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ABSTRACT

QUANTITATIVE ORGANIZATIONAL MODELING AND

DESIGN FOR MULTI-AGENT SYSTEMS

FEBRURARY 2006

BRYAN HORLING

B.Sc., TRINITY COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

As the scale and scope of distributed and multi-agent systems grow, it becomes
increasingly important to design and manage the participants’ interactions. The
potential for bottlenecks, intractably large sets of coordination partners, and shared
bounded resources can make individual and high-level goals difficult to achieve. To
address these problems, many large systems employ an additional layer of structuring,
known as an organizational design, that assigns agents particular and different roles,
responsibilities and peers. These additional constraints can allow agents to operate
effectively within a large-scale system, with little or no sacrifice in utility. Different
designs applied to the same problem will have different performance characteristics,
therefore it is important to understand and model the behavior of candidate designs.

In the multi-agent systems community, relatively little attention has been paid to
understanding and comparing organizations at a quantitative level. In this thesis, I
show that it is possible to develop such an understanding, and in particular I show how
quantitative information can form the basis of a predictive, proscriptive organizational
model. This can in turn lead to more efficient, robust and context-sensitive systems by
increasing the level of detail at which competing organizational designs are evaluated.

To accomplish this, I introduce a new, domain-independent organizational design
representation able to model and predict the quantitative performance characteris-
tics of agent organizations. This representation, capable of capturing a wide range
of multi-agent characteristics in a single, succinct model, supports the selection of an

vii



appropriate design given a particular operational context. I demonstrate the repre-
sentational capabilities and efficacy of the language by comparing a range of metrics
predicted by detailed models of a distributed sensor network and information retrieval
system to empirical results. In addition to their predictive ability, these same mod-
els also describe the range of possible organizations in those domains. I show how
general search techniques can be used to explore this space, using those quantitative
predictions to evaluate alternatives and enable automated organizational design.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many of the decisions made in multi-agent system design, and in computational sys-
tems in general, are predicated on the idea that one wishes to minimize the “bad”
characteristics of the system while maximizing the “good”. This practice manifests
itself in blanket, axiomatic objectives such as “minimizing communication”, “reduc-
ing uncertainty”, and “maximizing profit”. While these are worthy, abstract goals
that have critical practical and research importance, when a system is deployed and
situated in context, such ideals may no longer have the same level of relevance. Con-
sider the underlying issues that drive these objectives. Why should communication
be minimized? Why do we care about the combinatorics of a particular technique?
Why should centralization be avoided? In each case, we presume the existence of
some limiting factor, some bounded resource that motivates these objectives. How-
ever, when the system is placed in a particular context where these bounds can be
quantified, the intangible nature of these blanket statements is no longer sufficient.
For example, if ample communication bandwidth is available and additional utility
may be derived by using it, then a strategy that always minimizes communication
may lead to a solution that fails to reach its potential. If a particular resource is
bounded, and the qualitative side effects of using some or all of that resource are
the same, then the system should exploit it as best it can in service of satisfying or
maximizing the system’s specified goals.

Because of this, I believe that any real-world system must be tailored to the envi-
ronment in which it exists, if it is to make effective use of the resources and flexibility
available to it. I explore this tailoring through the system’s organizational design.
The notion of an organizational design is used in many different fields, and generally
refers to how members of a society act and relate with one another. This is true
of multi-agent systems, where the organizational design of a system can include a
description of what types of agents exist in the environment, what roles they take on,
and specifications guiding how they act both independently and with one another.
More generally, if we assume an entity has a set of possible choices to make dur-
ing its operation, the organizational design will identify a particular subset of those
choices that should actually be considered at runtime. By working with this typi-
cally smaller set, the entity’s decision process is facilitated. This additional structure
becomes increasingly important as the system scales in number and scope [32]. Imag-
ine how difficult it would be for a large human organization, such as a corporation

1



or government, to function if individuals lacked job descriptions and long-term peer
relationships. Agent systems face similar challenges, and can derive similar benefits
from an explicit organizational design.

Consider the problem of designing a solution for a complex, resource-bounded
domain, such as a distributed network of sensors that is used for tracking. Such
systems typically consist of an array of sensor nodes that are deployed to obtain the
measurement data needed to track mobile targets in an environment. Assume in this
case that each sensor is host to a local process called an agent that is responsible for
controlling the sensor. Let us further assume that the sensor nodes must collaborate
in some way to be successful, because multiple sensors must illuminate a target si-
multaneously to correctly obtain its position. Given these assumptions, a designer
must determine a way to structure the agents’ behaviors so that tracking may be ac-
complished. One strategy would create or delegate a single agent to be the manager
of the entire sensor network. The manager would decide when, where and how each
sensor should take measurements, and then process the resulting data to estimate the
targets’ positions. This layout of responsibilities constitutes a rudimentary organi-
zational design. It specifies what roles agents take on, who they interact with, and
where decision making authority is located.

Under some conditions, this simple solution will perform optimally, because the
manager can maintain an omniscient view of the entire network’s state and use that
view to find the best assignment of sensing tasks. However, under real world condi-
tions, where bandwidth and computational power is limited, communication and data
processing takes time, and the number of sensors can be arbitrarily large, the weak-
nesses of this approach quickly become apparent. A different strategy, in the form of a
different organizational design, can compensate for these more challenging conditions.
For example, we might distribute the manager role among multiple agents to more
evenly balance the communication and computational loads. We might also create an
information dissemination hierarchy among the agents that prioritizes, summarizes,
and propagates measurement data to use the available bandwidth more efficiently.
However, distributing the role can lead to conflicts among managers and lower util-
ity assignments, because no single agent necessarily has the local context to make
the right decision. Similarly, the summarization process of a hierarchical distribution
scheme can introduce additional latency and imprecision. Because of these tradeoffs,
the organization can be a double-edged sword, both helping and hindering the system
in potentially complex ways. The questions I address in this thesis revolve around
finding a general way to determine the most appropriate organizational strategy for
a given situation when there are many such strategies to consider.

Implicit in this example is the idea that different organizations will affect the
performance of a working system in different ways. Intuitively, changing the manner
in which agents interact or the pattern that those interactions take on can change
how the system behaves from both global and local perspectives. The objectives of a
particular design will depend on the desired solution characteristics, so for different
problems one might specify organizations which aim toward scalability, reliability,
speed, or efficiency, among other things. Confounding the search for such a design
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is the fact that many potentially important characteristics can be subtle, not readily
identified as the system is being developed, or have complex interactions.

For example, at what point do the benefits of the dissemination hierarchy proposed
above outweigh its costs? The additional communication and processing resources
required to implement it may not be readily available. Obtaining them may require
a monetary cost if new systems must be purchased, or a complexity cost if the new
responsibilities are spread among the existing systems. At the same time, one must
reason about the dimensions of the hierarchy – how tall and wide should it be? Which
entities should be assigned the responsibilities present at each node? Should the tree
dimensions be kept small, potentially concentrating the burden, or be made large to
more evenly distribute the load? The designer will likely have an intuitive grasp of
what is required, which is how existing systems are typically developed. However,
all of these features are interrelated along with the goals of the system, the expected
tasks it will experience, and the nature of the available resources. Intuition can fall
short when such interactions allow small changes to lead to unexpected outcomes.
These so-called phase transitions or tipping points require a deeper understanding
and a more concrete representation to be addressed.

Although individuals have created mathematical models for particular aspects of
organizationally-driven agent behaviors [166, 123, 163, 39, 68, 160], none have ex-
plored the utility of a general modeling language capable of incorporating arbitrary
quantitative information. It is my belief that understanding the fundamental causes
of characteristics like those described above, and using that information to develop
accurate, predictive models of their effects are both critical to selecting an appropriate
design, particularly as the agent population grows in scale or complexity. If we are
to understand these effects and develop the means by which they can be exploited or
avoided through organizational design, we must have a representation capable of ex-
pressing the range of ways the design can be created and capturing the characteristics
each design will exhibit.

Many different representations have been created to describe agent organizations
[187, 40, 109, 143, 45, 171, 50, 59, 122, 88, 174]. Most fall into one of two categories:
either they represent a wide range of organizational characteristics abstractly, or they
can capture a smaller set of characteristics concretely. The former are usually good at
representing what entities exist or could exist, but cannot compare alternatives in a
quantitative way. The latter may contain quantitative knowledge, but have difficulty
relating that knowledge to specific organizational concepts, mitigating their usefulness
if one is hoping to understand the effects a particular organizational design will have.

More specifically, existing organizational representations are either flexible and
qualitative or inflexible and quantitative. In this work I demonstrate that it is possible
to create a representation that is both flexible and quantitative. I introduce a new
representation, the Organizational Design Modeling Language (ODML), designed to
capture organizational information in a single unified, predictive structure. This
representation, described in detail in Chapter 2 has the capability to model a wide
range of organizational paradigms and characteristics, at different levels of abstraction
across many different domains. At the same time, it is able to integrate concrete
numeric information in the form of expressions and predictive equations using a range
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Figure 1.1. Example ODML (a) template and (b) instance structures for a sensor
network organization.

of mathematical techniques. Using this representation, it is possible to create a wide
range of integrated models that possess a level of quantitative detail that is not
possible with existing languages.

ODML models are superficially graph-based structures that consist of nodes and
edges. Figure 1.1a shows an example ODML template model from a more detailed
distributed sensor network architecture that is introduced in Chapter 2. Nodes in
the graph are used to represent organizational components, while edges are used to
represent the relationship between those components. In this example, there are nodes
that correspond to agents, manager roles, the operating environment, as well as more
abstract organizational constructs. Edges correspond to relational characteristics,
such as the fact that roles are bound to agents, that sectors contain sector managers
and sectors, and that robust-agent and normal-agent are both types of agents.

This graph representation depicts only the structural aspects of the organization.
Of equal importance are the quantitative details that exist within each node, which
are not shown in Figure 1.1. Each node contains a set of fields that quantitatively de-
scribe the relevant characteristics of the node using mathematical expressions. These
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expressions can affect or be affected by the characteristics of other nodes, implicitly
creating a second, more detailed layer of relationships through which one aspect of
the organization may affect another. In this way, quantitative information about the
environment, resources, agents, tasks, goals, or other components relevant to the sys-
tem’s performance can be incorporated into a single model and tied together in a way
that captures the interdependencies that exist between them. This web of equations
is a key component of ODML that differentiates it from existing representations.

As mentioned above, understanding the quantitative effects of organization is
a necessary prelude to determining which design is most appropriate for a given
operational context. ODML’s capacity to represent detailed numeric information
therefore gives it part of the functionality needed to address this problem. To provide
the remaining requisite functionality, it must also be able to express the variety of ways
the design can be manifested. This is accomplished in ODML through the creation
of a template (Figure 1.1a) that has decision points embedded within it. Different
choices for those decisions will result in different candidate designs. It is in this way
that the template embodies the space of organizational alternatives. Given a template
and a set of choices for those decisions points, one can create a particular instance of
that organization (Figure 1.1b). In that example two sectors have been created, each
with a sector manager (SM) and two sensors (S). A single track manager (TM) is
connected to these entities through a series of relationships. By using the embedded
expressions in the instance model to relate, predict and evaluate its characteristics,
the instance may be automatically compared and ranked against other competing
designs. This ranking is then used as part of a search process to select the most
appropriate design.

It is during this evaluation and ranking phase that the web of equations is used
most. Other representations typically perform their evaluation using a fixed set of
characteristics limited by the language, through simulations or model-specific heuris-
tic analyses, or through more qualitative or logical comparisons. ODML is differen-
tiated by the fact that one can embed arbitrary mathematical expressions within the
model, and use those to produce fast, precise predictions of whatever characteristics
are deemed relevant to evaluating design utility.

The flexibility of the ODML representation, its ability to model a wide range of
concepts and functionality, is derived from the nature of the language itself. Nearly
all existing organizational representations are structured around a well-defined set of
required or permissible structures. For example, they will have concrete and explicit
notions of an agent, a role, norms or goals. These concepts can be represented in
ODML, but this representation is accomplished using only the primitive notions of
node, relationship and quantitative characteristics outlined above; they have no pre-
defined semantics.

Although having such built-in structures can be beneficial, their existence, partic-
ularly if they are required, means that any model created with such a language must
abide by the assumptions associated with those structures. These assumptions can
be sufficiently constraining or inflexible that the representation is no longer usable,
or that the accuracy of the resulting model is compromised. For example, a proposed
organization may be large enough that one would not want to have an explicit no-
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tion each individual agent, because to do so would result in a model so large as to
be impractical. In other cases the agent characteristics supported by the language
may be insufficient or inappropriate to capture the nature of the domain in question.
Because ODML makes no such assumptions, the first designer could choose to omit
an agent node, creating a more abstract but correspondingly more scalable model.
The second designer has the freedom to incorporate only those characteristics they
deem appropriate. ODML’s relatively primitive language structure is another char-
acteristic that differentiates it. I will demonstrate how the flexibility this primitive
nature provides allows it to model a range of detailed concepts not easily captured in
other representations.

The drawback to having a language lacking in high-level concepts is that it makes
the search process more difficult. For example, in languages that explicitly support
agents and roles it is possible to embed into the search process the idea that roles must
be bound to agents, and create heuristics or strategies designed to take advantage of
that special relationship (e.g., [174, 159, 138, 35]). Lacking such structural landmarks,
a search process can only attempt to infer that this is the case. Given that such a
relationship might be modeled in different ways by different designers (or omitted
altogether as above), the applicability of such concept-specific techniques is limited.

Because of this, and because the search space created by an ODML template can
be quite large, solving the search problem is difficult. In Chapter 4 I demonstrate this
difficulty by proving that the problem of finding a valid instance within an ODML
template space is NEXP-complete. That chapter also describes a range of techniques
that can be used to exploit the mathematical nature of the representation and make
the search more efficient. In particular, I show it is possible to exploit constraints
embedded in the model to bound the search space, and to devise notions of choice
equivalence to avoid redundant parts of the space. Both techniques can result in a
significant reduction of the time required to search. I will also demonstrate techniques
that change the model itself, by incorporating abstraction or homogeneity to reduce
the search space. Finally, a distributed search process is described that attacks the
complexity through parallelism.

To evaluate the efficacy of ODML and the quality of the automated design process,
I have developed complete models for two different operational domains: a distributed
sensor network and a peer-to-peer, distributed information retrieval system. The
distributed sensor network model has been created based on the design of an existing,
real-world architecture [86]. The original system was developed and analyzed prior to
the creation of ODML, and thus provides a unique opportunity to evaluate ODML’s
ability to represent and predict a number of organizational characteristics. This
environment and model are described in detail in Chapter 2. The second model is
inspired by an information retrieval system developed by Zhang and Lesser [215]. It
features a network of flexible hierarchies that can be structured in a vast number of
ways, providing a space of designs that is large enough to make simple brute-force
approaches impractical. The interactions between entities are also complex, requiring
the integration of different mathematical techniques to be correctly captured. This
work is described in Chapter 3. The predictions produced by both models are also
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empirically verified in those sections. Several other models are also presented in
Chapter 5 as a demonstration of its applicability.

To summarize, the primary objective of this dissertation is to demonstrate the
feasibility of a highly quantitative representation and the increased utility that such
a representation brings to the organizational design problem. The following contri-
butions will be made to that end.

1. I show that a flexible, accurate organizational representation grounded in ar-
bitrary quantitative information can be created. This is accomplished through
the design and implementation of the ODML language itself.

2. I show that it is possible to use such a language to quantitatively model and
accurately predict the complex, interrelated characteristics of organizations op-
erating in realistic domains. This is demonstrated through the creation and
empirical evaluation of several ODML models that address different problems
in different domains, each of which has a different set of relevant characteristics.

3. I demonstrate that such models are capable of capturing a range of different
organizational designs at different levels of abstraction. This is accomplished by
integrating decision points within ODML models that reflect the choices that
must be made to create an organizational instance, and by demonstrating that
by varying such choices different designs will be produced.

4. I demonstrate that techniques can be devised that automatically search and
evaluate the design space to solve the organizational design problem. This is
accomplished by devising techniques that use the mathematical substructure to
bound the search space, and use quantitative predictions of instance behaviors
to evaluate and rank competing designs.

I will return to this list of contributions in Chapter 7 to provide additional details
on how they have been accomplished.

1.2 Major Ideas

This section continues introducing the dissertation by enumerating the basic as-
sumptions I have made when pursuing the objectives outlined above. Sections 1.2.2
and 1.2.3 expand upon the high-level concepts that support and motivate this work
through additional discussion of the organizational design and representation prob-
lem.

1.2.1 Basic Assumptions

The strategy that I present to satisfy the objectives outlined above assumes that
it is both possible to model the system in question and that different systems have
measurable differences. More completely, I assume the following conditions are true:
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1. The characteristics of the environment, resources, agents, tasks, goals, or any
other object relevant to the system’s performance are known, and they may be
either determined exactly or approximated. This may be accomplished ana-
lytically, through repeated observation of the characteristic in question, or be
defined by some other external process.

2. There are a range of design decisions that can be made, resulting in an array of
candidate designs that exhibit different characteristics.

3. Active environmental entities, such as agents, are able to appropriately incor-
porate and respect any design choices specified by the selected model.

4. Quantifiable, measurable characteristics exist that can be used to differentiate
candidate systems.

5. The set of characteristics relevant to the system’s intent can be combined in
some manner to produce a single, numeric value that can be used to assign a
preference order to the candidates. This value is the system’s utility.

With the possible exception of point 1, these same assumptions are also made
in the majority of related work. The essence of point 1 is an assumption that the
underlying mechanics of the system are either known or can be determined through
analysis. This does not mean that there is no uncertainty, but it does mean that the
level of uncertainty is also known, so that it can be represented and reasoned about.
I will argue in Section 4.5 that, in the absence of perfect data, runtime adaptation
can be still used to address problems that arise from designs based on incorrect or
out-of-date knowledge.

I do not make any strong assumptions about the underlying architecture employed
by agents or other entities within the organization, except to the extent that: 1) they
can correctly enact relevant organizational decisions suggested by the model and
2) they exhibit behaviors that can be captured by that same model. Section 2.2
demonstrates that even complex inter- and intra-agent behaviors can frequently be
captured with sufficient fidelity by a succinct set of expressions [84]. By employing
abstraction or statistical characterizations, the germane aspects of such phenomena
can be represented, reasoned over, and guided by an organizational design.

Later sections will present organizational models where additional assumptions
may be made concerning the behaviors, conditions, or other features of the specific
agents, environment or resources depicted in those models. I describe any such as-
sumptions within their respective contexts.

1.2.2 Organizational Design

The organizational design of a multi-agent system is the collection of roles, relation-
ships, and authority structures that govern the system’s behavior. All multi-agent
systems possess some or all of these characteristics, and therefore all have some form
of organization, although it may be implicit and informal. Just as with human orga-
nizations, agent organizations guide how the members of the population interact with
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one another, not necessarily on a moment-by-moment basis, but over the potentially
long-term course of a particular goal or set of goals. This guidance might influence
the data flow, resource allocation, coordination patterns or any number of other sys-
tem characteristics [74, 23]. This can help groups of simple agents exhibit complex
behaviors, and help sophisticated agents reduce the complexity of their reasoning.

Implicit in this concept is the assumption that the organization serves some pur-
pose — that the shape, size and characteristics of the organizational structure can
effect the behavior of the system [62]. It has been repeatedly shown that the organi-
zation of a system can have significant impact on its short and long-term performance
[24, 156, 84, 128, 6, 180, 17], dependent on the characteristics of the agent population,
scenario goals and surrounding environment. Because of this, the study of organi-
zational characteristics, generally known as computational organization theory, has
received much attention by multi-agent researchers.

An organizational design can influence the system at many different levels of
abstraction. For example, consider the sensor network variants discussed in Section
1.1. One aspect of the design might dictate how the agents are arranged from a high-
level perspective, in this case using a completely centralized or a more distributed
topology. This aspect is typically associated with deciding or putting limits on entity
interactions. For example, in the centralized configuration, all sensors directly interact
with the manager but never with each other. A design can also influence internal
behaviors, such as specifying managerial or authority relationship. For example, the
manager was given the authority to assign tasks to individual sensors in the network.

I also believe that an organizational design’s influence can extend to almost any
aspect of any entity in the environment, agent or otherwise, that is relevant to the
system’s performance; although this expanded definition is not universally held. For
example, I assume an organizational design can specify the protocols that agents use
to communicate, the algorithms used to find peers, and even the manner in which
agents resolve purely internal conflicts. This is because these low-level characteristics
can affect the performance of the conventionally high-level organizational structure
and vice versa. Therefore, when selecting an appropriate design, all relevant factors
should be considered, regardless of where in the architecture they may occur. This
view is consistent with ODML’s approach to specifying design alternatives, which per-
mits design alternatives to be modeled as an internal agent decision while permitting
the ramifications of that decision to propagate elsewhere in the model.

It is generally agreed that there is no single type of organization that is suitable
for all situations [91, 32, 112, 24]. In some cases, no single organizational style is ap-
propriate for a particular situation, and a number of different, concurrently operating
organizational structures are needed [63, 86]. Some researchers go so far as to say no
perfect organization exists for any situation, due to the inevitable tradeoffs that must
be made and the uncertainty, lack of global coherence and dynamism present in any
realistic population [150]. Although I do not subscribe to this particular view, what
is agreed upon is that all approaches have different characteristics that may be more
suitable for some problems and less suitable for others.

Organizations can be used to limit the scope of interactions, provide strength in
numbers, reduce or manage uncertainty, reduce or explicitly increase redundancy or
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formalize high-level goals that no single agent may be aware of [113, 61]. At the
same time, organizations can also adversely affect computational or communication
overhead, reduce overall flexibility or reactivity, and add an additional layer of com-
plexity to the system [84]. By discovering and evaluating these characteristics, and
then encoding them using an explicit representation, one can facilitate the process
of organizational self-design [31] whereby a system automates the process of select-
ing and adapting an appropriate organization dynamically [112, 161]. This approach
will ultimately enable suitably equipped agent populations to organize themselves
autonomously, eliminating at least some of the need to exhaustively determine all
possible runtime conditions a priori. Before this can occur, the space of organiza-
tional options must be mapped, and their relative benefits and costs understood.

1.2.3 Representing Organizations

In the preceding section I repeatedly implied that there is or must be some way of
explicitly representing the organization. For example, if one is to understand the
organization’s characteristics in a concrete and manipulable sense, there must be
some data structure capturing those characteristics. Similarly, if one is attempting
to predict the characteristics of a theoretical organization, there must be some model
capturing the relevant features that underlie those characteristics.

Not all applications demand the creation of an explicit organizational design. In
fact, most agent and distributed systems function without one. In these systems the
organization still exists, but it is generally defined only implicitly. The roles enti-
ties take on may be homogeneous or hard-coded. Relationships may emerge through
search or happenstance. Local behaviors are hard-wired or heuristically driven. No
single, coherent model ties everything together. Clearly these systems perform ade-
quately, or they would have little to demonstrate. I do not believe that an explicit
representation is essential, but I do contend that it can be eminently useful. For exam-
ple, a deep understanding of the ramifications of role assignment requires some model
of what the role demands of the agent it is assigned to, and how those demands relate
to other aspects of the agent’s existence. Knowing when and with whom to form a
relationship can be decided locally, but the more global consequences of this choice
can be made more apparent by recognizing the potentially nonlocal effects it can
have. The same is true of local decision making patterns – discovering and evaluating
the nonlocal effects of these decisions can be greatly facilitated by an appropriate,
explicit organizational representation.

The computational structure one uses to formally encode the organization’s char-
acteristics is the foundation upon which other organizational activities are based.
Thus, if the structure is lacking in fidelity or capability, some activities may prove
difficult or impossible to accomplish. For example, if the organization does not con-
tain quantifiable measures of load or performance, it will be difficult for the agents
to discriminate among competing strategies based on that criteria. Similarly, if the
structure is too abstract, it may be unable to support the practical decisions that
must be made during an agent’s lifetime. Conversely, if it is too complex, it may
prove to be computationally infeasible to work with the structure. Thus, there is a
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tension between expressiveness and ease of use that must be addressed when select-
ing or defining an organization description language. ODML’s approach is in general
more complex and detailed than related representations, resulting at the same time in
more precise information and a more difficult search process. I believe this tradeoff is
warranted by the additional precision it can produce, leading to more robust designs
and a model that has value in a larger number of situations.

1.3 Guide to the Dissertation

Chapter 2 describes the organizational representation problem. It begins in Section
2.1 with an example of an organizationally-driven solution to the distributed sensor
network problem mentioned above. A corresponding set of experiments provides
concrete examples of how the design of an organization can affect performance, which
motivates this work. Section 2.2 continues by introducing ODML, providing a formal
description of the structure and built-in functionality. A detailed example of its use
modeling the distributed sensor network system is given, along with empirical tests
validating the predictions made by the model.

Chapter 3 describes and validates a detailed model of the information retrieval
domain. This is used as a further example of ODML’s flexible yet precise nature.
In particular, the mathematics involved in correctly modeling the system are more
sophisticated than those used in the distributed sensor network domain. Section 3.3
details these formulations, and shows how the predictions they make can be used to
find the optimal organization as environmental conditions change. The search space
in this domain is large, which motivates the development of search techniques able to
exploit the underlying structure.

Chapter 4 demonstrates how ODML can be used as the basis for designing orga-
nizations, using the DSN and IR models as examples. The complexity of the valid
instance search is proved in Section 4.1.1. Section 4.1 describes the design search pro-
cess itself, and details the algorithmic and modeling techniques that I have created to
assist with that search. The chapter concludes with Section 4.5, which outlines how
ODML can be used to address the online adaptation of organizations.

Chapter 5 provides additional examples of ODML’s use across a range of features
and organizational paradigms. In particular, Section 5.1 shows how the distributed
sensor network model from Chapter 2 can be enhanced to model geographic hetero-
geneity, temporal interactions and different levels of abstraction. Section 5.2 describes
how models can be created to capture aspects of several additional organizational
paradigms.

Although a brief review of related approaches to these problems is provided along
with ODML’s introduction in Section 2.2.1, a more thorough description is delayed
until Chapter 6. This chapter describes related representation and design research
and contrasts those projects with ODML’s capabilities. Chapter 7 concludes with a
summary of the work, and describes the contributions and conclusions that have been
made.
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There are several appendices that provide additional detail and context. Appendix
A describes how parts of ODML model and search space can be translated for use
in a general mathematical solver. Appendix B is a survey of common organizational
paradigms used in multi-agent systems, which is used as the basis for the discussion in
Section 5.2. The remaining Appendices C, D, E and F contain the complete textual
source descriptions of several of the ODML models described in the dissertation.
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CHAPTER 2

REPRESENTING ORGANIZATIONS

2.1 Organizational Effects

This chapter starts with the presentation of a detailed, real-world example in section
2.1.1. This is done to better characterize the types of organizational structures I am
concerned with, and how those structures impact the performance of a system. The
intricacies and characteristics of this design demonstrate why this is an important
and challenging problem to address, and both motivate and ground the discussions
given in later sections.

Recall the distributed sensor network (DSN) example given earlier. This was
a simplified view of a DSN problem domain presented in DARPA’s Autonomous
Negotiating Teams project (ANTs) [110]. This section describes a system created
to address the needs of that environment in three ways: by exploiting individual
agent autonomy to quickly make decisions, by using negotiation to effectively allocate
resources, and by using organizations to balance and reduce agents’ computational
and communication burdens [86]. This architecture serves as a working example of a
complex, organizationally-driven multi-agent system.

Section 2.2 introduces the ODML representation, beginning with a formal, domain-
independent description of the language. This is followed by a description of a com-
plete ODML model of an operational system that has been constructed for the ANTs
DSN domain. A set of quantitative predictions derived from that model are compared
against a set of existing empirical results to validate the accuracy of the model.

2.1.1 The Distributed Sensor Network Domain

The goal of a distributed sensor network is most generally to employ a population
of sensors to obtain information about an environment. I will focus on using such a
network to track one or more targets that move along arbitrary paths in an area. A
collection of three-head, Moving Target Indicator (MTI) Doppler radars make up the
sensor network. They are each fixed in position and have a wired power source. Each
sensor is equipped with a processor, on which is run a single agent process that controls
the sensor. The sensors are connected with a FM-based wireless network, which is
divided into eight communication channels. Each channel has limited capacity, and
agents may communicate over only one channel at a time.

Individual sensors can return only simple amplitude and frequency values, so a
sensor is incapable of determining the absolute position of a target by itself. In
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Figure 2.1. Organization-centric view of the DSN architecture.

addition, because only one of a sensor’s three heads may be in use at a time, each
sensor’s scanning policy must be adapted based on current needs. To track under
these conditions, the sensors must be organized and coordinated in a manner that
permits their measurements to be used for triangulation, and geographically distinct
groups of such coordinated sensors used to produce a continuous track as the target
moves. More measurements, and particularly more measurements taken in groups in
the same area at approximately the same time, will lead to better triangulation and
a higher resolution track.

A system was created by myself and several other researchers to address this
problem [86, 119]. The system’s architecture employs closed-loop control; the mea-
surements and estimated target locations are used by the sensor agents to evaluate
and adapt the network’s subsequent scanning strategies. Consequently, any process-
ing, decisions making and communication that occurs to enact this control has to take
place in real time, or the target may be lost. Additional hurdles include a lack of re-
liable communication, the need to scale to hundreds or thousands of sensor platforms
over a wide area, and an uncertain, noisy operating environment. A more detailed
description of the entire framework and the environment it operates in can be found
in [110].

As mentioned above, an explicit organizational design has been employed in an
effort to reduce overhead without negatively impacting performance. There are three
types of responsibilities, or roles, that agents may take on: sector manager, track
manager and sensor manager. They are related to each other and to the environ-
ment as shown in Figure 2.1. Sector managers are created for each sector in the
environment, and serve as intermediaries for much of the local activity. For example,
they generate and distribute plans needed to scan for new targets, store and provide
local sensor information as part of a directory service, and assign track managers.
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Figure 2.2. The DSN architecture in four phases. A: sectorization of the environ-
ment, B: distribution of the scan schedule, C: negotiation over tracking measurements,
D: tracking data fusion.

Each detected target has such a track manager that is responsible for identifying the
sensors needed to gather target information, gathering the resulting data, and fus-
ing it into a continuous track. Track managers obtain some information from their
originating sector manager, but can also interact directly with other sector and track
managers. The sensor manager role controls how the local sensor is used. In response
to sector or track manager requests, it takes measurements at specified times and
places, and reports back the resulting data. Agents may work concurrently on one
or more of these roles, so a viable organizational design must ensure that each agent
has sufficient resources to meet the combined demands of the roles it is assigned.

Some aspects of this design are static, such as the partitioning and sector manager
assignment, and defined as the sensors are deployed in the environment. Other aspects
are dynamic, such as the track manager assignment and sensor selection, requiring the
agents to self-organize in response to new events. This blend of styles takes advantage
of characteristics of the environment that are invariant, without giving up the ability
to react appropriately as conditions change.

To see how the organization works in practice, consider the sequence of behaviors
shown in Figure 2.2. The environment is first divided by the agents into a series of
sectors, each a non-overlapping, identically sized, rectangular portion of the available
area as shown in Figure 2.2A. The intent of these divisions is to limit the interactions
needed between sensors, to reduce and distribute the overall communication load. As
shown in Section 2.1.2, this strategy does not always have the desired effect.

Each sensor has a local agent that takes on a sensor manager role. A single
agent in each sector also takes on the sector manager role, represented by shaded
inner circles in Figure 2.2A. Sensor managers begin their existence by finding their
local sector manager, and sending it a description of the sensor’s capabilities. These
include the sensor’s position, range, orientation and preferred communication channel.
When completed, the sector manager will possess a complete picture of the sensing
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capabilities within its sector, which it offers to other agents in the form of a directory
service. The sector manager also uses this information to generate a scanning schedule
for detecting new targets that it disseminates to the local sensors in Figure 2.2B.

Once the scan is in progress, individual sensors report positive detection measure-
ments to their sector manager. The sector manager, through interactions with nearby
track managers, maintains a list of targets currently close to or within its sector. By
comparing the measurement with that target list, the sector manager can determine
if a new target was found, or if it is more likely the measurement was of an existing
target. If it determines a new target was found, the manager selects an agent from
its sector to be the track manager for that target. Not all agents are equally qualified
for this role, and an uninformed choice can lead to very poor tracking behavior if the
selected agent is already busy or shares communication bandwidth with garrulous
agents. For example, if we simply collocated the track manager and sector manager
roles at the same agent, the combined communication load will generally exceed ca-
pacity. Conversely, if an agent who has previously acted as a track manager is chosen,
some of the environmental state that agent had accumulated may be reused, which
reduces its communication needs. Therefore, in making this selection, the sector man-
ager considers each of its agents’ estimated load, communication channel assignment,
geographic location and history. Recognizing such ramifications of role assignment is
an important aspect of the model presented in Section 2.2.2.

The track manager role, depicted in Figure 2.2C with a blackened inner circle, is
responsible for tracking the target assigned to it. To do this, it first discovers sensors
capable of detecting the target, and then negotiates with members of that group to
gather the necessary data. Discovery is done using the directory service provided by
the sector managers. As the target approaches a previously unknown area, the track
manager will query the appropriate sector manager to determine the available local
sensing capabilities. The track manager uses this knowledge to determine from where
and when the data should be collected, and sends measurement requests to the sensor
managers it selects (see Figure 2.2C). Because those sensors may be servicing tasks
from other sector or track managers, conflicts can arise between the new task and
previously existing commitments. The sensor agent will address such conflicts as best
it can locally by using priorities to devise a round-robin schedule, but will also notify
the conflicting managers of the problem. Because these managers have a more global
view of the situation, they are in a more suitable position to resolve it. For example,
they may negotiate with other track managers to use other sensing resources, or offer
concessions in the form of reduced quality [121].

The data produced by the sensors is collected and analyzed (see Figure 2.2D).
Although this activity is logically a separate role, it is a relatively lightweight pro-
cess, and as a simplification the organizational design implicitly incorporates it into
the track manager’s responsibilities. Once the track manager has received the mea-
surements, the data are fused in a triangulation process. Amplitude and frequency
values can place the target’s location and heading relative to their source sensor, and
several of these relative values can be combined to derive an absolute position. The
data point is then added to the track, which is used to predict the target’s future
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location. It is also used to periodically notify nearby sector managers of the target’s
location.

At this point the track manager must again decide which sensors are needed and
where they should take measurements. Under most situations, the process described
above is simply repeated. However, if the target has moved far from where the track
manager is, the track managing role may be migrated to a new agent in a different
sector. This is done to avoid penalties associated with long-distance wireless commu-
nication, which may cause unwanted latency or unreliability transferring information.
This technique is covered in more detail in Section 2.1.5.

2.1.2 Empirical Demonstration of Organizational Effects

The two primary organizational features used by this system can be thought of as
geographic coalitions and functional differentiation. The first describes the partition-
ing process, while the second is a result of the heterogeneous assignment of roles to
agents. An integral part of each is the notion of locality. Information propagates and
is made available to only the agents that have need of it. In some cases, such as with
the environmental sectorization, artificial boundaries are created to encourage locality
at the expense of time or flexibility. In other cases, as with the target tracking role,
locality is exhibited naturally through the domain. Other, lower-level organizational
structures are embedded within these, such as the peer-to-peer negotiation network
that forms between track managers and the manager-worker relationships used to
obtain measurements.

There are many data flows and interactions that are encouraged and restricted
as a result of this design. As I will demonstrate, these characteristics affect the
quantitative performance of both individuals and the system as a whole in a variety
of ways. I will informally describe these effects below and show how they may be
more concretely defined in Section 2.2.2.

In the following sections, I show empirical evidence exhibiting these character-
istics, and I explain how they drive the selection of an organizational design. The
experimental scenario consisted of a group of 36 sensors and 4 mobile targets. Dif-
ferently sized sectors were tested in this scenario, ranging from 36 very small sectors
each containing just one sensor to a single sector encompassing the entire area. All
sectors shared the same size within any given test. The sensors were arranged in
a grid pattern and the targets’ locations and movement spread evenly through the
environment to normalize results and simplify analysis. Targets moved with constant
speed. The results were then observed over 10 runs per configuration in a simulation
environment called Radsim, which closely models the performance of the physical
MTI sensors [106]. The same agent code was used for both these simulation runs
and actual hardware tests performed elsewhere. Each run lasted approximately 140
seconds.
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Figure 2.3. Effect of sector size on messaging.

2.1.3 Geographic Coalitions

The first organizational effect I will explore is the total amount of communication
that occurs in the system. Figure 2.3 shows that as the number of agents in each
sector increases, and there are correspondingly fewer sectors overall, the amount of
communication traffic decreases. Because each sector requires a certain amount of
control messages, the total number of messages is reduced as the number of sectors
decreases. A more detailed view of the effects this change has on messaging will be
shown later in Figure 2.5.

Recall that the initial intent behind creating these sectors was to reduce the com-
munication burden. The results in Figure 2.3 are in some sense contradictory of this
goal, because they show that the unpartitioned environment had the lowest com-
munication overhead. This aggregate metric obfuscates certain details, however, by
hiding the potentially worse performance of key organizational participants. To see
this, recognize that the partitioning process described in Section 2.1.1 results in the
creation of loose coalitions of sensors based on geographic location. Sector directory
information, new target scan schedules, discovery measurements and certain tracking
control messages are all contained within or directed to these coalitions.

Because the manner in which this information being communicated is determined
by the sectors, the sectors’ average size and shape has a tangible effect on some aspects
of the system’s performance. If the sector is too large, and contains many sensors,
then the communication channel used by the sector manager may become saturated.
If the sector is too small, then track managers may expend a great deal of time and
bandwidth updating sector managers as its target moves through the environment.
So, although these results show that large sectors have lower total overhead, the
individual picture is not so straightforward. This is covered in more detail below.

Although not shown in this figure, partitioning can also affect reactivity, because
time may need to be expended to discover sector information. A track manager,
for example, must perform queries to obtain sensor information as its target moves
to new sectors. Smaller, more numerous sectors will result in delays caused by the
additional queries that ultimately affects the number of measurements it receives.
This delay will be revisited in Section 2.3.7.

18



Agents per Sector
0 5 10 15 20 25 30 35 40M

es
sa

ge
 V

ol
um

e 
S

ta
nd

ar
d 

D
ev

ia
tio

n

0

10

20

30

40

50

60

70

Figure 2.4. Messaging disparity vs. sector size.

2.1.4 Functional Differentiation

The varied assignment of roles in the system comprises a different organizational
design based on the capabilities and responsibilities of the participants, also known
as a functional organization [61]. Agents specialize their functionality in order to
restrict the type of interactions that must take place between agents. For example,
to obtain information about available sensors, a track manager must only contact
the relevant sector managers, instead of blindly broadcasting to all sensors [184].
Concentrating the track management functionality into individual agents serves a
similar role, by limiting the number of interactions necessary to resolve conflicts in
sensor usage.

Although this type of functional decomposition does reduce the total number
of interactions an agent might need to make, it can also increase that number for
particular individuals in the environment. For example, we have seen how the sector
manager is responsible for disbursing information about the sensors in its sector,
which facilitates the track manager’s discovery process. However, by serving in this
capacity, it also makes itself a center of attention, which can result in unreasonable
load when demand is high.

Figure 2.4 shows how much agents in the population differ from one another in
their communication habits as the sector size changes. This notion is captured by
measuring the standard deviation in communication activity (total messages sent)
exhibited by individual agents. If all agents are roughly the same they will have a low
deviation, while a population that has a handful of outlier agents with significantly
higher message traffic will have a high deviation. As the number of agents in each
sector increases, this graph shows an increase in disparity, because a few agents are
communicating more than their peers. Since the environment and target spacing
are uniform, the differences can be attributed to the roles those agents take on.
For example, the increasing trend as the sector size grows can be attributed to the
increased concentration of communication caused by the correspondingly reduced
number of sector managers that must handle the demand produced by the agent
population. The rise in deviation when there is a single agent per sector represents
the coexistence of the sector and track manager roles, because all agents act as sector
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Figure 2.5. Message types vs. sector size.

managers when there is only one agent in each sector. This trend demonstrates that as
the sector size grows, specialized agents such as sector and track managers can become
hotspots of activity. In a bounded environment with unreliable communication this
concentration of activity could lead to reduced performance and data loss if the
communication channel becomes overloaded.

A growing tension between sector sizes is made apparent by these results: Figure
2.3 shows that smaller sectors lead to increased message traffic, and while Figure 2.4
shows that larger sectors imbalance load in the population. Although not shown,
similar trends were observed in agents’ local workload levels, which track the number
of non-communicative actions being performed. Both characteristics are bad, so a
compromise must be sought between them in the selected organizational design.

2.1.5 Organizational Maintenance

There are costs associated with creating and maintaining the organizations employed
by this design. The most frequently updated aspect of the organization is the rela-
tionship formed between track and sector managers because the sectors that track
managers interact with change as the target moves. This results in a class of control
messages dependent on sector size. For example, as the target moves into part of
the environment the track manager is not familiar with, the manager must query the
sector manager of that area to discover local sensors. Once those sensors are known,
data collection commitments can be established. As the target is tracked, the nearby
sector managers must also be periodically notified of the target’s estimated position.

Figure 2.5 provides a quantitative view of this overhead. As sector size increases,
fewer directory and tracking control messages are necessary, because there are a fewer
sectors to interact with as the target moves. In addition, the number of measurements
increases as the sector size increases, because the reduced time spent by the track
manager interacting with the additional sector managers allows more time to be spent
requesting data. More measurements results in a lower root-mean-squared (RMS)
error between the measured and actual track, as seen in Figure 2.6. RMS error is a
key measure of overall system performance in this domain.

20



Agents per Sector
0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 R
M

S
 E

rr
or

0

1

2

3

4

5

Figure 2.6. Effect of sector size on RMS error.
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Figure 2.7. Average communication distance.

