
The Struggle for Reuse: Pros and Cons of Generalization in TÆMS and Its
Impact on Technology Transition

Tom Wagner, Bryan Horling, Victor Lesser, John Phelps, and Valerie Guralnik
Honeywell Laboratories and the University of Massachusetts at Amherst�

Tom.Wagner,John.Phelps,Valerie.Guralnik � @honeywell.com and�
bhorling,lesser � @cs.umass.edu

Abstract

TÆMS agents integrate planning, scheduling, and coordina-
tion components in a reusable agent construction framework.
TÆMS agent components have been used in over a dozen re-
search projects and continue to provide an increasingly refined
foundation for rapid construction of multiagent control sys-
tems for research and commercial prototype applications. This
paper recounts a set of generalization issues that we have en-
countered in striving to build generic multiagent control com-
ponents, and how these issues effect the use of TÆMS tech-
nology both in research and commercial applications.

Introduction
In this paper we discuss the pros and cons of generalized, reusable,
agent control technologies and the experiences gained from employ-
ing these technologies in several research projects in academia and
industry.

A major thrust of TÆMSrelated work to date is the attempt to
create generalized domain independent control components for au-
tonomous intelligent agents. These components include technolo-
gies for planning, scheduling, coordination, a framework for agent
construction, and a simulation environment. We have been pursu-
ing this line of research for over ten years and the components that
we have constructed have been used on more than a dozen research
projects. The technology is also currently being used for commer-
cial prototype applications. The motivation behind domain inde-
pendence is that it enables us to reuse the control components on
different applications with few modifications. In the following sec-
tions we briefly describe selected components of a TÆMS agent,
discuss their strengths and weaknesses, and discuss issues that have
arisen during their use across different research projects.

The target of our reuse concerns are the hard control problems
associated with agents like the BIG Information Gathering Agent
[13] and [9; 3], where agents are situated in an environment, able
to sense and effect, and are required to solve control problems with
many alternative courses of action, and where the outcomes of any
one action are not certain before runtime. The way that uncertainty
in control is accounted for in TÆMS is through statistically char-
acterized performance characteristics and relationships between the
tasks.

The approach to domain independence in TÆMS is achieved
by abstracting away the details of a particular domain and reason-
ing about it via a model of the agent’s problem solving process.
The modeling framework we use is called TÆMS [5; 12]. TÆMS
task structures are hierarchical task networks, with additional graph
structures called �������
	�	����������������������� . Notable features of TÆMS
models include the explicit representation of task alternatives, the
representation and quantification of task interactions, and the char-
acterization of primitive actions in term of quality, cost, duration
outcome probability distributions. A sample TÆMS task structure
is shown in Figure 1. Task structures are generated from domain

theories; domain theories encode ways from moving the agent from
one worldstate to another, ideally moving the agent closer to one
or more pending goals. In some cases, the domain theories are en-
coded in a programming language. In the Tripbot domain, we be-
gun work on a domain-independent component to assess an agent’s
candidate plans in the context of a set of goals[22]. The Design-To-
Schedule (DTS) planner module accepts domain theories encoded
in a planning language, and, given a problem specification, com-
putation duration limit, and a TÆMS analysis criteria definition,
generates TÆMS task structures that solve the goals across method
performance possibilities through a set of plans.

Once an agent’s alternatives are encoded in TÆMS, the Design-
to-Criteria scheduler creates a set of schedules which are the result
of criteria-directed decisions about which tasks an agent should ex-
ecute, what resources it should use, which tasks it should coordinate
over with other agents, and how the agent can meet real-time dead-
lines and resource constraints [21; 18; 17; 15].

When multi-agent systems are constructed, a coordination mod-
ule, such as GPGP [6; 11] or one of its descendants [19], or a more
custom component [10; 16], is added to the agent. The architecture
of a typical TÆMS agent is shown in Figure 2.

The problem solver can also be simulated. This is the case in the
aircraft readiness application in which agents coordinate simulated
aircraft service teams. Because the agents do not actually repair the
aircraft, the methods are simulated and TÆMS models of the repair
processes are generated offline.

