts, miti-
gating their usefulness if one is hoping to understand the ef-
fects a particular organizational design will have.

For example, OMNI [3] and MoISE ™[9] can each capture
agreater variety of organizational concepts than ODML, but
do so in alargely qualitative way. Conversely, both SADDE
[18] and MIT’s Process Handbook [16] can incorporate ar-
bitrary quantitative information, but neither couples this in-
formation with the organizational structure in a way that en-
ables one to deduce how the characteristics of one aspect of
the design affect another. Decker’'s TAEM S representation [1]
doesdirectly embed a certain amount of quantitativeinforma-
tion, but this data is abstract and can only be used to make
detailed performance predictions of a limited set of charac-
teristics. The representation created by Sims [19] is perhaps
closest in purpose to ODML. It incorporates detailed quanti-
tative information into a structured organizational model, but
does not have the innate ability to evaluate and rank organi-
zations based on this information. We also believe ODML’s
more flexible design can model more situations at different
levels of abstraction.

The benefits offered by ODML do not come without their
price. For example, the flexibility alluded to above can result
in avast number of aternative designs. This, coupled with a
general paucity of strong organizational landmarks on which
heuristics could be founded conspire to make the search for
designs a potentialy difficult task. In the end, each repre-
sentation has its strengths, and ODML'’s goal is not to sup-
plant these works — but to demonstrate another approach that
makes different tradeoffs. As shown below, ODML does so
by incorporating a concrete but flexible set of primitives that
can model arange of organizational constructs along with the
quantitative characteristics that differentiate them.

We continue by formally defining an ODML template
specification O asfollows:

O = {N.HCK, MV}
N = {No,Ni,....Np} ®)
Ni = {tvgvﬁaIaHacha]\/[av}

The foundation of the ODML template specification is the
set AV of node templates, each of which corresponds to a par-
ticular physical or logical entity which might exist in the or-
ganization. For example, in our sensor network scenario there
would be nodes corresponding to sectors, managers, relation-
ships, agents and the environment, among other things. Each
node N contains a number of elements, defined below:

t The node's type. This label must be unique within the set
of template nodes that make up the organization.
N.t = (symbol)

VN,MeN, Nt =Mtes N=M

¢ The node’s instance limit. This specifies the maximum
number of instances of the node type permittedinavalid
organizational instance.

NA e {Z' U}

p An ordered list of parameters that must be passed to the
node’s template when an instance of the node s created.
These are analogous to the parameters one might pass to
an object constructor. Each parameter is specified with a
type and local name.

N.p = [{symbol, type), . ..]

I The set of node types that this node has an is-a relation
with using conventional object-oriented inheritance se-
mantics. If we assume that a node’'s I = {a, b}, anin-
stance of the node will aso be an instance of « and b,
possessing the characteristics of al three node types. Is-
a relationships cannot be cyclic, i.e,, N cannot have it-
self as a decedent.

N.I = {{type),...}
Vi€ NI,N#iAN¢ilA..

H The set of node types that this node has a has-a relation
with. If we assume that H = {a, b}, an instance of the
node will possess some number of instances of both a
and b. It is through this type of relationship that the pri-
mary organizational decomposition isformed. Each has-
a has a magnitude that specifies the number of instances
connected by the relationship.

N.H = {(symbol, type, magnitude), . . .]
magnitude = (symbol)

C A set of constants that represent quantified characteris-
tics associated with the node. Constants may be defined
with numeric constants (e.g., 42), or mathematical ex-
pressions (e.g., = + y).

N.C = {(symbol, expression), ...}

K A set of constraints. Also defined with expressions, an
organizationcan be considered valid only if all of itscon-
straints are satisfied.

N.K = {{(symbol, op, expression), ...}
op € {<,>,<,>,=,#}

M A set of modi fiers that can affect (e.g., mathematically
change) a value contained by a node. Multiple modifiers
may affect the same value. Modifiersmodel flowsandin-
teractions by allowing the characteristics and decisions
made in one node to affect those of another.

N.M = {{symbol, op, expression), ...}
op € {+,—, x,+}

V' A set of variables, representing decisions that must be
made when the node is instantiated. Each variableis as-
sociated with arange of valuesit can take on. For exam-
ple, a node might have a variable x that could take any
onevalueintheset [2.7,y2, 7z].

N.V = {(symbol, {expression,...}),...}



symbol refers to a user-defined string, similar to a vari-
able name in a conventional programming language. These
typically describe or refer to a particular characteristic. type
is the type name of some defined node, so 3N € N such
that N.t = type. expression is an arbitrary algebraic ex-
pression, possibly referencing constants, symbols and func-
tion calls. ODML supports the use of floating point values,
lists of floating point values, and discrete probabilistic distri-
butionsin these expressions.

The top-level organization node O also contains the ele-
ments H,C, K, M,V , providing a location to embed addi-
tional global information and constraints.