The technique of migrating the tracking responsibility through the agent popu-
lation as the target moves is another example of how locality can be exploited. Sig-
nal attenuation conspires to make communication less reliable as distance increases.
Multi-hop protocols can maintain reliability, but will increase end-to-end latency at
each hop. Lacking the capacity for movement, the initial manager selected to track
a target will therefore become less effective as the target moves away from it. By
migrating this task to follow the target, the organization is able to retain locality
despite the fact that the sensors themselves are immobile. This results in a reduction
in the average distance that messages must travel.

Figure 2.7 shows the effect track manager migration has on the average distance
of communication. Because migration is triggered by sector boundaries, the tracking
task will migrate less frequently when sectors are large, simply because they cover
more area. Conversely, a lower average communication distance is observed when
sectors are smaller. The lower migration rates also contribute to the increased mea-
surement totals from Figure 2.5. Each migration interrupts the collection process as
the role is moved from one agent to another, so the more frequently this transfer takes
place, the more the average overall collection rate will be reduced.

A different approach that estimated this distance directly instead of indirectly
through sector boundaries is certainly possible. Decoupling the two characteristics
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would likely avoid the trend shown by Figure 2.7. The original decision to employ
this technique was made because it was assumed that other pressures (like those
shown in Figures 2.4 and 2.6) would keep the sector size within an acceptable range.
Figure 2.7 shows a side effect of that decision, and is an example of the type of
interactions that an appropriate model can help uncover. If our assumptions had
been incorrect, for example, or if the capacity of the wireless medium was increased
without a corresponding increase in range, subsequent design changes could fail to
take these interactions into account. An explicit model like that shown later in Section
2.3 can help avoid such mistakes, as well as provide guidance over which technique is
most appropriate.

More generally, these results show how different characteristics contribute to the
organizational tension. Large sectors improve the system’s RMS error rate, while
smaller sectors exhibit better communication locality.

2.1.6 Generality of Effects

To explore the generality of these trends, I performed an additional set of experi-
ments that varied numbers of targets. Each test contained between 1 and 24 equally
distributed targets, all of which moved concurrently through the environment for the
duration of the experiment. The scenario was otherwise identical to those in Sec-
tion 2.1.2. Figure 2.8a shows that the original communication disparity profile from
Figure 2.4 is maintained as the target density is varied, and the amount of disparity
increases with the number of targets. Intuitively, this is because the amount of work
particular agents are performing is tied to the number of targets in the environment.
The communication load of the sector managers, for example, is directly proportional
to the number of track managers it must interact with. This is particularly true as
the sector size increases – in the most extreme case a single sector manager must
support all 24 track managers.

Similarly consistent results are seen for the systems RMS error in Figure 2.8b. The
RMS error profile is maintained, although the baseline RMS error increases because
the bounded sensing capabilities result in fewer average measurements per target.
Notice how the RMS value for 6 and fewer targets are clustered together, while those
with 8 or more become progressively worse. This is caused by a phase transition
that occurs between 6 and 8 targets, when the number available sensors is no longer
sufficient to meet demand. The inevitable reduction in the number of measurements
track managers receive leads to an increase in RMS error.

Additional tests were performed which also varied the number of sensors in the
environment, using six different configuration with between 9 and 81 sensors [84].
Results from those experiments concur with the trends outlined above.

The conclusion that may be drawn from these experiments is that a tradeoff exists
between the overall volume of message traffic and its distribution over the agent popu-
lation. Message volume decreases when there are more agents per sector because fewer
interactions are needed to obtain information, as shown in Figure 2.3. However, this
shift can cause individual agents to incur a disproportionate communication burden,
as shown in Figures 2.4 and 2.8a. Figures 2.5, 2.6, and 2.7 show that organizational
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Figure 2.8. Communication disparity (a) and RMS error differences (b) with varied
sector sizes and target densities.

maintenance causes a similar tradeoff - larger sectors have lower overhead and better
RMS error, while more track migration in smaller sectors increases communication
reliability.

More generally, these results also demonstrate the tangible effects that organiza-
tional design can have on system performance. Recognizing and understanding these
effects is the first step in determining what the most appropriate design should be.
In this instance, I explored the effects of just one aspect of the organization under a
relatively small set of environmental conditions. However, the consequences of this
and other organizational decisions depends on a number of factors not addressed here,
including the density of the sensors, sensor range, communication medium character-
istics and target speed, among other things. Finding the appropriate organization
for any given instance of these factors cannot be accomplished with just a small set
of experiments. The following section will show how explicit organizational models
created with ODML can be used to address this need.
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2.2 Organizational Representation

In Sections 1.1 and 1.2, I described the theoretical basis for agent organizations, by
alluding to the possible benefits and drawbacks they can provide. The previous section
provided concrete evidence of this, by demonstrating that different organizational
designs can have tangible effects on a range of performance characteristics. In this
section I show how it is possible to capture those effects in a predictive model. Such
a model will be used in Section 4 to support an automated organizational design
process.

I have previously created a set of discrete analytic equations to describe and
predict the distributed sensor network behaviors outlined in the previous section [84].
Although individually precise, such models lack the cohesion necessary to create a
complete prediction of system performance. There is no strong notion that particular
and distinct entities exist with associated characteristics. There is no well-defined
way of specifying what decisions must be made, what values must be optimized over,
or what constraints must be respected. Instead, such individual expressions provide
performance characteristics piecemeal, and comparative analysis of the entire system
is performed later in a relatively ad hoc manner. Finally, I believe a single, static set
of equations will be unable to represent all the alternative ways that a structure might
be created in a concrete and accurate manner. For example, consider if there were
a choice of the type of sensor or agent available for use in the environment, different
tracking techniques that might be employed, or optional information aggregation
hierarchy of arbitrary height and width. While one could create individual models
for each dimension, combining them together in a coherent and expressive way would
be challenging. It is for this reason that I view tools that operate principally on such
representations, such as nonlinear solvers and queuing networks, as too limiting to
address the general organizational design problem (although I believe they can play
an important role in certain aspects of modeling and design evaluation). Section 4.2.3
highlights the difference between the capabilities of these general techniques and the
problem addressed by the work presented here.

To address this deficiency, I have developed a representation designed to capture
such organizational information into a single, unified structure, along with a set of
techniques to analyze and search the space of organizational possibilities. The Orga-
nizational Design Modeling Language (ODML) provides domain-independent mech-
anisms to model, evaluate, and compare a variety of organizational styles, including
the sensor network described above. ODML incorporates quantitative information
in the form of mathematical expressions. These expressions are grouped into orga-
nizational constructs, connected in a graph of relationships, and ultimately used to
represent and predict both the localized and global characteristics of an organization.

The immediate benefits of such a language are twofold. First, by incorporat-
ing quantitative information about the environment, resources, agents, roles, tasks,
goals, or any other object relevant to the system’s performance, candidate organi-
zations may be tailored and evaluated in a context-specific way. For example, one
can directly embed information about relevant characteristics such as sensor density,
target velocity, communication limitations, and the like. This model can then be
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used to determine the organization which is most appropriate for that context, given
a particular definition of utility. By simply changing those values, a new context can
be defined, potentially resulting in a new corresponding organization. Second, once
a suitable model has been found, it can serve as an explicit organizational represen-
tation, guiding agents’ local decisions in a manner consistent with global objectives.
The longer-term benefits of the organizational model include being able to make
predictions about runtime performance, which can be used to isolate and diagnose
system failures and deficiencies. This same information can also be used to support
adaptation of the system, by incorporating learned knowledge into the existing model
and analyzing the resulting structure. These benefits will be explored in Section 4.5.

2.2.1 ODML

An organizational model serves in several different capacities. At design time, it
should be possible to use the structure to create and evaluate not just a single orga-
nizational instance, but an entire family of organizational possibilities. At runtime,
it should accurately describe the current organization. In both cases, the model must
be sufficiently descriptive and quantitative that one can evaluate the organization’s
effectiveness and rank alternatives according to some specified criteria. Below, I
enumerate the desired capabilities and characteristics the modeling language should
possess to satisfy these requirements:

1. It should be able to represent a particular organizational structure. This would
include roles, interactions and associations (e.g., coalitions or teams). Differ-
ent flows in the organization, such as communication and resources, should be
representable.

2. It should be able to represent the range of organizational possibilities, by iden-
tifying general classes of organizations and the parameters which influence their
behavior. Different elements should be able to be modeled at different levels
of abstraction. Identify which characteristics are under deliberate control, and
which are derived from external factors.

3. It should enable concrete performance predictions and allow deductive analysis
by quantitatively describing the relevant characteristics exhibited by the struc-
ture, the manner in which those characteristics interact, and the constraints
they are affected by. For example, both communication overhead and the effect
that overhead has on work load should be representable.

A representation that meets these requirements is sufficient to support the auto-
mated organizational design process, by first representing the space of alternatives and
then using quantitative predictions to evaluate and rank competing designs in that
space. Many different organizational representation schemes have been developed by
researchers [187, 109, 129, 171, 50, 59, 122, 88, 174]. Nearly all these representa-
tions can satisfy the first two points, but none are able to incorporate quantitative
knowledge in such a way that concrete predictions along multiple, interdependent

25



dimensions can be made directly from the model itself. Without this ability, such
representations must rely on qualitative comparisons, which can lack important con-
textual detail, or on external heuristic or simulation-based evaluations, which are
typically more time consuming.

Most existing representations fall into one of two categories: either they represent
a wide range of organizational characteristics abstractly, or they can capture a smaller
set of characteristics concretely. The former are usually good at representing what
entities or relationships exist or could exist, but cannot compare alternatives in a
quantitative way. The latter may contain quantitative knowledge, but have difficulty
relating that knowledge to specific organizational concepts, either because the quanti-
tative information is only indirectly related to the organizational structure or because
a separate simulation is required to elucidate the actual performance. This mitigates
their usefulness if one is hoping to understand the effects a particular organizational
design will have, particularly in response to the needs of a dynamic environment.

For example, OMNI [50] and Moise
+[88] can each capture a greater variety

of explicit organizational concepts than ODML, but do so in a largely qualitative
way. For example, they have concrete notions of norms, ontologies and plans, but
no way to directly relate the organizational decisions that define those features to
the qualitative effects they have on performance. Work by Matson and DeLoach
[129] does dynamically compute the quantitative utility of an organization, but does
so using only a single approximate quality statistic. The previous section showed
how many different interacting features affect the utility of an organizational design.
Conversely, both SADDE [171] and MIT’s Process Handbook [122] can incorporate
arbitrary quantitative information, but neither couples this information with the or-
ganizational structure in a way that enables one to deduce how the characteristics
of one aspect of the design affect another. The representation created by Sims [174]
does incorporate quantitative information into a structured organizational model, but
I believe ODML’s more flexible design can model more situations at different levels
of abstraction. For example, although one can model individual agents and roles in
ODML, the representation does not require that such elements exist. By modeling
these concepts only abstractly or not at all, one can potentially create models of
much larger systems without the associated high combinatorics. At the same time,
this flexibility can make the design search itself more difficult. These differences will
be expanded upon in Section 6.1. Each representation has its strengths and ODML’s
goal is not to supplant these works, but to demonstrate another approach that makes
different tradeoffs. As shown in the following section, ODML does so by incorporat-
ing a concrete but flexible set of primitives that can model a range of organizational
constructs along with the quantitative characteristics that differentiate them.

I believe the principal benefit of using a quantitative representation is the ability
to make rapid but precise predictions about organizational performance. If one views
the process of organizational design as a search through the potentially very large
space of possible organizational structures, a critical part of that search is the ability
to evaluate alternative designs with respect to an expected operational context. I
further believe that the utility of an organizational structure should not be restricted
to just a single metric, but can be based on many characteristics that may be tightly
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coupled with one another and the structure itself. In this section I will show how
ODML models are able to capture both the space of alternatives and the complex
characteristics they exhibit in a representation that can make predictions much faster
than is possible through simulation. If used as part of a design process, this advantage
can allow the evaluation of a greater number of alternatives, which will increase the
chance that the most suitable design will be found.

Conceptually, ODML models exist in two distinct forms that share a common
representational definition. The first acts as a template, that expresses a range of
organizational possibilities by explicitly encoding the organizational decisions that
must be made. The second is an organizational instance, created from the template
by making specific choices for those decisions.

Formally, an ODML template specification O is defined as follows:

O = {N , H,C,K,M, V }
N = {N0, N1, . . . , Nn} (2.1)

Ni = {t, `, p̄, I,H,C,K,M, V }
Section 2.2.2 gives examples of how these features are used in practice. The

bulk of the ODML template specification is made up of the set N of nodes, each
of which corresponds to a particular physical or logical entity that might exist in
the organization. For example, in the sensor network scenario there would be nodes
corresponding to sectors, managers, relationships, agents and the environment, among
other things. Each node Ni contains a number of elements, defined below:

t The node’s type. This label must be unique within the set of template nodes that
make up the organization.

N.t = 〈symbol〉
∀N,M ∈ N , N.t = M.t⇔ N = M

` The node’s instance limit. This specifies the maximum number of instances of the
node type permitted in a valid organizational instance.

N.` ∈ {Z+ ∪∞}

p̄ An ordered list of parameters that must be passed to the node’s template when
an instance of the node is created. These are analogous to the parameters one
might pass to an object constructor. Each parameter is specified with a type
and local name.

N.p̄ = [〈symbol, type〉, . . . ]

I The set of node types that this node has an is-a relation with using conventional
object-oriented inheritance semantics. If we assume that a node’s I = {a, b},
an instance of the node will also be an instance of a and b, possessing the
characteristics of all three node types (e.g., if a has a constant x, then the
related node will have the same x unless it locally overrides it). Is-a relationships
cannot be cyclic, i.e., N cannot have itself as a decedent.
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N.I = {〈type〉, . . . }
∀i ∈ N.I,N 6= i ∧N /∈ i.I ∧ ...

H The set of node types that this node has a has-a relation with. If we assume that
H = {a, b}, an instance of the node will possess some number of instances of
both a and b. It is through this type of relationship that the primary organiza-
tional decomposition is formed. Each has-a has a magnitude that specifies the
number of instances connected by the relationship.

N.H = {〈symbol, type,magnitude〉, . . . ]
magnitude = 〈symbol〉

C A set of constants that represent quantified characteristics associated with the
node. Constants may be defined with numeric constants (e.g., 42), or mathe-
matical expressions (e.g., x + y).

N.C = {〈symbol, expression〉, . . . }

K A set of constraints. Also defined with expressions, an organization is considered
valid if all of its constraints are satisfied.

N.K = {〈symbol, op, expression〉, . . . }
op ∈ {<,>,≤,≥, =, 6=}

M A set of modifiers that can affect (e.g., mathematically change) a value contained
by a node. Multiple modifiers may affect the same value. Modifiers model flows
and interactions by allowing the characteristics and decisions made in one node
to affect those of another.

N.M = {〈symbol, op, expression〉, . . . }
op ∈ {+,−,×,÷}

V A set of variables, representing decisions that must be made when the node is
instantiated. Each variable is associated with a range of values it can take on.
For example, a node might have a variable x that could take any one value in
the set [2.7, y2, πz].

N.V = {〈symbol, {expression, . . . }〉, . . . }

symbol refers to a user-defined string, similar to a variable name in a conventional
programming language. These typically describe or refer to a particular characteris-
tic. type is the type name of some defined node, so ∃N ∈ N such that N.t = type.
expression is an arbitrary algebraic expression, possibly referencing constants, sym-
bols and function calls.

The top-level organization node O also contains the elements H,C,K,M, V , pro-
viding a location for the designer to embed additional global information and con-
straints.

I refer to C,K,M, V collectively as a node’s fields, and the quantitative state of
a field as its value. For example, the constant field total load might be defined with
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the expression total load = work load + communication load and have a value of 0.9
for an agent in a particular organization. Note that the use of the term “constant”
may initially be misleading. While the expression defining total load is fixed, the
value for total load produced by that equation may change through the application of
modifiers, or due to changes in fields or values that the expression is dependent on.

At first glance, the ODML language may appear to be devoid of almost all the
organizational concepts that are provided by typical organizational representations.
This is partially true, and it is by design. Instead of directly incorporating the
usual high-level organizational components, such as hierarchies, roles, agents, etc.,
ODML provides a set of relatively low-level primitives by which such structures can
be defined. For example, a node with the user-defined type manager, having a has-a
relationship with another node of type agent could embody a role-agent relationship.
A sequence of has-a relationships between nodes could indicate a hierarchy. Although
the high-level semantics for these nodes may be implicit, the concrete characteristics
and design ramifications are still directly and quantitatively captured by the nodes’
fields.

My opinion is that this approach can lead to an increased diversity of representable
structures, by avoiding the assumptions and inevitable restrictions that typically ac-
company high-level structures. The remainder of this chapter as well as Chapter 5
and Section 3.1 will demonstrate this flexibility by showing how many different types
of organizations and organizational effects can be successfully modeled using ODML.
Section 4 will also demonstrate that this approach simplifies some aspects of the or-
ganizational search process, by unifying the various ways that design alternatives can
be specified into two well-defined template characteristics (has-a relationships and
variables).

ODML instances are quite similar to templates. The difference is that where a
template is a description of what could be, an instance is a description of what is.
Where a template might specify that a manager role can be assigned to a single
agent or distributed across multiple agent nodes, an instance would indicate that
manager 1 is distributed across agent 5 and agent 7, and so on. Once instantiated,
the expressions defined by the fields, the data passed in through parameters, and the
interactions caused by relationships can all be used to predict values for an individual
node’s characteristics.

The formal definition of an instance is nearly identical to that given in Equation
2.1, so I will not repeat it here. The differences principally relate to the replacement
of node types in the template with instances of those nodes in the organizational
instance. Thus, the set N is the set of node instances, whose individual types no
longer need be unique. So, where there might be just a single manager type in the
template, there can be an arbitrary number of manager instances in the instance.
Both is-a (N.I) and has-a (N.H) relationships no longer reference node types, but
particular node instances in N . Finally, the set p̄ is filled with appropriate values
from each node’s parent, and the variable set V for each node is replaced by a single
item from that variable’s range. Because a common syntax is shared between the two
forms, for the remainder of this document I will indicate where necessary which is
being considered.
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get value(symbol s)
r ← null
if (s is of the form s1.s2) −− Dereference dot−notation symbols

n ← get value(s1)
r ← n.get value(s2)

else if (∃ c ∈ C | c.symbol = s) r ← evaluate(c.expression) −− Constants
else if (∃ h ∈ H | h.symbol = s) r ← h −− Has−a members
else if (∃ v ∈ V | v.symbol = s) r ← evaluate(v.expression) −− Variables
else if (∃ p ∈ p̄ | p.symbol = s) r ← p −− Parameters
else forall i ∈ I −− Handle is−a relationships

r ← i.get value(s)
if (r 6= null) break

forall m ∈ M −− Add local modifier effects
if (m.symbol = s)

r ← r m.op evaluate(m.expression)
forall n ∈ N −− Add remote modifier effects

forall m ∈ n.M
if (m.symbol is of the form s1.s2) ∧ (s1 = N) ∧ (s2 = s)

r ← r m.op n.evaluate(m.expression)
return r

evaluate(expression e)
forall s ∈ { non−function symbols referenced by e }

vs ← get value(s)
substitute all occurrences of s ∈ e with vs

r ← mathematical result of e
return r

Figure 2.9. Pseudocode for the get value function of a node N . This function is
used to quantify the characteristics of instance nodes.

As mentioned above, it is the ability to use an ODML model to deduce quantitative
values for specific characteristics that sets it apart from other representations. The
manner in which these values are determined for an instance node’s characteristics
is defined by the pseudocode in Figure 2.9, that outlines the get value function for
computing the value of a symbol. Note that some aspects of get value’s behavior, such
as the manipulation of list-based data, have been omitted for clarity. This function
shows how various sources of information, non-local data and node interrelationships
all interact to describe the features of a particular node. It is through the execution
of this function on a particular symbol that predictions are made of the design’s
performance. For example, agent.get value(total load) would return a prediction of
agent’s total load.

As will be shown in Section 4, the process of finding an appropriate organization
revolves around first finding the set of valid designs, and selecting from that set the
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one that is most desirable. The validity of a particular organizational instance O is
defined as:

O is valid iff ∀N ∈ O.N , N is valid

N is valid iff
∑

M∈O.N|M.t=N.t1 ≤ N.` (2.2)

∧ ∀k ∈ N.K, (N.get value(k.symbol) k.op k.expression) = true

The “desirability” of instance O can be quantified by defining a utility character-
istic in the organization. This can then be computed using the existing machinery by
calling O.get value(utility). Once such a value has been computed for all candidate
organizational designs, they may be ranked and the best selected. Examples of utility
definitions be given in Sections 2.3.8 and 3.3.

2.2.2 Distributed Sensor Network Model

The comparison to related work given in Section 6.1 shows that ODML’s method
of defining organizations is more free-form than most other existing organizational
representations. On one hand, this characteristic can offer a great deal of flexibility
in how and what organizations are represented, and this capability is exploited re-
peatedly in the techniques presented in this work. On the other hand, this approach
has relatively few high-level guiding structures, which can make it difficult to initially
grasp how ODML models should be created and how the various pieces of a model
really interrelate.

The capabilities of ODML are best explained through an example. The distributed
sensor network (DSN) framework described in Section 2.1 was designed, developed
and analyzed prior to the existence of ODML, making it an ideal platform to gauge
ODML’s ability to accurately depict the characteristics of a sophisticated, real-world
architecture. This section will use the DSN system to motivate and demonstrate
ODML’s capabilities. Section 3.1 provides further demonstration of ODML by mod-
eling a second domain, a distributed information retrieval (IR) system. The flexible,
hierarchical structure of the IR architecture offers a vast range of organizational pos-
sibilities, creating a challenging representation and design problem.

I will proceed with an overview of how an ODML model was produced for the DSN
organization described in Section 2.1.1. For clarity, the names of particular nodes or
fields that reside in nodes are represented in italics. Recall that ODML models are
divided into templates and instances, the latter being derived from the former. A
graph showing the high-level structure of the sensor network’s template can be seen
in Figure 2.10a. This graph is derived from a much more detailed specification that
can be found in Appendix C. This complete description is roughly 280 lines long, so a
smaller but representative portion is provided in Figure 2.11. The Extensible Markup
Language (XML) [14] was selected as the basis for ODML’s syntax, to leverage the
abundance of tools that already exist to parse and manipulate such data.
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Figure 2.10. Example ODML (a) template and (b) instance structures for the sensor
network organization.

2.2.2.1 Has-A Relationships

Vertices in the template graph, such as sector and sensor, correspond to nodes in
the ODML model. Nodes can represent both tangible (e.g., agent) and intangible
(e.g., sector) entities. At the root there exists an organization node. This is typical
of all designs created in ODML. The organization node serves as a container, the
common root, of all other nodes in the structure. This is true even if multiple,
otherwise independent structures exist in a design, because conceptually they still
operate within a common environment (the agent world), which implicitly relates
them even if no other aspects do. For example, the sector nodes are related in
a peer-to-peer fashion, no concrete entity exists above to manage or control them.
Thus, although the graph-inspired design used by ODML facilitates the modeling of
decomposable organizations, it is not limited to depicting this class.

Edges in the graph represent different types of relations between nodes. Directed
edges with a solid arrow represent has-a relations, and the corresponding label indi-
cates the magnitude of that relation. For example, each track manager node has a
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1 <node type="track_manager ">

2 <param >organization:org ,environment:env ,[ sector]:sectors </param >

3 <is -a>entity </is -a>

4 <has -a name="agent" size="num_agents">agent(env)</has -a>

5 <has -a name="sm_relations">forall(sm , sector_managers ):sm_tm_relation (org , this

, sm)</has -a>

6 <has -a name="s_relations">forall(s, sensors):s_tm_relation(org , this , s)</has -a

>

7

8 <!-- Determine how frequently the role will migrate -->

9 <constant name="num_agents">max(1, min(max_agents , migration_rate * env.time))<

/constant >

10 <constant name="migration_rate">1 / ((2 * average_sector_area )^0.5 / velocity)<

/constant >

11

12 <!-- Determine target bounds -->

13 <constant name="uncertainty_radius ">5</constant >

14 <constant name="influence_radius">uncertainty_radius + 10</constant >

15 <constant name="target_area">3.14 * influence_radius ^2</constant >

16

17 <!-- Calculate requested measurement rate -->

18 <constant name="desired_sensors ">3</constant >

19 <constant name="sensor_density">forallavg(sectors.sensor_density)</constant >

20 <constant name="actual_sensors_available ">target_area * sensor_density </

constant >

21 <constant name="requested_sensors ">min(desired_sensors ,

actual_sensors_available )</constant >

22 ...

23 </node>

24

25 <node type="s_tm_relation ">

26 <param >organization:org ,track_manager:tm ,sensor:s </param >

27

28 <!-- Calculate actual measurement rate -->

29 <constant name="requested_sensor_rate ">tm.requested_sensors / org.total_sensors

</constant >

30 <constant name="requested_measurement_rate">tm.requested_measurement_rate *

requested_sensor_rate </constant >

31 <modifier name="s.requested_measurement_rate" op="+">requested_measurement_rate

</modifier >

32

33 <!-- Assign measurement communication load -->

34 <constant name="actual_measurement_rate ">requested_measurement_rate * s.

actual_measurement_ratio </constant >

35 <modifier name="tm.actual_measurement_rate " op="+">actual_measurement_rate </

modifier >

36 <modifier name="s.message_rr" op="+">actual_measurement_rate </modifier >

37 ...

38 </node>

Figure 2.11. A portion of the ODML specification for the track manager and
s tm relation nodes. The structural has-a relations are defined in track manager first,
using an estimate of the role’s migration rate and the number of extant sensor and
sector manager nodes. An estimate of the target bounds is expressed next, and that
bound used with the environmental sensor density to estimate the number of sensors
that will be contacted for data. The sm tm relation shows how modifiers are used to
first propagate that demand to a sensor, and later to inform the track manager of
the the resulting actual measurement rate.
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number of agents defined by the field num agents. The corresponding definition is
shown in line 4 of Figure 2.11. Because the has-a’s magnitude may reference a field,
the actual number of relationships that are created can be dependent on other orga-
nizational factors. In this particular case, num agents is a constant that is used here
to control how the track manager role is distributed. It depends on number of other
factors, including the role migration rate, sector size and estimated target velocity,
and thus may have a different value in different conditions. This is covered in more
detail in Section 2.3.5. In another example, organization’s has-a relationship with
sector has magnitude num sectors, which is defined with a variable field. This allows
the number of sectors used in the design to be an explicit organizational decision.

These examples demonstrate how the structure of the organization, as embodied
in part by these has-a relations, can be affected by characteristics or decisions else-
where in the model. This is an important aspect of how ODML templates are used to
define contextually-appropriate structures, and are revisited when I discuss the orga-
nizational design process in Section 4.1. Although not shown in the sensor network
model, has-a relationships in the template may also be recursive or self-referential.
This facilitates the modeling of self-similar organizations such as hierarchies or hol-
archies, and are demonstrated in Section 3.1 (see Figure 3.2a).

2.2.2.2 Is-A Relationships

In Figure 2.10a, a hollow-arrow edge represents an is-a relation, so normal agent is an
instance of agent. Shaded nodes, such as agent are abstract, and cannot be directly
instantiated. Thus, any node with a has-a relation with agent can instead substitute
normal agent. This level of indirection allows this model to represent and easily
use agents with different capabilities. For example, suppose there were two types
of agents available for use: a normal agent, and a “robust” agent that had better
communication capabilities but a higher cost. To model this, a robust agent node can
be created that also has an is-a relation with agent, and can be substituted for agent
in the same way. A similar arrangement could model a range of alternative roles that
had different characteristics but could serve overlapping purposes.

This aspect of the is-a relationship shows how organizational decisions may be
encoded (e.g., the choice of which type of agent to use). This will be covered in more
detail in Chapter 4. Is-a relationships are also used to allow the characteristics of one
node to be available in another. For example, the base agent node defines a range
of characteristics shared by normal agent and robust agent. The underlying ODML
code is shown in Figure 2.12. agent provides default values for the sensors controlled
and roles fields, as well as for a number of message types. It also specifies a constraint
over the number of sensors controlled, and defines the equation used to calculate com-
munication load. This allows normal agent and robust agent to share these common
features. They may of course specify new characteristics in their individual node
definitions. In this case their different allowable communication load and cost are
encoded in the constraints and constants they define.
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1 <node type="agent" abstract="true">

2 <param >environment:env </param >

3 <constant name="sensors_controlled ">0</constant >

4 <constant name="roles">0</constant >

5 <constraint name="sensors_controlled " op=" <=">1</constraint >

6

7 <constant name="message_rr">0</constant >

8 <constant name="message_tb">0</constant >

9 <constant name="message_rb">0</constant >

10 <constant name="message_drq">0</constant >

11 <constant name="message_drr">0</constant >

12 <constant name="communication_load ">message_rr + message_tb + message_rb +

message_drr + message_drq </constant >

13 </node>

14

15 <node type="normal -agent">

16 <param >environment:env </param >

17 <is -a>agent(env)</is -a>

18 <constraint name="communication_load " op=" <=">1</constraint >

19 <constant name="cost">5</constant >

20 </node>

21 <node type="robust -agent">

22 <param >environment:env </param >

23 <is -a>agent(env)</is -a>

24 <constraint name="communication_load " op=" <=">5</constraint >

25 <constant name="cost">10</constant >

26 </node>

Figure 2.12. An ODML specification for the agent types in the DSN domain showing
how is-a relationships allow characteristics to be shared among derived nodes, and how
those derived nodes can be differentiated through their additional local definitions.

2.2.2.3 Templates and Instances

Figure 2.10b shows a particular instance of the template from Figures 2.11 and 2.10a.
Vertices in the instance graph represent nodes, and a gray directed edge indicates the
existence of a non-local modifier from the source node to a field in the target node.
Black directed edges represent has-a relationships, but unlike the template they have
no labels. Because this is a particular instance of the sensor network organization, the
decision points present in the template have all been decided. Therefore, where sector
might have the num sensors label on its sensor relationship in the template, a discrete
value of two has been chosen for that field in this particular instance. Because of this,
each sector in the instance has two sensors (S). Normal agents (a), sector managers
(SM), track managers (TM), and two kinds of track manager relations (SM-TM and
S-TM), are also present.

We can relate this model directly to the organizational structures discussed in
Sections 2.1.3 and 2.1.4. Geographic coalitions are embodied in the sector node. The
size of the has-a relation sector has with the sensor node reflects the chosen sector
size, and the sector manager is specified with the sector manager node. The func-
tional differentiation aspect is modeled directly by the sector manager, track manager
and sensor nodes. Each represents a role that can be assigned. This assignment is
represented with the agent has-a relationship each node possesses. The particular in-
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Table 2.1. ODML’s built-in functional operators. By convention, x and y are simple
numeric values, x̄ is a list, and D is a distribution.

Function Returns
min(x1, . . . , xn) xi s.t. ∀j, xi ≤ xj.
max(x1, . . . , xn) xi s.t. ∀j, xi ≥ xj.

abs(x) The absolute value |x|.
choose(x, y)

(

x
y

)

.

sqrt(x)
√

x.
round(x) x rounded to the nearest whole number.

map(x, yv
1 , y

e
1, y

v
2 , y

e
2, . . . , ∗, ∗e) ye

i s.t. yv
i = x (see also Section 2.3.1).

list(x1, . . . , xn) x̄ = {x1, . . . , xn}.
listitem(x̄, i) xi, the ith element of x̄.

size(x̄) |x̄|, the length of list x̄.
unique(x̄) x̄′ = {∀x∈x̄x} s.t. ∀(i, j), i 6= j ⇒ x′

i 6= x′
j.

forall(y, x̄, e) ē = {e1, . . . , en} s.t. ei = e, and ∀y∈ei
y = xi.

forrange(y, xl, xh, e) ē = {el, . . . , eh} s.t. ei = e, and ∀y∈ei
y = xi.

forallsum(x̄)
∑

x∈x̄ x.
forallprod(x̄)

∏

x∈x̄ x.
forallavg(x̄) size(x̄)−1

∑

x∈x̄ x.

forallstddev(x̄)
√

size(x̄)−1
∑

x∈x̄(x− forallavg(x̄))2.
E(D) The expected value of distribution D.
V (D) The variance of distribution D.

Pr(D, op, x)
∑

y∈D Pr[y] if (y op x), op ∈ {<,>,≤,≥, 6=, =}.
mc(D, seed) y, y ∈ D, weighted random sample based on seed.

stance of agent node associated with a role node corresponds to the particular agent
assigned to that role.

2.2.2.4 Quantitative Expressions

The heart of any ODML model exists in the expressions encoded within nodes’ fields,
which provide a way for the designer to represent how different characteristics of the
node may be computed. Each field may contain an arbitrary mathematical equation,
combining local and nonlocal information to calculate new local values. Expressions
consists of a sequence of standard mathematical operations (e.g., +,÷, xy, etc.) and
a limited number of predefined functions (e.g., min, max, sqrt, round, forallavg, etc.).
A list of these predefined functions can be seen in Table 2.1; they consist of a mixture
of operators providing new capabilities to the language and convenience functions to
simplify the modeling process. The data types supported by ODML are covered in
Section 2.2.3.

Figure 2.13 shows another view of some of the information contained within an
instance of the ODML DSN model from Figure 2.10b. As before, this is an abstraction
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Figure 2.13. A graph showing some of the equations and equation-based interactions
between nodes that are used to predict RMS tracking error in the DSN model. Solid
arrows represent has-a relationships, while dashed arrows between nodes indicate
where a modifier is used to propagate values between nodes.

that omits details present in the real model from Appendix C for the purposes of
clarity. This figure improves upon those shown previously by depicting some of the
quantitative expressions used in the model and how they interact. In particular, it
shows many of the hierarchical and lateral data flows that are used to predict the
average rms tracking error of the organization as a whole. I will outline the way
this value is computed below, and Section 2.3 returns to several of the ideas that are
mentioned in more detail.

The process begins within organization, where the average rms is defined to be
forallavg(trackers.rms) – the average of the rms values for each of its trackers.
Within the track manager, the rms is defined to be some function of its expected
actual measurement rate (AMR). This function is well defined in the real model, but
omitted for clarity here. The AMR is initially unknown and set to zero, because
it depends on other entities in the environment. This initial value will be affected
by the relationships the track manager forms, which are discussed below. What is
known is the track manager’s requested measurement rate (RMR), which specifies the
measurement rate it would prefer to receive.

The RMR is referenced by a modifier in the sensor-track manager relationship
that passes this demand level to the sensor. Because there may be many such track
managers, each sensor can have a corresponding number of affecting modifiers, which
are combined into a single aggregate requested measurement rate within the sensor.
Like the AMR of the track manager, the sensor’s RMR is also initially unknown and
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set to zero. The sensor itself is a bounded resource, and therefore may not be able to
meet all these needs. It therefore also specifies a maximum possible measurement rate
(PMR) that is used to determine the actual measurement rate that it will exhibit. An
appropriate fraction of this AMR value is delivered back to the track manager by a
modifier in the S-TM relationship. Because the track manager may have many such
sensor relationships, its local AMR will ultimately reflect the aggregate level of service
it can expect.

A similar relationship allows the load of the sector manager to affect the track
manager’s performance. Recall that the track manager uses the sector manager as
an information source. If the sector manager is overloaded, this information may be
delayed, which can affect the rate at which tracking measurements may be requested.
The SM-TM relation computes a directory delay based on the sector manager’s com-
munication load, which is used by a modifier to degrade the track manager’s AMR.
Once these flows have been established, the expected AMR in the track manager
may be used to determine its rms error. This can then be used to determine the
average rms within the organization node.

As another example, Figure 2.11 shows the track manager and s tm relation nodes,
which contain the expressions used to calculate the track manager’s logical footprint
(area) of a target as it moves through the environment. This is used to reflect the
number and location of sensors that might be called on to sense the target. The size
of this area will depend on the amount of uncertainty the manager has in the target’s
location, along with a factor modeling the target’s “area of influence” that relates to
the area visible to all sensors in a sector, rather than the size of the sector itself. In our
model, this area will be a circle; line 15 shows how the target area of a track manager
is derived from the target’s influence radius. The number of sensors presumed capable
of sensing the target is the average number of sensor which lie within the target area.
Therefore, although the number of desired sensors is independent of the environment,
the actual sensors available to the manager will depend indirectly on the target area
and sensor density, as shown in line 20. The requested sensors will be the minimum
of the desired and available.

In this way, the characteristics of one node may affect or be affected by those of
another. The resulting web of equations allows one to model important concepts such
as information flow, control flow, and the effects of interactions. By propagating data
through these expressions, the model can predict the characteristics of both individ-
ual nodes and the organization as a whole. Perhaps more importantly, it also allows
the model to predict characteristics not necessarily envisioned or considered by the
designer, as the results of expressions can flow through the graph in unanticipated
ways. It is this automatic propagation which differentiates an ODML model from a
simple set of equations, by creating a unified view of the complete working organi-
zation. A more detailed description of the implemented value calculation process is
provided in Section 4.4.1.

2.2.3 Supported Data Types

ODML supports three types of data in its expressions, as shown in Table 2.2.
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Table 2.2. ODML’s built-in data types.

Type Examples
Float x = 1.2

y = 5.2e-4
List x̄ = [1.1, 3.75, 5.0, 2x + y]

ȳ = [[x, y], [x + 1, y + 1]]
Distribution d = [{4.0, 0.3}, {−1.0, 0.2}, {10.0, 0.5}].

f = [{x, 0.25}, {x + y, 0.5}, {2y, 0.25}].

2.2.3.1 Numeric Data

The simplest and most common type is the numeric floating point value. Most of the
expressions shown so far use these single numbers as their primary component.

2.2.3.2 Lists

In some contexts, arrays or lists of values or symbols may be used. These are
typically operated on using the forall∗-style functions shown in Figure 2.11 and
Table 2.1. Lists are useful for representing, extracting and manipulating sets of
similar characteristics. For example, recall that the DSN organization has several
track manager nodes. These are stored in organization using a has-a relation-
ship named track managers. The reference track managers.rms error would cre-
ate a list containing the rms error values for each track manager. The function
forallavg(track managers.rms error) would calculate the average RMS error value
among them.

Lists can be nested, and can contain references to other symbols or built-in func-
tions. The list, listitem, size and unique functions in Table 2.1 exist to support list
manipulation.

2.2.3.3 Distributions

While these two data types are sufficient for most quantitative characteristics, it can
be too imprecise to model the uncertainty and variations that exist under realistic
conditions. Consider the case where we wish to represent how many targets exist in
the environment at a given time. One approach, used in the existing DSN model, is to
represent the average case with a single numeric value. However, if there is actually
a range of different possibilities at runtime this single number will not capture that
fact in a manner that facilitates design evaluation in those varied circumstances. In
place of a single value, one could model this condition with a probabilistic distribution.
This is the third data type ODML supports — a discrete list of values, each with
an associated probability. One could then explicitly specify that there was some
chance of x targets and some other chance there would be y. Section 5.1 will provide
additional details on how this feature may be used to improve the level of detail in the
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DSN model. Distributions may be manipulated with the common binary operators
(+,−,×,÷), and there are also usable by several probabilistic functions, also listed
in Table 2.1.

The value provided by this new data type becomes even more apparent when we
consider the functions provided by ODML to manipulate and analyze distributions.
For example, one can identify best or worst cases with the min() and max() functions.
The expected value of a distribution can be deduced with the E() function, allowing
one to describe average case performance. The variance of a distribution, computed
with V (), can quantify how consistent a particular characteristic is. Using this, one
might explicitly trade off the potential quality of an organization with its reliability.
Finally, one can use the Pr() function to determine the aggregate probability of
a characteristic compared to a threshold. With this one could create a constraint
specifying, for instance, that the probability that characteristic x > 10 must be less
than 0.05.

A more difficult problem than syntactically incorporating the distribution data
type is how to correctly utilize and propagate distribution information throughout
the ODML model. As mentioned above, most of the primitive operators and several
functions are able to directly manipulate distributions. This is the ideal case, because
the uncertainty represented by the distribution is precisely maintained throughout the
calculation process, producing characteristics that are an accurate reflection of the
underlying dynamics and uncertainty.

In some cases, however, such direct manipulation of distributions is impossible,
because operators and functions do exist in ODML which do not or can not support
this type of data. A different strategy is needed to make use of distributions in
these situations. One approach supported by ODML is to use weighted sampling to
generate individual values from the distribution. The mc function in Table 2.1 serves
this purpose. The single value resulting from this function may then be propagated
as normal numeric data.

Individually, such point values do not capture the original complexity of the dis-
tribution. To compensate for this loss, an iterative sample and calculate process is
used to approximate the affects of the original distribution. By keeping track of the
predicted organizational characteristics during this Monte Carlo (MC) style analysis,
one can generate distribution estimates for fields that are unable to use or produce
distributions directly.

From a certain perspective, this capability can be seen as a compromise between
the strict predictive models described in earlier sections and a true simulation. Each
MC trial is analogous to a simulation trial, except that because it is “run” using
the ODML model rather than using real agents it can complete in much less time.
Evaluating a non-MC model uses the least amount of time, although it can be difficult
to capture the variety that will actually be experienced at runtime. A simulation can
capture this variety at an extreme level of detail, but typically does so using much
more time. The MC approach provides a middle ground between these two, drawing
upon the strengths of each to perform a more detailed evaluation in a reasonable
amount of time.
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For example, consider the situation presented above, where we wish to explicitly
capture the fact that different numbers of targets may exist in the environment. The
number of targets affects the number of track manager roles that will be created,
which will impact the structure of the organizational instance (there will be different
numbers of “TM” nodes in Figure 2.10b). Has-a relationships, like that organization
has with track manager, require their magnitude be specified as a single numeric
value, and do not support the use of the distribution information. Because of this,
simply setting the magnitude to a distribution will not suffice. Instead, we may set the
magnitude to be mc(env.num targets), where env.num targets is now a distribution.
Because mc returns a single sample from the distribution, the result can be used as
a has-a magnitude. During the evaluation phase, this part of the instance will be
repeatedly reformed as different samples are made to determine how the organization
will behave under those different conditions.