In the repair application, aircraft land at unpredicted times and
are assessed for repair and service needs. The aircraft have dead-
lines by which they must be ready for their next mission and differ-
ent aircraft have different deadlines. TÆMS agents coordinate the
distributed scheduling of the repair teams to ensure that the maxi-
mum number of aircraft are serviced and ready to launch by their
respective deadlines. The problem is made difficult by the inter-
actions between the activities of different service teams, e.g., the
engines cannot be serviced while missiles are being reloaded. Con-
trol in this application is decomposed into two types of activities:
1) communication based coordination and 2) local agent schedul-
ing. As with most TÆMS applications the coordination technolo-
gies handle the communication of partial task structures and the for-
mation of commitments between agents about which agent will do
what task and consume which resources and when. These com-
mitments are then passed to the local DTC scheduler along with the
agent’s other problem solving options and its current objective func-
tion, e.g., maximize solution quality or trade-off solution time with
resource consumptions, and the scheduler decided on a course of
action for the agent.

TÆMS agents can be constructed incrementally. A domain prob-
lem solver with TÆMS and the DTC scheduler is an agent capable
of meeting real-time deadlines and performing performance trade-
offs. When a GPGP module is added, the agent can interact with
other agents to perform cooperative or joint problem solving. Other
modules can be added to support organizational control, learning,

Figure 1: Simplified Civilian Emergency First-Responder Task Structure

and/or other styles of coordination. This domain-independence cou-
pled with a component approach to agent construction has proved its
merit by enabling us to reuse the technology in many different ap-
plication domains, e.g., the BIG information gathering agent [14;
13], the Intelligent Home project (IHome) [10], the DARPA ANTS
real-time agent sensor network for vehicle tracking [16], distributed
hospital patient scheduling [5], distributed collaborative design [7],
process control [23], the TripBot [22], agent diagnosis [1], and oth-
ers. However, in many of these projects modifications to the artifacts
were required and we became aware of certain design decisions that
affected the ability to move to a new application, change the con-
trol flow within the agent, or to expand the TÆMS task modelling
language.

The Java Agent Framework (JAF) [8] is the agent compo-
nent framework, or ”glue” by which the domain-independent and
domain-dependent components are integrated on projects like the
IHome [10] and the ANTS real-time agent sensor network for ve-
hicle tracking [16]. Like Decker’s DECAF [4], the goal of JAF is
to provide the framework that integrates the different control com-
ponents and supports their interaction. Another related component
used in both IHome and ANTS is the multi-agent system simula-
tor that enables different JAF agents to “execute” TÆMS primitive
actions in a controlled environment. �

TÆMS Task Models
What TÆMS Is
TÆMS (Task Analysis, Environment Modeling, and Simulation) is
a domain independent task modeling framework used to describe
and reason about complex problem solving processes. TÆMS mod-
els are hierarchical abstractions of problem solving processes that

� For projects like the TripBot that operate in a real domain the
simulation environment is not required, though it could be used for
debugging TÆMS related control activities.

Figure 2: TÆMS Agent Architecture

describe alternative ways of accomplishing a desired goal; they rep-
resent major tasks and major decision points, interactions between
tasks, and resource constraints but they do not describe the intimate
details of each primitive action. All primitive actions in TÆMS,
called methods, are statistically characterized via discrete proba-
bility distributions in three dimensions: quality, cost and duration.
Quality is a deliberately abstract domain-independent concept that
describes the contribution of a particular action to overall problem
solving. Duration describes the amount of time that the action mod-
elled by the method will take to execute and cost describes the fi-
nancial or opportunity cost inherent in performing the action. Un-
certainty in each of these dimensions is implicit in the performance
characterization – thus agents can reason about the certainty of par-
ticular actions as well as their quality, cost, and duration trade-offs.

The uncertainty representation is also applied to task interactions
like enablement, facilitation and hindering effects,

�

e.g., “10% of
the time facilitation will increase the quality by 5% and 90% of
the time it will increase the quality by 8%.” The quantification of
methods and interactions in TÆMS is not regarded as a perfect sci-
ence. Task structure programmers or problem solver generators es-
timate the performance characteristics of primitive actions. These
estimates can be refined over time through learning and reasoners
typically replan and reschedule when unexpected events occur.