Collectively, we refer to C, K, M,V as a node’s fields,
and the quantitative state of a field as its value. For exam-
ple, a constant field total load might be defined with the ex-
pression total load = work_load + communication load and
have avalue of 0.9 for a particular agent. Note that the use of
theterm “constant” may initially be misleading. While the ex-
pression defining total load is fixed, the value for total Joad
produced by that expression may change through the applica-
tion of modifiers, or dueto changesin fields or valuesthat the
expression is dependent on.

At first glance, the ODML language may appear to be de-
void of amost al the organizational concepts that are pro-
vided by typical organizational representations. This is par-
tially true, and by design. Instead of directly incorporating
the usual high-level organizational components, such as hi-
erarchies, roles, agents, etc., ODML provides a set of rela
tively low-level primitives by which such structures can be
defined. For example, a node with the user-defined type man-
ager, having a has-a relationship with another node of type
agent could embody a role-agent relationship. A sequence
of has-a relationships between nodes could indicate a hier-
archy. Although the high-level semanticsfor these nodes may
only be implicit, the concrete characteristics and design ram-
ifications are till directly and quantitatively captured by the
nodes fields. We feel that this approach can lead to an in-
creased diversity of representable structures, by avoiding the
assumptions and inevitable restrictions that typically accom-
pany high-level structures.

ODML instances are quite similar to ODML templates.
The difference is that where a template is a description of
what could be, aninstance is adescription of what is. Wherea
template might specify that a manager role can be assigned to
a single agent or distributed across multiple agent nodes, an
instance would indicate that manager 1 is distributed across
agent_5 and agent_7, and so on.

Instances are created by making choices for the decision
points embodied in the template. Such decision points are
captured in two different ways: in the choice of value to as-
signedto avariablefield, and in the choice of nodetypeto sat-
isfy has-a relationships. Although employing just these two
choice types may seem limiting, we have been able to use
these simple conceptsto capture many types of organizational

possihilities. For example, avariable could be used to express
the range of possible sensors_per _sector in the DSN domain,
to control s the shape of part of the organization. Other uses of
variables might be to decide the rel ative priority of an agent’s
tasks, the amount of time it is willing to wait for a response,
or the number of agents that will be used to form a coalition.
Decisions made for the agent has-a relationships in the three
roles will determine the specific role-agent bindings that will
be used. Sequences of similar decisions could also decide if
the manager role will be distributed, or how tall a data pro-
cessing hierarchy should be. Deciding upon the correct de-
cisions can be viewed as a search process, which is a sub-
ject of ongoing work. Once an instance has been created from
these decisions, the expressions defined by the fields, the data
passed in through parameters, and the interactions caused by
relationships can all be used to predict values for an individ-
ual node's characteristics.

The formal definition of an instance is nearly identical to
that givenin Equation 8, so wewill not repeat it here. The dif-
ferences principally relate to the replacement of nodetypesin
the template with instances of those nodes in the organiza-
tional instance. Thus, the set V is the set of node instances,
whose individual types no longer need be unique. So, where
there might be just a single manager type in the template,
there can be an arbitrary number of manager instances in
the instance. Both is-a (IV.I) and has-a (V. H) relationships
no longer reference node types, but particular node instances
in V. Finally, the set p is filled with appropriate values from
each node’s parent, and the variable set V' for each nodeisre-
placed by a single item from that variable’s range. Because
a common syntax is shared between the two forms, for the
remainder of this document | will indicate where necessary
which is being considered.

As mentioned above, it is the ability to use an ODML
model to deduce quantitative values for specific character-
istics that sets it apart from other representations. The man-
ner in which these values are determined for an instance
node's characteristics is defined by the pseudocode in Fig-
ure 11. Note that some aspects of get_value's behavior, such
as the manipulation of list-based data, have been omitted for
clarity. This function shows how various sources of informa-
tion, non-local data and node interrelationships all interact to
describe the features of a particular node. It is through the
execution of this function on a particular symbol that pre-
dictions are made of the design’s performance. For exam-
ple, agent.get_value(total load) would return a prediction
of agent’'stotal load.

Thisfunction is used in a similar fashion to determine the
validity of aparticular organizational instance. The validity of
an instance O is defined as:



get _value(symbol )
r — null
if (sisof theform s;.s2)

n < get_value(s;)

r — n.get_value(ss)
elseif (3ce C| c.symbol = 9)

r — evaluate(c.expression)
elseif (3heH | hsymbol =s)r — h
eseif (3ve V| v.symbol = 9)

r — evaluate(v.expression)
elseif Apep|psymbol =9)r —p
elseforalli €l

r — i.get_value(s)

if (r # null) break

foralme M
if (m.symbol = s)
r < r m.op evaluate(m.expression)
forallne A/
forallme nM

if (m.symbol isof theform s;.s2)
A(st=N)A(s2 =9
I < r m.op n.evaluate(m.expression)
returnr

evaluate(expression €)
forall s € { non—function symbols referenced by e }
vg «— get_valueg(s)
substitute all occurrencesof s € ewith v
r — mathematical result of e
returnr

Figure 11. Pseudocode for the get_value func-
tion of anode N. This function is used to quan-
tify the characteristics of instance nodes.