The interdependent nature of an ODML model makes performing the Monte Carlo
(MC) analysis somewhat more complicated. For example, it is possible for the con-
tents of one distribution to be influenced by those of another. It is also possible that
a MC sampling exists as part of that interaction, meaning that it is really a sample
from the second distribution that influences the first. If a new MC sample is per-
formed on the first distribution, it should be clear that the results of this new sample
are dependent on the results of the other. An example of this relationship is captured
by the equations below. D2 is defined using a sample of D1, while x is defined with
a sample of D2.

D1 = [{0, 0.5}, {1, 0.5}]
D2 = [{0, 0.5}, {mc(D1, S1), 0.5}]
x = mc(D2, S2)

If not correctly compensated for, this dependence can affect the precision obtained
by the MC analysis. For example, assume that n samples are needed to accurately
estimate a single independent distribution such as D1. A distribution such as D2 is
based on a MC sample of D1, and therefore the contents of D2 will change depending
on the outcome of that sample. In this case, n samples are not sufficient to estimate
x, because the distribution D2 has an additional degree of freedom imparted by the
sample mc(D1, S1) it is dependent on. To compensate for this, each sample of D2

made for x must also be evaluated in the context of a representative number of
samples of D1, the distribution it is dependent on. This so-called hierarchical Monte
Carlo approach [198] compensates for the dependence relationship, by ensuring that
a sufficient number of trials are performed for the effect of D1 on D2 to be captured.

In ODML’s evaluation process, this sampling technique is implemented by ma-
nipulating the seed argument to the mc() function (i.e., S1 and S2). Pseudocode for
this process is shown in Figure 2.14. The seed names parameter consists of a list of
the seeds that must be manipulated. If seeds remain, the procedure creates and saves
a random number generated based on that seed, and uses it to produce a seed for
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perform mc(organization o, int trials, list seed names, long seed)
if (|seed names| = 0)

evaluate(o)
else

random ← create random number generator(seed)
seed name ← seed names[0]
next seed ← random.next long
for (trials)

set seed(seed name, random.next long)
perform mc(o, trials, seed names + 1, next seed)

evaluate(organization o)
i ← o.instantiate()
i.check constraints()
i.get value(utility)

Figure 2.14. Pseudocode for the hierarchical Monte Carlo trial procedure.

the subsequent recursion. This forces those recursive trials to be consistent for each
sample made at the parent level. Within the iterative loop, the seed that will be used
by the mc function is set repeatedly, after which the function recurses. The recursion
terminates when no seeds remain, at which point the organization’s characteristics
are evaluated. During the evaluation, a new organizational instance must be created,
because the mc samples may have caused the shape of the organization to change
by impacting has-a decisions. The validity and utility of the instance are then deter-
mined and saved (not shown). Upon completion, a total of trials|seed names| sampling
trials will have been performed. The accumulated results saved during evaluation will
be used to calculate the overall utility and chance of validity for the organization.

2.2.4 Limitations and Tradeoffs

As should be apparent, ODML makes heavy use of expressions and equations to model
the characteristics of organizations. This provides the important ability to make
accurate, quantitative predictions about organizational characteristics. The drawback
to this approach is that one is limited to creating models of only those (aspects
of) organizations that can be mathematically captured by closed-form equations. If
important aspects of a design cannot be directly modeled in this way, and a acceptably
precise mathematical approximation cannot be found, it may not be appropriate to
use ODML for that design. In the general case, a simulation may be required to
accurately predict organizational performance, although doing so typically requires
significantly more time and resources than evaluating an ODML instance (see also
Section 6). This technique can also be viewed as complementary, where a simulation
can be used to refine or validate performance predictions made by an ODML model.
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Related to this issue is the potential brittleness of the model itself. For example,
it is not uncommon for mathematical models to function with adequate precision on
only a range of values, outside of which the predictions no longer hold. This is a real
concern, and something that must be taken into account when shaping the space of
possible organizations. This can be addressed in part through additional constraints,
or by restricting the range of variable fields to those values for which the expressions
are known to hold.

ODML’s use of an interconnected web of equations also leaves open the possibility
for oscillations and infinite recursion when computing values for fields in instances.
Such conditions are currently avoided by allowing only acyclic equation relations.
This approach has been sufficient for the domains that have been analyzed thus far,
although it is not clear that this will be true of all domains. The structure of the
ODML representation itself does not preclude cycles from forming, it is the evaluation
of values contained along a cycle that creates problems. To support such flows, one
would need to specify or find an appropriate way to bound such a computation,
so that the affected values may be correctly used elsewhere in the structure. This
remains a potential area of future research.

A pair of tradeoffs have been made to reduce the size of the data needed to
produce an ODML model and the complexity of the model itself. The first is the lack
of a well-defined notion of time, and the second is the absence of a goal tree or task
structure. Although ODML models are shown in this work that can and do capture
rates of change and expected value, there is no explicit representation of a varying
timeline or change points present in ODML. This makes ODML a more tractable
structure to work with by dramatically reducing the search space of organizations,
but can also make representing some characteristics more difficult. The absence of
time means that ODML instances generally represent a snapshot of a running system,
an averaging of effects as they would occur over some span of time, or a distribution
of possible behaviors that take place. They are more concerned with the steady-state
behavior of the system, and less with the transient performance at particular points
in time.

If dynamic elements exist in the source environment or system, they may be rep-
resented in that same manner, and can still be used to guide organizational decisions.
For example, one might identify that sensor resources must be available to satisfy the
needs of dynamically discovered targets. By using a worst-case value or a distribution
to quantify this need, the organization can be designed appropriately even though the
specific situation is uncertain at design time. Section 2.3.5 provides more details on
how to represent dynamism under these conditions. Section 5.1.2 also describes an
approach that uses ODML’s existing syntax to approximate a finite-horizon timeline
capable of bridging this gap in some circumstances. Section 4.5 discusses the related
topic of dynamic organizational adaptation to new conditions.

ODML also does not have a formal notion of a task environment or goal tree. The
approach taken in existing models is to derive suitable abstractions of key character-
istics from the task environment, and use those to affect organizational decisions. For
example, the task environment for the sensor network broadly consists of a number
of targets that must be tracked. Section 2.3.1 will show how this information (target
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number and speed) is incorporated into the environmental specification of an ODML
model, and later sections demonstrate how it affects organizational decisions. In gen-
eral, I feel that many high-level task characteristics, such as goal arrival rates and
goal-specific features, can be adequately represented in this manner. It is also the case
that different sensors may provide different capabilities in service of that task, or that
a task may be completed in different ways. ODML models these aspects using has-a
and is-a relationships, along with appropriate data flows to determine efficacy. The
normal and robust agent variants mentioned previously are one example of this. In
general, many of the goal and task characteristics that might normally be represented
by formal task decomposition tree can be extracted, analyzed and used to guide the
construction of an ODML template, despite the absence of formal support for such
constructs in the language. Section 5.2.7 revisits this issue, demonstrating how hier-
archies of nodes can be used to approximate goal trees. These can then be used to
drive organizational design by using has-a relationships to define task allocations and
capture resource conflicts.

2.3 Modeling Characteristics in the DSN Domain

Ultimately, the efficacy of any representation lies in its ability to correctly capture the
object of its attention. The mechanisms provided by ODML’s primitives allows one
to model a range of common, organizationally-influenced system characteristics. This
section will describe several such characteristics in the context of the sensor network
organization, and demonstrate how the interplay between such elements results in a
coherent, unified model. A second detailed model will be given for a different domain
in Section 3.3 and a number of additional examples described in Chapter 5.

2.3.1 Environmental and System Constants

Incorporating numeric constants within an ODML structure, a crucial element of
any realistic model, can be at once simple to accomplish and difficult to complete
successfully. The definition itself, comprised of a straightforward constant field, is
trivial to create. Determining what value to place within this field can be an entirely
different matter, just as with the values used in the discrete analytic models.

For example, the desired sensors constant at Figure 2.11 line 18 is a known quan-
tity that can be extracted directly from agent code or a software engineering speci-
fication. On the other hand, the uncertainty radius on line 13, which represents the
expected radius of the target’s uncertainty bound, can be more difficult to deter-
mine directly. Assuming for the moment that this value does not depend on other
characteristics (such as the target’s velocity), one could first specify a rough esti-
mate, and later revise that estimate if contradictory empirical evidence is observed
in practice or a more accurate value is devised. In practice, most of the numeric
constants in the sensor network model were derived through a combination of known
system parameters, estimation based on domain expert knowledge, and in some cases,
instrumentation of a running system or prototype.
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The specification of expression-based constants can be accomplished in a similar
fashion, although these are more frequently determined based on knowledge of the
system in question. An example of this is the track manager’s requested sensors in
line 21 of Figure 2.11. This represents the number of sensors that manager will
actually ask for, which may be less than desired sensors in the case where there is
insufficient sensor density in the environment. It is sometimes the case, however,
that a simple closed-form solution is either difficult to derive or not possible. In the
former case, I have used curve-fitting techniques to obtain approximate expressions
from empirical data. This technique was used to find a predictive expression for RMS
error, based on the number of received measurements. For the latter case, when a
closed-form solution does not exist or cannot be found, ODML supports a “mapping”
function, which allows one to define a function correlating a discrete input value with
an arbitrary expression. The general form of this function, which can be specified
directly in the ODML node definition is:

map(x, yv
1 , y

e
1, y

v
2 , y

e
2, . . . , ∗, ∗e),

where x is the logical input and {yv
i , y

e
i } is the ith possible mapping value and expres-

sion. The literal ∗ represents a default or fall-back case. The value of a map function
is then defined as:

map(x, yv
1 , y

e
1, . . . , ∗, ∗e) =

{

ye
i if ∃i s.t. yv

i = x
∗e otherwise

The structure is roughly equivalent to the case or switch structures found in many
programming languages. With this, one may define a conceptual function f such that,
for example, f(1) = x+

√
y, f(2) = 32z3, etc. The average effective area of the sector

nodes used such a function. This characteristic represents the average area covered by
the sensors in each sector, which is typically larger than the area of the sector itself.
A mapping function was used to effectively create a look-up table, which associates
an appropriate expression calculating the effective area for each sector size. The
exact specification used for this field can be found within the sector node definition
in Appendix C.

2.3.2 Local Characteristics

Typically, a large portion of the expressions in a given node are devoted to modeling or
representing the behaviors that node will exhibit at runtime. This is true of physical
components such as agent, role or behavioral representations such as track manager
or s tm relation, and the less tangible logical or conceptual nodes such as sector or
organization. In each case, a set of fields will be defined to capture the relevant
characteristics of the node they inhabit. For example the agent node has a com-
munication load constant that represents the amount of communication that agent
will experience. It also has a communication messages constant, based on commu-
nication load and time that determines the total number of messages the load will
produce during the specified period of time.
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The set of characteristics defined in a node is arbitrary and left to the discretion of
the designer. There are no predefined characteristics that are assumed to exist. For
instance, agent need not have a communication load, and could just as easily omit it,
or have a fine-grained message byte total or a vague verbosity field in its stead. In the
DSN model, the agent node also includes role and sensors controlled constants. The
former is used to track how many roles an agent is assigned, while the latter tracks
how many sensors are under its control. It should be clear from this example that
both domain-independent and domain-specific characteristics are present. Section
5.2 shows how inheritance can be used to create domain-independent templates or
libraries that can be augmented with domain-specific information, which can be used
to leverage a set of common models across a range of domains.

Notice how many of these “local” characteristics are in fact determined almost
exclusively by remote entities. For example, because an agent is initially unbound,
the role and sensors controlled constants are both initially set to zero. The same is
true of the actual measurement rate values for track manager and sensor from Section
2.2.2.4. They only take on non-zero values when the agent is incorporated into an
organizational context that affects them (e.g., it is assigned a role or forms a rela-
tionship with another entity). Characteristics can be top-driven, as when a role is
assigned to agent, laterally-driven, as when a sensor is used by a track manager to
collect data, or bottom-driven, as when the characteristics of sector are determined
by its contents. In each case, local definitions provide a baseline expression, and
modifiers, parameters or remote values are used to affect the value that expression
produces.

2.3.3 Entity Interactions

The manner in which entities interact is perhaps the most visible and defining char-
acteristic of multi-agent systems. It generally plays a crucial role in determining how
information flows through the system, how load is distributed, how efficient opera-
tions are, and ultimately the effectiveness of individual agents and the system as a
whole. In our sensor network model, these interactions are defined in two different
ways. In the first, entities simply model the effects of interactions internally. For
example, the sensor node calculates the directory service messages it sends to its
sector manager, and uses a modifier to add a corresponding number of messages to
the agent it is bound to.

The second technique employs a more explicit representation by creating an in-
dependent, external node to model the interaction. An example is s tm relation, the
sensor-to-track manager relation, shown in Figure 2.13 and line 25 of Figures 2.11.
This node models the interactions that take place between a track manager and a
sensor, which include determining the rate at which task requests are generated by
the track manager, the rate at which measurements are taken in response to those
requests, and the rate at which corresponding results are sent back to the track man-
ager. Each of these values is calculated using a combination of information from each
entity, and the results applied back to the appropriate node. For example, the ac-
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tual measurement rate is used to increment the sensor’s messages rr constant, which
tracks the number of result messages that are sent.

Choosing how to model an interaction depends on a number of factors. Simple
interactions are typically embedded, thus avoiding the additional overhead associated
with node creation. I have found that there are several ways that more complex in-
teractions benefit from an explicit, separate model. By separating and encapsulating
the interaction, its effects can be made more transparent and the model more under-
standable. In the case where there is a one-to-many type of relation, as with a track
manager and the sensors it uses, this type of separation also facilitates the expression
writing process by limiting the scope that individual equations must cover. Instead
of using a single complicated expression in the source node, for example, that model
defines a single simple expression in the relationship node that is replicated for each
target. In this case, the track manager-sensor relationship simplifies the process of
propagating sensing demands and responses between the two entities.

In the case where several alternative interaction styles are available, the explicit
representation also allows the designer to use variables or inheritance to model and
reason about such choices. For example, if our track managers had two differ-
ent ways of requesting measurements from a sensor, those alternative interactions
could be modeled as s tm relation1 and s tm relation2, each defined as an instance of
s tm relation with an is-a relationship. When an instance of track manager is created,
one of those two alternatives would be selected for each sensor, and the correspond-
ing effects incorporated appropriately. In this way, in addition to representing the
quantitative effects of interactions, the selection of agent interaction or coordination
mechanisms may be cast as an organizational decision in ODML.

2.3.4 Multiple Role Assignments

In human organizations, individuals frequently act in many different capacities, serv-
ing different needs and exhibiting different behaviors depending on the working con-
text. In some complex multi-agent systems, similar phenomena may be observed,
where individual agents take on multiple roles that dictate the various responsibili-
ties, capabilities and activities it is associated with. Because the assignment of these
roles to individual agents is an organizational decision, it is important to be able to
both represent the assignment itself and the cumulative effects of that decision.

As mentioned earlier, there are three roles in our distributed sensor network or-
ganization: the sector manager, the track manager and the sensor. These are repre-
sented by the sector manager, track manager, and sensor nodes, respectively. Role
assignment is modeled through the use of a has-a relationship. Specifically, each of
these role nodes has an agent, as shown in Figure 2.10a, that represents the particular
agent that role is assigned to. During instantiation, has-a relations may be fulfilled in
two different ways. Either a new instance of the target node is created to satisfy the
relationship, or an existing instance of the node is used in the same way. An example
of the latter can be seen in Figure 2.13, where the normal agent on the bottom left is
owned by both the sector manager and sensor, indicating that particular agent has
been assigned to two roles.
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1 <node type="sensor">

2 ...

3 <modifier name="agent.message_rr" op="+">message_rr </ modifier >

4 <modifier name="agent.message_tb" op="+">message_tb </ modifier >

5 <modifier name="agent.message_rb" op="+">message_rb </ modifier >

6 <modifier name="agent.message_drr" op="+">message_drr </modifier >

7 <modifier name="agent.message_drq" op="+">message_drq </modifier >

8

9 <modifier name="agent.sensors_controlled " op="+">1</modifier >

10 <modifier name="agent.roles" op="+">1</modifier >

11 </node>

Figure 2.15. A portion of the ODML specification for the sensor node showing how
message load values, number of sensors controlled and role indicators are passed to
the agent with modifiers.

Most of the detailed characteristics in this model are computed within the role
nodes. Therefore, important aspects such as load and resource usage are inherently
separate and role-specific. To capture the effects of multiple role assignments, these
individual characteristics are first propagated into their relevant agent using modifiers.
Each agent can then predict the cumulative effects of its roles. A natural example of
this in this is the propagation of communication effects. Each role has an expected
communication load that is determined within the role node. These are maintained
as individual statistics for each message type. These values are then routed to the
appropriate agent with set of modifiers. This is shown in Figure 2.15 in the set of
the message * modifiers. Figure 2.12 shows how those individual values are used to
calculate the agent’s overall communication load.

Referring back to Figure 2.13, one can now see that the communication load of the
agent will be affected by both the sector manager and sensor roles it has been assigned.
Therefore, when the SM-TM relation uses the sector manager’s communication load
to calculate the track manager’s directory delay, the potentially negative consequences
of this role coexistence will be correctly accounted for. This is an example of how the
consequences of messaging disparity from Section 2.1.4 can be modeled.

This confluence within the agent node also provides a useful place to incorporate
constraints. For example, a design assumption in the original system said that each
agent would be associated with a single sensor. In the ODML model, each sensor
role uses a modifier to increment the sensors controlled field of its agent. The design
assumption may be embodied by placing a constraint in the agent, specifying that
sensors controlled must be equal to 1, which guarantees that all agents in a valid
organization will control exactly one sensor. This is shown in line 9 of Figure 2.15,
as well as in the corresponding nodes in Figure 2.13. A roles count is maintained
in a similar way, so that an analogous constraint on the roles constant inside the
agent node could be put used to control how many roles an agent can be assigned. A
similar approach could assign a constraint on maximum communication or processing
load, which tie role assignment to a more concrete metric. Conversely, by adding a
constraint defining a lower bound on load, we can make the selection process more
conservative by ensuring all created agents see a certain minimum level of work.
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2.3.5 Dynamic Behaviors

In reactive or adaptive systems, roles are frequently created dynamically in response
to emerging phenomena. Such is the case with the track manager role, which is
assigned only when a new target has been detected in the environment. Although
ODML does not have a strong notion of time, it is still possible to represent behav-
iors or characteristics that occur dynamically. For example, although at any given
point in time there may be many or few targets in the environment, there will be
some expected number of targets that represents a statistically average value. This
number would then be used to estimate the “normal” situation, and be reflected in
the model accordingly. If one is interested in worst-case scenarios, other assumptions
could be made to model such conditions. In both cases, some discrete value may be
used to instantiate a set of nodes that represent the results of dynamic events. The
num targets field in environment serves this purpose in the DSN model, by governing
how may track managers should be represented in an organizational instance.

Additional role-based dynamism is present in the sensor network example, due
to the migration of the track manager role as described in Section 2.1.1. When this
role moves to maintain locality with its target, the effects of that role are effectively
spread over multiple different agents. To represent this effect, the model uses the
target’s velocity and the sectors’ sizes to first estimate how frequently that role will
migrate. Because this is a rate, it must be combined with the duration of the scenario
to determine the number of agents that role will be assigned to. This number is
then used to calculate num agents, which is used to specify the size of the track
manager’s agent has-a relationship (line 9 of Figure 2.11). So, if the model predicts
that the track manager role will be created and then migrate twice, the num agents
field in track manager will be set to three, and three agent nodes will be created or
selected to satisfy those relationships. The role’s relevant characteristics are divided
and distributed evenly among those three agents using modifiers as described in the
previous section. The principal difference being that the values propagated by the
modifiers shown for the sensor role in Figure 2.15 are each divided by num agents in
the track manager role.

When the role is migrated, a small gap in the stream of measurements will be
experienced because of the time it takes to make the hand off. This migration delay
is used to influence the rms error experienced by the track manager, by reducing the
requested measurement rate by an appropriate amount.

The dynamics of the agent’s actions or environmental conditions can also dictate
organizational performance. For example, the velocity of the target also affects the
uncertainty radius of the track manager’s location estimate. This uncertainty is simi-
larly influenced by the quality of the measurement fusion and interpretation process.
The faster the target is moving, or the more unreliable the fusion process is, the larger
the uncertainty bound will be. I mentioned earlier how uncertainty affects the tar-
get’s “area of influence”, determining how many sensors would be considered viable
at a particular instance in time. This will decide how many sector managers must be
notified of the target’s position as it moves, affecting the communication load of both
the track and sector managers.
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2.3.6 Heterogeneity

An important advantage that ODML offers over simple analytic models is that het-
erogeneity is more readily representable. For example, an equation was created in
[84] to calculate the total number of measurements that would be produced for a
track, but this assumed that all sensors would produce measurements at equal rates.
Similarly, a different estimation of a sector manager’s load assumed that all targets
moved with equal velocity. Neither of these simplifying assumptions are likely to be
true in practice, so to the degree the unified model can represent such additional
information, it will have a decisive advantage in accuracy.

ODML’s ability to model heterogeneity is derived from the the node-based rep-
resentation of entities. Because each role, agent or other structure is defined as a
separate node in the organizational instance, entities that share a common type may
still contain different values or be affected by different organizational pressures and
flows. We have seen examples of this in the previous two sections. Because agents may
be assigned single or multiple roles, the resulting agent population has the potential
to be heterogeneous in the final organization. These variations may then propagate
through the organizational instance to create differences elsewhere in the model. For
example, communication load can be tied to the agent’s capacity to perform work,
which could affect the number of measurements its sensor role could take, which
would affect the RMS error of the track manager using that sensor.

Inheritance provides an additional mechanism to represent heterogeneity. For
example, to describe and use the more capable but also more costly agent mentioned
earlier, the model contains a robust agent node that has an is-a relationship with
agent. This effectively creates two different classes of agents that can be employed,
each with potentially different capabilities and costs.

2.3.7 Conflicts, Constraints and Resolution

Many of the more interesting aspects of organizational models revolve around the
limits or constraints that are imposed on the system, and what happens when those
limits are approached or exceeded. ODML models can represent both hard and soft
constraints. The former include conditions which the designer has deemed untenable,
while the latter are usually characteristics that degrade more gradually, and may be
tolerated by the system.

Hard constraints may be modeled using constraint fields. A constraint is defined
with a target, a relational operator, and an expression. To verify the constraint, both
the target and the expression are evaluated to produce numeric values, which are
then compared with the provided operator. The constraint is considered satisfied if
the resulting relation is true, and unsatisfied if otherwise. Because a valid organi-
zation must contain only satisfied constraints, these constraints are considered hard,
or strict conditions that must be met. I mentioned earlier how a constraint on the
sensors controlled field in the agent ensured a one-to-one mapping between sensors
and agents. Similar constraints could be added to set an upper bound on average
expected RMS, a limit on local work load, or a maximum number of agents in the
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1 <node type="track_manager ">

2 ...

3 <constant name="directory_delay ">forallavg(sm_relations.directory_delay )</

constant >

4 <constant name="requested_measurement_rate">env.measurement_rate * 4.0^ min(0,

velocity * 1000 * ( (env.num_sensors / (requested_sensors * org.

total_targets )) - 1.9))> (1 - (velocity / average_sector_path ) * (

directory_delay + migration_delay /2))</constant >

5 </node>

6

7 <node type="sm_tm_relation">

8 <param >organization:org ,track_manager:tm ,sector_manager:sm </param >

9 ...

10 <!-- Directory Delay -->

11 <constant name="directory_delay ">3000</constant >

12 <constant name="per_message_delay ">0</constant >

13 <modifier name="directory_delay " op="+">sm.communication_load * 1000 *

per_message_delay </modifier >

14 </node>

Figure 2.16. A portion of the ODML specification that estimates the delay in
directory responses that is experienced by a track manager. The sm tm relation nodes
determine the individual delays for each sector manager, while the track manager
uses these values to estimate a worst case delay that is used to reduce the requested
measurement rate.

organization. Although our sensors were hard-wired, a battery-driven sensor network
could also be modeled by adding a suitable constraint to the agent. In this case,
communication rates, action rates or the passage of time could decrement a battery
constant. A constraint placing a lower bound on the battery would ensure that the
unit met an expected minimum performance.

Soft constraints have a more subtle effect on the system. They are not explic-
itly modeled using the constraint field. Instead, we represent them using equations
that affect performance in response to other attributes. For example, in the sector
manager, excessive communication load can delay directory service responses. This
is modeled with a directory delay field, which is then used to determine the values for
delays incurred by sector directory queries and tracking task migration. Increases in
those values will eventually increase the RMS error by slowing the rate at which the
track manager acquires new sensor information.

The portions of model code which reflect this are shown in Figure 2.16. This is
represented in the model by using a modifier to increase the directory delay in each
sm tm relation by a value proportional to the sector manager’s communication load
(line 13). The maximum directory delay observed by the track manager is then used
to calculate the requested measurements rate. Therefore, although there is no fixed,
arbitrary limit on sector manager load, excessive load will still degrade the system’s
performance. A breaking point, at which the performance level has become untenable,
can still be modeled using a hard constraint governing the value in question.

Soft constraints are also used to model the competition for sensors by track man-
agers, as outlined in Section 2.2.2.4. The s tm relation in Figure 2.11 notifies each
sensor of the requested measurement rate that will be asked of it. If the requested
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rate exceeds the sensor’s capabilities, the actual measurement rate given to the man-
ager will be correspondingly limited. This will negatively affect the expected RMS
error. Modifiers from multiple, competing managers requesting a sensor’s time will
each increment the requested measurement rate. If the sensor’s measurement rate is
exceeded, each manager’s actual measurement rate will be reduced to some fraction of
the possible rate proportional to what was asked for. This is accomplished as follows:

s tm.RM rate = tm.RM rate

s.RM rate
+←− s tm.RM rate (modifier)

s.AM rate = min(s.RM rate, env.MD−1)

s.AM ratio = s.AM rate/s.RM rate

s tm.AM rate = s tm.RM rate× s.AM ratio

tm.AM rate = s tm.AM rate

RM refers to requested measurement, AM to actual measurement, and MD to the
expected duration of a measurement. So, although there is no set limit on the number
of track managers, a “tragedy of the commons”-like degradation in quality can be
predicted from overuse [192]. This same scheme can also be used to model notions
of authority, autonomy and priority [6]. If multiple agents have disparate authority
over another, then those differences can be reflected in the amount of utility they
derive from that relationship. For example, if multiple track managers each had
different authority over a particular sensor, then their relative levels of authority
would determine the proportion of time that sensor would spend on their tracking
tasks:

s tm.RM rate = tm.RM rate

s.AM priority
+←− s tm.RM priority (modifier)

s.AM rate = env.MD−1

s tm.AM rate = min(s tm.RM priority ×
s.AM rate/s.AM priority,

s tm.RMrate)

tm.AM rate = s tm.AM rate

In the current model, all track managers implicitly have the same priority or level
of authority, but as was discussed in Section 2.3.6, adding this type of heterogeneity
among managers would can be accomplished in ODML.

2.3.8 Organizational Utility

Early on, an assumption was made that different organizations can induce different
behaviors and characteristics in a working system. Empirical evidence of this was
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presented in Section 2.1, and it will be shown in the following section that the ODML
model reflects this as well. Because the characteristics vary, it is natural to assume
that some characteristics will be preferred over others. There will therefore be a
comparative ranking of organizational designs, dependent on how these characteristics
are affected by the environment, available resources and high-level objectives.

The expressions embedded in an ODML model provide a straightforward way
of representing the relevant characteristics. Earlier sections outlined how features
such as individual agent load, delays incurred by organizational maintenance and
RMS error can all be represented. Evaluating the utility of an organization can
be accomplished by creating an expression that compares these characteristics in a
suitable way. For example, in the sensor network model, the primary concern is
to minimize the RMS error associated with tracking targets, while respecting any
constraints that exist in the agents or environmental resources. The previous section
described how constraints can be represented and satisfied, so a particular DSN design
can be rated by the expected RMS error the track managers will exhibit. This is
done by creating a utility constant. Like any field, utility can contain an arbitrary
expression. In this case, it is defined to be −1 × average rms, where average rms
is the average expected RMS error for each track manager. Because the value for
this expression will be negative, lower RMS values will lead to greater utility. If we
wanted to rank it based on the weakest track manager, it could instead be defined as
−1×minimum rms, where minimum rms is defined as the minimum expected RMS
among the track managers. The utility of the organization can then be determined
from the value of the utility field, which automatically takes into account all the
relevant organizational characteristics and decisions that were made.

Earlier it was mentioned that one might want to consider some notion of or-
ganizational cost. For example, a robust agent might cost more to deploy than a
normal agent, because of the increased local processing resources that are needed.
To model this, a cost constant could be included in each agent type reflecting this
information. These costs could then be propagated up through the organization in
the same way RMS values are, summed, and added to the utility calculation. If RMS
were paramount and cost secondary, a weight could be simply be added to the utility
function to reflect this. For example, utility could be defined as −1× (average rms+
0.01 × total cost). In this case, organizations that performed similarly in terms of
RMS would be ranked according to their cost.

Although it has yet to be tested, I believe ODML also has the ability to determine
less tangible measures of utility, such as the ability to handle faults or deviations from
expected environmental characteristics. For example, because it is possible to model
an upper bound on an agent’s computing power as well as its expected computing
load, one can also compute the difference in these two values. By aggregating these
values from all agents, one can measure the excess computing power, which will
influence how well the system might tolerate more demanding operating conditions.
Similarly, one could determine the excess number of agents that have particularly
critical capabilities, which reflects how well the system might be able to adapt to
failures in those critical agents. It is also possible to use an external process or
even domain-specific expert knowledge to grade and evaluate the utility of candidate
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Figure 2.17. Performance predicted by the ODML sensor network model versus
empirical observations for a) Total messaging, b) Messaging disparity, c) Message
type totals and d) RMS error. Predicted lines are solid, empirical are dashed.

organizations, although I will not explore their use in this thesis. More information
can be found in Chapter 5, which will present additional ways to model utility in
different circumstances.

2.3.9 Evaluation of Representation

To gauge the efficacy of the ODML representation, I have constructed the model
described in the previous section, used it to create organizational instances that match
the prior test runs, and compared the predicted characteristics against the empirical
results from Section 2.1.2. Because time-based characteristics in the ODML model
(such as communication load) are computed as rates rather than totals, the values
are not directly comparable. However, cumulative totals may easily computed by
multiplying the relevant rate by the length of the prior simulation run. Ideally, the
empirical and modeled results will match, demonstrating that the model captures the
complexity present in the system and that predictions derived from the model are
accurate.

A relatively high-level set of comparative results are shown in Figure 2.17 that
contrast the predicted results against some of the actual, empirical results shown
earlier in the paper. Solid lines represent the values predicted by the ODML model,
while dashed are those obtained through empirical testing. Although there are a few
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Figure 2.18. A comparison of the average actual and model-predicted characteristics
by role, for agents operating in the distributed sensor network.
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Figure 2.19. Performance predicted by the ODML model as the number of targets
is varied for a) Messaging disparity, and b) RMS error.

significant points of difference, in most cases the model does a good job predicting
performance.

One difference can be seen in Figure 2.17b, where the predicted standard deviation
underestimates the actual performance in most cases. This is a byproduct of our
assumption that all sensors were equally used. In the running system, sensors in
the center of the environment are used more than those at the edges, and will have
different communication profiles because of it. This model does not capture these
geographic differences, and will therefore generally have a lower estimated deviation.
To accomplish this, individual sensors would need to be differentiated by their place
in the environment, using an internal location constant or through specification by
their containing sector. The location information could then be used to estimate the
type of geographic-specific behavior observed in the real system. The resulting model
would be more accurate, but it would also be more complex and difficult to create,
because of the need to correctly propagate this new information to all affected areas
of the model. The decision to omit location information was an intentional tradeoff
made to simplify the model. This issue will be revisited in Chapter 5.

A more obvious difference can been seen between the overall message totals, in
Figure 2.17a. This difference can be attributed to the fact that the empirical val-
ues included all 24 message types that occurred in the system, while the model only
tracks the five most significant message types. Combined, those five types consti-
tuted roughly 80% of the communication volume on average. The remaining 19 were
uncommon; no individual type accounted for more more than 3% of the total. As
can be seen in Figure 2.17a, the difference between predicted and empirical remains
relatively constant with sector size, and could be accounted for by adding a suitable
constant to the model. The exclusion of these message types was a conscious choice
on our part. It is an example of trading off the complexity of the model with its
fidelity.

Recall that one of our initial goals was to predict organization-level characteris-
tics of the system. The metrics I have shown so far accomplish this, but primarily
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on a global, aggregate level. To evaluate how our model predicts finer-grained de-
tails, I produced a separate set of graphs that show communication profiles by role,
rather than the system-wide totals seen in Figure 2.17c. The actual and predicted
role-specific graphs can be seen side-by-side in Figure 2.18. In addition to the com-
munication totals I have discussed, these graphs also include role counts, indicating
how many agents did or would take on that role in the environment. ’A’ represents
the sensor role, ’M’ is the sector manager, while ’T’ is the track manager. The role
’AT’ describes agents acting as both sensors and track managers. These results are
also encouraging.

By and large, the model’s predictions are similar to prior observations. Some of
the differences, such as the result totals for some sector and track managers, can be
attributed to geographic variances in a small sample size. For example, the 36- and
18-size sector scenarios had only one and two sector managers, respectively. Their
individual geographic locations would certainly affect the actual averages in Figure
2.18c, and these variations are not reflected in the counterpart predicted values in
Figure 2.18d.

The last set of ODML predictions are shown in Figure 2.19, which examines
messaging disparity and RMS error as both the sector size and the number of targets
are varied. Figure 2.19a corresponds to the empirical results shown in Figure 2.8a,
while 2.19b corresponds to Figure 2.8b. The trends shown in those earlier figures
are similar to those predicted by ODML, including the same general profiles and the
RMS phase transition.

2.4 Conclusions

This chapter began with a description of an existing and functional distributed sensor
network system. Through a series of empirical tests and analyses, I showed how the
organizational design employed by the system has a measurable impact on perfor-
mance. Results such as these and others that are shown in later chapters motivate
the organizational design problem this dissertation is addressing. The ODML lan-
guage defined in Section 2.2.1 takes a fundamentally different approach to solving
this problem by offering a simple but quantitatively rich framework in which orga-
nizational characteristics can be modeled. Unlike previous representations, ODML
eschews predefined structures and assumptions in favor of a general mathematical
syntax. I believe this approach leads to an increased diversity of representable situa-
tions as well as an increased level of predictive detail. The model of the distributed
sensor network system described and validated in Section 2.2.2 shows how this has
been successfully used.

The result of the DSN modeling exercise is to demonstrate that it is possible to
create quantitative organizational models in ODML that accurately predict large and
small scale performance. Such models can be used to find and evaluate candidate or-
ganizations or identify design weaknesses. More generally, this chapter demonstrates
that the flexible and quantitative approach ODML employs can be an effective way
to capture the behaviors of a realistic organization in a concrete and detailed way.
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The following chapter will show how these same capabilities are true for a different
domain that allows a greater diversity of organizational designs and requires more
sophisticated techniques to accurately model. Chapter 4 will then show how these
modeling capabilities can be used as the foundation for techniques that automatically
design organizations for agent systems.

58



CHAPTER 3

MODELING AN INFORMATION RETRIEVAL SYSTEM

The distributed sensor network (DSN) model presented in Section 2.2.2 is an example
showing how ODML has been used to capture the behaviors of a complex, working
multi-agent system. What the DSN model lacks, however, is the vast space of pos-
sible organization that one can find in less constrained designs. In particular, the
actual DSN system has relatively few degrees of freedom (sector size, role assign-
ment, etc.), resulting in a relatively small space of organizational possibilities. This
chapter presents a detailed model of a second domain that permits a much greater
variety of organizational structures. This is used to ground the discussion of auto-
mated organizational design that follows in Chapter 4. It also complements the DSN
model by providing a second detailed example of ODML being used to effectively and
accurately capture different types of organizational characteristics.

Section 3.1 describes how ODML is used to create a model of an information
retrieval (IR) system. This includes a description of the problem domain and the
class of organizations that are proposed to address that problem. A sample trace
through the system’s behaviors is given.

Section 3.2 describes the simulation environment created to model this domain.
It is used to empirically evaluate the approaches and assumptions used in the ODML
model.

A description of these characteristics and the methods used to model them is given
in Section 3.3. These include a probabilistic model of different search and query
effects (Section 3.3.3), a detailed model of response time based on queuing theory
(Section 3.3.4) and examples of how a utility metric is used to guide the selection of
an appropriate design (Section 3.3.6).

3.1 Information Retrieval Model

The IR model presented in this chapter is inspired by work by Zhang et al. [214,
215]. A general peer-to-peer information retrieval system is composed of a number
of interconnected databases, controlled by a set of (agent) entities. Queries are first
received by individual members of the network. An appropriate set of information
sources must then be discovered that can address the query, after which the query is
routed and processed to produce a response for the user. The information necessary
for responding to a particular query may be distributed across the network, which
can cause an undirected retrieval process to be time consuming, costly, or ineffective,
particularly when the number of sources is large.
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Figure 3.1. The control and communication sequence involved in handling a query
in the information retrieval organization. Steps in the numbered trace correspond to
messaging events, except for bracketed elements that indicate local processing.

Zhang proposes that a structured, hierarchical organization can be used to address
this problem. Content in the network is arranged in hierarchies, allowing queries to
quickly propagate to data sources, and results be efficiently routed and incrementally
aggregated back to a single agent in the network. At the top level of the hierarchy are
a set of mediators. Each mediator is responsible for providing a concise and accurate
description, known as a collection signature, of the data available in its hierarchy.
A hierarchy forms below each mediator, which contains and manages a collection of
information sources. An information source may be an individual database, or an
aggregator agent which manages other sources. This self-similar relationship allows
the hierarchy to grow arbitrarily wide and tall. Mediators are responsible for handling
the user queries, by first using the collection signatures of other mediators to compare
data sources, then routing the query to those mediators that seem most appropriate,
and finally collecting and delivering the resulting data. This model slightly diverges
from Zhang’s in that it takes into account the query and response aggregation work
load and omits any lateral connections between aggregators and databases.

Figure 3.1 shows an example trace of how a particular organization using this
approach processes a single query. The process begins when a user query arrives at a
mediator (1). The mediator then queries a number of other mediators to determine
if they are appropriate to handle the user query (2). After the responses are sent
(3) and collected, a subset of those searched are selected based on their reported
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collection signatures (4) and notified that they should handle the query (5). In this
case, Mediator R was selected, while Mediator L was not. The user query is then
propagated in parallel down all branches of the mediators’ hierarchies (6, 7), until the
terminal databases at the leaves are reached. Each database processes the query (8)
and reports it back to its immediate manager (9)1. Intermediate aggregators will wait
until all subordinates have responded, and then consolidate the results (10) before
delivering the information up the next level in the hierarchy (11). Mediators perform
a similar consolidation step (12). Any mediators that were selected to handle the
query report their results back to the originating mediator (13), which performs a
final consolidation step (14) before delivering the final response to the user (15).

This organizational design provides several advantages. The use of collection
signatures to model the contents of a number of individual sources can dramatically
reduce the number of agents that must be searched and queried. The use of hierarchies
introduces an element of parallelism into the query distribution process. These same
hierarchies also distribute the communication and processing load of the response
through the use of information aggregation and consolidation.

At the same time, if the structures are poorly designed they can lead to inefficien-
cies. A single collection signature, which must be bounded by size to be efficiently
used, can become unacceptably imprecise if the set of sources it models is large or
extremely diverse. This can cause data sources to be overlooked, potentially reduc-
ing the response quality. If the data sources are distributed across many different
mediators it may require a more extensive search and query process to obtain a high
quality result. Whenever a hierarchy is used, there also exists a tension between the
width and height of the structure. Very wide structures can lead to bottlenecks, as
particular individuals with high in-degree may become overwhelmed by the number
of interactions. Very tall structures can be slow or unresponsive, as the long path
length from root to leaf increases latency. The collection signature generation process
may also be affected by the tree height, as when abstraction is used at intermediate
nodes, causing the signatures of tall hierarchies to incur additional imprecision.

An ODML template for this domain can be seen in Figure 3.2a, and a partic-
ular instance derived from that template is shown in Figure 3.2b. Like the DSN
model, this uses notions of roles, a task environment, performance constraints and
utility functions. However, other underlying phenomena that must be captured are
significantly different, and drive the shape of the organization in different directions.
These include statistically predicting the results of the source discovery process, de-
termining how the information contents of a hierarchy affect its expected load and
approximating the effects of increased signature uncertainty caused by summarization
[82].

Additional constraints and characteristics exist in the system that exist inde-
pendent of the organization that is employed, but are relevant to the organization
selection process. The communication and processing loads of individual agents are

1Note that despite the numbering differences, activity down the tree branches occurs in parallel,
so that the mediator message to the aggregator (6) will happen concurrently with the mediator’s
message to the DB node (7) that exists at the same level.
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Figure 3.2. a) An ODML template structure for the information retrieval domain.
b) A small organizational instance produced from that template.

bounded. There may be quality or response time constraints imposed at a high level
by the designer. Queries may arrive at regular rate, or at least be probabilistically
predictable. Individual databases will vary in size, scope and content. Each of these
aspects may affect performance in a non-trivial way.