To illustrate, consider Figure 1, which is a conceptual, simpli-
fied sub-graph of a task structure used in a civilian first-responder
application that we are currently developing. It describes a por-
tion of the building fire response process. The top-level task is to
Respond to Building Fire. It has two subtasks, Control Fire and
Protect Occupants, both of which are decomposed into subtasks or
methods. The methods are that are statistically described in terms of
their expected quality, cost, and duration. The enables arc between
Raise Ladder and Suppress Window Fire is a non-local-effect (nle)
or task interaction; it models the fact that the act of suppressing a
given window fire requires raising a fire ladder truck’s ladder. Other
task interactions modelled in TÆMS include: facilitation, hinder-
ing, bounded facilitation, sigmoid, and disablement. Task interac-
tions are of particular interest to coordination research because they
identify instances in which tasks assigned to different agents are
interdependent – they model, in effect, implicit joint goals or joint
problem solving activity. Coordination is motivated by the existence
of these interactions.

Returning to the example, Protect Occupants has two subtasks,
joined under the seq sum() quality-accumulation-function (qaf),
which defines how performing the subtasks relate to performing the
parent task. In this case, both methods must be performed in order
for there to be utility in the parent task, and where the parent task’s
utility if this constraint is not violated is the sum of its subtasks. The
sum qaf governs the Search and Rescue in Fire Area task, indicating
that either method in either order may be executed to generate utility.
In general, a TÆMS task structure represents a family of plans and
schedules, rather than a single plan or schedule, where the different
paths through the network exhibit different statistical characteristics
that must be compared to find the best alternative.

Pros, Cons, and What We Would Do Differently
One of the major strengths of TÆMS is that it is generally very
expressive. TÆMS was designed to model the problem solving ac-
tivities of complex cooperative blackboard problem solvers and it
is very good at modeling tasks and interrelationships. However, as
always, there is a trade-off between representational strength and
tractability. Certain features of TÆMS, e.g., soft task interactions
that enable the performance of one task to affect the duration of
another, make reasoning with or scheduling TÆMS task structures
very difficult. In our opinion, one question to ask when developing
a modeling or representational structure is how tractable the result-
ing model will be. If a model is expressive but intractable, research
is limited either to toy sized problem spaces or some complex (and
usually approximate) artifact like the Design-to-Criteria scheduler
is required. If the research interest does not pertain to scheduling or
complex analysis, then this should be avoided if possible.

Documentation with TÆMS has proven to be another issue that
should have been addressed sooner. Prior to the TÆMS whitepaper

�

Facilitation and hindering task interactions model soft relation-
ships in which a result produced by some task may be beneficial
or harmful to another task. In the case of facilitation, the existence
of the result, and the activation of the nle generally increases the
quality of the recipient task or reduces its cost or duration.

[12], graduate students were handed a dissertation or a small stack of
research papers and forced to generate the current intellectual model
of TÆMS in a bottom-up fashion. A natural question is why? The
answer is that research is sometimes a rapidly moving target and
that, as all basic researchers know, there are times that resources are
scarce. The lack of such documentation did not become an issue un-
til the number of new researchers working in TÆMS (or attempting
to do so) grew above a certain threshold. There is clearly a time at
which it is important to “sure up” one’s footing and get everyone on
the same page – possibly to the detriment of the pace at which the
basic research progresses. This documentation, and related tutorial-
esque discussions between members of the group, have clearly paid
dividends as the number of researchers now able to discuss prob-
lem solving via TÆMS has grown significantly – spreading to at
least four universities and encompassing at least five faculty mem-
bers and twenty graduate students. While this is attributable to other
concurrent happenings, e.g., development and sharing of infrastruc-
ture like the DTC scheduler and JAF, the existence of tutorial style
documentation helped significantly.