O isvdidiff VN e ON, N isvalid
N isvaidiff 300 viarenl < NL
AVE € N.K,
(N.get_walue(k.symbol) k.op k.expression) = true

Intuitively, an ODML instance is valid if all nodes con-
straints are satisfied, and the number of each type of node re-
spectsthe limit (if any) specified by the template.

5.2. Sensor Network Model

The capabilities of ODML are best explained through an
example. We will proceed with an overview of how an ODML
model was produced for the distributed sensor network do-
main described in Section 2. For clarity, we will represent
particular nodes, or fields that reside in the nodes, in ital-

ics. Space precludes showing the compl ete textual model con-
structed for the sensor network, however, a portion of the
model can be seen in Figure 12. The complete model is
roughly 280 lines long, including whitespace and comments.
A corresponding graph showing some aspects of the model’s
template can be seen in Figure 13a. Vertices in that graph,
such as sector and sensor, represent nodes. Nodes can rep-
resent both tangible (e.g. agent) and intangible (e.g. sector)
entities. Directed edges with a solid arrow represent has-are-
lations, and the corresponding label indicates the magnitude
of that relation. For example, each track_manager node has a
number of agents defined by the field num_agents. The corre-
sponding definitionis shown in line 4 of Figure 12.

A hollow-arrow edge represents an is-a relation, so nor-
mal_agent is an instance of agent. Shaded nodes, such as
agent are abstract, and cannot be directly instantiated. Thus,
any node with a has-a relation with agent can instead substi-
tute normal _agent. Thislevel of indirection allows this model
to represent and easily use agents with different capabilities.
For example, the robust_agent mentioned in Section 4 is rep-
resented with a node that also has an is-a relation with agent,
and can be substituted for agent in the same way.

Figure 13b shows a particular instance of the template
from Figures 12 and 13a. Verticesin the instance graph repre-
sent nodes, and agray directed edge indicates the existence of
anon-local modifier from the source nodeto afield in the tar-
get node. Black directed edges represent has-a relationships,
but unlike the template they have no labels. Because thisis a
particul ar instance of the sensor network organization, the de-
cision points present in the template have all been decided.
Therefore, where sector might have the num_sensors label
on its sensor relationship in the template, a discrete value of
two has been chosen for that field in this particular instance.
Because of this, each sector in the instance has two sensors
(S). Normal agents (@), sector managers (SM), track managers
(TM), and two kinds of track manager relations (SM-TM and
S-TM), are a'so present.

We can relate this model directly to the organiza
tional structures discussed in Sections 3.1 and 3.2. Geo-
graphic coalitions are embodied in the sector node. The size
of the has-a relation sector has with the sensor node re-
flects the chosen sector size, and the sector manager
is specified with the sector_manager node. The func-
tional differentiation aspect is modeled directly by the
sector_manager, track_manager and sensor nodes. Each rep-
resents a role that can be assigned. This assignment is
represented with the agent has-a relationship each node pos-
sesses. The particular instance of agent node associated
with a role node corresponds to the particular agent as-
signed to that role.

The heart of any ODML model exists in the expressions
encoded within nodes' fields. A selection of these fields, con-
tained by the track_manager and stm_relation nodes, are
shown in Figure 12. The former defines the track manager



<node type="track_manager">

<par anPor gani zat i on: org, envi ronnent : env, [ sector]: sect or s</ par an>

<is-a>entity</is-a>
<has-a nane="agent" size="num agents">agent (env)</has-a>

<has-a nane="smrel ations">forall (sm sector_managers):smtmrelation(org,
sensors):s_tmrelation(org,

<has-a nane="s_rel ations">forall (s,

<!-- Determne target bounds -->
<constant nane="uncertainty_radi us">5</constant>

this,
s) </ has- a>

sm) </ has- a>
this,

<constant nane="influence_radi us">uncertainty_radius + 10</constant>
<constant nane="target_area">3.14 * influence_radius”2</constant>

<l-- Cal cul ate requested neasurenent rate -->
<const ant nane="desired_sensors">3</const ant >
<const ant
<const ant
<constant nane="request ed_sensors">m n(desired_sensors,
</ node>

<node type="s_tmrelation">

<par anpor gani zati on: or g, t rack_nanager : t m sensor : s</ par an>

<!-- Calculate actual neasurenent rate -->

nane="sensor _densi ty">foral |l avg(sectors. sensor_densi ty)</constant>
nane="act ual _sensors_avail abl e">target _area * sensor_densi ty</constant>
actual _sensors_avai |l abl e) </ const ant >