The problem then, is to determine the most appropriate organization of agents and
databases, given the desired characteristics of the system, the provided characteristics
of the environment and the tradeoffs we have presented here. For example, how tall
should the aggregation hierarchies be? How many nodes should be searched to answer
a query? How many mediators should be created? How should these various roles be
mapped to actual agents? In the remainder of this section, I show how these questions
can be answered by embedding the relationships described above in an ODML model.
That model is used in Section 4.1 as the basis for a search process in the space of
possible organizational designs.

The inclusion of this domain serves two purposes. First, it demonstrates that
ODML can be used to model a different domain than the distributed sensor network,
which lends credibility to the argument that ODML can be used to capture a range
of different multi-agent system designs. Second, it provides a rich space of organiza-
tional alternatives, because one must decide how tall aggregator hierarchies should
be, how many mediators to use, and where databases are integrated, among other
things. In comparison, the distributed sensor network organization has relatively few
organizational variants, and does not pose suitably challenging space of possibilities.
Because of this, the information retrieval domain will be used to ground much of the
structure analysis and search strategy research presented in this chapter.
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3.2 IR Simulation

A simulation environment has been created of the information retrieval domain to
permit the empirical evaluation of different organizational strategies. The testbed
was created using the Farm [85, 79], a distributed simulation framework designed to
capture the real-time performance of a multi-agent system.

A Farm simulation consists of a number of specialized plugins connected via a
central core, each of which is responsible for a particular aspect of the simulation.
The information retrieval domain makes use of several generic plugins for time man-
agement, visualization and logging. Three domain-specific plugins were also created,
as described below.

IR Driver The driver component is responsible for creating the scenario that is
to be tested. It takes in an ODML instance (described in detail in Section 3.3, which
it uses to first determine the assignment of roles to agents. Certain parameters are
also used from the template to determine, for example, the rate that queries should be
injected into the system and the base rate at which individual entities should operate.
These values are inserted into a global state repository for other plugins to use.

IR Analysis This plugin is responsible for aggregating, processing and storing
statistical data. It keeps track of the average response recall and response time, the
number of total and extant queries, and the average amount of utility that is obtained.

IR MetAgent This plugin is responsible for managing the agents that are
created in the scenario. Using the configuration data written earlier by the driver,
the metagent begins by spawning an appropriate number of agents. Using that same
data, each agent is also told what roles it should take on, what parameters it should
use for operation, and the relationships it should have with other entities.

It is within the metagent that the individual domain agents exist. Each agent
is initially an empty shell, containing only rudimentary message and control routing
functions. The actual domain functionalities are implemented as separate role objects
(e.g., MediatorRole, DatabaseRole, etc.), where a single agent may take on multiple
such roles. While the scenario is running, the agent routes messages to their appropri-
ate role destination, and provides execution time to each role in a round-robin fashion.
The roles act in accordance with the behaviors outlined in the previous section, and
will be covered in more detail in Section 3.3.

Part of the intent behind creating this environment is to correctly simulate the
amount of time that will pass while a particular query is being answered. In partic-
ular, the amount of time required for communication and local processing should be
captured, as well as the deleterious effects that congestion and latency have on those
values. The Farm framework is ideal for this purpose, as agents are provided a specific
quanta of CPU time in which to run and are blocked at all other times. This will
allow some of the positive and negative effects of different organizations to be directly
observable in the response times exhibited by the system. Other characteristics, such
as response recall and utility, can be captured through appropriate instrumentation.
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3.3 Representing IR Characteristics

I will proceed with a description of the characteristics captured by this model. Like
the working system it represents, there are many facets to the model. Although
each can be modeled as a particular, distinct characteristic of the system, they may
interact through coexistence in nodes’ fields. The tensions that arise in the resulting
object embody the tradeoffs and decisions that must be made when designing the
organization.

The interesting aspects of the model are discussed in detail below, concentrating on
those characteristics that are significantly different than were seen in the DSN model.
This includes how roles are represented, how the collection information signatures
are generated, a description of the query and response propagation model, a detailed
model of the system’s response time, how constraints are used, and how all these
features are combined into a utility value. The complete ODML specification for this
model can be found in Appendix D.

Together, this and the the DSN model described in Section 2.3 represent the most
complete ODML models produced to date. This model also demonstrates a greater
level of mathematical sophistication than was present in the DSN model, and can be
seen as a successful integration of modeling techniques from related domains (notably
probability theory and queuing theory) into an ODML model.

3.3.1 Roles

The main portion of the organization is divided into mediator, aggregator and database
nodes. As with the DSN model, these nodes do not represent particular agents by
themselves. Instead, each represents a role that may exist in the organization, that
is assigned a particular agent through a has-a relationship. Separating these two
concepts allows the creation of more complex organizations, where agents may be
assigned multiple roles, possessing the capabilities, constraints and responsibilities of
each.

3.3.2 Data Sources and Collection Signatures

To correctly estimate work levels, we must first know the type and quantity of infor-
mation that a source may provide. Different organizations may be necessary if the
available information for that topic is concentrated in one spot, or if it is distributed
across many separate sources. In this model, we are concerned with a single class or
topic of information. This is modeled by specifying the total amount of information
owned by a source, along with the fraction of which that is relevant to the topic. This
value is constant for databases. Aggregators and mediators, which have no informa-
tion of their own, derive these values as the sum their respective sources’ total and
topical information. Ultimately, this is used to calculate the actual response size of
the mediator, the total amount of relevant information that will be searched while
processing a query.
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This raw information is only half the picture, however, as the number of queries
that a mediator receives is not dependent on the actual amount of data it manages,
but on the data that others perceive it to manage. Recall that query processing has
two phases, a search phase identifying appropriate mediators, and a query processing
phase where a subset of those mediators is selected. The selection process is based
on the mediator’s collection signature, which is generated from the information in
its hierarchy. Ideally, this would be a perfect, correct synopsis. In practice, the
signature’s accuracy may be skewed by the technique used to generate it, or because
of abstraction inherent in the aggregation process. This factor is taken into account
in the simple recursive calculation of perceived response size for mediators (m.prs),
aggregators (a.prs) and databases (d.prs).

m.prs =
∑

s∈m.sources

s.prs ∗ aggregation factor (3.1)

a.prs =
∑

s∈a.sources

s.prs ∗ aggregation factor (3.2)

d.prs = response size (3.3)

The aggregation factor (≤ 1) is used to model the loss of information that occurs
at each aggregation point as the contents of subordinates are approximated by a single
aggregate signature.

3.3.3 Probabilistic Search and Query

Ultimately, the query load incurred by a mediator, and by relation any sources be-
neath it, will be dependent on the number of queries that mediator is asked to service.
This value depends on a number of factors, including the mediator’s perceived value,
the average number of queries arriving in the system, the number and value of com-
peting mediators, and how many mediators are used to answer the query. To estimate
this, we must first determine the relative rank ordering Mr of the mediator in question
M , and the number of mediators Rr that share that ranking.

Mr = 1 +
(

∑

k∈O.mediators

0max(M.prs−k.prs,0) − 0abs(M.prs−k.prs)
)

(3.4)

Rr =
∑

k∈O.mediators

0abs(Mr−kr) (3.5)

Where prs is the perceived response size of the respective mediator. The summation
term will equate to 1 when the competing size is higher, and 0 when lower. Thus,
the highest ranked mediator will be 1, followed by 2, and so forth. Mediators with
the same value will have the same ranking. Using this information, it is possible to
compute the probability P (M |Q) that mediator M will be selected to service query
Q.
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P (M |Q) =
s

|M |
1

(

|M |−1
s−1

)

(

q−1
∑

i=0

min(s,Rr)−1
∑

j=0

(|M | −Mr −Rr + 1

s− i− j − 1

)

×
(

Mr − 1

i

)(

Rr − 1

j

)

min
(

1,
q − i

j + 1

))

(3.6)

Where |M | is the total number of mediators, s is the number of mediators that will
be searched and compared, and q is the number of mediators that will be given the
query. Equation (3.6) models the search process and subsequent mediator selection
that will take place when a query is received by the system. In this particular domain,
some subset of the available mediators will be searched, and ranked based on their
collection signatures. Using these ranks, a subset of those searched will actually be
selected to service the query. This is a common strategy employed by agent systems,
so it is worth discussing the equation in greater detail. The accompanying sidebar
provides further insight into the origin of Equation 3.6.

First, assume that all mediators may be initially searched with equal probability,
and that selection from a set of equally-ranked mediators is done uniformly. The
probability that mediator M is searched, which depends on the total number searched
and the total number of mediators, is simply s

|M |
. Given that M will be searched,

the nested summations count the total number of sets of remaining mediators that
both could be searched and would result in M receiving the query. A ratio of this
total to the number of unrestricted mediator combinations that are possible from the
search

(

|M |−1
s−1

)

will provide the final desired probability. The summations work by
iterating over the various ways in which the mediator search set might be composed.
On each loop, a value is selected for the number i of higher ranked mediators and
j of equally ranked mediators that will exist in the set, the remainder being made
up of lower ranked mediators. Since i < q, then there will be at least one spot for
a mediator ranked r. There are

(

Rr−1
j

)

equal valued mediators competing for the
available query slots, and the final ratio is calculates the fraction of those that might
contain M . The model in Appendix D uses these equations to determine the final
topic query rate for a particular mediator, specifically in the mediator node’s rank,
rank ties, query probability and query rate fields.

An example organization showing the effects of this formulation is shown in Figure
3.3. In this instance, there are four mediators, one with three sources, two with two
sources each, and one with a single source. All databases in this model have an
equal amount of topic data, so a ranking of {1, 2, 2, 4} can be determined among the
mediators respectively, as shown in the model. In addition, there are three other
mediators in the organization that contain an insignificant amount of topic data and
are not graphically shown. These “other” mediators are significant because they can
potentially distract the search process, resulting in a decrease in expected utility.
The environment node shows that the search set size in this instance is set to 5,
indicating that the collection signatures of five other mediators will be searched.
The query set size, the number of mediators from the search set that will actually
be queried, is set to 3. Therefore, as the number of “other” mediators grows, the
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Sidebar - Abstracting the Selection/Query Problem

It is illustrative to ignore the domain characteristics of the search and selection
process and focus on the underlying counting and probability problem. I will use
the familiar ball-and-bag metaphor. You are given a bag containing a set of black,
green and red balls of known size, named B, G and R respectively. One green
ball g∗ ∈ G is distinguished from the others. Select s balls from the bag to form
set S. Choose q balls from S in order of preference red, green, black, i.e., a green
ball will only be selected if no reds remain. Call this new set Q. I wish to find the
probability that g∗ ∈ Q. In this abstraction, g∗ is the mediator in question M .
R represents those mediators higher ranked than M , G is the mediators of equal
rank, and B those of lower rank. S is the set of mediators that are searched, and
Q those that ultimately receive the query.

content_organization
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response_time = 62.25714
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Figure 3.3. An information retrieval instance with variously ranked mediators.

chance that one of the relevant mediators will be found and subsequently queried
decreases. The value of |M | in Equation (3.6) is the sum of the relevant mediators
and these other mediators. The culmination of these data occurs in the calculation
of Pr(M |Q), shown in the query probability for each mediator. These are used to
compute the organization’s response recall, and ultimately affect the utility of the
organizational structure.

To test this formulation, a set of simulation trials were performed, and the ob-
served response recall compared to the predicted value for each scenario. The envi-
ronment consisted of six mediators and nine databases, and each trial consisted of
100 queries from a simulated user to a random mediator in the organization. The
first mediator had four of the databases below it, the second had three and the third
had two. The remaining three mediators had no databases, and therefore could not
provide value to queries, although their presence made it more difficult to find the ac-
tual sources of data because they increased the size of the population to be searched.
The perceived response size and actual response size for each mediator was propor-
tional to the number of databases it had access to. In the trials, both the number of
mediators that were searched for, search set size, and the number of mediators that
were queried, query set size ranged from 1 to 6, producing 36 possible experiments.
In practice, only 21 of these were valid, because query set size must be greater than or
equal to search set size. A graph comparing the values predicted by the ODML model
and the empirical results are shown in Figure 3.4. As expected, when the search size

67



Figure 3.4. A comparison of the predicted and empirical response recall values
across a range of search and query size parameters.

is small, the recall suffers, because it is less likely a good information source will be
found. The query set size has a similar but lesser effect. For clarity, the relative error
between the predicted and observed values are given in Figure 3.1. This shows that
the predictions were quite accurate in most cases, with a maximum relative error of
5.9% in one case and an average of 0.9% error over all cases.

The relationships described here are a good example of how changes to the or-
ganization can indirectly affect the characteristics of many, potentially distant parts
of the structure. In this case, the perceived, relative quality of a mediator, which is
based on the sources under its control, affects the ranking of all other mediators in
the organization. These rankings affects query load, which affects the load imposed
on the agents, which can affect both the constraints on those agents and the response
time of a mediator’s hierarchy as a whole. Thus it is possible for a single source
added to some segment of the organization to dramatically affect nodes with which
it does not obviously interact. These effects can be subtle yet important, motivating
the need for a model such as ODML capable of representing them. It is also shown
in Section 4.2.1 how this type of indirect interrelationship can make it particularly
difficult to determine either the validity of an organizational instance prior to its com-
plete construction. I will return to this problem in Chapter 4, which discusses how
the organizational design problem can be framed as a search for the most appropriate
valid instance.
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Table 3.1. The relative error (i.e., (observed − predicted)/observed) between the
predicted and empirical response recall values from Figure 3.4.

Query Size
1 2 3 4 5 6

S
ea

rc
h

S
iz

e

1 -0.059
2 -0.011 0.013
3 0.008 -0.024 -0.003
4 -0.005 0.005 0.005 -0.002
5 -0.004 -0.006 -0.011 0.005 -0.012
6 -0.004 -0.003 -0.002 -0.001 -0.003 -0.003

3.3.4 Query Response Time

The response time of the information retrieval hierarchy is the amount of time that
elapses between a user query and the system response. This particular characteristic
is clearly important from an evaluation standpoint, as it captures an easily observable
phenomena that is important to the end user. Like the probabilistic query model,
the response time is intimately tied to the structure and characteristics of the orga-
nization.

The response time characteristic is also more complicated than those discussed
so far, because it cannot be accurately captured with simple average-case statistics.
The solution to this problem is fairly complicated, drawing upon techniques from
probability and queuing theory. I will begin by describing why simpler techniques are
insufficient and progress with the actual solution in stages, gradually incorporating
new elements into the solution as deficiencies are recognized.

To better understand the various components that affect the response time, it is
helpful to follow the lifecycle of a particular query. Consider the simple organization
shown in Figure 3.2b. A query will first arrive at the mediator, who will begin by
searching for an appropriate set of mediators to answer the query. After eliciting a
response from some subset of candidate mediators, the original mediator will select
from among them the set that looks most promising, and provide them with the
query. In this example, there is only one mediator, and it will progress by sending
copies of the query to all the information sources below it. The two databases below
the mediator will immediately begin processing the query, while the aggregator will
pass the query down to its two information sources. At this point both the mediator
and aggregator must wait for their respective information sources to formulate replies
before progressing. When the aggregator’s databases have completed, the aggrega-
tor will combine their responses and send a reply back to the mediator, while the
remaining two databases also report directly to the mediator. Finally the mediator
will combine all the results it has received and report back to the user.

There are several aspects of this flow that directly affect the response time. Each
communication event incurs some latency because of the message transit time. The
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query processing by the databases, and the aggregation performed by both the ag-
gregator and mediator will take some amount of time. The latter two entities must
also wait until the slowest of their information sources to respond before they can
themselves respond. Finally, because multiple queries can exist simultaneously in the
network, additional delays at individual nodes can be incurred when a query must
wait for existing processing to complete.

I will begin with the query rate characteristic of the mediator, which predicts the
arrival rate of queries to that mediator based on the probabilistic model given above.
One can infer that responses will, on average, be returned back to the user at this same
rate. The response rate cannot be faster, because the system would eventually run
out of queries to process. If the response rate were slower, the number of queries in the
system (along with the expected response time) would tend to infinity as new queries
encounter an ever lengthening queue of existing queries upon arrival. Of course, this
is not an impossible situation, just undesirable, so we must include constraints in the
model that specify that the possible rate at which tasks are serviced must be greater
than or equal to the rate at which they arrive. Given these constraints, we can assume
that the query rate will equal the response rate. We can furthermore assume this is
the case for all nodes in the hierarchy by analogous reasoning, after observing that
the arrival and response rates of one node dictate the complementary rates of the
other nodes they are attached to.

More concretely, the existing model assumes that queries arrive to the mediator
with a Poisson arrival distribution and mean rate query rate. The model is further
abstracted by saying that tasks arrive with rate arrival rate, where each task is a
query and arrival rate = query rate in this instance. This means that the amount of
time between subsequent tasks will be a random value sampled from an exponential
distribution with parameter arrival rate — on average, a new query will arrive at the
mediator every arrival rate−1 milliseconds.

After some amount of time elapses, during which the query makes its way down
through any aggregators, the databases themselves will receive the query. By the
logic given above, we can assume that they arrive at rate arrival rate. Each database
is also associated with a service rate, which reflects its ability to complete queries
given to it. When this new query arrives there may be previously received queries
currently being processed or waiting to be processed by the database. Because we
assume first-in, first-out processing, the amount of time the new query must wait
before being addressed will depend in part on these existing queries.

We can exploit existing techniques from the field of queuing theory [101, 151] to
help analyze how long the wait will be, an approach that has recently proved successful
in other MAS models [68, 176]. For example, the database node as it has been defined
can be modeled with a M/M/1 queue. This model assumes a Poisson task arrival
rate (i.e., arrival rate) and service rate (i.e., service rate), and a single processor (i.e.,
the agent performing the database role and the resources under its control). From
this information, one may immediately determine the expected service time of the
database, using the formula [151]:

service time =
1

service rate− arrival rate
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However, this single expected value is not what we actually need to compute at
this point in the process, for reasons that will become clear below. Instead, the
model uses this same basic information to compute approximations of the probabil-
ity density function (pdf) and cumulative distribution function (cdf) of the service
time characteristic. These functions represent richer forms of the same waiting time
knowledge, because they preserve the statistical character of the phenomena, rather
than just a sample mean. The pdf fM(x, λ) and cdf FM(x, λ) of the M/M/1 queue’s
waiting time distribution are [47]:

fM(x, λ) = λe−λx

FM(x, λ) = 1− e−λx,

where x ≥ 0 and λ = service rate − arrival rate. The model maintains this infor-
mation as a discrete list of sampled points, which are calculated dynamically from
the two underlying functions. In particular, it defines the following two lists:

pdf list = [fM(x0 × dist step, λ), . . . , fM(xn × dist step, λ)] (3.7)

cdf list = [FM(x0 × dist step, λ), . . . , FM(xn × dist step, λ)], (3.8)

where xn = n and (0 ≤ n < dist range
dist step

). dist range represents the upper bound on the
sampled points, while dist step is the stride length between points. Lines 45 and 48
in Figure 3.5 show the corresponding actual ODML definitions, which are initially
stored as local pdf list and local cdf list. Sample curves from the data produced by
these two fields are shown in Figure 3.6, with a arrival rate of 0.002 and service rate
of 0.005. Note that, if we wish, we can compute an expected service time for the
database from this data, using the conventional definition of expected value:

service time =

dist range/dist step
∑

x=1

(x× dist step)(pdf list[x]× dist step) (3.9)

The first multiplicative term restores x to the value it would have after the stride
(i.e., the appropriate duration), while the second term accounts for the probabilities
lost by the discrete nature of the the sample distribution. The fact that a simple
product is used to recover those missing points from the distribution implies that the
resulting data are only an approximation of the true function. The precision of the
approximation increases as dist step → 1, as do the time and space needed for the
computation.

A similar summation is used in the model to calculate the total density captured
by the distribution. A constraint over this total ensures that a sufficiently complete
view of the behavior is retained, by causing any situation where a significant number
of time points have exceeded the distribution’s window to be recognized and marked
invalid.
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1 <node type="mediator">

2 <constant name="arrival_rate">query_probability * env. topic_query_rate </

constant >

3 <constant name="service_rate">env.response_service_rate / num_sources </

constant >

4 <constant name="poisson_rate">service_rate - arrival_rate </constant >

5

6 <constant name="local_pdf_list">forrange(x, 0, (dist_range / dist_step),

7 poisson_rate * e^(- poisson_rate * x * dist_step) /* Exp pdf f(x) */

8 )</constant >

9 <constant name="local_cdf_list">forrange(x, 0, (dist_range / dist_step),

10 1 - e^(- poisson_rate * x * dist_step) /* Exp cdf F(x) */

11 )</constant >

12

13 <constant name="source_pdf_list ">forrange(x, 0, (dist_range / dist_step),

14 forallprod(forall(s, sources , listitem(s.cdf_list , x))) * forallsum(forall(

s, sources , listitem(s.pdf_list , x) / listitem(s.cdf_list , x)))

15 )</constant >

16 <constant name="source_cdf_list ">forrange(x, 0, (dist_range / dist_step),

17 forallprod(forall(s, sources , listitem(s.cdf_list , x)))

18 )</constant >

19

20 <constant name="pdf_list">forrange(x, 0, (dist_range / dist_step),

21 forallsum(forrange(i, 0, x, listitem(local_pdf_list , i) * listitem(

source_pdf_list , x - i) * dist_step

22 )))</constant >

23 <constant name="cdf_list">forrange(x, 0, (dist_range / dist_step),

24 forallsum(forrange(i, 0, x, listitem(local_pdf_list , i) * listitem(

source_cdf_list , x - i) * dist_step

25 )))</constant >

26

27 <constant name="service_time">forallsum(forrange(x, 1, (dist_range / dist_step

), (x * dist_step) * listitem(pdf_list , x) * dist_step

28 ))</constant >

29 <constant name="overhead_time ">

30 2 * env.message_latency /* Query to/from user */

31 + 2 * env.message_latency /* Search to/from mediators */

32 + 2 * env.message_latency /* Query to/from mediators */

33 + env.message_latency /* Query down to sources */

34 + max(sources.overhead_time ) /* Subordinate overhead */

35 </constant >

36 <constant name="response_time ">overhead_time + source_service_time </constant >

37 ...

38 </node>

39

40 <node type="database">

41 <constant name="query_rate">manager.query_rate </constant >

42 <constant name="service_rate">env.process_service_rate </constant >

43 <constant name="poisson_rate">service_rate - query_rate </constant >

44

45 <constant name="local_pdf_list">forrange(x, 0, (dist_range / dist_step),

46 poisson_rate * e^(- poisson_rate * x * dist_step) /* Exp pdf f(x) */

47 )</constant >

48 <constant name="local_cdf_list">forrange(x, 0, (dist_range / dist_step),

49 1 - e^(- poisson_rate * x * dist_step) /* Exp cdf F(x) */

50 )</constant >

51 <constant name="pdf_list">local_pdf_list </constant >

52 <constant name="cdf_list">local_cdf_list </constant >

53

54 <constant name="overhead_time ">env.message_latency /* Response to manager */

55 </constant >

56 ...

57 </node>

Figure 3.5. A portion of the ODML specification for the mediator and database
nodes detailing the fields used to estimate response time.
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Figure 3.6. Sample (a) pdf and (b) cdf profiles for the database waiting time dis-
tribution.

Let us ignore the aggregator for the moment, and focus our attention on the
mediator. Recall that it must wait for responses from all its information sources
before progressing, which directly ties its service time to those of the information
sources below it. A simple approach would find the average such service time, and
use that to estimate that component of the mediator’s service time. However, this
metric is actually a biased approximation of the service time, for reasons similar to
those presented in Jensen and Cohen’s discussion of multiple comparison procedures
[95]. Recall that databases are modeled as Poisson processes. Although they do
have a mean service time, most of the time a greater or lesser value will be observed
in practice. If there is just one database to wait for, the sample mean would be a
sufficient and accurate characterization. However, if there are two or more databases
to consider, multiple samples will be made, effectively increasing the chance that a
greater-than-mean value will be observed. This skews the response time distribution
so that the aggregate waiting time is no longer a simple Poisson. This can be seen in
Figure 3.7, which shows how the waiting time distribution of a mediator changes with
the number of databases below it. Notice that as the number of databases increases
the distribution shifts to the right, which is consistent with our intuition.

The underlying issue is that the mediator must wait for the slowest responder,
which means that its service time will be dependent on the maximum service time of
those below it, not simply the average. This is the motivation for explicitly repre-
senting the pdf and cdf of the database above. Given this more detailed information,
it is possible to determine what the actual distribution is of the time the media-
tor must wait for its responders. A branch of probability theory known as order
statistics is useful here. Assume that we have n samples from some distribution X,
(X1, . . . , Xn). X(k), the kth smallest sample from this set, is known as the kth order
statistic [36, 148]. The nth or maximum order statistic of the waiting distribution
faced by the mediator is the expected maximum value in the set of samples. This cor-
responds to the amount of time the mediator is expected to wait before all responses
have been received.
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Figure 3.7. A comparison of the waiting time distributions for differently sized sets
of databases.

The example order statistic given above is known as the independent, identically
distributed (iid) case, because all n samples are from the same random variable X.
Unfortunately, this is not the case seen in the information retrieval system. First,
we do not assume that all databases necessarily have the same service rate. Second,
different aggregation structures with different heights and widths will also produce
different waiting time distributions. The model does make a simplifying assumption,
however, that the various samples are independent. Together, this is known as the
independent, non-identically distributed (inid) case.

After determining the appropriate case, and finding the appropriate inid expec-
tation function, we could progress straight to the goal by finding the expected ser-
vice time mean for the mediator. Instead, as before, the model generates the more
informative pdf f(n) and cdf F(n) sample distributions of the nth order statistic for
the source service time, using the following functions from [36] and [148]:

f(n)(x) =
[

n
∏

i=1

Fi(x)
]

n
∑

i=1

( fi(x)

Fi(x)

)

(3.10)

F(n)(x) =
n
∏

i=1

Fi(x), (3.11)

where fi and Fi represent the pdf and cdf of the ith sample, respectively (i.e., the
service time distribution of the ith information source). Sample lists are generated
for these two distributions in the same manner shown in equations 3.7 and 3.8, which
are reflected in lines 13 and 16 of Figure 3.5.

What has not been mentioned so far is that the mediator itself is not simply a
pass-through, but must process and aggregate the resulting data as well. Just as
with the processing of queries by the database, the processing of the results by the
mediator also takes time, potentially causing newly arrived results to wait until the
mediator can devote attention to them. Thus, the mediator can also be viewed and
modeled as a queue. In this case I will assume it is also a M/M/1 queue, with an
arrival rate consistent with the argument presented earlier. The service rate exhibited
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by the mediator depends on the number of responses it receives, which is determined
by the number of information sources below it. The local pdf and cdf for the mediator
can therefore be produced using the structure defined in Equations 3.7 and 3.8, with
arrival rate = query rate, service rate = response service rate/num sources, and
Poisson rate λ = arrival rate− service rate.

At this point we have identified and described distributions for both the mediator
itself and the information sources below it. To complete the flow propagation we must
determine the behavior of the total service time that combines these two activities.
This can be accomplished by recognizing that this service time will be the sum of the
times exhibited by these two random variables, since the local processing phase takes
place after all results have been received. The total service time pdf fC and cdf FC

can then be determined by finding the convolution of the corresponding distribution
functions, which has the general form:

fC(x) =

dist range/dist step
∑

i=0

fs(i)fl(x− i)dist step (3.12)

FC(x) =

dist range/dist step
∑

i=0

fs(i)Fl(x− i)dist step (3.13)

For the mediator, fs would be the aggregate information source pdf given in Equation
3.10, while fl and Fl would be the pdf and cdf of the waiting time for the local M/M/1
queuing process.

Both these convolution equations and those used earlier to compute the maximum
order statistics make no assumptions about the underlying distributions they refer-
ence. Because of this, any other queuing model can be substituted for the M/M/1
queues used in these roles, so long as it can be characterized or approximated through
a closed form formula using the mathematical primitives supported by ODML. One
could also directly provide a complete discrete distribution in its place.

Armed with this new information, the model can now compute the expected ser-
vice time of the mediator, by using the same expression previously shown in Equa-
tion 3.9 coupled with the cumulative overhead incurred during the query and result
propagation process, as shown in Lines 27-36 in Figure 3.5. This overhead, which is
computed incrementally up the hierarchy, models the latency time of message transit.

Note that Equations 3.10-3.13 are recursive, in that they rely upon both the pdf
and cdf distributions of the information sources below the mediator. The equations
make no assumptions about the form of those distributions, which permits them to be
used both when the information source is a single database or if the information source
is an arbitrarily complex aggregator hierarchy — provided that root aggregator is able
to correctly express its pdf and cdf. Fortunately, this same assumption also allows
Equations 3.10 and 3.11 to be used to compute the pdf and cdf distributions for the
aggregator itself. The recursive definition will eventually terminate in the exponential
distribution exhibited by at the leaf nodes by the databases. As its name implies, the
aggregator also performs a response aggregation, which can be approximated with a
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suitable queuing model. The expressions given in Equations 3.12 and 3.13 are again
used to combine these two characteristics to determine the aggregator’s total service
time pdf and cdf distributions.

It is also worth mentioning that it is the response time distribution lists previously
computed by a node’s subordinates, and not the functions they approximate, that
are used to determine the response time of the node itself. So, although the pdf and
cdf definitions are recursive, they only need to be computed once for each node in a
bottom-up fashion if a suitable value caching system is in place. This technique is
similar to those used in dynamic programming to avoid redundant computation.

The final aspect that must be taken into consideration is the effect that multiple
roles have on performance. This will be approximated by weighting the service rate
for each role based on the proportion of local processing time it is expected to receive.
In particular, if λi and µi are the original arrival rate and service rate for an agent’s
ith role, let the effective service rate (µiE) of that role be:

µiE = µi
λi/µi

∑#roles
r=0 λr/µr

=
λi

∑#roles
r=0 λr/µr

=
λi

agent.work load
(3.14)

where agent.work load is the location in the model where the aggregate demand is
stored. This expression uses each role’s arrival and service rates to first determine the
expected proportion of time the agent will be busy, and then use that value to scale
the individual service rates accordingly. This aspect has been omitted from Figure
3.5 for clarity, but can be found in the complete model provided in Appendix D. The
role’s arrival rate remains unchanged.

The results of a several sample runs in the simulation environment described
in Section 3.2 are shown in Figure 3.8. Each scenario measures the response time
performance of a different IR organizational design, by submitting 1000 queries to
it in a Poisson fashion as described previously. The organizational design of each
scenario is depicted on the left, along with the predicted and empirical response
time data on the right. The solid line represents the distribution of response times
predicted by the ODML model, while the dashed line indicates the observed frequency
of individual response times in the simulation. A bin width of W = 2(IQR)N−1/3

was used to group the empirical response times, where N is the number of trials and
IQR is the interquartile range of the data (the difference between the 75th percentile
and 25th percentile of the data). This is the Freeman-Diaconis rule, as discussed in
Izenman’s bin width strategy analysis [92].

As can be seen in the performance graphs, the ODML model does a good job
of predicting the response time distribution of the different organizational designs.
Additional response time trials were performed for organizations with three agents
[1M,2D], 10 agents [1M,2A,7D], and 14 agents [1M,3A,10D], with similar results. The

coefficient of determination R2 (= 1− (y−ŷ)2

(y−ȳ)2
) was calculated for each scenario, which

estimates how much of the observed behavior can be explained by the model [47]. R2

was greater than 0.8 for all tested scenarios (0.96, 0.95, 0.83, 0.95, 0.89, 0.81, in order
of increasing organization size), where a value of 0.7 or above is considered good for
this statistic.
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Figure 3.8. A comparison of the response time distributions predicted by the ODML
model and observed in organizations with (a,b) five [1M,4D], (c,d) fifteen [1M,6A,8D],
and (e,f) twenty-eight [1M,7A,20D] agents. In the designs shown in (a,c,e), node M
is the mediator, A are aggregators, and D are databases.
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The effort taken to preserve the underlying probability distributions in this aspect
of the model has other benefits, besides being necessary to accurately model the
response time behavior. This same information can be used to support high-level
behavioral constraints. For example, a constraint can be defined using the mediator’s
cdf that places an upper bound on the the probability that a particular response time
is exceeded. The pdf can also be used to determine the average response time as shown
above, which will be used to define the organizational utility in the following section.
By explicitly capturing the “fuzzy” nature of the running system’s performance, these
richer statistics allow the designer greater control over the evaluation and output of
an organizational design process.

3.3.5 Constraints

The notion of bounded rationality manifests itself in this domain within the agents.
Specifically, each agent has a finite amount of processor cycles and bandwidth at
its disposal. There are both soft effects caused by increased load, and hard load
constraints that may not be violated. An example of the former is the increased time
needed to finish any individual task as the local processing load increases. The latter
occurs when the agent can no longer keep up with the requests it receives. In this
case, the local work queue will grow without bound, causing an untenable situation.

Both these effects are present in the model. The relevant high level metric is the
mediator’s response time, which represents the average length of time from query to
response as mentioned above. Each role has a set of responsibilities that affect the
agent it is assigned to. The model specifies the arrival rate and service time of the role,
which are propagated with a modifier to its agent to compute the agent’s aggregate
work load. During instantiation, this work load will then reflect the cumulative effects
of each of its roles. Equation 3.14 shows how this value is used to compute the
effective service rate for each role. The previous section outlined the soft constraining
effects of this interaction in detail. A hard constraint is also specified in each role that
ensures that arrival rate ≤ effective service rate, which prevents the local queue
length from growing indefinitely.

A separate hard constraint exists at the organizational level that places a lower
bound on the average response recall exhibited by the system.

3.3.6 Organizational Utility

A key evaluation criteria used by [215] is information recall, called response recall in
the ODML model. This metric, defined as the ratio of relevant documents retrieved to
the total number of relevant documents available, objectively quantifies the quality of
the query response. The mediators’ query probability and actual response size, along
with the total amount of relevant information in the environment, can be used to
determine the average information recall for the organization. A secondary metric,
the response time, gives the expected average amount of time the system requires to
answer a query as explained above.
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These two metrics are combined by the organization node in its utility field, which
is typically used to compare and rank candidate instances. In this case, recall is more
important than response time, so a multiplicative factor is applied to the recall value,
after which the response time is subtracted out:

utility = response recall ∗ 1000− response time/10

Recall is the proportion of the possible information that was reported ([0 . . . 1]), while
time is measured in milliseconds ([0 . . .∞), generally in the thousands). For example,
a system with response recall of 0.8 and response time of 1050 ms will have a utility
of 695. The normalization terms cause this formulation to generally favor quality over
speed, and instances with equal recall will be differentiated by their response time.
An arbitrary utility function could be substituted here as needs dictate.

Figure 3.9 shows how utility is affected by the expected user query rate. Optimal
utilities for each rate are shown in bold. This figure shows the full range of possi-
ble organizations that are possible in a six database environment with a maximum
height of three and a minimum of two subordinates per node (there is no need for an
aggregator with only one subordinate). The search set size and query set size were
set to be the total number of mediators for each organization. The response recall
is therefore identical in all cases, and the utility is determined by the response time.
Organizations with zero utility were not valid at the given query rate because the
arrival rate exceeds the service rate at one or more points, resulting in an infinite
queue.

The single-level, single-mediator organization number 1 is predicted to be optimal
when the query rate is 0.5 or less (i.e., less than one query every other second). This is
intuitive, because the slow query rate avoids queuing delays, causing the response time
to be dominated by the height of the organization. Note that other short hierarchies
such as numbers 11 and 13 also have high utility.

As the query rate increases, first organization 11, then number 8 and finally num-
ber 9 become optimal, as the highly-connected mediator in organization 1 becomes a
bottleneck. In contrast to most of the competing designs, organizations 11, 8 and 9
are all balanced (as is number 1). In an unbalanced organization, the segment with
greater load tends to dominate the response time because the final result must wait
for the slowest responder. These three designs avoid this by evenly spreading the load
among participants.

The differences between the three revolve around where the final aggregation takes
place, and how distributed the database search is. For example, 8 and 9 employ an
additional mediator to aggregate the final results, while 11 does not. In 11, one
of the two mediators serves this role, which will slightly unbalance the load in the
organization for any given query (i.e., one of the two mediators forms the final result,
while the other remains idle). Therefore, although the lack of another aggregating
level saves on communication, the transient load imbalance ultimately leads to an
increased chance of queuing delays. Organization 18 suffers from this same problem,
although more so because one mediator must aggregate for two others.

Organization 9 outperforms 8 under the highest loads because the database aggre-
gation is better distributed, which reduces the chance that any one node will observe
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Figure 3.9. The utility predicted for the range of possible six-database organizations
when the query rate (queries per second) is varied. Mediators and aggregators are
shown as hollow circles, while the solid databases form the leaves. Higher is better,
optimal values for each rate are shown in bold.
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high queuing delays. By having three aggregation points of size two rather than two
of size three, the range of likely durations is reduced (see Figure 3.7). The tradeoff is
that the mediator has a greater load, because it now has three subordinates. Under
most loads (5 queries per second or less) these two strategies perform similarly, with
8 being slightly higher because it has fewer nodes to interact with. However, under
the highest viable load of 6, organization 9 outperforms 8 because only the mediator
has an in-degree of three. In organization 8, there are two such nodes, which means
there are two chances for a highly-loaded aggregator to slow the overall response
time. Since organization 9 has only one such node, the chances of this occurring are
lessened.

A similar set of results is shown in Figure 3.10. Unlike those in Figure 3.9, the
query and search sizes are both fixed at one in these experiments. This has the effect
of making response quality a differentiating factor. As shown in Section 3.3.3, the
response recall of a single-mediator system will be greater than that of a multiple-
mediator system when only a strict subset of available mediators are searched.

There are two characteristics that provide an interesting contrast with the previous
results. The most obvious is the dramatically reduced utility in organizations 11-18
that have more than one mediator. Because at most one mediator is searched, at
most one will contribute the information under its control to answer the user’s query.
The recall of organizations with two mediators is roughly half that of those with
one, while organization 18 with three mediators has but a third of that recall. This
correspondingly degrades the organization’s utility.

The benefit this change has is increased robustness to high work loads. Where no
organization could handle more than six queries per second in the original scenario,
all eight multi-mediator designs can now obtain utility with at least seven queries per
second. This is because the smaller search size prevents individual queries from being
handled by the entire agent population, which frees up computing resources that can
then be used on subsequent queries. The aggregate demand on the system is lower,
which reduces the growth rate of individual agents’ queues, which allows the system
as a whole to tolerate higher query rates. The remaining pressures on these more
fragmented systems are the same — note the parallels between organizations 11 and
1, which are optimal at opposite ends of the spectrum.

The pressure applied to the information retrieval organization as the query rate
increases is in some sense a top-down stress. An analogous bottom-up stress occurs
when more databases exist in the organization. Instead of more queries existing
in the system, there are more responses, but both can be addressed with similar
organizational techniques.

Figure 3.11 shows the optimal organizations when between 1 and 15 databases are
incorporated into the system, using a constant query rate of 3 per second. Similar
to the previous experiments, the search and query set sizes were set to the number
of mediators in the environment. Unlike the previous experiments, different numbers
of databases are available, which means the utility is based on both the organiza-
tion’s response recall and time. Because recall is weighted greater than time, the
optimal design will integrate all available databases and organize them to minimize
the expected response duration.
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Figure 3.10. Similar to Figure 3.9, the utility predicted for the range of possible
six-database organizations when the query rate (queries per second) is varied, but
with the query and search sizes set to one. Note differences in organizations 11-18.
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Figure 3.11. The range of optimal organization instances derived from the IR
template, when 1,3,6,9,12 or 15 databases are available. The environment and
organization nodes have been omitted for clarity.
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Figure 3.12. A comparison of the waiting time distributions for the different optimal
organizations from Figure 3.11. The distributions widen and shift right as the number
of databases increase.

The shapes of these organizations change in a manner similar to the progression
of optimal organizations seen in Figure 3.9. When there are few databases (e.g.,
1 or 3), and correspondingly less work to be performed by the system, the optimal
organization remains flat to avoid communication delays. As the number of databases
increases, the load becomes more distributed. This happens first by introducing more
aggregators (e.g., the 6 database case), and later by adding more mediators to break
the hierarchy apart. As Figure 3.12 shows, the response time inevitably grows as
more data sources are added, but this same change brings with it the desired increase
in recall. These changes make tradeoffs very similar to those discussed above, by
minimizing the response overhead while avoiding potential queue-related bottlenecks.

3.4 Conclusions

By introducing a second realistic domain, this chapter has shown that ODML is
not limited to the types of organizations or problems addressed by the distributed
sensor network application from Section 2.2. The information retrieval model cap-
tures several interesting and complex details, including a utility-driven search process
and the consequences of queuing on response time in a distributed work flow. This
demonstrates how existing modeling techniques from other disciplines can be success-
fully incorporated, and how the choices made during modeling may be empirically
validated through simulation. Additional examples of this are shown in Chapter 5.

This chapter also briefly mentioned the potentially large space of design alter-
natives that can be derived from the model, and how ODML’s ability to predict
organizational utility can help evaluate members of that space. The following chap-
ter will show how it is this set that must be explored to solve the organizational design
problem, and present a variety of ways this may be accomplished.
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CHAPTER 4

DESIGNING ORGANIZATIONS

I have thus far demonstrated the measurable effect that organizations have on perfor-
mance, and it is therefore useful to be able to understand those effects when designing
an agent system. Section 2.2 demonstrated ODML’s ability to model, predict and
evaluate the characteristics of particular organizational designs used in a previously
constructed, real-world application. Chapter 3 describes how ODML is used to cre-
ate a model of a second domain, an information retrieval (IR) system. The range
of possible organizations in these two domains along with the detailed predictions
made by the ODML model naturally leads one to consider the possibility that an
automated process could be used to select an appropriate organizational design. This
chapter explores this possibility, by first describing how ODML can represent these
alternatives, and then giving insight into how this representation enables the design
of organizations.