The development a of usable and sharable TÆMS modelling im-
plementation has also paid significant dividends. On or about 1994
there was a lisp version of TÆMS that was integrated with a simu-
lation environment and only its original creators were able to get
it to turn over. A new implementation in C++ for use with the
DTC scheduler was the first implementation in which TÆMS was
a stand alone artifact. However, by the time the next TÆMS arti-
facts were developed, around 1996, Java had become the language
of choice for this class of development and a new implementation
was needed. While the C++ and lisp versions of TÆMS are still
in use (the C++ version is tied to the DTC scheduler and thus used
in nearly all projects) the bulk of the researchers at UMASS rely
on a common implementation of TÆMS in Java. Support tools for
TÆMS have also paid real dividends and these are, in a sense, com-
bined with the Java version of TÆMS. Simple ways to create, ma-
nipulate, view, and store task structures are required for widespread
use. Again, this concept is obvious to anyone making an artifact in-
tended for general use, but, in basic research there is generally some
give and take between implementation accouterments and progress
on the research front.

Is there anything wrong with TÆMS? Yes. In part because the
way it is being used has evolved and in part because for some re-
search it is necessary to get closer to the details, TÆMS has some
oddities and inconsistencies. One notable example is the difference
between the resource models supported in the Java implementation
of TÆMS and those supported by the C++/DTC implementation.
The DTC scheduler adheres to the basic property of TÆMS that
methods are black boxes and there is no correlation between, for ex-
ample, quality and duration or resource consumption and duration.
There are situations, however, where it is more intuitive to corre-
late time and resource consumption (though there are cases where
it is not, also). Because of this and the particular applications for
which the Java side was being used, we now have multiple different
resource models that are only loosely compatible. Another example
of inconsistencies can be found in the TÆMS quality accumula-
tion functions – some qafs impose ordering on the subtasks, some
do not, and some specify whether or not particular subtasks must
be performed, and some do not. The original conceptualization of
TÆMS did not specify orderings but for several domains we found
the modelling structure insufficient and it was extended. What is
the moral of the story? There is value in application but even the
best conceived artifact is likely to be pulled and stretched when it is
actually used.

Other problems or reservations with TÆMS exist. For example,
by being abstract, it needs to be coupled with detailed information
to be used in agents operating in real environments, e.g., the de-

pendency specification used in the TripBot [22]. Another issue is
the way quality propagates through the network and the limitation,
some of which is implementational, to reasoning only in terms of
quality, cost, duration, and uncertainty in each of these dimensions
(in contrast to our new

���
framework [20]). However, most of

these issues fall into category of basic research questions.

Design-to-Criteria Scheduling
The Design-to-Criteria (DTC) scheduler is the agent’s local expert
on making scheduling control decisions. The scheduler’s role is
to consider the possible domain actions enumerated by the domain
problem solver and choose a course of action that best addresses:
1) the local agent’s objectives or goal criteria (its preferences for
certain types of solutions), 2) the local agent’s resource constraints
and environmental circumstances, and 3) the non-local considera-
tions expressed by the agent’s (optional) coordination module. The
general idea is to evaluate the options in light of constraints and pref-
erences from many different sources and to find a way to achieve the
selected tasks that best addresses all of these.

The scheduler understands the agent’s situation and objectives via
TÆMS task structures and reasons about different possible courses
of actions via TÆMS. Scheduling problem solving activities mod-
elled in the TÆMS language has four major requirements: 1) to
find a set of actions to achieve the high-level task, 2) to sequence
the actions, 3) to find and sequence the actions in soft real-time, 4)
to produce a schedule that meets dynamic objective criteria of the
agent. The reason we require soft real-time is that the DTC sched-
uler is designed for open environments where unpredicted change is
commonplace. When change occurs, the agent reinvokes the DTC
scheduler to decide on an appropriate course of action.

TÆMS models multiple approaches for achieving tasks along
with the quality, cost, and duration characteristics of the primitive
actions, specifically to give agent’s flexibility in problem solving.
This is how TÆMS agents can respond to new situations and how
they can custom tailor their problem solving for different situations.
A classic example being to trade-off solution quality for shorter
duration when time is limited. The DTC scheduler is the agent’s
scheduling trade-off and control expert. The TÆMS scheduling ob-
jective is not to sequence a set of unordered actions but to find within
a generated task structure a set and then a sequence of actions that
best suits a the agent’s current objectives; that is to say that there
may be mutually exclusive sets of partially ordered sets of actions
that must be sequenced.