<constant nane="requested_sensor_rate">tmrequested_sensors / org.total _sensors</constant>
<constant nane="request ed_neasurenent _rate">tmrequested_neasurenent_rate * requested_sensor_rate</constant>
<nodi fi er nane="s.requested_neasurenent_rate" op="+">requested_neasurenent _rate</nodifier>

<!-- Assign neasurenent conmunication |oad -->

<constant nane="act ual _nmeasur enent _r at e">r equest ed_neasurenment _rate * s.actual _neasurenent_rati o</ constant>
<nmodi fi er nane="tm actual _neasurenent _rate" op="+">actual _neasurenent _rate</nodifier>
<nmodi fier nane="s. message_rr" op="+">actual _measurenent_rate</nodifier>

</ ﬁbde>

Figure 12. A portion of the raw ODML specification for the track_manager and s_tm._relation nodes.

organization

num_agents | sm_tm_relation ‘ ‘s,tm,re\aﬂon

Sensor_organization)

(b)

Figure 13. Example ODML (a) template and (b) instance structures for the sensor network organiza-

tion.

role, while the latter represents the relationship that role has
with sensors in the environment. Each node's field may con-
tain an arbitrary mathematical equation, combining local and
nonlocal information to calculate new local values as depicted
in Figure 11. These expressions provide a way for the de-
signer to represent how different characteristics of the node
may be computed. For example, suppose we wish to define
how to calculate the track manager’s logical footprint (area)
of a target as it moves through the environment. This area
will depend on the amount of uncertainty the manager has

in the target’s location, along with a factor modeling the tar-
get’s “area of influence”, that relates to the effective sector
size discussed in Section 4. In our model, this area will be
acircle; line 11 shows how the target_area of a track man-
ager is derived from the target’s influence radius. The num-
ber of sensors presumed capable of sensing the target is the
average number of sensor which lie within the target area.
Therefore, athough the number of desired sensors is inde-
pendent of the environment, the actual sensors_available to
the manager will depend indirectly on the target.area and



sensor_density, as shown in line 16. The requested_sensors
will be the minimum of the desired and available.

We may model the number of measurements pro-
vided to the track manager in a similar way. The ac-
tual_measurement rate in the sensor-track manager
relationship is derived from the locally calculated re-
quested_measurement_rate and actual measurement ratio
computed by the sensor node. This value is then used in
a pair of modifiers defined in lines 31 and 32 that spec-
ify for the track manager and sensor the actual number of
measurements that will be taken.

In this way, the characteristics of one node may affect or
be affected by those of another. Oscillations and infinite recur-
sion are avoided by allowing only acyclic equation relations.
The resulting web of equations alows one to model impor-
tant concepts such as information flow, control flow, and the
effects of interactions. By propagating data through these ex-
pressions, the model can predict the characteristics of bothin-
dividual nodes and the organization as a whole. Perhaps more
importantly, it also allows the model to predict characteristics
not necessarily envisioned or considered by the designer, as
the results of expressions can flow through the graph in unan-
ticipated ways. It is this automatic propagation which differ-
entiates an ODML model from a simple set of equations, by
creating aunified view of the complete working organization.

The mechanisms provided by the ODML primitives al-
lows one to model a range of common, organizationally-
influenced system characteristics. To continue our example,
we will describe several such characteristics relevant to the
sensor network organization, and demonstrate how the inter-
play between such elements results in a more coherent, uni-
fied model.

5.2.1. Environmental and System Constants Incorporat-
ing numeric constantswithin an ODML structure, acrucial el-
ement of any realistic model, can be at once simple to accom-
plish and difficult to complete successfully. The definition it-
self, comprised of a straightforward constant field, istrivia to
create. Determining what value to place within this field can
be an entirely different matter, just as with the values used in
thediscrete analytic models. For exampl e, the desired sensors
constant at Figure 12 line 14 is a known quantity that can
be extracted directly from agent code or a software engineer-
ing specification. On the other hand, the uncertainty radiuson
line 9, which represents the expected radius of the target’s un-
certainty bound, can be more difficult to determine directly.
Assuming for the moment that this value does not depend on
other characteristics (such as the target’s velocity), one could
first specify arough estimate, and later revise that estimate if
contradictory empirical evidence is observed in practice or a
more accurate value is devised. In practice, most of the nu-
meric constants in the sensor network model were derived
through a combination of known system parameters, estima-
tion based on domain expert knowledge, and in some cases,
instrumentation of a running system or prototype.

The specification of expression-based constants can be ac-
complished in a similar fashion, athough these are more
frequently determined based on knowledge of the system
in question. An example of this is the track manager’s re-
quested_sensors in line 17 of Figure 12. This represents the
number of sensors that manager will actually ask for, which
may be lessthan desired_sensorsin the case where thereisin-
sufficient sensor density in the environment. It is sometimes
the case, however, that a ssmple closed-form solution is ei-
ther difficult to derive or not possible. In the former case, we
have used curve-fitting techniques to obtain approximate ex-
pressionsfrom empirical data. Thistechniquewas used to find
a predictive expression for RMS error, based on the number
of received measurements. It is worth noting that this partic-
ular expression attempts to abstractly and indirectly capture a
number of complex effects, including the effects of target am-
biguity, incorrect data fusion and the average quality of the
measurements themsel ves.