The necessity for this technology is derived from at least three parts. The first,
as shown in Section 2.1, is that the particular organization that is employed can
have a significant effect on a range of important runtime characteristics. Chapter
3 showed the potential for complex interactions among these characteristics. This
provides a second motivation, as design intuition can fall short when these details
become simultaneously critical in importance and difficult to discern. The potential
for a large or incomplete space of possible designs is the third motivating factor. For
example, the initial by-hand enumeration of possible designs for the relatively simple
six-database experiments in Figure 3.9 came up with 16 alternatives. It was only after
the more methodical and computational search techniques described in this chapter
were applied to the model that the remaining two designs were revealed (numbers 9
and 12), one of which was shown to be optimal under some conditions.

This chapter begins in Section 4.1 with a high-level discussion of the design prob-
lem and the process used by ODML to address it. The complexity analysis of the
valid design search problem ODML-SAT given in Section 4.1.1 shows it to be NEXP-
Complete, providing insight into the difficulty of the problem that ODML is address-
ing.

The techniques in Sections 4.2 and 4.3 describe suite of approaches to search and
modeling designed to cope with the large search space. Section 4.2 describes several
algorithmic approaches that shrink the search space, including one that uses value
trends and hard constraints to bound the search and another that defines notions
of equivalence to avoid redundant search. Section 4.3 takes a different approach by
modifying the model itself in an attempt to reduce the search space without affecting
the potential utility of the optimal design.
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Section 4.4 describes more of how the design process is implemented and works in
practice. This includes how candidate instances are evaluated (Section 4.4.1), where
the design and construction process can take place (Section 4.4.2), and how a selected
design is used in practice (Section 4.4.3).

The chapter concludes in Section 4.5, which describes the organizational adapta-
tion process. This differs from the design process in that it must be an online, reactive
or proactive process. An outline of how ODML can be used to address this problem
is given.

4.1 Designing Organizations

Recall that ODML representations are divided into two distinct classes: templates
and instances. A template encompasses the range of all possible organizations that
are to be considered, while an instance is a singular, particular organization derived
from a template. The key difference is that a template depicts the organizational
choices that must be made, while in an instance those choices have been decided.

The process of designing an organization consists of searching the organizational
space defined by the template and selecting an appropriate instance. This organization
space is defined by decision points that exist in the template. These decision points
manifested in two ways: with variables and with has-a relationships.

For example, the sensor network example explored the effects of changing the size
of a sector. In the model, a sensors per sector variable exists in the environment
node. This variable can take on one of several discrete numeric values that match
the experimental conditions from Section 2.1 (e.g., 1, 2, 4, 9, etc.). The value of
sensors per sector is then used to calculate num sectors, which controls the size of
the has-a relationship organization has with sector. As demonstrated earlier, each of
these choices results in an organization with different characteristics.

In the IR domain, the edge magnitude topic mediators shown in Figure 3.2a is
a typical variable. This determines how many mediators will exist in the organiza-
tion. It can be assigned different values, which will result in organizations that have
different forms.

The second type of decision point revolves around how has-a relationships are
satisfied. The magnitude or size of a has-a relationships can be controlled with a
variable as above. The nodes that may be attached with a has-a relationship represent
a more complicated space, because the relationship may be satisfied by a range of
node types, and there may also be a number of existing instances of each type that
are suitable. Consider a typical role-agent relationship, such as sensor has with
agent in Figure 2.10a. Further assume that we are part way through organizational
construction, and that two agents (a1 and a2) have already been created and assigned
to one role each. In this case there are four ways to assign sensor’s agent. A new
instance of either normal agent or robust agent can be created, or it can be attached
to a1 or a2. Each will have different tradeoffs, and in some cases the decision may
affect previously made decisions in other parts of the organizational structure
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A similar relationship exists in the IR model. Because both aggregator and
database are possible instances of source, the mediator-source has-a relationship rep-
resents the a decision point. In this case, mediators with the same number of sources
can be further differentiated by the types of sources they manage.

In both of these cases, the quantitative effects of local decisions can have significant
and complex non-local impact. For example, as a result of the has-a assignment
above, a1 might have to divide its time between two roles. This could negatively
affect the quality produced by the initial role, as well as the performance of any other
structures that depend on that role. Hard constraints elsewhere in the structure
that were previously satisfied may become invalid, and soft constraints may degrade.
It is equally possible that all those values improve as a result of the decision, or
that some local values degrade while higher achieving global utility. In general, the
interdependencies between nodes and fields mean that values may be both nonlinear
and non-monotonic as the structure changes.

The rationale behind creating a mechanism to define this organizational space is
the fact that different organizations will be appropriate under different conditions
[91, 32, 112, 24]. When the set of available resources is different, requirements and
constraints shift, and capabilities and characteristics are varied in the available en-
tities, different organizational structures will lead to different performance. Sections
2.3.8 and 3.3 outlined how the value or quality of an organization can be captured
with a utility function, as embodied by a standard ODML constant utility. Using
this, it is possible to define the set of optimal structures as those with a maximal
value for utility. Figures 3.9 and 3.11 showed how these two concepts are brought to-
gether, by depicting the optimal organization instances derived from the information
retrieval model under different conditions. The ODML template defines the organi-
zational space using the decision points outlined above, and organizational quality
or appropriateness is captured by the utility of each candidate instance. The search
for an organization with sufficient or optimal utility is the basis of the automated
organizational design process that ODML allows.

4.1.1 Design Complexity

Given the two types of organizational decisions that must be made, one must next
determine how best to explore the space of alternatives when searching for an appro-
priate organizational design. One approach is to simply generate full organizations
and test them in turn. This is a perfectly valid approach, but there may be a great
many such organizations to consider. A more incremental strategy is preferable, be-
cause backtracking from partially formed organizations prunes higher in the search
tree, and can therefore be vastly more efficient than doing so only after a complete
structure has been formed. However, because the organizational structure changes
continually during such an incremental search and construction process, making cor-
rect predictions for nonlinear and non-monotonic values can be difficult. This makes it
correspondingly difficult to predict the characteristics of the completed organization,
so deciding when it is appropriate to backtrack is a challenging problem.
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The combinatorics of the search space also conspire to complicate the search pro-
cess. Implicit in the role-agent example above is the fact that if a new agent is created,
the next role-agent relationship will have five choices instead of four. An entire space
of role-agent relationships will also exist for each new choice of sensors per sector. In
fact, the problem of finding even a valid organization, not necessarily the more desir-
able optimal or most appropriate one, will be shown below to be NEXP-Complete.
This agrees with complexity results presented in related work by Nair and Tambe
[138], who analyzed the complexity of the role assignment and execution problem.
The high degree of complexity is due in part because an ODML template is an exam-
ple of what is known as a succinct representation [140] of the organization it produces,
which means that its output (an organizational instance) may be exponentially larger
than its input (a template). Determining the validity of a candidate instance can
only be performed by looking at each node in the instance, and can therefore require
exponential time to complete.

I will refer to the process of determining if a satisfying instance exists in the space
defined by an ODML template as ODML-SAT. Determining the complexity of this
problem will help determine how large the search space is likely to be, and how hard
it is to find solutions in that space. This will ultimately guide and constrain the
development of techniques to explore the organizational space defined by an ODML
model. In this section, I will first show that ODML-SAT is in the class of problems
with solutions that can be verified in time that is exponential in the length of the
input. This is known as the NEXP complexity class, which contains problems that
can be solved nondeterministically in exponential time. I will then show that ODML-
SAT is NEXP-Hard, by reducing the general form of a problem known to be NEXP-
Complete to ODML-SAT. This will show that ODML-SAT is itself NEXP-Complete.

In these proofs, I will assume that the ODML structure in question does not
contain recursive relationships. Structures that contain unbounded recursion have an
infinite search space, and therefore the ODML-SAT problem would be undecidable
in the general case. ODML does also allow a form of bounded recursion, where a
particular node may be revisited only a specified number of times along any root to
leaf has-a path in a valid organizational instance. In this case, the non-recursive set
is a strict and simpler subset of such bounded recursive template instances. Bounded
recursive templates can be converted to non-recursive equivalents by unrolling the
recursion, adding in placeholder nodes as needed to represent the individual recursion
levels.

Lemma 4.1.1. Given any non-recursive ODML template containing n nodes, each
with has-a relationships of size m, the maximum-sized instance derivable from that
template will have Sn =

∑n
i=0

(

n
i

)

mi entities.

Proof. In this proof we will be considering the parent-child structure of the organiza-
tion formed by the has-a relationship. Specifically, we wish to know what arrangement
of nodes formed by has-a relationships will produce the largest possible organization,
i.e., the one with the most distinct entities in it. Assume the total number of allowed
nodes for any given type is unbounded. Let n be input size, which is the number
of node types in an ODML template, {N1, . . . , Nn}. We will assume without loss of
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generality that each node Ni will have a single has-a relationship for each node type
Nj, n ≥ j > i (to avoid recursion) and that each such relationship is of size m. There
will therefore be m children created by each relationship.

If n = 0, the organization consists of only the empty root organization. If n = 1,
there is only one arrangement, which by our assumption will contain m + 1 entities,
which is maximum. Assume that there is an arrangement of n = k nodes that
will produce an organization with a maximum number of entities Sk, where Sk =
∑k

i=0

(

k
i

)

mi. The maximum sized, non-recursive organization with k + 1 node types
will add a has-a relationship of size m from all existing nodes {N1 . . . Nk} to the new
node Nk+1. Any fewer added relationships will lead to a smaller organization instance,
and any more relationships, or any relationships of size greater than m, violate our
base assumptions. This will result in a new instance which has all the entities from
the previous maximum sized instance, plus m new entities of Nk+1 for each of those
previous entities. The size of this new organization will be Sk+1:

Sk+1 =
k
∑

i=0

(

k

i

)

mi + m

k
∑

i=0

(

k

i

)

mi

=

(

(

k

0

)

m0 + · · ·+
(

k

k

)

mk

)

+

(

(

k

0

)

m1 + · · ·+
(

k

k

)

mk+1

)

=

(

k

0

)

m0 +

(

(

k

1

)

+

(

k

0

)

)

m1 + · · ·+
(

(

k

k

)

+

(

k

k − 1

)

)

mk +

(

k

k

)

mk+1

=

(

k + 1

0

)

m0 +

(

k + 1

1

)

m1 + · · ·+
(

k + 1

k

)

mk +

(

k + 1

k + 1

)

mk+1

=
k+1
∑

i=0

(

k + 1

i

)

mi

Because Sk+1 =
∑k+1

i=0

(

k+1
i

)

mi matches the original premise, the result follows by
induction.

Lemma 4.1.2. ODML-SAT is in NEXP.

Proof. Assume we have an arbitrary ODML structureO containing n node definitions,
each of which has some number of has-a relations of size less than or equal to m. By
Lemma 4.1.1 the largest organization derivable from a non-recursive ODML structure
O will contain O(mn) entities. Because the number of decisions that must be made
to create an organization is proportional to the number of decisions embedded in
each template node and the number of entities in the final organization, the number
of decisions is also O(mn). Therefore, if a satisfying organization exists, we can
nondeterministically guess a corresponding decision sequence in exponential time.
The instance itself may then be generated from this decision sequence in exponential
time.

89



� � �
� � � � � � �
	 � � 
 � � � � � 
 � � � � �
� � � 
 � � � � � 
 � � � � �

� � �
� � �

� � �

Figure 4.1. A sample TILING problem and consistent solution.

The validation step involves visiting each entity in the organizational instance, and
verifying that its constraints are satisfied. At worst, a constraint may be based on all
data possessed by all other nodes in the structure, which will require O(mn) time to
gather. Therefore, all entities may be validated in O(m2n) = O(mn) time. Because
a satisfying solution to an arbitrary ODML structure may be nondeterministically
discovered and validated in exponential time, it is in the NEXP complexity class.

To demonstrate that ODML-SAT is NEXP-Hard, one must show that any problem
in NEXP can be reduced to ODML-SAT in polynomial time. This is conventionally
done through a reduction from an existing NEXP-Complete problem to the problem
in question. Since any problem in NEXP can be reduced to any NEXP-Complete
problem in polynomial time, reducing from such a problem is a straightforward way
to achieve the larger goal.

The NEXP-Complete problem I will use is TILING, as defined in [140, 10]. A
TILING problem consists of a set of tile types T = {t0, . . . , tk}, a grid size N in
binary, and a set of horizontal and vertical compatibility relations H,V ⊆ T ×T . An
N×N tiling is a mapping f : {0, . . . , N−1}×{0, . . . , N−1} → T . f is consistent only
if 1) f(0, 0) = t0 (the origin 〈0, 0〉 has tile t0) and 2) ∀x,y〈f(x, y), f(x+1, y)〉 ∈ H (all
horizontal pairs are compatible) and 3) ∀x,y〈f(x, y), f(x, y+1)〉 ∈ V (all vertical pairs
are compatible). The TILING decision problem is to determine, given T,N,H, V , if
a consistent tiling exists. An example TILING problem and consistent solution can
be seen in Figure 4.1.

Lemma 4.1.3. TILING ≤ ODML-SAT

Proof. Any TILING problem with inputs T,N,H, V can be reduced to ODML-SAT in
the following way. First, construct an ODML model containing the TILING problem
inputs. The template for such a model, along with an example solution, can be seen
in Figure 4.2. The source for this particular model, which corresponds to the problem
shown in Figure 4.1, can be found in Appendix E. For each tile tn ∈ T there will be a
corresponding t n node that has an is-a relation with the abstract node tile. Similarly,
each compatibility relation h ∈ H and v ∈ V will be represented by a node having
an is-a relationship with horizontal relation and vertical relation, respectively. The
organization consists of N rows of N tiles that make up the mapping. The size of
this corresponding template grows linearly with the number of the TILING inputs,
and thus can be constructed in polynomial time.

The organizations derived from this template incorporate the elements of candi-
date mappings in the original TILING problem. The high level organization contains
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Figure 4.2. (top) An example ODML template used to reduce a TILING problem.
(bottom) A valid organizational instance created from that template.

the N row nodes of N tiles that make up the N × N grid. Because tile itself is
abstract, each has-a relation must be satisfied by one of the t n nodes present in the
template. Each row also has N − 1 horizontal relation nodes, corresponding to the
N − 1 pairs of tiles in the row. The vertical relation nodes contained by each column
are used for similar purposes. column itself lacks has-a relationships with tile, instead
referencing those contained by the row nodes directly.

The numeric values embedded in these nodes are used to ensure the consistency of
the mapping. Each tile has a type field corresponding to the type of the original tile.
Each relation has fields t1t and t2t, corresponding to the two tile types specified by the
corresponding original relation in H or V . The compatibility restrictions are modeled
using constraints in each of these nodes. Each relation contains a pair of constraints,
specifying that the types of the two tile nodes it corresponds to must match t1t and
t2t, respectively. The origin condition of the TILING problem is represented with a
constraint field in organization, which states that the tile at 〈0, 0〉 must have type t0.

If the original TILING problem had a consistent mapping, then there will exist a
valid organization. Cell 〈0, 0〉 in the organization will contain t 0. Each cell 〈x, y〉 in
the original mapping can be used as a choice of tile node for the corresponding row x
column y in the organization. Each horizontal or vertical compatibility relation relied
upon in the original mapping may be selected to satisfy the corresponding relation
has-a relationship in each row and column. All constraints in this organization will
be satisfied, and therefore it will be valid.
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If a valid organization can be found within the constructed model, then a consis-
tent mapping will exist in the corresponding TILING problem. The origin cell will
contain t0. Each choice of tile for row x column y can be used to specify the contents
of grid cell 〈x, y〉 in the mapping. Each horizontal relation and vertical relation rep-
resents a valid selection from the appropriate compatibility lists for each horizontal
and vertical pairings in the grid.

Because an appropriate ODML-SAT problem can be created in polynomial time
from the TILING inputs that contains a valid organization when a consistent mapping
exists, and does not contain a valid organization when no mapping exists, TILING
≤ ODML-SAT.

Theorem 4.1.4. ODML-SAT is NEXP-Complete

Proof. By Lemmas 4.1.2 and 4.1.3, and because TILING is itself NEXP-Complete
[140], ODML-SAT is NEXP-Complete.

4.2 Algorithmic Search Techniques

Strategies to cope with the potentially large and complex search space can be placed
into two different categories: algorithmic and heuristic. The key difference is that
algorithmic search techniques will always find an optimal solution if one exists, while
heuristic techniques may not. The former will be discussed in this section, while the
latter are covered in Section 4.3. The reader may also refer to Section 4.4.2.1, which
describes a direct, distributed approach to reduce search time.

Because of the computational complexity of ODML-SAT, a combinatorially fea-
sible algorithmic technique that works for all search spaces seems unlikely. However,
there may be algorithmic techniques that work for certain classes of problems, or offer
benefits to all problems without a formal reduction in complexity. The strategies pre-
sented in this section fall into this category. I will assume that they are used as part
of an initially exhaustive search of the organizational space. The base assumption
is that all organizational possibilities will be explored, and that the technique will
eliminate or avoid some of these possibilities. To be correct, a valid candidate with
optimal utility (if one exists) must be present in the subset of those possibilities that
are remain after applying the algorithmic technique.

Recall that all nodes in an ODML template are descendants of the organization
node. The search process begins by deciding any variables defined in that node, and
continues by instantiating or selecting nodes to satisfy any has-a relationships one-
by-one. As each has-a node is created, the search progresses in a depth-first manner
by deciding the variables and has-a relationships in each node. If an existing node
is selected to satisfy a has-a relationship the initial decisions made in that node are
retained.

An example of this process using the DSN model is shown in Figure 4.3, bold
outlines indicate the node where the indicated action is being performed. Step 3
shows a variable being decided, while step 8 shows an existing node (agent a) being
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Figure 4.3. The first eight organizational decisions made during a search of the DSN
organizational template.

used instead of creating a new one. Note that the incremental nature of this process
means that at any given time during the search, the organization may be only partially
instantiated, and any organizational values needed for analysis are calculated from
only the currently existing nodes and relationships.

The techniques described in this section revolve around this choice selection pro-
cess, by deciding what choices to pursue and which to ignore. Section 4.2.1 describes
and demonstrates a technique that uses the trend estimation of a value to determine
if currently unsatisfied constraints over that value are in fact unsatisfiable. Section
4.2.2 shows how choices can be grouped into equivalence classes, which can be used to
avoid redundant search. Section 4.2.3 describes how a general mathematical solving
engine is incorporated into the search process, which shows both how such tools can
be exploited and the relationship ODML has with a simple system of equations. The
remainder of this section briefly describes three other search techniques that show
promise.

4.2.1 Exploiting Hard Constraints

The first technique that I will explore is how to correctly bound the search by exploit-
ing the hard constraints that exist in the model. This is accomplished by determining
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the numeric trend of a constrained value, and stopping the search if it can be deter-
mined that the constraint is unsatisfiable based on that trend. For example, if a
value is already too high and its trend indicates it will only increase as a result of
later decisions, no further search needs to be performed along that branch of the de-
cision tree. In this section I show how these determinations can be made from the the
information contained in an ODML model and under what conditions this technique
is applicable.

Recall that all hard constraints must be satisfied in an organization for it to
be considered valid. If a constraint has become unsatisfied during the course of
an organizational search, it may be therefore be reasonable to halt the search and
backtrack from that point. Two issues complicate this process. The first is that
constraints may be initially unsatisfied and only become satisfied through the course
of the decision making process. The second is that, because values may change
non-monotonically, a constraint that is currently satisfied or unsatisfied can change
its state repeatedly during the instantiation process. Because valid organizations
may potentially be missed in either case, a strategy that blindly backtracks when an
unsatisfied constraint is observed is incorrect.

There are two ways that a value may change during the instantiation process: 1)
through the application of a modifier on that value; and 2) through a change in a field
the value’s expression is dependent on. Both these effects are caused by organizational
changes that take place after the value in question has been initially instantiated.
For example, in the sensor network domain, a sector manager’s communication load
will increase as the number of sensors in its sector increases. Relating a previously
instantiated node to a different part of the structure, which occurs when such a node
is selected to satisfy a new has-a relationship, will also usually result in value changes
within the node. For example, if the agent serving as that sector manager is later
bound to a sensor role as well, that agent’s communication load will increase.

Because modifiers and dependent fields are also based on potentially fluctuating
values, a change in one location may propagate through the organization, affecting
the values of many different fields. For example, the global utility of the organization
may be reduced in the above example because the increased average RMS error is
indirectly linked to agents’ communication load.

In the general case, this characteristic precludes correctly bounding the search
because one does not know, for example, if a currently unsatisfied constraint will
later become satisfied as more of the organization is realized. More insidiously, it is
also possible for a currently satisfied constraint to become unsatisfied for the same
reasons. Carried to its logical extreme, this means that the decision process cannot
be prematurely bound, and constraints can only be evaluated after the organization
has been constructed in its entirety. However, the combinatorics of the organizational
search and evaluation process are significant enough that this situation is untenable.

Fortunately, there are some situations where it is possible to dismiss alternatives
out of hand by incorporating higher-level knowledge about the organization as a
whole. For example, in the sensor domain a single agent cannot control more than
one sensor. Each agent has a sensors controlled value, which is initially zero and later
incremented using a modifier when it is assigned to a sensor. The one sensor per agent
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restriction is modeled by a hard constraint, which specifies that sensors controlled ≤
1.

If there are n sensors and a agents then there are an possible assignments of
agents to sensors, but only

(

a
n

)

of them are valid according to the sensors controlled
constraint. If it were possible to detect when an invalid assignment had been made
before all organizational decisions have been completed, one could bound the search
at that point and backtrack to where the constraint was satisfied. Because role assign-
ments made during the search process are permanent, a domain expert performing a
similar search by hand would know that there is no decision that could be made in
the future to reduce the number of sensors controlled by an agent. Therefore, it is
reasonable and correct to bound the search and backtrack if an agent is ever found
to control more than one sensor, because that constraint can never be satisfied as a
result of later decisions.

Because of its inherently myopic view, the organizational search does not have the
same information available to the domain expert. However, the relationship that the
expert’s knowledge is based upon is represented in the organizational template, in that
sensors controlled is affected by only that one type of modifier from the sensor node,
which increments the value by a positive constant. If it is possible to computationally
deduce such conditions from a gross analysis of an organizational structure, then it
will be possible to appropriately bound the search.

Based on this premise, if a constraint is currently unsatisfied, one has the choice
of allowing the violation to exist in the hopes that it will be resolved by some future
decision, or backtracking under the assumption it will never be satisfied. It is possible
to analyze the data dependencies that are expressed by the organizational representa-
tion to make this decision. In particular, by evaluating the equations that model the
constraint and the modifiers that have the potential to affect its value, it is possible
to estimate how future decisions might affect the constraint’s satisfaction. In essence,
the analysis will deduce the numeric trends of each term in the constraint relation
and use that to determine satisfiability. This analysis can be done computationally,
based on the information modeled in the ODML template.

The algorithm used to determine satisfiability is outlined in Figure 4.4. The
constraint is comprised of two parts, the target’s value (v) and the expression (e) that
the target is compared against. For example, if a constraint states that x < y + 2,
x is the target and y + 2 is the expression. The target is usually a constant or
variable defined elsewhere in the node with its own expression, from which its base
value may be calculated. To begin, one must determine the theoretical trends of
both components. It will then be possible to determine satisfiability by comparing
these trends. For example, if the value’s trend is to monotonically increase and it has
already exceeded the constraint’s constant value, it is unsatisfiable.

The trend estimation process starts by determining what fields the characteristic is
dependent on by enumerating the fields referenced by the characteristic’s expression.
For example, if x = a + 2b, its set of fields D will be {a, b}. The bounds and trend of
each symbol’s value must therefore be estimated to determine the trend of x.

A symbol that has no dependents or incoming modifiers is considered constant
(fixed). The range of the value may be determined immediately by evaluating its
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is satisfiable(constraint c)
if (c.satisfied) return true
tv← find trend(c.LHS)
te← find trend(c.RHS)
if (tv = unknown ∨ te= unknown) return true
if (tv = constant ∧ te= constant) return false
if (tv = increasing ∧

(te = constant ∨ te= decreasing)) return false
if (tv = decreasing ∧

(te = constant ∨ te= increasing)) return false
return true

find trend(expression e)
D ← e.dependencies
M ← e.modifiers
t ← constant
for (f ∈ D ∪ M)

tf← find trend(f)

df← ∂e
∂f

if (df .dependencies ⊆ { f } ∧ df is linear)
tf← ∇ df (i.e., wrt f and tf , increasing, decreasing or constant)

else tf← unknown
if (tf = increasing ∨ tf= decreasing)

if (t = constant) t ← tf
else if (tf 6= t) t ← unknown

else if (tf 6= constant) t ← tf
return t

Figure 4.4. Pseudocode for the constraint satisfiability and trend estimation proce-
dures.

expression, and its trend will be to remain constant. Symbols which are not fixed
reference other symbols that must themselves be analyzed. This analysis process is
therefore recursive.

Having determined the bounds and trend of a particular symbol, one must also
determine how it affects the value of the expression that references it. This can be
done by taking the partial derivative of the expression with respect to the symbol
in question. If both the derivative and the dependent symbol’s trend are monotonic,
then we may infer the behavior of the target’s value with respect to that symbol. If
either is not monotonic then the target’s trend is considered unknown, which indicates
the technique is not applicable.

Recall that modifier fields elsewhere in the organization can also affect a constant’s
value. By searching the organizational template, it is possible to find any and all
modifiers M that have the capacity of affecting a particular constant. For each
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modifier one must first determine the trend of the modifier’s expression, and next
determine how the modifier can affect the constant’s value. This is performed in a
manner similar to the analysis of the expression’s dependent fields. The only difference
is that the partial derivative is calculated from a combined expression that includes
the potential cumulative effects of the modifier. This will be described in more detail
below.

If the effect of each dependent field and modifier is known and predictable and
their aggregate effect is coherent, the overall trend of the expression’s value may be
estimated. For example, if all individual trends are incremental, the overall trend
will be increasing. If all the interactions decrease the value of the expression, it is
decreasing. If some symbols have the capacity to decrease while others increase, the
trend is considered unknown.

In this way the trends of both the constraint’s target and its expression may be
determined. One can use this information to determine if the constraint is unsatis-
fiable or potentially satisfiable. This is outlined in the series of conditional checks
made in the is satisfiable function from Figure 4.4. If this function returns false, then
no organizational decisions exist that have the ability to satisfy the constraint and
the search should backtrack. A response of true implies either that such decisions
do exist, or conflicting trends make it not possible determine satisfiability using this
particular analysis technique.

4.2.1.1 Monotonic Trends in the DSN Model

With the high-level procedure outlined above, I will show how the process works in
more detail. This section will describe its use on the distributed sensor model, while
the section following it will show when the analysis breaks down.

Once a constrained characteristic has been identified that must be checked, the
first step in the process to map dependencies between that characteristics and other
fields in the organization (i.e., determining D ∪M from Figure 4.4). For example,
if the expression defining a constant contains references to other fields, then that
constant’s value is influenced by and dependent on those fields. Similarly, if a constant
can be affected by one or more modifiers, one must identify those modifiers before
one can determine precisely how they affect the constant. Because nodes may be
passed as parameters to other nodes, and because modifiers may affect non-local fields,
dependencies have the potential to originate from anywhere in the organization. By
using the information stored in the organization template, it is possible to discover
these dependencies and form a dependency graph able to serve as the foundation for
the recursive trend estimation process.

A dependency graph generated from a subset of the sensor organization is shown in
Figure 4.5. Constants (oval), constraints (rectangle), modifiers (pentagon), variables
(trapezoid), parameters (triangle) are all represented. Edges indicate data depen-
dency relationships, where the target of an edge is dependent on the edges’ source.
Although this graph is fairly complicated, only the agent node at the bottom left
corner of the figure is relevant for this discussion. One can see how the earlier sensors
controlled example is reflected here. In the agent node there is the sensors controlled
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Figure 4.5. Partial dependency graph for the distributed sensor network model.
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constraint in question. This is influenced only by the local sensors controlled constant.
That constant is itself only affected by the agent.sensors controlled modifier in the
sensor node. This information, along with the underlying expressions they represent,
is sufficient to support the trend analysis. The relevant fields are as follows:

<node type="sensor">

...

<modifier name="agent.sensors_controlled " op="+">1</modifier >

</node>

<node type="agent" abstract="true">

...

<constant name="sensors_controlled ">0</constant >

<constraint name="sensors_controlled " op=" <=">1</constraint >

</node>

Because neither expression in agent references other fields directly, both trends
are zero and the values are locally constant. The same is true of the modifier’s
expression. The modifier agent.sensors controlled (Ma.sc) has an additive effect on its
target sensors controlled (Csc). Because we do not know a priori how many times
the modifier might be applied, a new variable na.sc is introduced to stand in for this
quantity. The resulting expression for Csc that includes the cumulative potential
effects of these modifiers is:

Csc = 0 + na.scMa.sc

The trend of the effect of this modifier can be computed as:

∂Csc

∂na.sc

= Ma.sc

Because each individual modifier’s expression Ma.sc is a fixed positive constant,
and because no other values influence the constant, we can conclude that the value
of sensors controlled will monotonically increase regardless of what organizational
decision is made. Since the constraint in question is unsatisfied only when the value
is too high, one can deduce that, once violated, it will remain unsatisfied regardless
of succeeding decisions.

Part of the power of this technique stems from the ability to exploit constraints
over just the subset of characteristics that are predictable, despite the fact that many
other unpredictable trends may exist in the model. Figure 4.5 shows that the re-
lationships and nodes involved in the sensors controlled characteristic are relatively
disconnected. Compare that to the communication load characteristic of agent, which
has a much more complicated lineage. It is influenced by modifiers in each of the
three roles, which are themselves indirectly influenced by nearly every other field in
the graph. The complexity here is not a barrier. In fact, it is quite possible that such
a tangled web of interactions could simplify to the same type of “always increasing”
behavior exhibited by sensors controlled. In this case, however, the web includes el-
ements that are not differentiable. Because of this, it is not be possible to exploit a
constraint governing the communication load characteristic.
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Figure 4.6. Dependency graph for the SUBSET-SUM example.

4.2.1.2 Non-monotonic Trends in a SUBSET-SUM Model

Similar non-monotonic behavior was observed in the IR model defined in Section 3.3.
There it was shown that the query rate and work load of an individual could change
as an indirect result of decisions made elsewhere in the structure. In fact, both the
distributed sensor network and information retrieval models have numerous examples
of unpredictable trends. However, as the agent’s communication load characteristic
demonstrates, the great complexity and length of those data flows make them cum-
bersome examples. Instead, I will show a simple model of a SUBSET-SUM problem,
and use that as a concrete example of when this type of analysis breaks down.

SUBSET-SUM is a classic example of an NP-Complete problem. A SUBSET-SUM
problem is typically formulated as follows: given a target t and some set of integer
numbers S, is there some subset N ⊆ S such that

∑

n∈N n = t. As with the TILING
problem, SUBSET-SUM can also be reduced to an ODML model. Begin by creating
an organization containing a constant sum with a value of zero and a constraint such
that sum == t. Create an number empty node with a size constraint of |S| − 1. For
each s ∈ S, create a number s node which contains a modifier that increments sum
by s and has a size constraint of 1. Finally, add to the organization a has-a relation
of number nodes with a size of S. This reformulation is proportional in size to S, and
can be constructed in polynomial time. An example ODML model corresponding
to the SUBSET-SUM problem t = 0, S = {−1,−1, 1, 1, 1} be found in Appendix
F. If a valid organization can be found, the sum of the numbers must equal t, and
the number nodes used in that organization represent a satisfying subset. If no such
subset exists, no candidate organization will satisfy the organizational constraint.

Consider the SUBSET-SUM dependency graph shown in Figure 4.6, which cor-
responds to the example problem above. The constraint target is sum, while its
expression is t. t is fixed, so we can precisely determine its bounds (in this instance)
to be [0, 0] and its value constant. Let Ksum be the constraint in question. Because t
is constant, ∂Ksum

∂t
= 0, and ∇Ksum

= 〈0〉, we can assume the constraint’s expression
is invariant.

The constraint’s target sum is locally defined by the constant Csum to be zero,
so changes do not directly arise from the definition. Two modifiers affect this value,
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Figure 4.7. A comparison of the search time differences with and without the
constraint estimation algorithm across three different models.

however, which can affect the value’s trend. Let n1 and n−1, and M1 and M−1 rep-
resent the number of times and values of the number1 and number-1 modifiers might
be incorporated, respectively. The constant sum can be rewritten more completely
as:

Csum = 0 + n1M1 + n−1M−1

The trend of sum in then:
∇Csum

= 〈M1,M−1〉
M1 and M−1 are each fixed, so this trend can be rewritten as 〈1,−1〉. Because the
one term decrements while the other increments, the two trends conflict. We can not
extrapolate trends from this analysis that would allow one to determine if Ksum is
likely to be satisfied by future decisions. Because of this, the gross trend is unknown,
and the constraint is verifiable only when the complete structure has been constructed
and no decisions remain.

Although the template analysis showed that the SUBSET-SUM search could not
be reduced by taking advantage of constraint violations, it is still possible to make use
of the trend information to improve the runtime performance of the search. When
a conclusive trend for a constrained value cannot be found, it may no longer be
worthwhile to check the constraint at all. If we assume that no higher-level heuristic
is guiding the search based on current constraint satisfaction, and that the search will
not be truncated because of a constraint violation, then we can assume the search will
progress regardless of the constraint’s state. Because determining if the constraint is
satisfied can be an expensive process, one can save time by simply ignoring unverifiable
constraints until the entire instance has been generated.

4.2.1.3 Results

The potential benefit of using this technique has been demonstrated through a series
of experiments, the results of which are shown in Figure 4.7. A pair of trial types
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were evaluated using three different models, one that bound the search using the
constraint trend estimate, and one that did not. The search process is deterministic,
and the timing differences for identical trials on the same dedicated processor were
negligible, so only a single trial was performed for each test.

The subset-sum tests show how search performance does not improve when using
the technique in that domain, because of the non-monotonic trends discussed in the
previous section. The two other scenarios (sensor-4 and sensor-9) were performed
using the DSN model, one with four sensors and one with nine. The technique is
seen to be quite beneficial in that domain, as the time elapsed in the “without” trials
quickly exploded while the “with” remained low. A third DSN scenario involving 18
sensors was also tested (but is not shown), where the trials using constraint estimation
finished after 2000 ms on average, and those without had not completed a single trial
after three days of computation. These results are consistent with the discussion and
motivation presented above.

The utility and significance of the benefit imparted by this technique depends
on the model itself. In models lacking constraints, or only containing constraints
over non-monotonic characteristics, no performance improvements will be realized.
In models possessing constraints over monotonic characteristics, the amount of im-
provement will depend on how large the search space is, and how much of that space
can be avoided by the technique. In the sensor-4 scenario, for example, the search
space was relatively small so only modest gains were observed. The space of the
sensor-9 scenario was much larger because of the increased number of role assign-
ments to be made. Additionally, the sensors controlled constraint could be checked
early in the decision tree, as a violation was detectable immediately after the con-
flicting sensor role assignment was made. Applying the trend estimation technique
early allowed very little work to be wasted, resulting in the dramatic savings in search
time. Therefore, although the performance gains are difficult to characterize in the
general case, this shows that careful structuring of the model can allow the designer
to take advantage of the technique.

4.2.2 Equivalence Classes

The second algorithmic technique I will discuss exploits the idea of equivalence classes
to reduce the search space. To do this, I must formalize the various ways that a has-a
relation may be satisfied. Recall from Section 2.2.1 thatN is the set of node templates
present in an ODML model. I will use dot notation to indicate characteristics of
objects, using the elements initially presented in Section 2.2.1. For example, h.t is
the type of has-a relation h, and N.I is the set of is-a relations possessed by node N .
Then Nt, the set of node templates which can satisfy type t either directly or because
of inheritance, can be defined as:

Nt =
⋃

N∈N

(N.t = t) ∨ (∃i∈N.Ii ∈ Nt) (4.1)
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Let A be the set of node that have previously been instantiated during the search
and currently exist. Then Dh, the domain of choices available to has-a relation h at
this particular point in the instantiation process, can be represented as the set:

Dh =
⋃

N∈Nh.t

a′
N.t ∪ {a ∈ A|a.t = N.t} (4.2)

a′
N.t represents a newly created instance of N . The size of Dh grows with both

the number of related templates and with the number of instances that have been
created. Since this latter set necessarily grows as part of the process of instantiation,
the domain of has-a relationships will tend to grow correspondingly, causing the
decision process to become more challenging as the instantiation process progresses.
I will continue by describing a technique that can be used to mitigate this growth in
complexity.

If there are k such decisions which must be made to construct the organization,
then the total number of complete paths in the corresponding decision tree is on the
order of nk. However, many of these paths may be the same, or at least functionally
equivalent. Consider the case where one is deciding upon an agent to serve as a sector
manager. There may be five previously instantiated agents, along with the option
of creating a new agent, resulting in six elements in the decision’s domain. Further
assume that four of those agents are simply sensor controllers, while the fifth is both
a manager of a different sector and a sensor controller. Note that choosing any one
of the four sensor controllers will produce the same organization, because they are
functionally equivalent with respect to this particular decision. By segregating this
agent pool into a set of equivalent classes and choosing a distinguished representative
from each pool, the domain can be cut in half to just three options.

More formally, one may define the equivalence class [a] of a particular element
a ∈ Dh using an appropriate equivalence relation (≡) over the set of elements in Dh.

[a] = {α ∈ Dh|α ≡ a}

This function may be used to derive the quotient set (Dh/ ≡) of the domain, consisting
of all possible equivalence classes as created by the function.

Dh/ ≡= {∀a∈Dh
[a]}

When h must be satisfied, the quotient set Dh/ ≡ can be used in place of Dh,
choosing a single member of each class to act as the representative of that class when
evaluating alternatives. Because the quotient set is at most as large as the original
set, this provides the opportunity to reduce the search space, without a corresponding
reduction in utility.

Although this segregation does not affect the combinatorics of the decision process
in general, it can still have a significant impact on the running time of the search.
Consider an extreme but common example from the DSN model. Assume that 99
agents have been created so far in the search process, all of which have been assigned
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Figure 4.8. A comparison of the number of alternatives that are considered with
and without equivalence classes across four differently sized sensor networks. The
models allowed designs with 3, 6, 9 and 12 total sensors, respectively.

to distinct sensor roles. A new sensor node has been created, and its agent has-a
relation h must be satisfied. Without using equivalence classes, there will be at least
100 alternatives to evaluate in Dh. Next, let the equivalence relation ≡sc be defined to
be true when the sensors controlled value of both nodes are equal and false otherwise.
Because all existing agents fall into a single equivalence class, the quotient set Dh/ ≡sc

will contain only two possibilities, thereby avoiding 98 redundant alternatives that
would otherwise have been examined.

In practice, the equivalence function for a particular decision is created using
a set of discriminators that are associated with the has-a relationship. Implicit
in the way this information is specified is the idea that different decision processes
may have different equivalence functions, since the set of relevant characteristics may
change in different contexts, even if they share the same underlying domain. For
example, when searching for an appropriate agent to fulfill the sensor role, one might
discriminate based on the agent’s sensors controlled field. When searching for an
agent for the track manager role, the agent’s current communication load may be
paramount. Each discriminator set consists of a list of arbitrary expressions similar to
those described earlier. During instantiation, the search process calculates the value
of each of these expressions for each member of the candidate set, which are then
combined to produce a “fingerprint” for the instance. The equivalence function ≡ is
defined as equality over these fingerprints; instances which have the same fingerprint
will fall within the same equivalence class. As above, a single member of each set may
be used to represent the entire class for has-a satisfaction purposes, thereby reducing
the domain of the decision and the consequent complexity of the search.

4.2.2.1 Results

The potential benefits of using this technique are shown in Figure 4.8, which compares
the number of organizational alternatives (both valid and invalid) that are considered
with and without equivalence classes across four sensor network design problems. The

104



“with” model has the sensor role create equivalence classes of agent nodes using the
sensors controlled characteristic, as described above. The search process is determin-
istic, so only one trial was performed for each data point. The log-scale graph shows
a dramatic decrease in the space of alternatives as the size of the organization grows,
which correspondingly reduces the required time to search that space. The same
optimal organization was found in both trials for each model. As described above,
this improvement occurs because many of the candidate agents can be identified as
redundant and ignored.

The significance of these results, and more generally the amount of benefit that one
can expect from using this technique, depends on both the model and the designer’s
choice of discriminators. The following section discusses this relationship in more
detail.

4.2.2.2 Selecting Appropriate Discriminators

Because these fingerprints are derived from expressions rather than simple constant
values, one can easily create “fuzzy” fingerprints by mathematically abstracting away
unnecessary detail. For example one of the sector manager’s agent discriminators
is the agent’s communication load. If just a simple reference to that field is used,
two agents with communication loads of 4.01 and 4.02 will be placed into different
equivalence classes. If, in the context of a particular decision, those two values are
functionally the same, the discriminator could be changed to

round(communication load× 10).

Both loads are transformed to a new value of 40 in this new formulation, eliminating
any detail past the first decimal point and placing them in the same class. This
change exists only within the discriminator definition, so such a transformation has
no effect on the original values as it is used solely for the purposes of classification.

Selecting the correct attributes to make up discriminator set, like the template
design as a whole, is largely a domain-specific process. Typically, a set of local discrim-
inating characteristics can be readily and intuitively created; an agent’s capabilities
or current load or a resource’s capacity are common examples. The particular set that
is chosen does require a working knowledge of the model itself, and must be selected
with care. A poor selection of discriminator may be so precise that the resulting
classes are too small to produce a measurable benefit. The opposite situation, when
an overly broad discriminator places (what should be) distinct candidates in the same
equivalence class, is worse still. In this case viable organizational alternatives may be
incorrectly ignored.