Design-to-Criteria scheduling requires a sophisticated heuristic
approach because of the scheduling task’s inherent computational
complexity (�����	��
 and ��� ���
) it is not possible to use exhaustive
search techniques for finding optimal schedules. Furthermore, the
deadline and resource constraints on tasks, plus the existence of
complex task interrelationships, prevent the use of a single heuristic
for producing optimal or even “good” schedules. Design-to-Criteria
copes with these explosive combinatorics through approximation,
criteria-directed focusing, heuristic decision making, and heuris-
tic error correction. The algorithm and techniques are documented
more fully in [21; 18; 17; 15].

The Good, the Bad, and the Ugly
The DTC scheduler is an extremely complex artifact encompass-
ing around 50,000 lines of C++ code. It is fast for what it does –
scheduling large task structures (having fifty primitive actions) in
less than 8 seconds and performing hundreds of thousands of prob-
ability distribution combination operations in that time (on a basic
PIII-600 class machine running Linux). However, there are applica-
tions for which the DTC scheduler running in exhaustive schedul-
ing mode will run in less time than if running in its normal heuristic

mode which is designed to cope with high order combinatorics from
many different sources. In some cases, for some task structures, do-
ing an exhaustive search is actually faster and more effective. Re-
latedly, for applications that have particular regular properties, e.g.,
using a single TÆMS task structure with different bindings on the
leaves, custom scheduling solutions can be developed that will out-
perform the DTC scheduler. The thought here is that domain inde-
pendence in control is a hard problem and there are always perfor-
mance trade-offs involved. Striving for generality means to have to
address the hardest class of problems possible for a given problem
instance.

The DTC scheduler was also written to be fast and some of the
optimizations have proven obstacles when TÆMS was modified or
changed in very particular ways. For example, the addition of the
sigmoid() quality accumulation function meant that the scheduler
had to track new and different information. Similarly, the addition
of TÆMS qafs that impose orderings required some implementa-
tional acrobatics. If the scheduler had been designed less for speed
from the beginning it would have been more easily extended. It is
unclear if the scheduler should have been designed differently, as
it has thus far been extensible to meet most of our needs, but, in
our opinion, code optimization should only be applied to mature re-
search technologies unless the artifact poses significant bottlenecks.

One of the major wins in the DTC scheduler has been its encapsu-
lation. The DTC scheduler is stateless and obtains all of its informa-
tion via input files and produces everything the client needs via out-
put files. Written in C++, this stateless approach means that it is lit-
erally a stand-alone executable that clients invoke when needed. The
one caveat with this model is that it requires the process-starting-
overhead of the OS and cannot be invoked via native function calls
from Java or lisp. Prior to the DTC scheduler, our scheduling tech-
nology was tightly coupled with the execution subsystem and as-
sumed that it would have the ability to monitor task performance
directly. In general, the separation of concerns has paid great divi-
dends. Evidence of this includes the variety of ways that the DTC
scheduler has been used in our research, including other sched-
uler enhancements that build on top of the scheduler as an external
clients, e.g, work in schedule caching and partial-ordering [16].

Related to the DTC scheduler’s encapsulation was the construc-
tion of a human readable textual I/O format for DTC. Referred to as
t-TÆMS , the input to the DTC scheduler is a textual representation
of a TÆMS task structure plus a textual representation of the agent’s
objective function and constraints like deadlines, resource limita-
tions, etc. Given the input, the scheduler schedules and produces
multiple different output files. One of which is a t-TÆMS sched-
ule file that contains a ranked set of detailed schedules for the agent
that includes expectations about task performance and the state of
problem solving as tasks are executed. This information can then
be used to determine when it is necessary to replan or reschedule.
The DTC scheduler also produces a more human friendly schedule
representation and a simple schedule description file for clients that
do not which to implement t-TÆMS scheduler parsers. The lesson
learned here is that, obviously, good interfaces are important, but,
also that textual representations often provide important for versa-
tility and for human debugging.

Simplicity to the client has been another real design pay-off in the
DTC scheduler. While the scheduler is highly configurable in terms
of the types of pruning and focusing it does, the types of analysis
it does, the way it approaches resources, scheduling, analysis, and
the way it evaluates probability distributions and uncertainty, most
clients never need to customize these features. Thus, while most of
them are accessible either via command line arguments or via the
t-TÆMS input file, the DTC scheduler does not require the client
to specify anything him or herself. Instead it is configured with
a set of default options that, in general, yield good performance.