For the latter case, when a closed-form solution does not
exist or cannot be found, ODML supports a genera “map-
ping” function, which alows one to define a function cor-
relating a discrete input value with an arbitrary expression.
With this, one may define some f such that, for example,
f(1) =z+ /7, f(2) = 3223, etc. The average effective_area
of the sector nodes uses such a function. This characteristic,
originaly defined as S in Equation 2, represents the average
area covered by the sensors in each sector, which is typically
larger than the area of the sector itself. A mapping function
was used to effectively create a look-up table, which asso-
ciates an appropriate expression calculating the effective area
for each sector size.

5.2.2. Agent Interactions The manner in which entitiesin-
teract is perhapsthe most visible and defining characteristic of
multi-agent systems. It generally playsacrucial rolein deter-
mining how information flows through the system, how |oad
is distributed, how efficient operations are, and ultimately the
effectiveness of individual agents and the system as a whole.
In our sensor network model, these interactions are defined in
two different ways. In the first, entities simply model the ef-
fects of interactions internally. For example, the sensor node
represents the directory service messagesit sendsto its sector
manager, and uses a modifier to add a corresponding number
of messages to its sector_manager. We have used both modi-
fiersand parametersto disseminate such agent characteristics
so that they may be incorporated in remote nodes.

The second technique employs a more explicit representa-
tion, by creating an independent node to model the interaction
itself. An example is s_tm_relation, the sensor-to-track man-
ager relation, shown in Figures 12 and 13. This node mod-
els the interactions that take place between a track manager
and a sensor, which include determining the rate at which
task requests are generated by the track manager, the rate at
which measurements are taken in response to those requests,
and the rate at which corresponding results are sent back to



the track manager. Each of these values is calculated using a
combination of information from each entity, and the results
applied back to the appropriate node. For example, the ac-
tual_measurement _rate is used to increment the sensor’'s mes-
sages._rr constant, which tracksthe number of result messages
that are sent.

Choosing how to model an interaction depends on a num-
ber of factors. Simple interactions are typically embedded,
thus avoiding the additional overhead associated with node
creation. We have found that there are several ways that more
complex interactions benefit from an explicit, separate model.
By separating and encapsulating theinteraction, its effects can
be made more transparent and the model more understand-
able. In the case where there is a one-to-many type of rela-
tion, as with atrack manager and the sensorsit uses, thistype
of separation also facilitates the expression writing process
by limiting the scope that individual equations must cover.
Finaly, in the case where several alternative interaction styles
are available, the explicit representation allows the designer to
use variables or inheritance to model and reason about such
choices. For example, if our track managers had two differ-
ent ways of requesting measurements from a sensor, those al-
ternative interactions could be modeled as s tm_relationl and
stm.relation2, each defined as an instance of stm.relation
with an is-arelationship. When an instance of track_manager
is created, one of those two alternatives would be selected for
each sensor, and the corresponding effects incorporated ap-
propriately. In this way, in addition to representing the quan-
titative effects of interactions, the selection of agent interac-
tion or coordination mechanisms may be cast as an organiza-
tional decision in ODML.

5.2.3. Multiple Role Assignments In human organizations,
individuals frequently act in many different capacities, serv-
ing different needs and exhibiting different behaviors depend-
ing on the working context. In some complex multi-agent sys-
tems, similar phenomena may be observed, where individual
agents take on multiple roles that dictate the various respon-
sibilities, capabilities and activities it is associated with. Be-
cause the assignment of these roles to individual agentsis an
organizational decision, it isimportant represent both the as-
signment itself and the cumul ative effects of that decision.
As mentioned earlier, there are three roles in our dis-
tributed sensor network organization: the sector manager, the
track manager and the sensor. These are represented by the
sector_manager, track_manager, and sensor nodes, respec-
tively. Role assignment is modeled through the use of a has-
a relationship. Specifically, each of these role nodes has an
agent, as shown in Figure 133, that represents the particular
agent that role is assigned to. During instantiation, has-arela
tions may be fulfilled in two different ways. Either a new in-
stance of the target node is created to satisfy the relationship,
or an existing instance of the nodeis used in the sameway. An
exampleof thelatter can be seenin Figure 13b, wherethe | eft-
most node a is owned by both SVl and S indicating that par-

ticular agent has been assigned to two roles.