A similar but more insidious problem occurs when superficially identical nodes are
in fact organizationally different. Consider, for example, two agents A and B which
are in all local respects identical, and have been assigned the same role R1 in two
different parts of the organization. Assume agent A as R1 is part of a team, while
B operates independently in that role. Assume some new role R2 must be assigned
an agent, and that it will impose additional load on the agent that will impair the
agent’s ability to serve as R1. If A is assigned to R2, the team it is part of may
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be able to make up for A’s reduced performance, while B has no such backup. The
characteristics of the final organization will differ depending on the decision, despite
the fact that the two choices are myopically the same. This example demonstrates the
potential drawback of using the equivalence set technique for organizational design.
If the discriminator sets used for A and B fail to capture this non-local difference, one
of the corresponding organizations may never be considered because it is “hidden”
from the search process by the incorrect decision equivalence.

As with the underlying domain Dh, the quotient set for a domain is not static
during the instantiation process, because equivalence class membership will change
as instances are created and used in different circumstances. For example, assume
that the discriminator in question is the set of roles an agent has been assigned to. If
a new agent is created to fulfill the sector manager role, the new agent instance may
fall into a new equivalence class if no other existing agent instance has that single
role assignment. Similarly, when an existing agent instance is used in a new context,
as when it takes on a second role, it will switch to a new or different equivalence class
when using this discriminator.

While this same technique could be used to reduce the domain of variables, I
currently assume the designer has performed this process as part of the template
specification, and all domain members exist in distinct equivalence classes.

4.2.3 Using General Mathematical Solvers

Because so much of an ODML model is grounded in ordinary mathematical expres-
sions, a natural direction to explore is the applicability of existing, general-purpose
numeric solving engines to the organizational search process. For example, a suitable
translation can allow commercial tools such as Mathematica [209] or Maple to handle
the symbolic information provided by an ODML. Because these tools generally incor-
porate a range of analysis techniques and are optimized for processing mathematical
expressions, they may be able to address aspects of the search space in a manner
that is more direct and efficient than what has been presented thus far. Ideally, this
would result in a savings in both computational time during the search and in the
complexity of the ODML-specific search algorithm.

In addition to the efficiency and complexity benefits, by demonstrating how to
map portions of an ODML model into such a tool I also hope to create a conceptual
bridge between the two representations. To those that are familiar with the tool, such
a mapping can then serve to illustrate the decision problems represented in the model
and make the underlying concepts more accessible. The remainder of this section will
explain how such a mapping was created and exploited by the search process.

The engine that was selected for this mapping was Mathematica, because of its
ability to perform symbolic reasoning and the relative ease with which the Math-
ematica kernel can be remotely accessed by a separate computational process [96].
The first part of this process is to identify what aspects of the search are suitable for
translation, with respect to the capabilities provided by Mathematica. Particularly
relevant in this context are Mathematica’s ability to symbolically represent and eval-
uate expressions, its high-level list and value manipulation functions, and its ability
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find a set of variable assignments that optimize (maximize) the value of a nonlinear
expression.

As discussed at the beginning of Section 4.1, there are two types of decision
points that must be confronted by the design process: has-a relationships and vari-
able assignments. The choices made for the has-a decisions decide the structure of
the organization, which in turn decide the arrangement of the underlying equations.
Rather than simply assigning values in expressions, this process manipulates the ex-
pressions themselves through the incorporation or removal of equations as structural
components are added or removed as a result of different has-a assignments. This
decision process does not play to Mathematica’s strengths, which in its optimization
mode exists primarily in its ability to manipulating values. Because of this, I do not
see Mathematica assisting with this part of the design process. A more fundamental
detail is that it is primarily this point that differentiates a pure mathematical model
from that provided by ODML. Where a mathematical model is able to find a solution
to a set of equations, and ODML model is able to capture problems where such a set
of equations is just one alternative among many that must be considered.

Conversely, Mathematica is much better suited to the selection of values for vari-
able fields. If we consider just a single variable and the set of expressions it influences,
then making a choice for the associated decision point can be thought of as a standard
numeric optimization problem. In this case, we wish to find the value for the variable
that maximizes some characteristic (e.g., utility) subject to a set of constraints (e.g.,
the set of constraint fields present in the model). This process naturally extends to
the case where there are multiple such variable fields that must be decided.

To successfully and correctly employ this type of optimization technique, the
complete set of expressions relating the variables to the utility characteristic and
constraints must be known. If we assume that the variables are linked through ex-
pressions to all parts of the organizational structure, the first step of the mapping
process is to fix the set of expressions by deciding all known has-a relationships. Al-
though I will not do so here, this condition may be relaxed if the technique is used
on a subset of variables which are not so connected (see Section 4.2.5).

Recall the has-a relationship definition from Section 2.2.1. The requirement that
all has-a relationships be decided implies that the specific magnitude of these relation-
ships must also be known before the optimization mapping can be produced. These
magnitudes can be defined either directly or indirectly in terms of variables, which
means those variables must be decided before the optimization process and therefore
cannot be addressed by this technique. The same is true of any variables that can
affect parameters passed into nodes instantiated for the has-a relations. Choices for
all other variables may be deferred during the organizational search process, and ad-
dressed en masse by a final optimization phase to complete the search. Thus, the first
step in the mapping is to determine which variables must be decided and which may
be deferred. This may be accomplished by using the dependency graph described in
Section 4.2.1. After the graph has been created, but prior to initiating the search, the
magnitude and parameter definitions for all has-a relationships defined in the ODML
template are analyzed. Any symbols those definitions reference are noted, and the
dependency graph is used to recursively flag all constants, modifiers and variables
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they depend on. The decision for any variable that is not flagged by this process may
be deferred.

After the partial organization has been instantiated so that only un-flagged vari-
able decision points remain, the structure can be translated into a form that is ap-
propriate for the optimization process. In this case, the following operations must be
performed to create an input representation for Mathematica:

1. The expressions encapsulated by ODML’s hierarchy of nodes must be flattened
into a single list of equations and relations. Symbol references, which are nor-
mally interpreted within the node’s namespace, must be rewritten to avoid
conflicts in the new global namespace. Other syntactical changes to symbol
names, numeric constants and lists must also be performed.

2. Where possible, the built-in functions provided by ODML (see Table 2.1), must
be converted to an equivalent function in the new representation. For example:

forallprod(x̄) ≡
∏

x∈x̄

x→ Apply[Times[x̄]]

If an equivalent function cannot be found, the optimization process will not be
possible. Equivalent mappings currently exist for all functions except map and
those dealing with discrete distributions (E, V , Pr, mc). A complete list is
shown in Figure A.2.

3. The domain of deferred variables must be expressed. Currently this is accom-
plished with a complete disjunction. For example:

V = 〈1, x2, x + y〉 → (V == (1) || V == (x^2) || V == (x + y))

4. The variables and constraints must each been aggregated into lists that may be
provided to the optimization function.

Additional details of this process can be found in Appendix A.
After undergoing this translation, the organizational space captured by the de-

ferred variables can be searched by optimizing over the utility function defined by
the model. It is worth noting again that because it is operating only on this more
restricted space, this process is not solving the entire organizational problem. In this
way, the use of a solver such as Mathematica can be viewed as just another analysis
technique that can be employed as part of a the larger search of the organizational
space. In practice, there will generally be many such invocations of the optimizer,
because there will be many different partial organizations created by the earlier search
phases, each of which may contain variable choices that have been deferred.

This process is illustrated by a simple example shown in Figures 4.9 and 4.10.
Figure 4.9a shows the initial template. This organization consists of a simple group
of agents, where each agent is represented by the node type A. The variable numagents
indicates the different number of agents permitted in the group. The variable cpu in
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A
cpu = <10,20,30>

cost = 10 + cpu / 10

organization
numagents = <1,2,3>

cpu >= 60
utility = - cost

numagents

organization
numagents = 2

cpu >= 60
utility = -cost

A
cpu = <10,20,30>

cost = 10 + cpu / 10

A
cpu = <10,20,30>

cost = 10 + cpu / 10

organization
numagents = 2

cpu >= 60
utility = -cost

A
cpu = 30
cost = 13

A
cpu = 20
cost = 12

(a) (b) (c)

Figure 4.9. Three stages from the search process using an external optimization
engine. The original template (a), the instance with deferred variables (b), and the
final organizational instance (c).

A indicates the choice of processing power that the agent will take on. This is also
reflected in the agent’s cost, which is defined in terms of a fixed base value and a
supplemental cost proportional to the cpu. The organizational cpu (defined as the
total processing power over all agents) is constrained to have a minimum value of 60.
Utility is negative of the organizational cost (defined as the total cost over all agents).
Based on this, the optimal organization will meet some minimum level of processing
power while minimizing its cost.

There are two variables present in this template, numagents and the agent’s cpu.
The former is used as the magnitude of the organization’s has-a relationship with
A, and therefore cannot be deferred. The latter has no such restriction, and can be
deferred to the optimization process. The overall organizational search will progress
by producing a series of partial instances that can be passed to the optimization. An
example of such an instance can be seen in Figure 4.9b. This was then translated
into the set of Mathematica statements shown in Figure 4.10. In that code, the
constraints and variables lists are used to contain their respective information.
These are eventually passed into the Maximize function at the bottom, which performs
the optimization process. The result of this process is a pair of bindings for the
two cpu variables, which are then used to produce the final instance in Figure 4.9c.
Agents were assigned cpu values of 30 and 20, which meets the high level constraint
on organizational cpu while producing the minimum total cost of 25.

A depiction of the performance obtained when using Mathematica to maximize
the value of deferred variables is shown in Figure 4.11. This graph was produced
by comparing the performance using the numeric solver to the centralized search
techniques described in previous sections across ten scenarios. Each scenario searched
through the space defined by a variant of the template depicted in Figure 4.9a. The
complexity of this search was increased in each subsequent scenario by changing the
numagents variable, which increases the number of agents allowed. For example, in
nth trial numagents = 〈1, . . . , n〉. The organizational performance constraint was
cpu ≥ n × 30. Each search sought to maximize the organization’s utility, although

109



Clear["Global ‘*"]

variables = {}

constraints = {}

organization[agents] = {A1 , A2}

organization[numagents] = Rationalize [2.0]

organization[cost] = (Total[Map [#[ cost] &, organization[agents ]]])

organization[work] = (Total[Map [#[ cpu] &, organization[agents ]]])

organization[utility] = (-organization[cost])

AppendTo[constraints , (organization[work] >= (Rationalize [60.0]))]

AppendTo[variables , A1[cpu]]

AppendTo[constraints , (A1[cpu] == (Rationalize [10.0]) || A1[cpu] ==

(Rationalize [20.0]) || A1[cpu] == (Rationalize [30.0]))]

A1[cost] = (Rationalize [10.0])

AppendTo[variables , A2[cpu]]

AppendTo[constraints , (A2[cpu] == (Rationalize [10.0]) || A2[cpu] ==

(Rationalize [20.0]) || A2[cpu] == (Rationalize [30.0]))]

A2[cost] = (Rationalize [10.0])

Maximize[organization[utility], constraints , variables]

Figure 4.10. The result of the ODML translation process. This code is passed into
Mathematica to perform the optimization.

the prior constraint caused just a single alternative in the template’s space to be
valid. All experiments were performed sequentially on the same processor.

As the graph shows, using the solver resulted in dramatically longer search times
as the problem complexity grew (note the ordinate axis is logarithmic). At the most
extreme point tested, the conventional search required 50 seconds to find a solution
that took Mathematica 62 hours. My hypothesis for this behavior is that, because
Mathematica’s maximization function naturally operates over a continuous space, it is
ill-suited to search through the discrete space presented by ODML. This may cause it
to explore impossible variable assignments that the conventional search would ignore
simply because they are not in the variable’s domain, which would result in the longer
running time. Other engines capable of attacking ODML’s optimization problem in
different ways may be more effective than what is presented here.

4.2.4 Avoiding Redundant Search

Somewhat related to the notion of equivalence classes is the higher-level pattern of
paths explored by the search process. Most (but not all) has-a relationships with
non-unary magnitude are unordered. The ordering of members within the set created
by that relationship does not matter. During the search and incremental generation
process outlined above, a depth-first approach is generally used to instantiate such
relationships. The first node is instantiated, followed by the second, and so on.
For each such instantiated node, a series of additional decisions might need to be
made for additional organizational elements that exist in that child structure. For
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Figure 4.11. Performance of the numeric solver versus conventional search across
different problem complexities.

example, in both the distributed sensor network and information retrieval domains,
has-a relationships exist in the structure that have potentially complicated decedent
structures. The sector node in the DSN model can contain multiple sensor roles
that must be bound to agents. The aggregator node in the IR model can contain a
mixture of aggregators and databases, which also require agent bindings along with
potentially more complex sub-structures.

Because the membership set may be unordered, a naive depth-first approach to
this search will be inefficient through its repeated exploration of equivalent spaces.
For example, consider a simple case where and aggregator has has-a relationship of
size two with source. Both aggregator (A) and database (D) have an is-a relationship
with source, so a complete search of the space might test the four choice sequences
AA, AD, DA and DD. However, because the set is unordered, the results of AD and
DA will be the same. There is no need to explore both options.

To avoid this, a list of explored sequences is maintained during the search process
for each such decision point. As with the equivalence classes, a fingerprint is produced
for each sequence, by storing the sorted sequence of decisions that have been made.
During the search process, if the fingerprint from a completed sequence of decisions
matches one that has been previously produced, backtracking occurs to avoid addi-
tional redundant work. This technique reduces the difficulty of such a search episode
by treating the decision space as a combination of choices, rather than a permutation.
The computational complexity remains the same, but significant savings in time and
memory are still observed in practice by using such an approach.
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4.2.5 Independent Sub-Problems

Another approach to optimizing the search process is to exploit the potential existence
of independent sub-problems. There may be particular components which operate rel-
atively independently of others, much like divisions in a human enterprise. These weak
interrelationships can be detected by searching the template’s data dependence graph
for disconnected or weakly connected subgraphs. One could then find organizations
that maximize or minimize the relevant characteristics of this subcomponent without
regard to parts of the remaining organizational structure. Separating the two spaces
and optimizing them independently can result in a much smaller search time without
adverse effects to utility. This approach has been fruitful in other areas, giving rise
to concepts such as nearly-decomposable hierarchies [172] and transition-independent
decentralized MDPs [9] that use a divide-and-conquer approach to solving large and
complex problems. Such techniques have yet to be developed for ODML, and remain
an open area of research.

4.2.6 Domain-Specific Techniques

The approaches outlined above are all domain-independent. They have no knowledge
of specific types of organizational components, or how they interact, other than what
is encoded within the available model. This allows them to operate independently
of what (potentially hidden) semantics might exist in or between those components.
The obvious benefit is that these strategies work correctly regardless of domain or
structure. The drawback is that the semantics they ignore may in fact be useful
when guiding the search process. I showed how the semantics of the sensors controlled
behavior could be uncovered by deducing the underlying trend of that field. However,
it may be difficult or impossible to analytically deduce the trend of fields with more
complex dependencies. A domain-specific search process, however, could know this
intuitively, by embedding such knowledge into the search itself. Although it is quite
possible to construct such a search process to work with ODML structures, and there
may be good reason to do so for particularly complex and important models, in this
thesis I will focus exclusively on more general, domain-independent approaches.

The one concession that is made in this direction by the current implementation
is a feature of the language that allows the model designer to specify the order in
which organizational choices are considered. Each decision point accepts a decisions
tag, which takes in an ordered list of decision fingerprints. If such a list exists for a
particular has-a relationship or variable, it is consulted and followed as that decision
point is encountered during the search process. This permits some level of influence
on the part of the model designer with a minimum of effort, particularly if it is known
that certain areas of the search space are more fruitful than others.

A somewhat related feature that is also available is the ability to construct organi-
zations interactively. As each decision point is encountered, a choice is solicited from
the human operator. Of course, because of the vast number of possible organizations,
this is not a practical way of constructing very large organizations or exploring the
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(a) (b)

Figure 4.12. Two information retrieval templates, derived from Figure 3.2a. a)
Incorporates homogeneity, by limiting aggregator selection to two distinct choices. b)
Incorporates abstraction, by eliminating the assignment of roles to distinct agents.

entire space of alternatives. It is, however, a useful tool when creating and evaluating
the model itself, and when creating specific organizations for testing purposes.

4.3 Heuristic Modeling Techniques

Section 4.1.1 showed that the complexity of an ODML template is derived from
the number of decisions that must be made when using the structure to generate
organizations, which determines the number of candidate organizations that may be
derived from that template. For example, when the number of agents that can be
in the final organization increases, the number of agent-role assignments will usually
increase accordingly, as may the size and number of the less tangible organizational
structures such as hierarchies, teams, resource pools, etc.

In addition to creating ways to efficiently search the space as the previous section
did, it is also possible to address the scale problem through changes to the model
itself. By altering the template, one can limit the number of decisions that must
be made when interpreting the template, thereby making the number of decisions
less dependent on the number of agents in the system. This will reduce the number
of candidate organizations, which will shrink the organizational space that must be
searched. This section will concentrate on two modeling techniques, which have been
employed to successfully reduce the complexity of the organizational search.
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4.3.1 Homogeneity

Enforcing a certain amount of homogeneity, or at least similarity, within an organiza-
tional structure can dramatically reduce the number of decisions which must be made
by eliminating organizational choices. For example, we might change our template
such that all of a mediator’s sources must have the same form, e.g., that they are
all single level aggregators. We can improve on this strategy by exploiting ODML’s
inheritance rules to embed multiple distinct alternatives, rather than providing only
a single choice. For example, consider the template in Figure 4.12a. In this model,
I have defined two distinct source types, a tall-aggregator that has two levels, and a
short-aggregator that has just one. Both contain a total of four databases, but they
will have different performance characteristics because of their different structure. In
this new template, candidate organizations may contain either or both alternatives,
while other permutations of the aggregator hierarchy have been eliminated.

The use of homogeneity as an iterative process best exploited during the design
phase. Typically, one would begin by creating a very general template, capable of
producing almost all feasible organizations. As variations are generated and com-
pared, it is common that particular organizational characteristics will define certain
classes of structures or substructures. Simple examples of this include the “tall” and
“short” varieties I have identified in the information retrieval domain. The members
of a particular variety may be similar enough that a single representative structure
can stand in for the entire class with only minimal loss of utility, in much the same
way that members of a formal equivalence class do. For example, there are a vast
number of short and wide aggregator hierarchies that have only minor differences in
form and function. In Figure 4.12a I replaced this large number of choices with a
single short-aggregator, which will certainly reduce the organizational search space,
and hopefully not limit the quality of the final organization. Such classes can serve
as the foundation for a reduction process that captures the notion of homogeneity, by
replacing a potentially complicated set of decisions with a set of predefined structures.
Ideally, one could incorporating a representative from each distinguished class, pro-
ducing a template with a smaller candidate search set but negligible loss of potential
utility.

4.3.2 Abstraction

A different way to reduce the decision complexity of a model is to use abstraction
to reduce elements of the structure to their simplest form. Unnecessary or optional
details may be removed or captured with a probabilistic representation to eliminate
branches of the template which would otherwise add to the decision process. This
strategy is used to design human organizations, such in supply chain optimization
techniques that reason about entire companies, and the aggregate characteristics of
those companies, not individuals within those companies. The ability to represent
organizational elements at an arbitrary level of abstraction in ODML is significant
feature that is absent most other existing representations, which typically require a
complete structure down to the agent level. As with homogeneity, this practice can
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potentially lead to an undesirable loss of expressivity in the model, but with care
an appropriate compromise can usually be found. Critical details omitted from the
model may also be restored to a subset of abstract candidates that have been found
to be promising.

An example of this approach, particularly relevant to decomposition-based repre-
sentations such as ODML, is to truncate the model at some point higher than the
level actually used by the running system. This is already used in the models from
Section 2.2 in some respects because the internal decision making processes of agents
are not represented. A more typical example of this technique is to not model down
to the level of assigning roles to individual entities or agents, as shown in Figure
4.12b. Organizations derived from a truncated template will specify what roles exist,
and where they are located in the organizational structure, but leave them otherwise
unbound. A separate, more detailed role-agent search could then be performed on a
subset of the discovered structures, or a role assignment algorithm used to find an
appropriate binding [159, 138, 35].

This technique is analogous to those presented by Durfee in [52], which used
team-level abstraction to leave specific agent assignments unbound during coordina-
tion, also to reduce complexity. If agents were heterogeneous or permitted to take on
multiple roles, this can reduce the search space exponentially. Even if agents were
homogeneous, in a fully hierarchical structure this can cut the size of instances in
half, which simplifies analysis and reduces memory consumption. The precision lost
in this instance stems from the details that were previously stored within individual
agent nodes. For example, it is more difficult to validate an individual agent’s com-
munication or work loads. Generic agent nodes can be retained to compensate for
this loss of detail, but one will not be able to predict how the combined effects of
multiple roles affect the agent or its performance within the organization.

The further implication of using this technique arises from the fact that the re-
sulting organizational instance will no longer completely specify how it should be
applied to a set of resources and agents. Decisions that were previously made during
the design process must now be made by an axillary process or at runtime. In the
example above, roles must be assigned to specific agents before the system can func-
tion. A second process must take the agent population and map them to the nodes
proscribed by the selected organizational instance, which is itself a search process
[175]. Although this late binding requires additional analysis after the design phase,
our belief is that it also fosters increased context-sensitivity by providing a framework
to support dynamic allocation. For example, assume that the mediator role not been
bound to a particular agent at design time. At runtime, when the actual number
and types of databases are known (as opposed to the statistical averages used in the
models), the organizational design can be inspected to determine what resources that
role requires and what burdens it will place on the agent it is assigned to. That entity
model, coupled with the new information obtained at runtime can be used to select
an appropriate agent to fill that role.
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Table 4.1. Results from organizational search in small-scale information retrieval
templates. Number of agents and utility are given for the optimal found organization.

Template Decisions Valid Organizations Agents Utility
Baseline 6,210,780,885 12341 9 692.86

Homogeneous 521,379,796 8273 9 691.45
Abstract 59,940 12 9 692.86

Homogeneous + Abstract (a) 5280 7 9 691.45
Homogeneous + Abstract (b) 3483 3 8 690.85

4.3.3 Heuristic Modeling Results

The exact amount of search space reduction that is observed using these techniques
is dependent on the particular manner in which the template changes are carried out.
Some approaches will clearly be better than others in terms of space complexity and
achievable utility, and I have shown how hybrid strategies that use a limited set of
decisions can help offset the drawbacks associated with model reduction.

To demonstrate the effectiveness of these techniques, two sets of templates for
the information retrieval domain have been created. The small set allowed up to five
databases, up to two mediators, and the aggregators could have two, three or four
sources. The larger design allowed up to 100 databases, with up to five mediators,
each of which could have two to four sources. The number of agents was unbounded.
The source node types are the same hierarchies discussed in Section 3.1, with a single
level height restriction in the small scenario, and a three-level restriction in the large
(i.e., up to two aggregators with a database leaf). Five templates were created for
each scenario. The baseline template is shown in Figure 3.2a. The second template,
using the homogeneous technique, is similar to that shown in Figure 4.12a. The third
employs abstraction, by not assigning a particular agent to each role. Alternatively,
one could also view this model as creating a new agent for each role. The fourth and
fifth templates incorporate both the homogeneous and abstract techniques. Slightly
different modeling changes were made in each, to demonstrate how the search space
may be affected by these techniques.

The results from the small scenario are shown in Table 4.1. The table shows the
number of decisions made during the entire search, the number of valid organizations
that were found, and the number of agents and utility of the optimal structure. The
most dramatic reductions in search space occurred using abstraction, which reduced
the number of valid organizations that had to be evaluated by two orders of magni-
tude. The reduction in decisions that were made was even greater. The number of
possible assignments of agents to roles can be quite large even for small organizations,
so avoiding this process results in a tremendous reduction in search space. The op-
timal organization found by the baseline template is shown in Figure 4.13. Because
there was no limit on the number of agents and no cost associated with each agent
the optimal organization assigns only one role per agent.
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agentdatabase database
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Figure 4.13. The optimal organization found by the baseline template for the small-
scale scenario.
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Figure 4.14. Optimal organization instances produced by the Homogeneous + Ab-
stract (a) and (b) templates for the small-scale scenario.

The organizations produced by the two Homogeneous + Abstract templates in the
small scenario can be seen in Figure 4.14. Template (a) allowed single hierarchies with
aggregators limited to two databases, while (b) allowed aggregators to manage three.
Although both structures produce the same response recall, the optimal organization
arising from template (b) had slightly lower utility. As seen in in Figure 4.14, the
load in (a) is more distributed than it is in (b). This difference leads to a small
increase in average response time, which resulted in the lower expected utility. This
demonstrates the intuitive fact that different heuristic modifications will result in
different search space modifications, and it is possible to lose high valued solutions
in the process. The figure also shows that neither homogeneous template retained
the optimally valued organization, because as Figure 4.13 shows the optimally valued
organization itself was not homogeneous. This is a byproduct of the fact that an odd
number of databases are used, and although the optimal design is lost, the amount
of lost utility is quite small.

The optimal organization for three of the five large-scale database scenarios was
simply too difficult to determine. Consider that, if agents may take on multiple roles,
a single candidate structure containing 100 roles has 100100 possible assignments of
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Table 4.2. Results from organizational search in large-scale information retrieval
templates. Number of agents and utility are given for the optimal found organization.

Template Decisions Valid Organizations Agents Utility
Baseline Intractable, ≈ 7.4× 10301 candidates

Homogeneous Intractable, ≈ 2.2× 10108 candidates
Abstract Intractable, ≈ 7.4× 10201 candidates

Homogeneous + Abstract (a) 52,792,143 473 135 14.561
Homogeneous + Abstract (b) 44,057,638 264,293 116 10.489

agents to those roles. Even if agents may take on only a single role, there may be
100! permutations if the agents are distinguishable. Organizations produced from
the structures used in this scenario may contain more than 100 roles, and there
are billions of possible structures. Finding the optimal structure in such a large
space is intractable. However, by incorporating the concepts of homogeneity and
abstraction into the original model, it is possible to design valid organizations in a
reasonable amount of time. A quantitative summary of the search process for the
remaining structures which employ both the abstraction and homogeneity techniques
is shown in Table 4.2. Lacking a baseline comparison, I cannot state that the optimal
organizations that were found had the optimal utility originally achievable. However,
many different organizations were found, all of which meet or exceed the constraints
specified by the original model.

The particular organizations obtained by the two remaining templates are of mi-
nor significance here, more important is the fact that it was possible to use these
techniques to find appropriate organizations for systems incorporating more than 100
agents. These results demonstrate how generic modeling techniques can be used to
reduce the complexity of an organizational search process. If suitable modifications
are made, one can vastly reduce the search space with minimal reduction to utility,
although the amount of reduction is clearly affected by the skill of the expert making
the changes.

4.4 Designing Organizations in Practice

This section covers a range of topics that relate to the practical application of the
techniques described thus far. Section 4.4.1 describes the organizational instance
evaluation process in more detail, including empirical tests of a value caching system
used to make the process more efficient. Section 4.4.2 shows how and where the
design process actually takes place. This includes both a description of the existing
top-down, distributed approach and an outline of how ODML can be used to grow
organizations in a more bottom-up, emergent fashion. Section 4.4.3 describes how
a selected design is used in practice, using the information retrieval simulator from
Section 3.2 as an example system that does so.
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4.4.1 Efficiently Evaluating Organizations

Previous sections have shown several ways to search the organizational space, and dif-
ferent techniques may be employed within the search to decide what and how elements
are considered. A common theme that runs through nearly all these approaches, how-
ever, is the need to analyze and evaluate the structure during its formation and after
it has been completed. Much of this analysis is based on the ability to calculate the
organizational values embedded within the node definitions, as formalized in Figure
2.9. For example, these are needed to determine the satisfaction of hard constraints,
to determine the size of has-a relations and to calculate the quantitative character-
istics of individual nodes, among other things. Given this ability, the comparative
evaluation of organizational alternatives can be performed by first determining if the
design is valid, and then ranking the designs based on their predicted utility.

Recall that an organizational value, such as utility in the organization node, is
defined by a corresponding field that will contain an expression. When a concrete,
numeric value for that field is needed, the process begins by determining what other
fields (if any) the expression is dependent on. For example, in the DSN model, utility
is dependent on the field average rms, also contained within organization. Before
a value for the field may be determined, values for all its dependents much be cal-
culated. This is done recursively for all the field’s dependents, and the dependents
of the dependents’ fields, and so on. The recursion terminates when a field has no
dependents. When values for all the dependents have been obtained, the expression
can be evaluated. Note that this calculation may need to leave the original node and
traverse the organization to obtain the dependent values. For example, average rms
is dependent on trackers.rms, the rms field for each of the nodes contained in organi-
zation’s trackers has-a relationship. Each tracker node must be visited to obtain this
information.

A field’s value is not determined solely by its defining expression, but also by any
modifiers that have been applied to it. After the expression’s value is calculated, one
must also determine the values for any relevant modifiers and apply them. When a
new modifier is created during the search and instantiation process, the node contain-
ing the target of that modifier is notified. This information is stored and referenced
each time a value is needed, which permits the node to both recognize what modifiers
exist and from where those modifiers’ values may be obtained. After each modifier is
applied in turn, the final value for the field is returned.

Because of the numerous interdependencies that can exist among fields, and the
modifiers that can interject at any point, calculating a value can be a relatively time-
consuming process. In addition, such calculations will usually be performed frequently
during the search process, as the controller needs to evaluate the working state of
organization to know when it is appropriate to backtrack. Because it is common for
the same values to be requested a number of times in succession, a caching system
has been added to the process to make it more efficient. When a value is requested,
the computed value is stored and returned without further processing on subsequent
queries. This can provide dramatic improvements, especially for highly interconnected
fields such as utility.
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Figure 4.15. Search performance with and without cached values.

The drawback to this approach is the relatively complex bookkeeping that must
be maintained to ensure cache consistency. Values may change over the course of
instantiation, as when a new modifier is applied or if a new element is added to a
dependent array. When this occurs, the cached value must be invalidated, along with
any other local or nonlocal fields that are dependent on that value, to be sure that up
to date information is always used. Unfortunately, although it is possible to directly
determine from an expression what it is dependent on, there is no direct way to de-
termine what other fields are dependent on it. In order to accomplish this, a data
dependency graph is maintained throughout the construction process. As new depen-
dencies are recognized they are added, indicating what nodes and fields are dependent
on a value. Later, if backtracking takes place, the appropriate dependencies must be
removed and their corresponding values invalidated. Maintaining this representation
does add overhead to the process, however in the majority of circumstances this over-
head is far outweighed by the time saved by avoiding calculations. Section 4.5 will
also show how this same structure can be exploited during the system’s monitoring
phase.

A set of trials were performed on different models to evaluate the benefits of
using cached values. The results are shown in the log-scale graph in Figure 4.15.
The IR and IROp scenarios used the information retrieval model, returning the first
valid and optimal instance, respectively. Dist2 and Dist3 employ a number of Monte
Carlo evaluations. DSN1 and DSN2 are two different sensor network models, the first
employs 36 sensors, while the second has only 4 and uses Monte Carlo test to vary
the number of targets. The Solver is a test model that contains a number variables
related through simple equations.

The three models that observed the most benefit were IROp, DSN1 and DSN2,
each of which saw at least an order of magnitude reduction in time required to com-
plete. The key difference between these and the remaining models is that they both
contain a larger and more interconnected set of equations and have a long search path.
The non-optimized IR model was interconnected, but the search was sufficiently brief
that little recomputation was needed. The Solver model required a fair amount of
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search, but the expression set was simple and small. As each decision was made al-
most every cached value was invalidated, so no benefit was realized. The Dist2 and
Dist3 models were both simple and had essentially no search. All the time that was
consumed during the Monte Carlo evaluation process. Like Solver, little benefit was
observed because these models were small; nearly every value was invalidated as each
new value was tested. The three models which saved time did so because large swaths
of expressions that would otherwise need to be processed were effectively hidden be-
hind cached values, and those values remained stable for sufficiently long periods that
they could be used. Fortunately, it is precisely this type of large and interconnected
model that is frequently required to describe realistic systems, suggesting that similar
performance gains can be observed in practice.

4.4.2 Constructing Organizations

The design process as outlined thus far has been described without specifying in
detail where the actual computation and deliberation takes place. In this section I
will provide additional details that concern how and where the design search takes
place. Section 4.4.2.1 will briefly describe the initial centralized, top-down approach,
as well as the current distributed strategy that retains a top-down perspective. Section
4.4.2.2 will outline how a distributed, bottom-up approach can also be used to grow
the organization in a more emergent fashion.

4.4.2.1 Top-Down Construction

Top-down construction of organizations from an ODML structure proceeds in a man-
ner consistent with the implicitly centralized design presented thus far. A model is
created and given to a single process which searches for an appropriate organization,
optimizing the exploration by using some of the search and space reduction techniques
mentioned in the previous two sections. The selected organization is then provided to
the relevant entities (e.g., agents), which use the information to select roles, identify
relationships and guide local activity.

This is known as a top-down approach because a complete, unified view of the
organization is decided upon at once through the efforts of one or more closely cooper-
ating entities. The existing search implementation can be distributed across multiple
agents or processors to take advantage of parallelism, or operate in a centralized man-
ner on a single processor as a degenerate case of the same design. This distribution
is facilitated by the naturally decomposable organizational space. Section 4.1 de-
scribes how the design process can be thought of as a series of choices made for the
decision points encoded in the organizational template. These decision points form
the backbone of a corresponding decision tree, while a series of choices that form a
particular organizational instance is a path from root to leaf through that tree. The
search space can be cleanly partitioned at each vertex, where the decided path to
that vertex is shared and the child choices may be divided as needed. Assuming that
the individuals performing the search can be provided relatively equal portions of
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that space without excessive communication overhead, the total search time can be
dramatically reduced.

The challenge in this design is dividing the search space such that processing nodes
are evenly loaded and no redundant work is performed. There are at least two ways to
create such a division. The direct approach is to analyze the space and divide it into
n roughly equal-sized parts for the n available processors. If done correctly, this can
maximize parallelism while minimizing inter-processor communication. The difficulty
in this approach is that it requires one to characterize the entire search space before
a division is made, and it assumes that a series of equal divisions can be devised from
such a characterization. Because parts of the organizational space may only become
apparent as a result of other choices, it is not trivial to create such a characterization
for an ODML template in the general case. A further complication arises in a mixed
processor environment, where an “equal division” may have to take into account the
capability of the target in addition to the size or complexity of the partitioned space
that is provided.

Because of these complications, I have employed an alternative division technique
that partitions the space dynamically as the search progresses, similar to that pre-
sented in [146]. This trades off optimality in message exchange to create a solution
which dynamically adapts the division of labor, regardless of the search space char-
acterization or participant heterogeneity. Assume there exists a set of n processing
agents that will take part in the search. Upon initialization, all agents provided with
1) the organizational template, and 2) the names of their agent “neighbors”, some
subset of the n agents. The search begins when a single agent is told to begin search-
ing. Whenever any agent has no organizational space to search, it sequentially asks
each of its neighbors for more work (i.e., another part of the organizational space). If
the recipient of such a message has extra work, it partitions its local space and gives
the new fragment to the requester. The requester then stops its querying and begins
searching the new space. This continues until either a valid organization has been
found (satisfaction) or the entire space has been searched (optimization).

The efficiency of this process is determined in large part by how the local space is
partitioned in response to a request. If either side of the partition is very small, the
time spent searching for and creating that small partition may be relatively large com-
pared to the time saved by the parallel computation. Because the query recipient does
not know to expect subsequent requests for work, an ideal optimistic partition would
divide the local space in half. Unfortunately, accomplishing this directly requires one
to address the same space characterization problem described above. Instead, the al-
gorithm approximates that characterization with a heuristic that divides the space at
the highest vertex in the decision tree that has remaining choices. In large, relatively
balanced spaces, splitting at the highest point should do a good job of bisecting the
space. Even in less balanced spaces, the participants will eventually converge on the
larger areas, as new work is sought out after the smaller spaces are consumed. An
example of the partitioning process is shown in Figure 4.16. In that figure, the num-
bers which are struck out represent choices that have already been explored. Those
in bold represent the current decision path under evaluation, while a question mark
indicates that additional unknown choices remain. The division occurs at the second
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Figure 4.16. The partitioning of a local search tree. Strikeouts indicate visited
choices, bolded are the current choice, while a question mark indicates additional
unknown choices remain.

node from the top. Partition A encompasses the part of the search tree that follows
below choice (3, 3), while partition B contains the remaining choices (3, ?).

After a valid instance is found, the decision tree and utility (if any) of that solution
is broadcast to all processing agents. If a satisfaction search is being performed, the
agents will each cease their search upon receipt of such a message. If an optimization
search is being performed, the search will progress, but each node will keep track of the
highest utility instance found thus far. The utility of each subsequent valid instance
found by an agent is compared against the current best, and broadcast notification
takes place only when a higher utility design is discovered. The distributed search
terminates when all searching agents become quiescent, at which time each agent will
have a local description of the valid or optimal instance that was found.

The performance of the distributed search using different numbers of processing
agents is shown in Figure 4.17. These were produced from a series of optimization
searches on a template similar to that shown in Figure 4.9a, where the organization
could have up to 10 agents, each with 5 different cpu choices 〈10, 20, 30, 40, 50〉, and
a minimum aggregate cpu of 500. This produced an organizational space containing
approximately 12 million alternative designs.

Figure 4.17a shows the amount of speedup that was obtained, where an observed
value of n indicates the trial completed in 1

n
th the time of the centralized solution.

Both the observed and ideal performance profiles are shown. If the underlying pro-
cessors used by the agents were uniform, the ideal speedup would be linear, achieving
a n times improvement if n In these experiments the processor pool was not uniform,
and therefore the ideal is weighted based on the measured performance of each cpu as
it is added. The “bogomips” metric reported by the Linux kernel was used to gauge
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Figure 4.17. Characteristics of the distributed search using different numbers of
processing agents. The speedup factor is shown in (a), and the number of messages
required in (b).

performance [207]. The six processors were added in order of decreasing performance,
with ratings of 5583, 5583, 4771, 4771, 3578, and 3578, respectively.

As can be seen, the distributed algorithm performs well with respect to the ideal
for this number of agents, from which one can infer that the distribution process is
efficient and agents are spending the majority of their time searching the organiza-
tional space. The number of messages required to achieve these results is shown in
Figure 4.17b, which indicates a roughly linear increase in messaging as the number
of processing agents increases.

I would not expect these trends to be maintained indefinitely, as the speedup
must inevitably fall off when there is insufficient search space available to create large
partitions. The time and number of messages will increase with the population size
for the same reason, as well as because there are simply more agents to search to
find work. This problem presents interesting parallels with the simple sensor network
problem described in Section 1.1. It seems likely that a more complex organization,
such as a centralized work allocation manager or a hierarchical work dissemination
tree could help address the challenges that arise as the agent pool scales.

The benefit that this approach offers over those in Sections 4.2 and 4.3 is that
it works on all models and requires no modifications to a model to be used. The
drawback is that it clearly requires additional physical resources, and the amount of
achievable speedup is lower. For example, a roughly linear improvement was observed
with the distributed approach, while the search and modeling techniques described
earlier produced results that were orders of magnitude better in some cases. These
techniques are not mutually exclusive, and in practice the search and modeling tech-
niques are used without modification by the individual participants in the distributed
search to further improve performance.
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4.4.2.2 Bottom-Up Construction

Unlike top-down construction, an organization developed in a bottom-up fashion is
not typically produced in its entirety by a single entity, or by a group of entities
that explicitly divide the search space in the manner described above. In this design,
several entities will work in parallel on different aspects of the organization. Infor-
mation may be shared between the workers, but typically no single entity will have a
complete, current view of the structure at all times. Instead, the completed structure
will emerge piecemeal, and individual components may be changed or adapted as the
larger picture takes shape.

The bottom-up strategy I suggest is actually closer to a compromise between a
pure, so-called emergent approach and the more directed top-down approach outlined
above. In doing so, I believe one can exploit the benefits of both techniques. Bottom-
up approaches are typically more dynamic and distributed, but the ultimate product
of such a process can exhibit pervasive deficiencies because of the myopic nature of
the construction process. The top-down approach is more informed, and thus is less
likely to produce structures that fail to achieve high-level objectives while appearing
satisfactory from a local viewpoint. By providing agents employing an emergent
paradigm with both a modest description of the state of surrounding agents and
a model capable of incorporating that data, the local construction process may be
guided towards solutions that are more globally coherent.

ODML, with its representation of both local and global behaviors, can serve in this
role. Organization might begin by seeding the agent population with a complete or
partial ODML structure. Simple clusters or coalitions of agents will begin to emerge
as agents become aware of their neighbors. Self-organization would then progress as
organizational components that require creation are identified, and the best way to
satisfy that need given the agents and resources at hand is determined. For efficiency
purposes, a partially centralized approach seems appropriate, where one or more
distinguished individuals in those clusters direct the organization process.

In addition to describing the selection of possible organizational components, the
ODML structure can also be used to determine what local information might be
needed non-locally, or vice-versa. For example, in the IR domain, the structure of a
mediator hierarchy can depend on what other entities already exist in the environ-
ment. Obtaining and disseminating that information is crucial to creating a globally
coherent solution from an inherently local perspective. This can be determined from
the ODML structure by analyzing the data dependencies between nodes, and recog-
nizing those features that are needed across boundaries in the emerging organization.

Specific techniques for achieving this vision are a matter of future research.