State Data

Events

Events

Common API

Component/Class API

Dependencies Data

Figure 3: Abstract view of a typical JAF component.

It is worth noting that it an ideal world it would classify problem
instances and set defaults on a learned basis, but, right now it does
not have this functionality. The important concept here is that no
matter how complex one’s artifact may be, most users or clients have
little or no interest in having to understand a large set of research
questions to use the artifact. If reuse is a goal, good defaults and a
very simple interface is a clear win.

One of the caveats of reuse has also come to light in developing
the DTC scheduler. Reuse requires support to evolve reusable ar-
tifacts. As artifacts are applied to new projects, they are also used
in different ways and in different environments. This can highlight
simple bugs but also lead to larger support issues like having to mod-
ify the technology or to explain in detail why the artifact performs
in certain ways. Quite often with research technologies these ex-
planations are non-trivial because of the issues to which they relate.
Support outside of a research lab is an obvious result of distribution,
however, the support burden of infrastructure sharing within a lab
should also be recognized and explicitly addressed.

Java Agent Framework
The underlying technology of our Java Agent Framework (JAF) uses
component-based technology designed to promote reuse and exten-
sion. Developers can use its plug and play interface to quickly build
agents using existing generic components, or to develop new ones.
The JAF architecture consists of two parts, a set of design conven-
tions and a number of generic components. The design conventions
provide guidance to the developer, which attempt to facilitate the
creation, integration and reuse of newly written components. The
generic components form a stable base for the agent, which the de-
veloper can use or extend as needed. For instance, a developer may
require planning, scheduling and communication services in their
agent. In this case, generic scheduling and communication compo-
nents exist, but a domain-dependent planning component is needed.
Additionally, the characteristics of the generic scheduling compo-
nent do not satisfy all the developer’s needs. The JAF design con-
ventions provide the developer with guidance to create a new plan-
ning component capable of interacting with existing components
without unduly limiting its design. A new scheduling component
can be derived from the generic one to implement the specialized
needs of their technology, while the communication component can
be used directly. All three can easily interact with one another as
well as other components in the agent, maximizing code reuse and
speeding up the development process.

JAF builds upon Sun’s Java Beans model by supplying a number
of facilities designed to make component development and agent
construction simpler and more consistent. A schematic diagram for
a typical JAF component can be seen in figure 3. As in Java Beans,
events and state data play an important role in some types of inter-
actions among components. Additional mechanisms are provided
in JAF to specify and resolve both data and inter-component depen-
dencies. These methods allow a component, for instance, to spec-

ify that it can make use of a certain kind of data if it is available,
or that it is dependent on the presence of one or more other com-
ponents in the agent to work correctly. A communications com-
ponent, for example, might specify that it requires a local network
port number to bind to, and that it requires a logging component to
function correctly. These mechanisms were added to organize the
assumptions made by component developers - without such specifi-
cations it would be difficult for the designer to know which services
a given component needs to be available to function correctly. More
structure has also been added to the execution of components by
breaking runtime into distinct intervals (e.g. initialization, execu-
tion, etc.), implemented as a common API among components, with
associated behavioral conventions during these intervals. Individ-
ual components will of course have their own, specialized API, and
“class” APIs will exist for families of components. For instance a
family of communication components might exist, each providing
different types of service, while conforming to a single class API
that allows them to easily replace one another.

JAF has been used successfully in several domains. It was orig-
inally conceived and developed to evaluate multi-agent system sur-
vivability within the MASS simulator [24]. Later, additional agents
were developed in JAF within the IHome project , which looked at
how multi-agent systems could play a role in an intelligent home en-
vironment. JAF agents were also augmented with a diagnosis com-
ponent in IHome , and a Producer-Consumer-Transporter domain
[2], to study the role diagnosis can play in dynamically adapting
organizational design in response to environmental change. Most
recently, JAF has deployed in a distributed sensor network environ-
ment where , agents must organize to gather the sensor data required
to track moving targets. In this last project, these same agents were
also successfully migrated from a simulated environment to an ac-
tual physical system using Doppler radar sensors and moving tar-
gets. Over the course of these projects, roughly 30 different JAF
components have been developed.