Most of the detailed characteristicsin this model are com-
puted within therole nodes. Therefore, important aspects such
as load and resource usage are inherently separate and role-
specific. To capture the effects of multiple role assignments,
these individual characteristics are first propagated into their
relevant agent using modifiers. Each agent can then predict
the cumulative effects of its roles. A natural example of this
in thisis the propagation of communication effects, which we
have mentioned earlier. In this case the communication load
of the agent is computed to be the sum of the communica-
tion loads of therolesit takes on. If we wish to capture more
complex situations, such as super- or sub-additive effects, the
the agent load can be defined as some function of the vari-
ous role loads that correctly accounts for those effects. This
combined load can then be accessed and utilized by the indi-
vidual rolesin whatever manner in appropriate.

This confluence also provides a useful place to incorporate
constraintsthat might be affected by multipleroles. For exam-
ple, adesign assumption in the original system said that each
agent would be associated with a single sensor. Inthe ODML
model, each sensor role uses a modifier to increment the sen-
sors_controlled field of its agent. We may embody the design
assumption by placing a constraint in the agent, specifying
that sensors_controlled must be equal to 1, which guarantees
that all agentsin avalid organization will control exactly one
sensor. This also demonstrates one way to control how many
rolesan agent is assigned. A similar approach could constrain
communication or processing load, which tie role assignment
to amore concrete metric. Conversely, by adding a constraint
defining a lower bound on load, we can make the selection
process more conservative by ensuring all created agents see
acertain minimum level of work.

5.2.4. Dynamic Role Assignment In reactive or adaptive
systems, roles are frequently created dynamically in response
to emerging phenomena. Such is the case with the track man-
ager role, which is assigned only when a new target has been
detected in the environment. Although we can and do model
rates of change and expected value, thereis no explicit repre-
sentation of avarying timeline or change pointsin the model.
Therefore, ODML instances generally represent a snapshot
of arunning system, or an averaging of effects as they would
occur over some span of time. If dynamic elements exist in
the source environment or system, they may be representedin
that same manner. For example, although at any given point
in time there may be many or few targets in the environ-
ment, there is some expected number of targets that repre-
sents a statistically average value. This number would then
be used to estimate the “normal” situation, and be reflected
in the model accordingly. ODML also natively supports the
use of discrete probabilistic distributions, allowing oneto ex-
plicitly represent a finite set of possible conditions. Further-
more, because ODML is based on sets of arbitrary equations,
one could also use continuous distributions (e.g., Poisson),



provided the means to analyze them can be expressed us-
ing closed-form expressions. For example, by encoding the
appropriate parameters as constants (e.g., x, A) and then ma-
nipulating those values using traditional queuing theory tech-
niques [10], one can integrate and estimate behaviors based
on these more complex assumptions.

Additional dynamism is present in the sensor network ex-
ample, due to the migration of the track manager role as de-
scribed in Section 2. When this role moves to maintain lo-
cality with its target, the effects of that role are effectively
spread over multiple different agents. To represent this effect,
the model uses the target’s velocity and the sectors’ sizes to
first estimate how frequently that role will migrate. Because
thisisarate, it must be combined with the duration of the sce-
nario to determine the number of agents that role will be as-
signed to. This number is then used to cal culate num agents,
which as mentioned earlier is used to specify the size of the
track manager’sagent has-arelationship. So, if the model pre-
dicts that the track manager role will be created and then mi-
grate twice, the num_agents field in track_manager will be set
to three. The rol€'s relevant characteristics are divided and
distributed evenly among those three agents using modifiers
as described previously.

5.2.5. Heterogeneity Another important advantage that
ODML offers over the smple analytic models from Sec-
tion 4 is that heterogeneity is more readily representable.
When calculating the total number of measurements for a
track in Equation 7, for example, we assumed that all sen-
sors would produce measurements at equal rates. Simi-
larly, the sector manager’s load in Equation 2 assumed that
al targets moved with equal velocity. Neither of these ssim-
plifying assumptions are likely to be true in practice, so
to the degree the unified model can represent such addi-
tional information, it will have a decisive advantage in accu-
racy.

ODML’s ahility to model heterogeneity is derived from the
the node-based representation of entities. Because each role,
agent or other structureis defined as a separate node in the or-
ganizational instance, entities that share a common type may
still contain different values or be affected by different orga-
nizational pressures and flows. We have seen examples of this
in the previous two sections. Because agents may be assigned
single or multipleroles, the resulting agent popul ation has the
potential to be heterogeneousin the final organization. These
variations may then propagate through the organizational in-
stance to create differences elsewhere in the model. For ex-
ample, communication load can be tied to the agent’s capac-
ity to perform work, which could affect the number of mea-
surements its sensor role could take, which would affect the
RMS error of the track manager using that sensor.

Inheritance provides an additional mechanism to represent
heterogeneity. For example, to model the “robust managers’
scenario from Section 4, we defined a robust _agent node that
has an is-a relationship with agent. This effectively creates

two different classes of agents that can be employed, each
with potentialy different capabilities and costs.