4.4.3 Applying Designs to Actual Systems

Once the search process has completed successfully, a particular design will be avail-
able that must then be applied to a running system, assuming it has not already
been gradually integrated in an emergent fashion as described above. ODML’s very
free-form nature precludes a simple, straightforward mapping from design to system
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for an arbitrary model. For example, parts of the model may clearly correspond to
tangible artifacts that can be directed, such as roles or agents. Other parts may be
more ephemeral, or be there solely to model an environmental response that needs
no instruction. Yet another class of information may not correspond to any specific
process, despite the fact that it contains details that must be correctly incorporated
for the organization to function. The sector node from the sensor network model
is such a case, because although it is only a logical construct it still contains vital
information, such as the size and membership of the set of sensors belonging to it.

Because of this, the translation from design to running system is a model-specific
process. At one extreme, a designer can create a model where each node corresponds
to a specific, real entity that can make direct use of the information stored in the node.
In this case, the node description can simply be used like a normal configuration file.
At the other extreme, the model may be just a superficial approximation of the system
in question, where individual nodes have no direct connection with any entity that
will exist in the real system. In this case the design would be less of a blueprint and
more a set of guidelines from which an engineer could derive insights when building
the system.

In practice, the construction process usually falls somewhere between these two
cases, where some details may be directly used and others require more effort on the
part of the designer or running agent to gain access to. For example, the simulation
environment created to evaluate the information retrieval domain (Section 3.2) takes
an ODML instance model as input. From this, a bootstrap process determines how
many agents will exist in the system. Once created, individual agents can first de-
termine the set of roles they are expected to take on, by obtaining the appropriate
agent node and finding the role nodes that have a has-a relationship with it. These
roles can then be created and bound to the agent. Each role is responsible for in-
specting its counterpart in the instance model to obtain any role-specific parameters.
For example, the mediator will read the values selected for the search set size and
query set size variables that control the mediator search process. Finally, each role
also determines the set of other roles that it should be interacting with and how those
interactions should take place. In this case, mediator and aggregator discover the set
of nodes below them from their has-a relationships, and their presence in the sources
field indicates they should be used as information sources. Other information present
in the model, such as expected query rates and the performance metrics originally
used to estimate the design’s utility, are also available and can be used to evaluate
runtime behaviors. Section 4.5 will show how these can be particularly useful when
the system or environment is subject to change.

The end result of this inspection process is a system that can take an arbitrary
information retrieval instance model as input and create a running system from it.
The code required to do this, however, is specific to the particular model in ques-
tion. The model does not indicate exactly what an agent or mediator should do on a
moment-by-moment basis. Nor does it define the communication protocols or tech-
niques needed to search through a local database. Such details are typically much
too fine grained to be practically incorporated into a model. If these elements are
crucial to organizational performance then they will be appropriately modeled with
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Figure 4.18. Reusing common agent models in new domains.

an expression and the relevant characteristics used to parameterize the running code,
but the model does not provide all the implementation details necessary to enact
those behaviors in practice.

4.4.4 Model Inheritance and Reuse

There are frequently design elements that appear again and again in different orga-
nizations, particularly among organizations intended to operate in the similar envi-
ronments or make use of the same resources. For example, both the DSN and IR
domains had agents, roles, and an environment. It is possible to reuse and recycle
these elements, thereby leveraging existing work and simplifying the modeling pro-
cess. This reuse is enabled through the use of generic designs, whose components can
be incorporated with is-a relationships and specialized as needed.

Recall that the is-a relationship allows object-oriented style inheritance relation-
ships to be defined in an ODML model. In both the distributed sensor network and
information retrieval models this capability was used to define characteristics shared
by multiple entities inside a common base node. These characteristics could then
be imparted on those entities through the is-a relationship, which reduced the size
of the model and the time required to create it. The ability to express inheritance
relationships in ODML can also allow the time, effort and expertise needed to create
organizational components to be exploited in new circumstances. This is accom-
plished by first creating a domain-independent set of nodes, capturing characteristics
that exist regardless of context or application, and then use inheritance to incorporate
those nodes in different models across different domains.

For example, in the DSN environment there was an agent node. The notion of an
agent is quite general, and likely to be used in most models of agent systems. Instead
of creating such a node anew in every model, one could create a generic-agent just
once, that had common attributes such as communication load, computational load or
cost. Generic, related variants such as robust-generic-agent and normal-generic-agent
could also be created that possessed more specialized characteristics and constraints.
An example of this is captured by the structure fragment shown in Figure 4.18. The
remainder of that structure shows how those generic nodes can be used in a domain-
specific manner. In this case, the agent, normal-agent and robust-agent nodes from
the DSN domain (see Figure 2.10a) have been added. By simply adding an is-a
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relationship from, for example, normal-agent to normal-generic-agent, the domain-
specific agent node inherits all the information present in the generic agent node.
Data which is relevant to the new domain can then be reused, and that which is not
can be overridden.

4.5 Adapting Organizations

While a designed organization may be suitable for the particular context it was envi-
sioned for, it is inevitable that long-lived, real-world systems will encounter new and
different environments during operation. One strategy to address this is to model
and design for the full range of possible conditions. The strategies presented thus
far are sufficient to accomplish this. This is a reasonable approach so long as 1) the
predicted range of environments is accurate, and 2) any and all compromises made in
the resulting system are tenable. It is frequently the case, however, that one of these
two assumptions will not hold.

In such situations, the natural, but potentially complicated approach is to dynam-
ically adapt to the changing conditions. Organizational adaption is one approach to
accomplish this. This section will outline one approach by which ODML may be used
facilitate this process.

An important feature of the adaptation process, separate from the organizational
search itself, is recognizing the cost of making suggested changes. This includes up-
front costs, such as communicating organizational change or migrating existing tasks,
as well as more indirect costs, such as the reduced quality or increased uncertainty
the system may exhibit during transition. Although I will show that ODML can
model the range of possible solutions, it is currently unable to calculate the specific
costs associated with implementing these solutions. To do so, a process would need
to compare the current design with a proposed one, and determine a strategy for
performing the migration. This cost could then be incorporated into a structure’s
utility value, after which candidates could be compared as usual. Because ODML
only models organizational characteristics, and does not have implementation-specific
knowledge about how a structure is applied to the participants, it cannot derive these
costs itself. However, it is certainly possible for a separate component possessing this
knowledge to do so.

4.5.1 Monitoring for Problems

The first step in the adaptive process is to monitor for problems. These can be both
potentially critical exceptions, such as node failures or a hard constraint violations,
or inefficiencies, which can generally be thought of as soft constraint violations. It
has been argued repeatedly in this work that ODML’s predictive capacity allows
it to design contextually appropriate organizations. These same predictions can be
used as a baseline performance metric, by comparing the value characteristics of the
ODML model against runtime observations to recognize problems. This section will
outline how a distributed monitoring regimen can be put in place by disseminating
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fragments of the ODML model among the agent population, and using them to guide
local monitoring and notification processes.

Earlier work by myself and Benyo [78] used a related technique to detect failures.
That system employed what is known as a causal model to discover and isolate failures.
A causal model can be thought of as an operational decision tree that can be fed
observations to produce diagnoses. Each node in the tree represents a hypothesis or
sub-hypothesis, capable of diagnosing a certain class of problem. A positive detection
by a node triggers its children, and by these steps is a more specific diagnosis generated
and tested.

The strength in the causal model approach is its ability to capture almost any
kind of behavior. Because the linking of nodes within the model and the internal
processes used by the nodes to create diagnoses are arbitrary, nearly any failure that
has an operational signature can be detected. The drawback to this approach is that
such models can be very labor-intensive to create, and they are inherently limited to
addressing the faults they were designed to detect.

I propose using a technique more closely related to the family of model-based
diagnosis methods to serve these monitoring needs. Model-based diagnosis makes
use of a computational model of a system that is run in parallel with the actual
system. Deviations in the model’s output from the observed behaviors can indicate
a failure. Therefore, in place of a problem-specific causal model, one can use the
original ODML model to serve a similar purpose. This strategy cannot detect the
range of faults that a causal model can, but it can operate on any features that were
important enough to include in the organizational model. Perhaps more importantly,
it makes use of an already existing structure, thus avoiding the effort needed to make
a comprehensive causal model and achieving a broad monitoring framework with
relatively little additional effort.

Each constant field in the ODML model represents a potential characteristic that
might be observed at runtime. By using the model to extrapolate from those char-
acteristics that are monitored to the effects that could take place in characteristics
that are not, a more complete view of the system’s performance can be ascertained.
If agents make the simplifying assumption that expressions in the model are always
correct, any observed deviations should be attributable to one or more numeric pa-
rameters (e.g., constant-valued expressions) that were initially provided to the model.
These can then be subject to more intense scrutiny, or (if possible) their actual values
derived from the observed dependent characteristics and the expressions that relate
them.

The quantitative effects of higher-level organizational structure, such as nodes
and has-a relationships, are also assumed to be appropriately captured by the orga-
nizational model. In other words, if the presence of a particular agent is relevant
to the utility obtained by the organization, the expression that predicts utility must
correctly integrate this fact. Therefore, structural failures such as an agent crashing
or a communication link going down will have an observable quantitative effect, and
can be detected by the value-centric approach outlined here.

ODML-based monitoring can be accomplished in either a centralized or distributed
fashion. In a centralized scheme, the relevant observations are delivered to a single
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monitor, which can then use them to directly evaluate the fitness of the existing orga-
nization. A more scalable approach distributes this responsibility, where fragments of
the ODML model are disseminated among a set of monitors. Nonlocal characteristics,
and local characteristics which are not monitored, can rely on the values predicted
by the original model when no other information is available. Ideally, the fragments
are distributed in a way that maximizes the amount of locally produced data that
can be compared to predictions made by the available fragments, thereby reducing
the communication overhead need to support the global monitoring process.

For example, the concept of roles has appeared repeatedly in the example organi-
zational designs. A natural mapping would have each agent responsible for monitoring
the characteristics of the roles it is assigned, as well as those of the agent node it-
self. A different approach could address the need explicitly in the design, by creating
an explicit monitor role with particular monitoring responsibilities that could be as-
signed to an agent like any other. However, because ODML nodes have no inherent
semantics, this is ultimately a domain-specific process that is left to the system de-
signer. The specific characteristics that are measured, and the frequency at which
this is accomplished, are also left to the designer.

An unanswered question is, given that a deviation is observed among the moni-
tors, who or what should be notified? The distributed scheme assumes that no single
entity has a complete view of the working system. Each will have a particular local
context that is observable, but it can not necessarily observe all the characteristics
that can directly or indirectly affect its performance. Similarly, each monitor does
not necessarily know how the values it observes or deduces locally affect others. For-
tunately, the original organizational model itself can provide guidance. Recall from
Section 4.4.2.1 the problem of identifying fields in remote nodes that were dependent
on local values when invalidating cached data. The problem faced in this situation
is the same – we wish to know what characteristics of the organization might be af-
fected by locally observed changes. If those affected characteristics and their owners
are known, then that information could be used to correctly route observed devia-
tions. The data dependency graph produced during organizational creation can be
used to obtain this knowledge, so by incorporating it into the distributed ODML
fragments the routing problem may be addressed. A new observation can be sent
to affected nodes, which can use it to recalculate local fields, potentially resulting in
a new set of deviations. These deviation notifications can then be routed from one
node to the next, following the relationships embedded in the expressions, until all
relevant parties have been updated. By comparing these updated values to hard and
soft constraints, faults may be identified.

4.5.2 Searching for Solutions

After deviations are observed and collected at a location capable of analyzing them,
they can be used as parameters to create a new model that incorporates the current
working context. This can then be used as a basis for a search for an appropriate
alternate configuration. The primary difference between the techniques needed by
this search and those presented in Section 4 is the real-time nature of the problem.
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Where an initial design problem can be considered an offline or start-up time problem
with fairly relaxed time constraints, the adaptation or reconfiguration problem occurs
while the system is running. The longer it takes to find an appropriate solution, the
greater the chance is that it will lose relevancy because of additional changes that
occur during the search.

Because of this, although the search techniques presented earlier can be used as
part of the adaptation process, they will likely not be the complete solution. In the
case of critical failures, increasingly heuristic and anytime strategies are needed to
aggressively search for a new, viable organization. With less critical problems, more
incremental solutions might be employed, allowing for a more thorough search of the
organizational space. Knowing what type of failure is being addressed, and what
effect the continued existence of the organization in question will have on utility, can
guide the choice of strategy.

Alternatively, one could attempt to learn or anticipate common failures offline,
and develop contingency plans to address them. These plans could take the form
of a change policy, or a predefined set of candidate organizations known to function
under different conditions. For example, one could place additional restrictions on
the original model, such as stricter communication constraints or an artificial limit
on the number of available agents. By finding suitable organizations for these model
variants one can create contingency organizations that can be deployed when similar
or equivalent circumstances occur online.

Whatever the strategy employed, it is clear that devising a suitably quick and re-
liable adaptation approach is a challenging problem. This will remain an interesting
area of research as structured organizations are used in dynamic real-time environ-
ments.

4.6 Conclusions

This chapter began by describing the organizational design problem ODML is address-
ing, and showed in Section 4.1.1 that this is a difficult problem to solve in general.
Because of this, I have explored a range of techniques, each of which has different
strengths and weaknesses. These are currently unified in a single implementation that
attempts to use each technique where applicable, and is conservative where they are
not. Because these approaches make no domain-specific assumptions, they demon-
strate that it is possible to create effective algorithms that address of the general
design problem.

Although none of the techniques remove the fundamental complexity issues that
arise as the general problem scales (notice that, for example, the trends in Figures 4.8
and 4.11 that use the techniques are still exponential, but at a slower rate), they do
allow classes of problems that would otherwise be intractable to be solved. Of course,
this is by no means an exhaustive study of such general approaches, and I believe
that in many cases a suitably crafted domain-specific approach can yield additional
benefits. Chapter 6 will describe in more detail how other researchers have addressed
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similar problems, and the tradeoffs that are made compared to the ODML-based
techniques this dissertation presents.
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CHAPTER 5

MODELING OTHER CHARACTERISTICS AND

PARADIGMS

In this chapter, I provide additional examples of ODML models, to both demonstrate
that ODML is capable of capturing a range of important concepts and to provide
guidance to those that want to use ODML to model these or similar situations. A
number of detailed modeling examples have been shown in Sections 2.3 and 3.1. This
chapter takes a broader perspective by outlining how ODML has been be used to
model a range of additional features and organizational paradigms. The discussion
focuses more on the important high-level concepts and less on minutia, so that a
sufficiently wide range of topics can be addressed. In doing so I hope to convey
what concepts ODML can be used for, how well it serves in those roles, and what
compromises (if any) are made.

Section 5.1 touches on topics from previous chapters by showing how additional
organizational characteristics that were either omitted or highly abstracted in the
original DSN model may be integrated. In particular, it shows how geographic het-
erogeneity can be represented, how temporal interactions can be captured, and how
models with different levels of abstraction may be produced.

Section 5.2 explores ODML’s flexibility from a higher-level perspective, by de-
scribing how models can be defined and used to represent a number of organizational
paradigms commonly used in multi-agent systems. These include hierarchies, coali-
tions, federations, marketplaces and teams, among others. For each paradigm I out-
line features that represent important design considerations and show how they may
be incorporated into an ODML model.

5.1 Modeling Common Organizational Character-

istics

5.1.1 Non-Uniformity

Section 2.3.9 evaluates how accurately the distributed sensor network model predicted
the characteristics of the implemented system. For the most part, the predictions
made from that model were satisfactory, although there were discernible deviations
that could be attributed to simplifying assumptions made within the model. One of
those assumptions was that both the sensors and targets in the environment were
uniformly distributed, and another was that the set of sensors was used uniformly
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Figure 5.1. A depiction of the revised DSN template. Important modifications from
the original DSN model are shown in the shadowed boxes.

by the existing track managers. Although both the sensors and targets were in fact
uniformly distributed in the empirical tests, this does not necessarily result in the
measurement burden being evenly distributed across the sensor population. For ex-
ample, a sensor in the middle of the field will be used more than its counterpart
on the periphery, simply because its central location allows it to sense more targets,
causing it to be called upon more frequently by the managers responsible for those
targets. This intuitive behavior is not captured by the existing model, which resulted
in a consistently underestimated communication deviation (see Figure 2.17b).

Additional information can be added to the model to address this deficiency, as
shown abstractly in Figure 5.1. The figure shows the skeleton of the DSN template,
along with brief summaries of the most important changes that were made (the ex-
pressions in shadowed boxes). The changes revolve largely around the addition of
location information to the relevant nodes, along with the information flow modifica-
tions needed to support the new information.

I will start at the beginning of the measurement demand chain, at the track
manager (TM in Figure 5.1). In the original model, the track manager’s demand
was expressed as the single value desired sensors. This demand was allocated evenly
through the sensor population, implicitly specifying the target had an equal chance
of being anywhere in the environment at any time. The new model abandons this
in favor of a more concrete notion of the target’s location, which takes the form of a
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Figure 5.2. The sigmoid function used to calculate sensor demand in the DSN
model. This reflects the sensor’s range of approximately 30 feet.

path. A path is defined using ODML’s syntax as a list of points, where each point is
represented by another two-element list. Although the objective behind this revision
is to add important detail to the model, in making the decision to model target
location as a single path there is the danger of creating a model that is too specific.
Predictions made from such a model would likely be scenario-specific, limiting their
usefulness when evaluating a design in the general case.

To address this, the model defines several different paths, which are defined as
path 1, path 2, and so on (an arbitrary number can be defined). These are combined
into a discrete distribution constant named paths that specifies the probability of each
path. The model requires that a single path be selected for evaluation purposes. The
path constant does so by using the mc function to select one at random. In the orga-
nization node, the num targets constant is also defined using a sampled distribution.
During Monte Carlo analysis (see Section 2.2.3), different numbers of targets and
individual targets’ paths will be selected, allowing the design to be evaluated in the
context of many different problem configurations, and ranked accordingly. This ran-
dom path model is consistent with the environment the original system was designed
for, and other mobility models exist that could also be used [20].

As before, a set of sensor-track manager relation nodes (S-TM, one for each sensor)
is used to impart measurement demands made by the track manager to individual
sensors. In the new model, this is done by using the track manager’s path to determine
the probability a sensor will be used to track the target in question at each point
specified by the path. This depends in part on the proximity of the sensor to the
target. To make this determination, each sensor is given a location constant, a two-
element list that is determined by the origin of the sector it is contained by along
with its relative position within that sector. For each point in the target’s path, the
Pythagorean Theorem is used to determine the distance between that point and the
sensor’s location. An offset sigmoid function

f(d) =
−1

1 + e−(d−25)/3
+ 1

(see Figure 5.2) is then used to determine the probability the track manager will
select the sensor based on the computed distance. Unfortunately, this calculation
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only accounts for the effect of the sensor’s proximity. It does not take into account
sensor density, which would adjust the probability of selection for any one sensor
based on the number and quality of alternative sensors the manager could choose
from. Thus, this remains only an approximation of the system’s true behavior.

After computing the demand probability at each point, the actual rate of re-
quested measurements is computed by multiplying that list by the track manager’s
measurement request rate. Similar to the original model, this new list is passed to the
sensor with a modifier, where it is added to the sensor’s local requested measurements
list (initially zero). After all remaining track manager nodes have been created, this
will reflect the total, aggregate demand place on the sensor by all targets in the en-
vironment. The sensor’s actual measurements are computed from the total demand
by comparing each aggregate request point with the sensor’s possible measurement
rate. This is used by the sensor-track manager relation to determine the rate of mea-
surements the track manager can expect at each point, which is relayed back to the
track manager. This is done in the same manner as the earlier model, except a list
of rates is maintained rather than a single value. The aggregate number of received
measurements will accumulate in the track manager’s actual measurements list after
all sensor-track manager relations have been created, at which point an average RMS
value can be calculated as before.

To demonstrate how non-uniformity is captured by this model, the predictions
for a pair of simple 4-sensor, 2-target scenarios are shown in Figure 5.3. Sensors are
shown as circles, targets as triangles. Each triangle’s orientation matches the transit
orientation of the corresponding target, and the dashed lines represent target’s path.
For example, Figure 5.3a has four sensors arranged in a grid, while target 0 performs a
large square circuit and target 1 a smaller square circuit. Path 0 has eight equidistant
points while path 1 just four points at the corners, so target 1 will travel two cycles
for each of target 0.

The sensor demand and target measurement predictions for this scenario are shown
in Figure 5.3b. The top set of graphs shows the aggregate demand placed on each
sensor at each point on the path, where the darker portion is target 0 and the lighter
is target 1. The horizontal axis refers loosely to successive steps taken by the targets;
the following section shows how this can be generalized to represent time. Intuitively,
we would expect sensor 0 to be heavily and continuously used by target 1, which
follows the small path orbiting sensor 0, and only occasionally by target 0, which
covers a much larger area. This is consistent with the load pattern shown in graph
S0. Similarly, S2 shows that has only rare and light usage by target 1, which is also
intuitively correct. The lower two graphs show the expected measurement rate for
each target, where dark gray represents the rate that was actually received, and light
gray the additional amount that was requested by not received because of contention.
Here, we would expect that target 1 would have a different actual measurement rate
when target 0 is close by versus distant. In graph TM1, this is shown at points 0 and
4, where target 0 is in the lower-left and upper-right, respectively. At point 0 target
1 gets only half its requested measurements, while at point 4 (when target 0 is at its
most distant point) it is fully satisfied.
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Figure 5.3. A depiction of the performance predictions by the enhanced DSN model
using non-uniform target paths (upper) and sensor locations (lower). The layouts
(a,c) show the sensor and target arrangements for two different scenarios. Sensors
are circles, targets are triangles and their paths are dashed lines. The graphs (b,d)
show the demand levels by sensor (top, darker is target 0, lighter is target 1) and the
measurement levels by track manager (bottom, darker is the amount received, lighter
is the additional amount that was requested but not able to be satisfied).

The lower scenario in Figure 5.3c has the same path geography, but sensor 2 has
been more centrally located. Because it is closer, it is more useful to target 1, and
should therefore see greater demand. This can be seen by contrasting the demand
curves for S2 in 5.3b and d. In the former S2 is used hardly at all by target 0, while in
the latter it is used nearly all the time. This results in the slight increase in expected
measurement rate seen in TM1’s rate graph in 5.3d, although the actual rate that
target receives is somewhat diminished because S2’s central location also makes it an
attractive resource for target 0.

These two scenarios show how non-uniformity has been captured by the model. In
contrast, equivalent graphs from the original model would exhibit identical demand
across all sensors, and identical performance across all targets.

Although not detailed here, different approaches can also be employed that do
not require a rigid path to be defined. For example, instead of a list of points to
represent a path, each track manager can be associated with a list of probabilities,
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each of which represents the chance that target will occur in a different geographic
area. These can be combined across track managers to derive either a statistical
average or distribution-based view of how many targets will be in each area. This
can be used in a manner similar to that presented above to determine sensor load
and actual measurements at each geographic point.

5.1.2 Temporal Interactions

One of the ODML’s limitations is its lack of explicit support for modeling time and
temporal interactions. Although this was an intentional design choice, there are still
many instances when the passage of time or the potential co-occurrence of events can
affect the utility of an organizational design. It is because of this, along with my
desire to maintain the relatively simplicity of ODML, that I have explored ways of
approximating timing information within the existing language. Section 3.3 showed
how conventional queuing models are used in the information retrieval model to pre-
dict the time-related behavior of that organization. In this section, I describe how
a different technique is used by the enhanced distributed sensor network model to
predict the demand pattern of targets as they move through the environment.

The previous section introduced the notion of an expected path into the track
manager’s definition. Each path consists of a number of points that represent the
potential location of the target. By recognizing that this is not a set of points, but
an ordered list, it becomes clear that this representation can be used to approximate
the passage of time within the system. At time 0, the target would be at (x,y)
position (path[0][0], path[0][1]), at time 2 it would be at (path[1][0], path[1][1]), and so
on. Time is relevant in this model because the performance of the organization will
depend not only on where the targets will be, but also when they will be there. If
two targets are close together in both space and time there will be more contention
than if they are separate along either dimension.

Much of the machinery needed to reason about time in this fashion was presented
in the previous section. Only two elements need to be added to the track manager
node to fully integrate this concept. The first is a starting point, which is point index
of the path at which the target is presumed to start at time 0. The second is a
horizon, which is the length of the window of time that should be considered. Given
these two values, the path is defined as:

<constant name="selected_path">mc(paths)</constant>

<constant name="path">forrange(i, 0, horizon, listitem(selected_path,

(i + starting_point) % size(selected_path)))</constant>

This uses the specific path selected by the mc function to fill a list of length horizon
with the points from that list, starting at index starting point and cycling back to the
beginning when the end of the path is reached. In practice, horizon is the length of
the longest possible path, while starting point can be selected from a distribution to
add additional environmental diversity. The remainder of the calculations performed
in the track manager, sensor-track manager relation and sensor already correlate the
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Figure 5.4. Performance predictions by the enhanced DSN model, demonstrating
the effects that shifting starting points have on performance. Legend is the same as
Figure 5.3.

path indexes across targets, so by making this change the model will produce a set
of predictions that correspond to different points along a finite horizon timeline.

The results from two scenarios that demonstrate the effects that time can have
on performance are shown in Figure 5.4. The first scenario, shown in Figure 5.4a,
has two targets that follow the same path, but on opposite sides of that path. In
this case the path length is 8, and target 0 has a starting point of 0, while target
1 has a starting point of 4. As would be expected, the sensor demand and target
measurement graphs in Figure 5.4b show predict the load will be well balanced as
time progresses. The scenario in Figure 5.4c depicts an unbalanced distribution,
where targets 0 and 1 have starting point values of 0 and 1, respectively. Because
the targets are closer together, the load they impose at any given point is unevenly
distributed. This is expressed in the wave-like sensor demand curves in Figure 5.4d.
The increased contention for common sensors results in fewer measurements for each
target, as can be seen by comparing the target measurement predictions in Figure
5.4d with those in Figure 5.4b. For example, in Figure 5.4d each target obtains 2
measurements at each time point (the dark portion of the bar). In Figure 5.4d the
targets alternate between receiving 1.3 and 1.7 measurements per time point.
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Figure 5.5. A range of modeling possibilities, each with different levels of abstrac-
tion.

5.1.3 Levels of Abstraction

The notion of abstraction in ODML models has been covered earlier in Section 4.3.2.
That discussion presented abstraction through the elimination or assimilation of nodes
at the bottom of the organization. The enhanced DSN model described in the previous
sections demonstrates another way that abstraction can be employed, through the
increase or decrease in detail expressed by the equations defined by the nodes in a
model.

Consider Figure 5.5, which shows a range of modeling strategies, ranging from
more abstract to more detailed. The original DSN model existed at the far left of
this figure. The modifications presented in the previous sections represent a point
further to the right. This represents a change in the level of abstraction that was
captured, not through the addition of entire nodes (although that is certainly a valid
approach), but through the modification and enhancement of the expressions within
the existing nodes.

This is relevant because it highlights a key feature of ODML that is absent from
other organizational representations. As discussed in Section 2.2.1, the somewhat
primitive, expression-based format allows the designer to incorporate the details the
designer deems most relevant. In other representations, assumptions are made about
what components will exist, what characteristics may be considered, and in what way
those characteristics affect the behavior and utility of the design. By avoiding these
assumptions, ODML gives the designer the flexibility to select and change modeling
strategies as needed. A simple model might be used during the initial design process,
and the model could be refined during the prototyping or implementation phases.
The two DSN model variants that have been presented demonstrate how one can
trade off the complexity of the model with the accuracy and detail of its predictions.

5.2 Modeling Common Organizational Paradigms

Previous chapters, as well as the topics described in Section 5.1, have shown that
ODML can be applied to represent a range of individual characteristics in two dif-
ferent designs. This section will show that ODML can also be applied to a range of
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Figure 5.6. Using a hierarchy template in the IR domain. The design shown in
Figure 3.2b shows a possible corresponding instance.

fundamentally different designs, by discussing a number of organizational paradigms
and outlining how they may be modeled. These will be drawn from a survey of the
field that I have compiled [80], which can be found in Appendix B. Background infor-
mation describing the paradigms and their characteristics can be found there. With
the creation of appropriate inheritance relationships (see Section 4.4.4), the concepts
in models I present can be used as the basis for new, domain-specific designs. Taken
a step further, one can envision a library of such organizational templates that could
be exploited to simplify the creation of new organizational models. This would be
a more quantitative and computational realization of the goals embodied in MIT’s
Process Handbook [122].

5.2.1 Hierarchies and Holarchies

Hierarchies are ubiquitous in distributed and multi-agent systems because of their
relatively simple structure and the immediate scalability benefits that they provide.
The information retrieval domain used several such hierarchies as the basis for its
mediator-driven approach. That particular model constitutes a complete example of
how several different characteristics of a hierarchical system can be modeled using
ODML (Section 3.3), including the effect that tree height and width have on tim-
ing characteristics, and the trade-offs that consolidation and summarization have on
quality as information propagate through the tree.

That model can be used to provide a slightly more complex example of how in-
heritance and a template library can be used to simplify the design process. Consider
the design shown in Figure 5.6. In this case, a generic model of a hierarchy has been
constructed, containing root, branch, leaf and member nodes. These capture the no-
tion that a hierarchy has a recursive structure, can be of arbitrary height and width,
and nodes have particular relationships with their peers. This same information is
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Figure 5.7. An ODML holarchy a) template and b) example instance. The structure
is quite similar to the hierarchy in Figure B.1, differences lie primarily between their
internal behaviors.

also present in the IR domain model, but it had to be defined and embedded specifi-
cally for that domain. If a model were created that used this generic hierarchy, this
effort could be avoided. Instead, the mediator, aggregator and database roles present
in the IR domain would have is-a relationships with their appropriate counterparts
in the generic hierarchy, as shown in Figure 5.6. Domain specific knowledge could be
passed by overriding constants, as parameters, or by using modifiers. For example, a
modifier in mediator could add num mediators to the inherited num branches value in
root to specify the number of hierarchy leaders that would exist. It is also possible to
migrate the queuing models into these generic nodes, so that (for example) database
need only provide a task arrival rate to its parent class to reap the benefits of that
more complex model.

Conversely, the task-replication behavior exhibited by the IR mediator and aggre-
gator, where a received query is sent in parallel to all children, is sufficiently different
from the conventional load-balanced behavior of a hierarchy that it is unlikely to exist
in a generic template. In this case, the existing design employing queuing models and
order statistics would remain, overriding or ignoring any existing capabilities provided
by the generic parent.

Holarchies (Figure 5.7) are quite similar to hierarchies, where individual nodes in
the hierarchy are referred to as holons. A holon is a group consisting of one or more
entities that function as a single unit from the perspective of the nodes above it, but
remain distinct to those that exist below it. Unlike participants in strict hierarchies,
holons typically also retain a certain amount of autonomy from their superiors.

Viewed in this light, aspects of the distributed sensor network organization can
be seen as a simple form of holarchy. Recall that the participants in the organization
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Figure 5.8. An ODML coalition a) template and b) example instance.

are partitioned into a number of sectors. Each sector contains one or more sensors,
along with a sector manager that provides local services. From a vantage point higher
in the tree, however, the sector is a single unit that covers a particular geographic
region. The behavior exhibited by the sector is determined in part by the sector
manager, which acts autonomously in response to perceived global and local needs.
By the simple definition given above, the sector itself can therefore be considered a
holon. Furthermore, if the DSN existed as part of a yet larger structure, the DSN
organization as a whole, consisting of all the available sectors, could also be considered
a holon.

5.2.2 Coalitions and Congregations

The general form of a coalition is quite simple – it is simply a grouping of entities
that have banded together to serve some common purpose. A suitable template is
seen in Figure 5.8a, which shows that both the number of coalition, and the number
and type of participants in each coalition can vary. A sample coalition instance is
shown in Figure 5.8b.

In their purest form, coalitions are disjoint, so that entities may be a member
of only one coalition at a time. This constraint can be represented in ODML in
the same way that the one-sensor-per-agent condition was modeled in the DSN or-
ganization. Each agent would have a num coalitions characteristic, which would be
initialized to zero and incremented through the use of a modifier as they are added to
a coalition. Each agent would also specify a max coalitions, along with a constraint
num coalitions ≤ max coalitions. By setting max coalitions to one, the disjoint con-
straint will be upheld. Some researchers have demonstrated the utility of relaxing or
removing the disjoint constraint [164]. This can be modeled by setting max coalitions
to some value greater than one. Additional research has explored the possibility of
hierarchical coalitions, where coalitions may be nested within one another [102]. Such
an organization would closely resemble the holarchy shown in the previous section.

There are three key characteristics associated with coalitions that must also be
represented: the strength of the resulting group, the costs associated with formation
and maintenance, and the manner in which rewards (if any) are apportioned to the
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participants. These can take many forms, so it is worth exploring how a range of
possibilities might be modeled. The strength of the coalition, for example, is in some
cases simply the number of participants, or some valuation of the total “mass” of
the participants. A bargaining collective or union are examples of this, and can be
modeled with a simple summation in the coalition node:

<constant name="strength">forallsum(m, members, m.mass)</constant>

Consider a somewhat more complex situation, where participants can have dif-
ferent types of skills and different levels of proficiency in those skills. Furthermore,
assume the goal requires some minimal combined skill set, and there are upper bounds
beyond which further capability adds no additional strength. For example, assume
each member agent has constants skill a and skill b, which are assigned their respec-
tive numeric levels of proficiency. The coalition gets no strength if the total proficiency
level of a is less than 0 or if the total level of b is less than 6, and gets no additional
benefit if a is greater than 1 or b greater than 10. The coalition’s strength can then
be modeled using sigmoid functions as:

<constant name="skill_a">forallsum(m, members, m.skill_a)</constant>

<constant name="skill_b">forallsum(m, members, m.skill_b)</constant>

<constant name="strength_a">1 / (1 + e^-((skill_a-0.5)/0.1)</constant>

<constant name="strength_b">1 / (1 + e^-((skill_b-8)/0.5)</constant>

<constant name="strength">strength_a * strength_b</constant>

If the set of member nodes was limited, through a node instance limit or a constraint-
based mechanism, then a purely strength-driven assignment of the members to coali-
tions would use these definitions to make the contextually appropriate trade-offs.
As before, if these expressions were embedded in a reusable template, the could be
overridden in the derived class to whatever form is most appropriate.

Modeling coalition cost can be quite similar to modeling strength. For example,
instead of aggregating the strength of the participants, one could create a profile of
the total communication behavior, and bound it against the available bandwidth in
the environment. There may also be fixed costs associated with coalition formation,
such as the time needed needed to elect a leader or disseminate goal or participant
information. Once the costs have been determined, they can be combined with the
strength to determine the overall utility of the coalition.

In a self-interested situation, it is not only the utility of the coalition as a whole
that is of interest, but also the perceived benefit that individual members will observe.
This is frequently described as the “reward” the agent will receive. If there is a fixed
amount of reward available, the manner in which the reward will be distributed is a
key factor that can determine if an entity will choose to join the coalition. A simple
approach is to divide the reward into equal portions among the participants. In the
member node, this would be defined as:

<constant name="reward">c.reward / c.num_members</constant>
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...where c is a reference to the parent coalition. A slightly more complex approach
would divide the reward according to the proportional benefit the member brings to
the coalition (i.e., its strength):

<constant name="reward">c.reward * strength / c.strength</constant>

which would encourage the inclusion of valuable members, particularly if costs grow
proportionally with coalition size.

Congregation-based organizations differ from coalitions in that they are longer-
lived, and not necessarily formed with a particular goal in mind. The intent is to band
together entities that have similar or complementary skills, so that individual entities
can more efficiently make use of those skills. So, where the coalition was previously
used as the locus of capability evaluation, the individual members will individually
do so in a congregation model, using the containing congregation node as a common
data store.

For example, assume that each agent supplies its local proficiency levels to the
congregation, where they are aggregated as before into skill a, skill b, etc. To avoid
the need to explicitly enumerate all skills these could also be represented as lists of
numbers. Each agent would then have a set of utility definitions that expressed how
much of each type of skill it could make use of, in the same way that strength was pre-
viously defined through a composition of skill strengths. Unlike coalitions, which are
relatively short-lived, the creation costs associated with congregations are secondary.
Of more importance is the continuing overhead of processing and communication
needed to interact with other congregation members.

As before, these strengths and costs can be combined to derive a utility value. In
this case, however, utility is determined by the individual agent, replacing the reward
structure used in coalitions. This distributed utility makes evaluating the overall
organization somewhat subjective. Constraints could easily be added to place lower
bounds on individual utility. Overall utility statistics could also be gathered, allowing
global utility to be defined in terms of minimum or average observed utility, which
would allow Pareto optimal organizations to be favored.

5.2.3 Federations

Like coalitions and congregations, federated systems are organized around agents
that are grouped into clusters. Unlike those systems, federations are formed with the
express purpose of consolidating the group’s functionality behind an intermediary
agent that acts as an interface for the group. In particular, in forming a federation,
the participants cede authority to the intermediary, allowing it to guide their local
choices of action and goal. Figure 5.9a shows how a federation template can be
represented in ODML. Here the number of federations in the system and the number
of members in each federation can vary, as can the relationship between federations
and the type of intermediary that is used. A sample two-federation instance is shown
in Figure 5.9b.

As with coalitions, the members of a federation can have different skill sets, that
can be represented and accumulated in the federation node that contains them. This
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Figure 5.9. An ODML federation a) template and b) example instance. A feder-
ation consist of a set of members that have relinquished control to a distinguished
intermediary. The broker and reflector nodes represent two possible intermediaries.
Only intermediaries interact between federations, as represented by the links through
relationship nodes in b).

can be used to calculate the strength of the federation. Costs can be similarly cal-
culated, although they will typically be more concentrated that in coalitions or con-
gregations because the members of a federation only interact with their local inter-
mediary. Where the communication load of an individual member of a congregation
may increase with both the size of the congregation and the number of tasks, a fed-
eration member’s communication load will depend on only the number of tasks. The
intermediary’s burden, however, will depend in part on the size of the federation.
In particular, it will depend on the size of its local federation, the number of tasks
in the environment, and the number of other federations in the system. This last
dependency arises because intermediaries in different federations interact with one
another to advertise work to be done or capabilities that can be offered.

A distinguishing aspect of the federated design is the presence of an intermedi-
ary. This agent connects the internal members to the outside world, and can be
endowed with different capabilities that leverage its place in the organization. The
template shown in Figure 5.9a allows two different types of intermediary: the broker
and reflector. These particular terms have been given different definitions in different
research contexts. Here, I assume that a reflector is acting as a simple translation ser-
vice, routing internal requests to outside entities, and reflecting external queries to all
federation members. In this case, a member’s work request is routed through the re-

146



flector to all other federates, from which many responses may be received. Individual
members behind a reflector are responsible for deliberating among alternatives.

Brokers take a more active role. In response to an internal task request, a bro-
ker may query only a subset of external federations, and select the most appropriate
response. When an external task request is received, a broker has the authority to as-
sign that task to any member of the federation it represents. A broker must therefore
maintain state describing its federation members and any extant work commitments,
and be able to reason about how to best satisfy incoming and outgoing requests.

Several of the characteristic features of the federation paradigm have been dis-
cussed and modeled previously. For example, the DSN model demonstrated how to
describe and aggregate communication load and the effects it can have on perfor-
mance. Both the information retrieval and coalition models showed how to represent
the capabilities of entities, and how those capabilities can influence the behavior and
quality of the larger organization. The information retrieval model also showed how
to capture the effects that perceived substructure quality have on a search process
among members of the organization, and the work distribution patterns that can be
produced as a result (Section 3.3). A quality-driven search is also typical of the feder-
ation, either by the members via a reflector proxy or directly by a broker. This could
be modeled using a formulation similar to Equation 3.6, using a federation’s capacity
to perform work to estimate quality. The model I describe below address the same
issue in a different way, by creating a fixed set of relationships between federations
that guide how work is apportioned among them.

I will focus the following discussion on how a broker-style intermediary can be rep-
resented. In this model I will assume that all member agents have a task arrival rate
(tar) that reflects the rate at which it receives unit-time tasks from the environment.
It will satisfy them locally if possible, and if not it will ask its local intermediary to
find a suitable worker. On average, if tar > 1 the agent will request external help at
rate tar − 1, if tar < 1 the agent will have excess capacity of size 1− tar.

<constant name="max_work">1</constant>

<constant name="local_work">min(max_work, tar)</constant>

<constant name="requested_work">tar - local_work</constant>

<constant name="spare_capacity">max(0, max_work- tar)</constant>

<constant name="external_work">i.external_work * (spare_capacity

/ i.local_capacity)</constant>

<constant name="work_rate">local_work + external_work</constant>

This formulation breaks the member population into two sets: those which re-
quest work to be done and those with the capacity to service those requests. For
those that have extra capacity, the external work characteristic deduces how must
extra work will be asked of the member, based on its proportion of the total spare
capacity of the federation and the amount of extra work that has been accepted by
its broker intermediary i. This relies on the additional information aggregated by the
intermediary:

<constant name="local_work">forallsum(m, federation.members,
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m.requested_work></constant>

<constant name="local_capacity">forallsum(m, federation.members,

m.spare_capacity></constant>

<constant name="requested_work">max(0, local_work

- local_capacity)</constant>

<constant name="spare_capacity">max(0, local_capacity

- local_work)</constant>

<constant name="external_work">0</constant>

<constraint name="external_work" op="<=">spare_capacity</constraint>

Assuming the broker will prefer to use the local extra capacity before making
external requests, the amount of requested work that will be sought can be computed
from the local work and the local capacity. The remaining spare capacity (if any) can
be similarly computed. If we wish to develop a probabilistic model like that used in
the information retrieval domain, the spare capacity characteristic can take the same
role as perceived response size (that is, an approximation of the federation’s quality).
In this model, these values are instead used by a set of relationship nodes contained
within a per-federation relationship set, to derive and evaluate a specific pattern of
interactions among the federations:

<node type="relationship_set">

<param>organization:org,federation:source</param>

<has-a name="relationships">forall(target,federations):

relationship(this,source,target)</has-a>

<constant name="requested_work">forallsum(r, relationships,

r.requested_work)</constant>

<constraint name="requested_work" op="=">

source.requested_work</constraint>

</node>

<node type="relationship">

<param>relationship_set:set,federation:source,

federation:target</param>

<variable name="work_proportion">0, 0.25, 0.5, 0.75, 1</variable>

<variable name="requested_work">source.requested_work

* work_proportion</variable>

<modifier name="target.requested_work op="+">

requested_work</modifier>

</node>

Each relationship set connects its source federation to all possible target feder-
ations in the organization. In each relationship, the proportion of the source’s re-
quested work to assign to the target is represented as a variable. This allows the
model to represent a federation assigning some, none or all of its extra work to other
federations. Constraints ensure that the total amount requested and assigned do not
exceed the amounts available at the source and target, respectively.
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Figure 5.10. An alternate ODML federation template that allows greater differ-
entiation among intermediary styles but is less able to inherit and reuse common
elements.