We have found the JAF framework relatively easy to use, once
an initial learning curve is passed. In each of the projects men-
tioned above, roughly two-thirds to three-quarters of each agent
were comprised of existing, reused code. In the cases where ex-
isting components could not operate in the given environment, as
when agents are moved to a different simulator or into a physical
system, only relatively minor extensions were required to low-level
components (e.g. communication or execution), while the higher
level components worked unchanged. The event-based interaction
system permits components to be easily added and removed, while
retaining the ability to react to actions performed by other compo-
nents. State-based interaction takes this one step further, as com-
ponents can react to changes in local data, without knowledge of
which other components originally performed the change. For in-
stance, our coordination component may generate a new TÆMS
structure describing a goal it has agreed to perform. This TÆMS
structure is added to the agent’s state repository (provided by yet
another component), which serves as a common data repository for
the components. The scheduling component will react to this ad-
dition by producing a schedule for the task structure, which is also
placed in the state repository. This schedule is then used by the ex-
ecution component to perform the desired actions. Finally, the suc-
cess of a particular action will cause the coordination component to
send back the appropriate results. In each of these steps, the actor or
originator could be seamlessly replaced, without the modification of
other components in the sequence.

There are several drawbacks to this framework. The most impor-
tant is the absence of a well-defined thread of control. The con-
trol architecture does provide for differentiated execution phases
(e.g. construction, initialization, execution), and a periodic execu-
tion pulse for each component at runtime. The event system, how-

ever, clouds this water considerably, since activity in one component
can directly cause a reaction in another. This can lead to long and
complicated execution stacks, as well as the potential for cycles or
oscillations. Because components are designed by different devel-
opers, one cannot predict a priori exactly how they may interact.
This process is further complicated by the fact that event distribu-
tion is unordered, so one cannot assume that a particular component
has processed it before another, and it is difficult to insert new ac-
tivities between event generation and reaction. A related drawback
arises from the inability to preempt a component’s execution within
the single thread of control. Again, because components may be de-
veloped independently, the activity in one may inadvertently cause
the failure of another in time- or resource-critical situations. Con-
sider the case above, where coordination generated a new goal for
the agent. If the scheduling process takes too long to find an ap-
propriate schedule, or if an unrelated process were to start shortly
thereafter, it may become impossible for the deadline agreed upon
to be met.

Conclusion
We have described some of our research in generalized agent tech-
nology and pointed out some of the issues we have encountered.
Drawing away from the specifics of each component, we would
like to leave readers with the thought that developing reusable agent
technology is a hard problem. Because understandings evolve, as
with all research, technologies must stretch and evolve too. We,
of the agent’s community, might have a slightly harder problem
than researchers in other areas because both the application domains
and the agent construction technologies are evolving concurrently.
What are the infrastructure requirements of a complex, persistent,
autonomous personal assistant that migrates with us from machine
to machine, reads our news, filters our mail, and coordinates our ac-
tivities with peers, family, and friends? We have an idea at this time,
but, the landscape is far from being well defined.

Acknowledgments
We would like to thank the researchers who have continued to help
evolve TÆMS and TÆMS based control of software agents, includ-
ing Keith Decker, Alan Garvey, Bryan Horling, Regis Vincent, Ping
Xuan, Shelley XQ. Zhang, Anita Raja, Roger Mailler, and Norman
Carver. We would also like to acknowledge the efforts of the many
other contributors on TÆMS related projects and those in the larger
community who have helped to shape these ideas.

References
[1] A. Bazzan, V. Lesser, and P. Xuan. Adapting an Organization

Design through Domain-Independent Diagnosis. CS Tech. Re-
port TR-98-014, UMASS, 1998.

[2] B. Benyo and V. Lesser. Evolving Organizational Designs
for Multi-Agent Systems. CS Tech. Report TR-1999-00,
UMASS, 1999.

[3] K. Decker, A. Pannu, K. Sycara, and M. Williamson. Design-
ing behaviors for information agents. In Proc. of the 1st Intl.
Conf. on Autonomous Agents, February 1997.