5.2.6. Conflicts, Constraints and Resolution Many of the
more interesting aspects of organizational models revolve
around the limits or constraints that are imposed on the sys-
tem, and what happens when those limits are approached or
exceeded. ODML models can represent both hard and soft
constraints. Theformer include conditionswhich the designer
has deemed untenable, while the latter are usualy character-
istics that degrade more gradually, and may be tolerated by
the system.

Hard constraints may be modeled using constraint fields,
as described in Section 5.1. A constraint is defined with a
target, a relational operator, and an expression. To verify
the constraint, both the target and the expression are eval-
uated to produce numeric values, which are then compared
with the provided operator. The constraint is considered sat-
isfied if the resulting relation is true, and unsatisfied if oth-
erwise. Because a valid organization must contain only sat-
isfied constraints, they are considered hard, or strict condi-
tionsthat must be met. We mentioned earlier how a constraint
on the sensors_controlled field in the agent ensured a one-to-
one mapping between sensors and agents. Similar constraints
could be added to set an upper bound on average expected
RMS, a limit on local work load, or a maximum number of
agents in the organization. Although our sensors were hard-
wired, a battery-driven sensor network could also be modeled
by adding a suitable constraint to the agent. In this case, com-
munication rates, action rates or the passage of time could
decrement a battery constant. A constraint placing a lower
bound on the battery would ensure that the unit met an ex-
pected minimum performance.

Soft constraints have a more subtle effect on the system.
They are not explicitly modeled using the constraint field. In-
stead, we represent them using equations that affect perfor-
mance in responseto other attributes. For example, in the sec-
tor manager, excessive communication load can delay direc-
tory serviceresponses. Thisismodeled with adirectory _delay
field, which is then used to determine the values for fields in
the track manager analogous to the d and ¢ delay values of
Equation 7. Increases in those values will eventually increase
the RMS error by slowing the rate at which the track man-
ager acquires new sensor information. This is represented in
the model by using a modifier to reduce the track manager’s
requested_measurements_rate in response to increased direc-
tory delays. Therefore, although there is no fixed, arbitrary
limit on sector manager load, excessive load will still degrade
the system’s performance. A breaking point, at which the per-
formance level has become untenable, can still be modeled
using a hard constraint governing the value in question.

Soft constraints are also used to model the competition for
sensors by track managers. The s_tm_relation in Figure 12 no-
tifies each sensor of the requested_measurement rate that will
be asked of it. If the requested rate exceeds the sensor’s capa-
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Figure 14. Performance predicted by the ODML sensor network model versus empirical observations
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bilities, the actual_measurement rate will be lower, reduced
to some fraction of the possible rate proportional to what was
asked for. Thiswill negatively affect the expected RM S error.
So, athough there is no set limit on the number of track man-
agers, a “tragedy of the commons’-style degradation in qual-
ity can be predicted from overusage [25].

5.3. Modeling Results

To gauge the efficacy of the ODML representation, we
have constructed the model described in the previous sec-
tion, used it to create organizational instances that match the
prior test runs, and compared the predicted characteristics
against the empirical results from Section 3. Because time-
based characteristicsin the ODML model (such as communi-
cation load) are computed as rates rather than totals, the val-
ues are not directly comparable. However, cumulative totals
may easily computed by multiplying the relevant rate by the
length of the prior simulation run.

A relatively coarse set of comparative results are shown
in Figure 14, which contrast the predicted results against
some of the actual, empirical results shown earlier in the pa-
per. Solid lines represent the values predicted by the ODML
model, while dashed are those obtained through empirical
testing. Although there are a few significant points of dif-
ference, in most cases, the model does a good job predict-

ing performance. One difference can be seen in Figure 14b,
where the predicted standard deviation underestimatesthe ac-
tual performance in most cases. This is a byproduct of our
assumption that al sensors were equally used. In the run-
ning system, sensorsin the center of the environment are used
more than those at the edges, and will have different com-
munication profiles because of it. Our model does not cap-
ture these geographic differences, and will therefore gener-
aly have alower estimated deviation. The analytic modelsin
Section 4 suffer from this drawback as well.

A more obvious difference can been seen between the
overall message totals, in Figure 14a. This difference can be
attributed to the fact that the empirical valuesincluded all 24
message types that occurred in the system, while the model
only tracks the five most significant message types. Com-
bined, those five types constituted roughly 80% of the com-
munication volume on average. The remaining 19 were un-
common; no individual type accounted for more more than
3% of the total. As can be seen in Figure 14a, the difference
between predicted and empirical remains relatively constant
with sector size, and could be accounted for by adding a suit-
able constant to the model. The exclusion of these message
types was a conscious choice on our part. It is an example of
trading off the complexity of the model with its fidelity.

Recall that one of our initial goals was to predict
organization-level characteristics of the system. The met-
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Figure 15. A comparison of the average actual and model-predicted characteristics by role, for agents

operating in the distributed sensor network.

rics we have shown so far accomplish this, but primarily on
a global, aggregate level. To evaluate how our model pre-
dicts finer-grained details, we produced a separate set of
graphs that show communication profiles by role, rather than
the system-widetotals seen in Figure 14c. The actua and pre-
dicted role-specific graphs can be seen side-by-side in Fig-
ure 15. In addition to the communication totals we have
discussed, these graphs also include role counts, indicat-
ing how many agents did or would take on that role in the
environment. A’ represents the sensor role, "M’ is the sec-
tor_manager, while ' T’ is the track_manager. The role ' AT’
describes agents acting as both sensors and track man-
agers. These results are also encouraging. By and large, our
predictions are similar to observations. Some of the differ-

ences, such as the result totals for some sector and track man-
agers, can be attributed to geographic variances in a small
sample size. For example, the 36- and 18-size sector scenar-
ios had only one and two sector managers, respectively. Their
individual geographiclocations would certainly affect the av-
erages in Figure 15¢, and these variations are not reflected in
the corresponding valuesin Figure 15d.

Our last set of ODML predictions are shown in Figure 16,
which examines messaging disparity and RMS error as both
the sector size and the number of targets are varied. Figure
16a corresponds to the empirical results shown in Figure 7,
while 16b correspondsto Figure 8. The trends shown in those
earlier Figures are similar to those predicted by ODML, in-
cluding the same general profiles and the RM S phase transi-
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Figure 16. Performance predicted by the ODML model as the number of target is varied for a) Messag-

ing disparity, and b) RMS error.

tion. A notable exception is the 24 target case in Figure 7a,
which has a different profile than those previously observed.
We believe this is the case because the volume of measure-
ment messages generated by such a large target population
dominated the contribution of the sector manager role when
the sector sizes were relatively small.

6. Conclusions

In this article we have pursued two separate but related
purposes. The first, discussed in Sections 2 and 3 demon-
strated the role that organizations can play in when designing
both sensor networks and multi-agent or distributed systems
in general. We have also shown how the organizational design
parameters can affect the system’s performancein avariety of
ways, both good and bad. It is our belief that any multi-agent
system of even moderate complexity will have some form of
organization embedded within it, even if it is only implicit.
This leads to our second purpose, covered in Sections 4 and
5.1, whichisto motivate the creation and use of explicit mod-
els of organizations. We demonstrated that it is possible to
create quantitative organizational modelsin ODML that accu-
rately predict large and small scal e performance. Such models
can be used at design time to find and evaluate candidate or-
ganizations or identify design weaknesses.

An aspect of our futurework isto demonstrate that ODML
models may also be used at runtime to verify base assump-
tions and adapt the organization when necessary. For ex-
ample, as new conditions become apparent at runtime (e.g.
resource availability changes, environmental constants vary,
etc.), these updated values can be inserted into the organiza-
tiona instance. The instance can then be used to determine
if constraints have been violated, and if so, the correspond-
ing template can be searched for an appropriate reconfigura-
tion. This is conceptually similar to the limited reconfigura-
tion behavior of Tambe's STEAM framework based on struc-

tural properties [23], in which failure of an agent leads to a
search for agentsto take over the roles no longer served by the
failed agent. Ultimately, we feel that the creation of morefor-
mal models of agent systems will foster an increased under-
standing of such systems, allowing them to be more context-
sensitive and robust in the face of change.

The quantitative results we have presented are quite do-
main specific. They depend on the communication charac-
teristics of the environment, the actions needed to achieve
the scenario goals, and the behaviors exhibited by the agents.
However, we feel that the types of issues raised by these par-
ticular experiments, such as information locality, specializa-
tion bottlenecks and organizational control overhead, are ap-
plicable to many different domains, particularly those which
are communication intensive. For instance, our sector size re-
sults can be directly related to the estimated load incurred by
a distributed collection of middle agents [22]. We have aso
shown in other work how ODML models can be applied to
information retrieval in a peer-to-peer network domain [6], as
well as more abstract, theoretical problems such as SUBSET-
SUM and TILINGS.

More generally, we feel that exploiting multi-agent organi-
zations can have significant positive effects on performance,
while avoiding some of the common pitfalls associated with
scale. By specifying roles, authority relationships and work-
ing groups, the system can both reduce runtime combinatorics
by restricting search as well as improve global coherence
without requiring a global view. However, we have seen that
these benefits come with costs and side effects, which must
be understood for the organization to be used successfully.
Formal models such as those provided by ODML can help
make these tradeoffs concrete, and the quantitative compar-
isonsthey facilitate can guide the devel opment processtoward
an appropriate selection of design and parameters. In this pa-
per, we varied just one organi zational parameter, and observed
the ramifications of this change across severa distinct di-



mensions. With continued research in this area, the complete
space of organizational types and their corresponding charac-
teristics can be more fully understood and exploited.
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