[4] K. Decker, J. Graham, et al. The decaf agent framework.
http://www.cis.udel.edu/ decaf.

[5] K. Decker and J. Li. Coordinated hospital patient scheduling.
In Proc. of the Third Intl. Conf. on Multi-Agent Systems (IC-
MAS98), 1998.

[6] K. Decker. Environment Centered Analysis and Design of Co-
ordination Mechanisms. PhD thesis, UMASS, 1995.

[7] K. Decker and V. Lesser. Coordination assistance for mixed
human and computational agent systems. In Proc. of Concur-
rent Engineering 95, 1995. Also avail. as UMASS CS TR-95-
31.

[8] B. Horling. A Reusable Component Architecture for Agent
Construction. CS Tech. Report TR-1998-45, UMASS, 1998.

[9] N.R. Jennings et al Using ARCHON to develop real-world
dai applications for electricity transportation management and
particle accelerator control. IEEE Expert, 1995.

[10] V. Lesser et al A Multi-Agent System for Intelligent Environ-
ment Control. In Proc. of the Third Intl. Conf. on Autonomous
Agents (Agents99), 1999.

[11] V. Lesser, K. Decker, T. Wagner et al Evolution of the GPGP
Domain-Independent Coordination Framework. To appear in
the Journal of Autonomous Agents and Multi-Agent Systems
in 2003.

[12] V. Lesser, B. Horling et al. The TÆMS whitepaper / evolving
specification. http://mas.cs.umass.edu/research/taems/white.

[13] V. Lesser et al BIG: An agent for resource-bounded infor-
mation gathering and decision making. Artificial Intelligence,
118(1-2):197–244, May 2000. Elsevier.

[14] V. Lesser et al Sophisticated Information Gathering in a Mar-
ketplace of Information Providers. IEEE Internet Computing,
4(2):49–58, Mar/Apr 2000.

[15] A. Raja, V. Lesser, and T. Wagner. Toward Robust Agent Con-
trol in Open Environments. In Proc. of the Fourth Intl. Conf.
on Autonomous Agents (Agents2000), 2000.

[16] B. Horling, R. Mailler, J. Shen, R. Vincent, and V. Lesser. Us-
ing autonomy, organizational design and negotiation in a dis-
tributed sensor network. Book chapter. To appear 2003.

[17] T. Wagner, A. Garvey, and V. Lesser. Complex Goal Criteria
and Its Application in Design-to-Criteria Scheduling. In Proc.
of the 14th National Conf. on Artificial Intelligence, 1997.
Also available as UMASS CS TR-1997-10.

[18] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directed Heuris-
tic Task Scheduling. Intl. Journal of Approximate Reasoning,
Special Issue on Scheduling, 19(1-2):91–118, 1998. A version
also avail as UMASS CS TR-97-59.

[19] T. Wagner, V. Guralnik, and J. Phelps. Software agents: En-
abling dynamic supply chain management for a build to order
product line. To appear in the Journal of Electronic Commerce
Research and Applications, Elsevier, 2003. A version avail at
http://www.drtomwagner.com

[20] T. Wagner and V. Lesser. Relating quantified motivations
for organizationally situated agents. In N.R. Jennings and
Y. Lespérance, editors, Intelligent Agents VI (Proc. of ATAL-
99), Springer-Verlag, 2000.

[21] T. Wagner and V. Lesser. Design-to-Criteria Scheduling: Real-
Time Agent Control. In Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, LNCS. Springer-
Verlag, 2001.

[22] T. Wagner, J. Phelps, Y. Qian et al A modified architecture for
constructing real-time information gathering agents. In Proc.
of Agent Oriented Information Systems, 2001.

[23] S. Zhang et al Integrating high-level and detailed agent co-
ordination into a layered architecture. In Infrastructure for
Agents, Multi-Agent Systems, and Scalable Multi-Agent Sys-
tems, LNCS. Springer-Verlag, 2001.

[24] R. Vincent, B. Horling, T. Wagner, and V. Lesser. Survivability
simulator for multi-agent adaptive coordination. In Intl. Conf.
on Web-Based Modeling and Simulation, 1998.