There are various costs associated with the work distribution organization that
have been omitted for clarity. For example, a member performing its own work
will have the least amount of communication, followed by request redirected within
the federation, followed by one redirected to an external federation. Entities in this
organization may also suffer from the same queuing problems addressed in the in-
formation retrieval model. Both communication and processing costs can affect the
intermediary, making large federations less efficient. In each of these cases suitable
cost expressions can be devised and used along with the aggregate work rate to cal-
culate the utility of the federated organization.

The expressions and node definitions that have been given so far assume that
the intermediary is acting as a broker. As mentioned earlier, there are several styles
of intermediary, each with potentially different characteristics. A natural question
that arises is how the model must be changed to correctly represent a co-existing
alternative like the reflector described above. To answer this question the modeler
must identify the components of the model that would be affected by such a change,
and either design those expressions so that they can obtain and use the characteristics
that are subject to change, or create a new, complementary set of nodes to be used
when the other decision is made. These alternatives correspond to the templates in
Figure 5.9a and 5.10, respectively.

For example, in Figure 5.9a, the federation model is reused for both types of in-
termediary. The model implicitly assumes that the choice of either broker or reflector
can be accommodated by the common federation, member and relationship nodes,
and any nonlocal behaviors can be appropriately exhibited through or within the in-
termediary interface. Some of the changes, such as the communication and processing
costs incurred by the intermediary itself, seem tractable. Appropriate expressions can
be devised for within the broker and reflector definitions that compute those values.
What is less clear is how the behavior of the members will be affected. In practice,
the member node behind a reflector may require significant additional functionality

149



auctioneer buyer

market

1 num_buyers

seller

num_sellers

organization

num_markets

organization

market market

auctioneer buyer buyer seller auctioneerbuyer buyer seller

(a) (b)

Figure 5.11. An ODML market a) template and b) example instance.

to operate correctly. Simplifying assumptions may need to be made to combine the
quality and cost calculations necessary to correctly reason under this circumstance.

The model in Figure 5.10 depicts an alternate template that makes fewer assump-
tions, but in doing so is less able to re-use common components and is correspondingly
more complex. The benefit it provides is that by creating a distinct member types
for each intermediary type, it is possible to more directly and accurately model the
organizational alternatives. For example, the original template does not allow for the
possibility that entities in the environment may be unable to handle the additional
complexity required when interacting with a simple reflector. Legacy or light-weight
agents may not have the computational or software resources to correctly decide
among alternative tasks asked of it, or providers advertised to it. By creating sepa-
rate broker member and reflector member nodes, an entity or agent could create is-a
relationships with either or both to reflect its actual capabilities.

5.2.4 Markets

Superficially, market organizations share several characteristics with federations. Both
involve groups of participants that are interacting almost exclusively with interme-
diaries (an auctioneer, in the case of markets). In both there are different types
of intermediaries with different characteristics. Both frequently revolve around the
allocation of services or goods among the participants.

Unlike a federation, market participants do not cede authority to their auctioneer.
Auctioneers do not generally interact with one another. Participants are typically
competitive, and can take part in several auctions concurrently. There are also a
great deal of subtleties involved in the bidding and awarding process that can be
difficult to model directly, but can have significant impact on the behavior of the
system. For example, the truthfulness of bidders, the potential for collusion and
counter-speculation and the type of auction that is used can all play a large role in
the performance of the system. Producing accurate, mathematical models of these
characteristics has been studied in the fields of game theory and economics, and is
beyond the scope of this document. In this section, I outline how results from these
fields could be incorporated into an organizational model.
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A template for a market-based organization can be seen in Figure 5.11a. This can
vary the number of markets, the set of buyers and sellers in each market, and the type
of auctioneer that is used. The participants in each market may not be disjoint, as
shown by the instance in Figure 5.11b. Each seller will have a set of products types
it needs sold, along with a frequency for each. This can be represented as a list of
floating point values:

<constant name="products">[0.1, 0.25, 0.3]</constant>

where each element represents a different product. Each buyer will have a comple-
mentary products description of the products they desire and when they will need
them. By aggregating this information, the auctioneer can determine the supply and
demand profiles for each product type. A finite-horizon timeline approach similar to
that seen in Section 5.1.2 can be used to determine who wants what when, and how
long it will be before they have a chance to obtain it. The auctioneer can use these
values to produce an estimate of how long it will take the auction to converge and a
winner decided. Using a suitable abstraction of the buyers’ behaviors, sellers can use
this same information to estimate the sale price, while buyers can similarly estimate
the cost they will be expected to pay. This, along with the inherent utility each entity
places on the product and the time needed to acquire it, can be used to estimate local
utility.

This modeling approach implicitly assumes that agents have full observability of
one another’s state, because that information is needed to produce the information
flows that allow concrete predictions to be made. Because markets are competitive
environments, this is not necessarily a reasonable assumption. This would be the case
if the template were being used to create the entire marketplace, but the open nature
of the marketplace design typically means that only part of the market’s design is
under consideration at any one time. In particular, I will show below how a variant
of this model can be used to guide the local decision making process.

More so than other paradigms that have been discussed, markets are frequently
preexisting, open systems put in place that agents can choose to join or not. Be-
cause of this, the marketplace design problem is often less one of creating an entire
organization than it is deciding what type of market to create (from the auctioneer’s
perspective) or what markets to join (from the buyers’ and sellers’ perspectives).
Thus, a useful ODML model would be one that enabled the entity to reason about
those classes of decisions.

The key insight needed to support this use is to recognize that the majority of the
model will be used to evaluate a relatively small number of design decisions (typically
confined to a single individual) that must be made within an expected operating
context. This is different from most of the models that have been previously shown,
where the intent was to represent complete organizational alternatives, and decision
points existed throughout the model. This is most closely related to the existence of
targets in the DSN model. In that case, a suitable sensor network organization had to
be found, given an environment that contained a set of independently moving targets.
In this situation, a number of decisions need to be made for a particular individual
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in the market, given an environment that contains a set of independently acting
participants. As with targets in the DSN model, the participants can be modeled
with distributions. This avoids the observability problem by allowing the individual
to evaluate its decisions with respect to a range of different conditions rather than a
single exact instance, under the presumption that it is reasonable the agent would be
able to define an estimate of the conditions it will operate in.

For example, assume that the market owner needs to determine what sort of auc-
tion to create. This might include specifying upper or lower bounds on the number of
participants, whether to impose time or bid granularity limits on the auction process,
and the categories of products that will be sold. Each can be specified with a vari-
able, and perhaps a range of auctioneer types, and an appropriate set of expressions
that predicts the ramifications of that choice in the context of some expected set of
market participants. The set of participants can then be represented with a series
of distributions within the market, buyer and seller nodes that control the number
of buyers and sellers, their internal behaviors, and so on. A Monte Carlo evaluation
process can be used to sample from these distributions, producing a range of possible
environments in which the market owner’s design decisions can be evaluated.

A similar scheme can be used by a candidate participant. It must decide how it
will behave and what market(s) it should join. The market and auctioneer (which
presumably already exist and are known) would be static entities in this case, while
a similar set of distributions can be created to model the expected set of peers that
might be observed over time. By again using Monte Carlo evaluations, the participant
could correctly decide behavioral choices and place itself within the organization to
maximize its expected local utility.

5.2.5 Matrix Organizations

The primary benefit of a matrix organization, as compared to a simpler hierarchical
structure, is that goals can be addressed more flexibly by performing more work with
the same amount of resources. This is accomplished through the reuse of worker time
that would otherwise be spent idle, or through the intelligent selection of actions that
can take place when the actor has a more complete view of its working context.

The structure itself is fairly simple but potentially tangled because of the mass
of manager-worker relationships. Figure 5.12a shows a matrix organization template,
where the number of workers and managers can vary, as can the number and specific
assignment of workers to managers. A small two-worker, two-manager instance is
seen in 5.12b.

Like other paradigms that have been discussed, tasks of particular types will arrive
in the organization with a particular frequency. We can assume that they will arrive
at the managers, each of which can have a list of task arrival rates:

<constant name="arrival_rates">[0.5, 0.1, 0.0, 0.9]</constant>

<constant name="available_service_rates">forallsum(r, subordinates,

r.worker.service_rates)</constant>
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Figure 5.12. An ODML matrix a) template and b) example instance. The wm-
relation node is used to propagate the effects of each manager to a worker.

where each list slot corresponds to a particular type of task, and the available service rates
list is used to keep track of the service capabilities of the workers that report to it.
Each worker can have a corresponding set of service rates, defining how quickly they
can perform each type of task:

<constant name="service_rates">[0.9, 0.0, 0.5, 0.1]</constant>

Within the wm-relation node, the particular amount of work that will be assigned
to the worker can be determined based on the per-type proportion of service that
worker can provide to the manager. This information can then be applied to the
worker with a modifier:

<constant name="work_rates">forrange(i, 0,

size(manager.service_rates), listitem(manager.arrival_rates, i)

* listitem(worker.service_rates, i)

/ listitem(manager.available_service_rates)</constant>

<modifier name="worker.work_rates" op="+">work_rates</modifier>

This straightforward approach does not permit the manager to request a dispro-
portionate amount of service from any one worker. For example, the manager who’s
arrival rates are given above could not use the worker specified above for only its tasks
of type index 0, it would also use it to service tasks of type 3 (the only other type
where the manager has arrivals of tasks the worker can service). If disproportionate
assignments are desired, a separate set of variables would be needed to make the
organizational decisions defining how much each worker should be used for each task
type. The manner in which this load would be passed to the worker would remain
the same.

After these connections are formed and the work assignments decided, each worker
will have a list of the total demand that is being placed on it, broken down by
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task type. As with the information retrieval organization, the behavior produced by
these arrival and service rates can be predicted using queuing theory. This problem
differs from that one in that there is just a single level of queues, which reduces
the complexity of information that must be passed. On the other hand, there are
several different classes of task, each with different arrival and local service rates.
Mathematical expressions have been developed that allow the service time for each
task to be estimated [87], and can be incorporated into the ODML model. This work
completion delay can then be collected by the managers to help estimate the utility
of the solution.

This model will capture the detrimental effects of potential over-usage of com-
mon entities, which will be exhibited through slower response times and lengthening
queues. What is not yet modeled are the potential benefits that can be obtained when
similar or complementary tasks are performed by a single provider. For example, if
two managers required a task to be performed, and one agent could serve both in the
same amount of time needed to serve one, then a net reduction in duration would
be seen if the managers worked through that same agent. Detailed, situation-specific
interactions, such as the effect that relative arrival time has on performance, would
be hard to capture exactly in an ODML model. An approximation is more practi-
cal in this case. For example, to model the effect of avoided redundant tasks, the
worker could artificially reduce the arrival rate of a task type based on the number
of managers:

<constant name="efficiency_gains">forrange(i, 0, size(work_rates),

listitem(work_rates, i) * -1 / e^(0.01*(listitem(num_managers, i)))

+ 1</constant>

<constant name="actual_work_rates">work_rates

- efficiency_gains</constant>

where num managers is a list of the number of managers with non-zero arrival rates for
each task type, and the agent now uses the actual work rates list to compute expected
durations. This adjustment will gradually increase the efficiency of the worker as more
managers ask it to perform tasks of the same type. An inverse adjustment could also
be formulated that negatively affects work rate when many different types of tasks
are given to the agent. This could be used to model the efficiency lost through the
context switching that is performed as the agents shifts focus.

5.2.6 Societies

Unlike the paradigms that have been explored thus far, agent societies do not typically
subscribe to a common form that is amenable to direct modeling. By their most
general definition, an agent society is simply a group of agents that have agreed in
some way to exist in a shared social structure. The common element across society
instantiations is the existence of a set of social laws or norms that are used to control
agent behavior. These serve the same purpose as human laws in providing a common
foundation from which simplifying assumptions and guarantees can be made.
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These characteristics are perhaps most closely related to the design issues raised
by the market paradigm. Like markets, societies are open systems, so design choices
are typically focused on the initial creation or maintenance of of the society framework
(i.e., selecting the appropriate set of laws) and whether or not an agent should (be
allowed to) join an existing society. The same modeling approach used in the market
discussion may work here, which is restricting the organizational decisions to a small
subset of the total possible participants and using distributions and Monte Carlo
analysis to approximate the remainder of the system.

The question then, is how well ODML can capture the concepts that lie behind
norms, both as an explicit design choice and as a extant characteristic that affects
agent behavior. López y López and Luck present a general model of norms from
which we can evaluate ODML’s effectiveness [211]. In that work, three classes of
norms are described: obligations and prohibitions, social commitments and social
codes. Obligations and prohibitions are norms which when violated have some sort of
explicitly penalty or punishment. Social commitments are formed between individuals
to codify a negotiation or coordination event, and are typically associated with some
sort of reward. Social codes have neither explicit rewards or punishments, but are
norms that must be respected to remain in the society.

The intent behind social codes is consistent with ODML’s notion of organizational
validity. They are edicts that must be followed, there is no choice, and therefore if
they can be quantified it should be possible to represent them in ODML. For example,
the “one sensor per agent” constraint in the DSN model could be construed as a social
code. Another could be that all agents must take on at least one role. Yet another
could put a lower bound on the acceptable RMS tracking error. In each case, if the
code is broken the organization is considered invalid. A process creating the society
could evaluate a set of social laws by determining the frequency at which invalid
organizations are produced during the Monte Carlo process. An entity trying to
determine if it should join a society can insert itself into a similar model and verify if
the society remains valid.

Obligations, prohibitions and social commitments are more like soft constraints.
There is some leeway in the norm, in that if it is not satisfied something bad will
happen, or something good will not happen. In fact, if we view a punishment as
a negative reward, they can be treated as a single effect. For example, there is
an implicit norm embedded in the track manager-sensor relationship that obliges the
sensor to do work for the track manager. If that work is not performed, the RMS error
of the track manager will increase and the utility of the organization will decrease.
In a more self-interested context the model would need to assign the change in utility
directly to the entity at fault. There is an implicit social commitment behind most of
the relationship nodes that have been defined in the models that have been presented.
In each case there is some amount of work, information or raw utility that is provided
to one or both of the parties in question. If there is some probability the commitment
will not be satisfied, because of scare resources, operational faults or simple bad
luck, this can be expressed with a probabilistic distribution. By incorporating that
distribution into the reward or penalty calculation, the norm’s effects can be correctly
propagated.
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My experience thus far has shown that norms are more easily represented and
incorporated implicitly. The problem with this approach is that it is less useful if
one is trying to reason about the inclusion or exclusion of a particular norm. To
overcome this, a way of defining the norm as explicit choice must be found, so that it
can be reasoned about during the design process. This is typically done by defining a
variable or creating a node that embodies the characteristics of a norm. For example,
one could to create a variable in the DSN’s environment that determined the number
of sensors each agent could control (e.g., a choice of 1 or MAX INT ). A choice of two
different nodes derived from a common relationship, one which enforces penalties and
one which does not, could be used to reason about the utility of social commitments.
In both cases the decision of norm inclusion will not necessarily be as explicit as one
would like, especially in contrast to other representations that maintain norms as a
discrete set that agents can inspect and reason about. However, it should be possible
for the designer to create a mapping to produce such a set with the same knowledge
used to design the model itself.

5.2.7 Teams

There are at least two key characteristics of a team-based organizations. The first
is the increased productivity, redundancy or utility that can be obtained through
the cooperative and coordinated efforts of a number of individuals. The second is
the increase in coherence that arises when individuals’ decisions are grounded in a
representation of team-level objectives, shared beliefs and joint intentions. I will
explore how the former characteristic can be modeled first.

An ODML team template is shown in Figure 5.13a, which allows for different num-
bers of teams of varying composition, hierarchical sub-teams, team-specific goals, and
non-disjoint team membership. An example instance produced from that template
is shown in Figure 5.13a, exhibiting most of these features. The structure of the
organization as a whole is driven by the set of goals that need to be achieved. This is
specified with required goals, which contains a set of goal nodes. Each goal needs to
be assigned to a team, the composition of which is determined from the goal nodes it
is associated with. Each goal has a set of requirements, that correspond to skill sets:

<constant name="requirements">[1, 0, 2]</constant>

As with matrix organizations, each slot in the list corresponds to a skill type, with the
number indicating the total amount of skill that is required. Each agent possesses
a corresponding skills list, which is aggregated in the team to determine the total
amount of proficiency that is available. Agents belonging to multiple teams have their
skills distributed evenly among them. The requirements of the goals are aggregated
within the team, and a constraint used to ensure that the total amount of available
skill meets or exceeds the goals’ requirements.

This approach treats the team design process as a resource allocation problem,
where agents with skills are allocated to particular goals. The contents of required goals
are generally not an organizational decision, they are an environmental factor being
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Figure 5.13. An ODML team a) template and b) example instance. Has-a relation-
ships from teams to goals are used to allocate work among the entities.

addressed by the team organization being created. Modifiers from each team and
constraints within goals are used to ensure that each goal is taken on by a single
team, in much the same way that the agent-sensor proportion was enforced in the
DSN model. Adjustments to this mechanism could be used to reward redundancy, by
allowing multiple teams to pursue the same goal. The utility of the organization can
be calculated from the set of goals that are satisfied, each of which can be assigned a
quality that is aggregated up the team hierarchy. If goals have an arrival rate and are
not singular events, a queuing model can be put into place to estimate delays, which
can also be incorporated into the utility metric.

The second characteristic of team-based organization is the increased coherence
that can be expected, because the participants have a more explicit, global sense of
their purpose and can recognize how their local actions may interact with their peers.
The drawback to this technique is the necessary communication required to maintain
the teamwork semantics, as participants exchange local information. Communication
is more frequent among members of the same (sub-) team, and generally increases with
the number of members in that team. It is this reason why a single, all-encompassing
team approach does not scale well. This is represented with a set of modifiers in the
team node that increase the agents’ communication load by an amount proportional
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<node type="required_goals">

<has -a name="goal1">goal1 </has -a>

</node>

<node type="goal1">

<is -a>goal</is -a>

<constant name="requirements">[1, 1]</constant >

<constant name="quality">10</constant >

</node>

<node type="small -goal1">

<is -a>goal1 </is -a>

<is -a>goal</is -a>

<constant name="requirements">[0.5, 0.5]</constant >

<constant name="quality">5</constant >

</node>

<node type="decomposed -goal1">

<is -a>goal1 </is -a>

<is -a>goal</is -a>

<has -a name="goal1">goal1a </has -a>

<has -a name="goal1b">goal1b </has -a>

<constant name="requirements">[0, 0]</constant >

<constant name="quality">0</constant >

</node>

<node type="goal1a">

<is -a>goal</is -a>

<constant name="requirements">[1, 0]</constant >

<constant name="quality">5</constant >

</node>

<node type="goal1b">

<is -a>goal</is -a>

<constant name="requirements">[0, 1]</constant >

<constant name="quality">5</constant >

</node>

decomposed-goal1

goal1a

1

goal1b

1

goal1

small-goal1

required_goals

1

Figure 5.14. Portions of an ODML team model supporting goal alternatives.

to the size of the team. Constraints within individual agents ensure that this load is
kept to a sustainable level in any valid organization.

One aspect of team formation that this model does not address is the explicit
possibility of alternative ways to achieve a goal. For example, it might be possible to
achieve goal1 using a different set of skills by reducing the expected level of quality.
Similarly, it might be possible to satisfy goal1 with a pair of smaller goals that repre-
sent a decomposition of the original objective. It is possible to model these conditions
by taking advantage of ODML’s is-a relationship.

For example, consider the task structure excerpt shown in Figure 5.14. This model
contains the original goal1 as well as two additional alternatives that may be used in
its place because of their is-a relationship with it. small-goal1 is still atomic, but has
weaker requirements and produced correspondingly less quality. decomposed-goal1
itself has no requirements or quality, but does have two sub-goals. These sub-goals
act as ordinary goals, and therefore can be assigned to separate teams. It should be
possible to translate simple AND-OR goal trees into this type of model. It is not clear
if the complete semantics of more complex representations (e.g., TÆMS [40]) can be
represented. It seems likely that an approximation would be required that sacrifices
some of the original fidelity.
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An aspect not captured by this initial team model is a notion of time. Specifically,
goals may need to be achieved at different times, which affect when their correspond-
ing requirements must be fulfilled. The allocation mechanism described above lacks
any temporal directives, implicitly assuming all goals will be pursued concurrently
and producing an excessively conservative organization. An approximate timeline
approach like that described in Section 5.1.2 can be useful here. Each goal can be
associated with a time and duration, which the aggregation process can use to create
a timeline of skill requirements. Constraint validation can ensure that the necessary
skills are available at each point. This technique would not be able to handle un-
certainty or choice in the timing specification. For example, it could not shift goals
around in an effort to optimize the allocation process, a problem that is much better
suited to a conventional scheduling engine.

More generally, one can ask how much of the agent’s internal scheduling process
can and should be represented at this level. Even if it were possible, it seems unlikely
that one would want or need to re-implement a scheduler within the ODML model.
The necessary level of detail then depends on how crucial the low-level characteris-
tics of that process are to organizational performance. For example, the temporal
interactions from Section 5.1.2 were in some crude way a prediction of the sensors’
attempts to schedule multiple competing tasks. That section demonstrated that these
effects can be important, which motivates their inclusion into the model. As with
other characteristics, the designer must trade off the complexity of the model and the
difficulty of the search (because a more complex model will tend to require more time
to evaluate) with the requisite detail of the predictions.

5.2.8 Compound Organizations

A compound organization is one that incorporates elements from two or more different
organizational paradigms. Examples of such structures have already been discussed in
detail – both of the complete organizational models given in earlier chapters fall into
this category. For example, the sectors of the distributed sensor network organization
act like federations, because they are divided into groups with a distinguished agent
(the sector manager) serving as an intermediary in some interactions. In that same
structure there are are elements of a matrix organization, because individual sensors
can report to multiple track managers at the same time. In the information retrieval
model it is easy to see the hierarchies that exist, with databases at the leaf nodes
and aggregators as the nodes above them. The behavior and status of information
retrieval mediators, on the other hand, makes each hierarchy seem like a federation
because they act as intermediaries between the users and the information sources
below them.

The ability to create such complex structures is one of ODML’s key strengths and
distinguishing characteristics. As shown in Chapter 6, most existing organizational
design representations and techniques are limited to structures that have a particular
characteristic shape. ODML makes very few assumptions about organizational struc-
ture, and therefore avoids this problem. The preceding sections have demonstrated
how a wide range of organizational paradigms can be modeled using ODML. Cre-
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ating a compound organization from disparate elements is accomplished in precisely
the same way, by selecting or creating an set of components and linking them with
expressions or node relationships that allow the behaviors of the organization to be
appropriately predicted.

5.3 Conclusions

Where previous chapters have taken a depth-first approach to explaining the benefits
of ODML and the details of a small number of models, this chapter has attempted
to provide some breadth to that argument, by discussing at a relatively high-level
how a range of topics could be addressed. Incorporating concepts such as time, het-
erogeneity and abstraction were shown to be possible. Key characteristics from a
number of commonly used organizational paradigms were also shown to be repre-
sentable. When included with those more detailed results from Chapters 2 and 3,
this provides convincing evidence that ODML’s approach to allow flexibility while
retaining quantitative detail can be a successful strategy.
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CHAPTER 6

RELATED WORK

The techniques described in this paper intersect with several different research areas.
This section describes prior related work done on organization representations and
design techniques.

6.1 Organizational Representations

As mentioned when ODML was first introduced in Section 2.2.1, there have been many
different organizational representations produced by different researchers. One of two
different approaches have been typically used to encode organizational knowledge.
The first is to use formal logic primitives that define the capabilities and interactions
between agents as a set of rules [59, 45, 50, 185]. One can then use theorem-proving
techniques to deduce higher-level information from the primitive statements. These
approaches are almost universally qualitative in design. The second is to use a mesh
or decomposition tree, where nodes represent roles, goals, agents, or other organi-
zational entities, and edges represent interactions between them [40, 143, 88, 174].
This additional structure helps focus analysis, assuming the structure is arranged in
a logical fashion. This approach, which is used by ODML, is more easily integrated
with quantitative information. In this section I will describe a range of representa-
tions that use both styles, and compare their strengths and weaknesses with those of
ODML.

Before progressing, I will discuss ODML’s applicability to non-computational do-
mains. Although the goals I have outlined in this paper certainly have relevance
to human organizations, the use of concrete, formal models to describe human and
businesses activities has historically had mixed results. Formal models of human in-
teractions frequently break down because human behavior can be hard to quantify
and predict, at least at the individual level [124, 7]. Statistical descriptions can help
address this, but this inherently raises the level of abstraction and limits the direct
applicability of such models. Agents, being inherently computational and relatively
predictable, don’t suffer as much from this problem, and are therefore more amenable
to the quantitative, expression-based technique used by ODML. So, while ODML
could in theory be used to model human organizations, I believe the unpredictability
and imprecision involved with quantitatively describing human activities would make
it difficult to fully exploit ODML’s strengths.

Although I will focus on general purpose, domain-independent organizational rep-
resentations in the remainder of this section, it is worth mentioning the successful use
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of domain-specific frameworks to capture particular relevant organizational charac-
teristics. For example, Shen et al. [166] use a formal model to uncover a relationship
between the environment, the level of cooperation exhibited by the agents, and the
performance of the system as a whole. Decker and Lesser [39] motivate the need for
meta-level communication to guide dynamic organizational adaptation when condi-
tions are uncertain. Sen and Durfee [163] have created a model predicting the effects
of various meeting scheduling heuristics, so that agents may dynamically adapt their
behavior to correctly trade off local needs versus those of the larger organization. Mal-
one, et al. [123], Gnanasambandam, et al. [68] and Schmitt and Roedig [160] have all
used techniques from queuing or network theory to model organizational aspects of
distributed or agent systems. In each of these works, a quantitative model was used to
describe and predict particular organizationally-affected characteristics in much the
same way that ODML is used. However, none of them do so in a manner that permits
the linking of all relevant characteristics into a single, domain-independent model that
is amenable to search. Therefore, while these approaches are individually quite useful,
and in several cases have been incorporated successfully into ODML models, they do
not address the same class of problems as that representable in ODML.

Tambe’s STEAM framework [187, 186] is a general-purpose framework that uses
a decomposition tree to encode organizational information. In fact, STEAM uses
two such hierarchies. The first is a team organization hierarchy, which defines the
possible teams, sub-teams and roles that may exist. Roles may be either persistent,
existing for the lifetime of the organization, or task-specific, based on the needs of
the current task. The second is the team activity hierarchy, or operator hierarchy,
which combines aspects of goal decomposition with team concepts to describe how
goals may be addressed from an organizational point of view. Operators can be team
or individual-based. Individual operators represent activities to be performed by a
single agent, while team operators are performed by multiple agents acting coop-
eratively. More specifically, the team operators express the team’s joint intentions,
which incorporates semantics governing the agents individual behaviors as members
of that team and their desire to maintain a consistent mutual belief. Both types of
operators include precondition, application and termination rules which determine
their applicability, although detailed quantitative information is not present. The
roles from the organization hierarchy assigned to agents or sub-teams dictate what
operators in the activity hierarchy may be used. For example, if the role a particular
agent is currently performing is in conflict with a particular operator’s requirements,
then that operator may not be used.

Section 5.2.7 showed how ODML could be used to capture some aspects of team
creation and performance. Like STEAM, it could reason about goal decomposition,
team composition and assignment of roles to agents. Unlike STEAM, the information
it uses to do so was much more quantitative, which allows it to capture and predict
more aspects of the agent and team level performance. It should be noted that al-
though STEAM incorporates an organizational representation, its contributions are
derived more from the well-defined team level semantics that agents operating within
the framework exhibit. Although decisions made in an ODML model could parame-
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terize such behavior, the model itself does not and was not designed provide this type
of capability.

The TÆMS task description language, created by Decker, Lesser, et al. [40,
83], can also be used to describe organizational structure. At its core, it is a goal
decomposition tree, where high level goals are subdivided into subgoals (tasks), which
eventually terminate in executable, primitive actions (methods). What distinguishes
TÆMS from other, similar languages is its explicit description of quantifiable aspects
of the task. For example, each method is labeled with its expected quality, cost
and duration. Because these values are stored as distributions, they also explicitly
describe the uncertainty related to those metrics. The manner in which tasks may
be achieved by their subtasks are also described, using so-called quality accumulation
functions (QAFs). A QAF models how the quality of subtasks should be combined
to produce the quality of the parent task, which can then be used to describe the
alternative ways that task may be achieved. For example, a min QAF, denoting
the quality would be that of the minimum quality subtask, indicates all subtasks
must be completed successfully. A sum QAF says that the quality would be the
sum of the subtasks’ qualities, so better quality can be achieved with more work.
TÆMS also incorporates the concept of interrelationships, which allows one task or
method to affect the characteristics of another. An enables interrelationship, for
example, indicates that one method must be successful for the target method to be
achievable. A hinders interrelationship is weaker, indicating that if the source method
is completed it will limit the target in some way, but not prevent it outright. A second
set of interrelationships describes the effects method have on resources, and vice versa.

TÆMS may be used in an organizational manner because different parts of the
structure may be performed by different agents [136]. In fact, the global structure
typically does not exist in a complete form anywhere in the environment. Instead,
individual agents possess a subcomponent (or subtree) that logically connects with
other agents’ structures. The manner in which those components are connected repre-
sents the manner in which those agents can be organizationally related. For example,
if an agent has a TÆMS description of a high-level goal T and how it decomposes
into two subtasks T1, T2, T1 and T2 may be high-level goals in task structures owned
by other agents. If it contracts with those two agents to perform T1 and T2, they
then have an obligation to report their results upon completion. Interrelationships
can also represent organizational knowledge. If an enables interrelationship spans the
structures owned by two agents, then it may be in their best interest to coordinate
their activities. If the source agent notifies the target when the action has (or is
intended to be) completed, the target can then be aware of when its action is achiev-
able. These type of interactions were the basis of the GPGP framework [109], which
first discovered structural elements that might require interaction between agents,
and then employed one of several protocols to perform the coordination.

It was shown in Section 5.2.7 how ODML is capable of modeling similar task
decompositions, and relating them to the abilities of individual agents. Aspects such
as hinders and enablement can be modeled with modifiers that use the expected
quality of the source node to affect the characteristics of the target node. Unlike
TÆMS, ODML is not restricted to modeling a limited set of such characteristics, and
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is therefore capable of capturing more aspects of the system at a greater level of detail.
This capability does not come without a cost, however, as the more regular TÆMS
structure is much more amenable to conventional search and analysis techniques.

Later work by Abdallah et al. [1] extended TÆMS by incorporating more explicit
aspects of teamwork, specifically templates and achievability conditions. Templates
are generalizations of TÆMS nodes, such as methods or tasks, which can be applied
to an entire team rather than a single agent. This allows team-based structures to be
represented with a single (or constant number) node, instead of requiring a separate
node for each agent. This layer of abstraction does limit the expressiveness of the
structure, but the complexity benefits are acceptable and appropriate in large team-
based environment where agent activities are likely to be more homogeneous. In a
conventional TÆMS structure, success is defined simply as when a method or task
obtains non-zero quality. Achievability (and unachievability) conditions in this work
provide a more sophisticated way to represent success, using formal boolean expres-
sions that combine monitoring terms over the standard quantifiable characteristics
(e.g., quality, cost, deadlines, etc.). These are also applicable to single-agent situa-
tions. These enhancements bring the capabilities of TÆMS closer to those of ODML,
although the representation is still limited in its ability to model characteristics other
than those that are explicitly embedded in the language.

The EFIGE [143] language is also intended to encode organizational structures.
More so than STEAM and TÆMS, its focus is on describing classes of organizations,
rather than particular instances. Organizations described in EFIGE consist of a set
of parameterized templates which are populated with runtime knowledge to produce
an organization. The primary EFIGE structures are hierarchical and recursive. At
any level, the node may be denoted individual (terminal), or composite (recursive).
A composite node is then decomposed into some number of sub-nodes. Composite
nodes do not have physical counterparts within the organization, instead they are
logical constructions which allow a group to be treated as a single, atomic entity.
This facilitates describing characteristics that may exist in the organization, but are
not manifested by any single individual. ODML shares this ability (Section 4.3.2),
because it also does not enforce a mapping from every organizational structure to
a tangible entity in the running system, and because organizational characteristics
can be easily consolidated in one location. The sector node in the DSN model is
such an example. Each node in EFIGE can take a set of parameters, which are
used along with a separate, predefined set of preconditions to determine how the
organization will be instantiated. This process is also affected by a set of constraints,
which either limit the scope of potential instantiations or provide a partial-ordering
(preference) among them. ODML differs from EFIGE in its ability to incorporate
more general information about the organizational constraints, expected behaviors
and working environment. For example, EFIGE lacks the ability to deduce a single-
valued utility ranking for organizational alternatives - it only seeks to satisfy the set of
constraints that are specified. Relatedly, there is no means by which environmental or
goal characteristics may be encoded, which are a prerequisite to calculating a utility
metric. Because of this, EFIGE is a more descriptive than proscriptive, making it
less useful from a design point of view.
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In MaSE [45, 46], DeLoach and Matson present a more free-form organizational
modeling technique, based on the role interrelationships that occur in the organiza-
tion. A role model is first created, derived from the high level goals and functional
requirements of the system. Roles are connected in a graph structure, where directed
edges represent communication acts. This model is given further detail by incorporat-
ing the (high-level) tasks the individual roles must perform, and depicting the agent
interactions that will be performed as part of those tasks. The tasks are further re-
fined in a separate concurrent task diagram, which models both intra and inter-agent
interactions. The characteristics of the organization may then be more concretely
specified in an organization model, which consists of a set of first-order logic rules
that place constraints on agent behaviors and interactions. The rules make use of
the previously defined role model, along with ontological information, to construct a
set of axioms or social laws which govern how the organization may be instantiated.
These aspects describe the range of organizational decisions that can be made, and a
separate organizational state captures a particular instance of those decisions. Like
ODML, the validity of a MaSE instance is determined first by its ability to satisfy
the indicated logical constraints. It also has the ability to determine the quality of
a particular instance, which can be used to differentiate alternative valid structures,
but this metric is calculated using a relatively simple capability metric associated
which each role-agent pair. The strict nature of the language also precludes its use
in domains or models that lack explicit notions of roles and goals, although this
same restriction makes the representation more tractable than ODML from a design
perspective.

Unlike most of the other representations outlined here, the SADDE framework
[170, 171] employs an explicit set of equations designed to capture aspects of the
agent system. SADDE’s Equation Based Model (EBM) describes the desired global
behaviors of a system through a series of interrelated expressions. Using the EBM as
a set of guidelines, one then constructs an Electronic Institution Model (EIM). The
EIM is essentially an organizational design, intended to enforce the characteristics
initially described in the EBM through a series of social interaction norms. A third
Agent-Based Model (ABM) describes the behavior of individual agents. The veracity
of these models may be determined by building and testing an agent system based
on the specifications they embody. The values for any variable elements, such as the
number of agents or the settings for specific variables, are set and evaluated in these
tests. In particular, they propose a genetic algorithm for exploring the space of these
particular values using the agent system.

ODML differs from SADDE in the pervasiveness of quantitative expressions used
in the ODML model. For example, the equations in SADDE do not contain refer-
ences to individual agents or their characteristics. Instead, they refer to environmental
conditions, or averages of observable group behavior. ODML also differs in that it
combines the expressions and organizational structure into a single, unified view. This
tighter coupling allows the quantitative global and local ramifications of structural
differences to be directly determined, rather than through experimental observation.
For example, it is possible in ODML to determine the exact organizational ramifi-
cation of a particular relationship. In SADDE, the equation based model is more
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of a target for the organization model to emulate than a predictive description of
how the organization will behave. Because there is no direction correlation between
the structure and equations, the impact of the particular relationship could only be
derived through additional experimentation.

The OMNI model created by Dignum et al. [50] is composed of three distinct
levels: abstract, concrete and implementation. The abstract level defines the high-
level objectives and values of the organization, along with the context is it expected
to exist in. The concrete level codifies the needs represented in the abstract level
into a set of norms, rules and roles intended to satisfy those needs. These structures
are then instantiated at the implementation level, where these roles and norms are
applied to actual agents. OMNI further differentiates each of these levels into nor-
mative, organizational and ontological dimensions. As one descends through levels,
these aspects are defined and grow progressively more refined. For example, the or-
ganizational dimension of the concrete level contains the social structure that is to be
used, including roles, groups and role dependencies. It also contains the interaction
structure, which defines the manner and pattern of interactions among roles. The
normative dimension of the concrete level defines the specific norms and rules which
govern agent behaviors using formal logic rules. These are somewhat analogous to
hard constraints in ODML. The ontological dimension in OMNI differentiates it from
most of the other representations presented here, by facilitating the identification of
shared concepts among organizations. The structure of an OMNI model can be quite
complex, and it is capable of explicitly describing a wider range of organizational fea-
tures than ODML. It does so only in a qualitative manner, however. It is not possible
to use an OMNI model to make numeric predictions about the system’s behavior,
and because of this it seems less well suited to design applications.

Fox et al. [59] describe the enterprise ontology model used in the TOVE project,
which uses first-order logic to describe organizational structure. The basic structure
used by the framework is called an object, which are organized into taxonomies. The
taxonomy can contain a diverse collection of entities, including organizational goals,
divisions, agents, roles, teams, activities and resources, among other things. Each
individual object, as well as the relations it has with other objects, is defined with
first-order logic. Together these rules present a working model of many aspects of
the organization, linking abstract concepts such as goals and skills with more tangible
objects such as agents and activities. A situational calculus is also used to allow these
objects to exist and change over time, an important characteristic needed to project
and hypothesize about the consequences of actions. The rules also allow one to make
discrete queries to an organization, such as “who has role X?” or “what behaviors
may agent A exhibit?”. These formalisms do presume the existence of a theorem
proving engine capable of reasoning about the collection of predicates, this work uses
Prolog. Like OMNI, although TOVE can represent many different concepts, the lack
of quantitative information limits the representation’s utility.

The Moise
+model described by Hübner et al. [88] defines organizations along

three separate dimensions: structural, functional and deontic. The structural speci-
fication is itself broken down into sets of roles, relations and groups that define the
individual, social and collective characteristics of the structure, respectively. Roles
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in this framework are associated with a set of constraints that relate them to other
roles, and to the responsibilities that role has within the set of global plans. The set
of relations describe interactions between entities in the organization, including com-
munication acts, authority and inheritance. The structural specification is completed
with a set of groups, which control how roles may be combined to form coherent
clusters of agents. A group specification may include relations between group mem-
bers and between other groups, role compatibility lists, and cardinality constraints.
The functional component of aMoise

+model consists of a goal decomposition tree.
Goals within the tree may have different satisfaction conditions, specifying for exam-
ple that its sub-goals must be completed sequentially or in parallel, or that a choice
of only one sub-goal should be performed. This is similar to the task structures used
in TÆMS, although quantitative details are not available. The deontic specification,
which concerns the duties and responsibilities associated with the organization, ties
the otherwise independent structural and functional components together. Through
this structure, structural roles may be permitted or obligated to satisfy functional
goals. In this way, agents assigned a particular role may first determine their respon-
sibilities from the relevant deontic definitions, and then use the goal tree from the
functional specification to construct a viable plan. This representation is also largely
qualitative.

Malone, et al. [122] describe their experiences developing a process handbook,
which attempts to represent the array of techniques used to form and organize business
processes. This knowledge base can then help to design and redesign organizations,
as well as facilitate the sharing of organizational knowledge. The representation they
employ draws from two existing fields: object-oriented programming and coordina-
tion theory. From the former, they employ concepts of specialization and inheritance,
which allows one to reuse knowledge from an existing structure while specifying how
the new structure is different. A group of specializations of the same concept are
further organized into bundles, which allows for direct comparisons among alterna-
tives and facilitates the process of selecting a technique. This is loosely related to
ODML’s inheritance relationships, which can be used to the same effect (Section
5.2). These comparisons are explicit, stored in a table, and may be qualitatively and
quantitatively ranked across multiple dimensions. Arbitrary quantitative data can
be attached to organizational objects, but no mechanisms like ODML’s expressions
exist to link or relate that data between objects. The process handbook draws upon
coordination theory to model the notion of interconnectedness between processes.
For example, activities may share a resource between them, or information may flow
from one site to the next. Each such instance represents a point where coordination
may be necessary. To address this need, the handbook includes a library of generic
coordination strategies.

Sims et al. [174] have created an organizational representation that is used within
an automated organizational design process. This model separates domain and co-
ordination knowledge, so that existing coordination templates may be reused by ap-
plying them to new domain information. The model itself consists of four distinct
components. The first consists of a set of performance requirements and an envi-
ronmental model. Both contain a set of arbitrary feature-value pairs which describe
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a particular desired or existing characteristic. The task environment is represented
with a goal decomposition tree that describes how goals are related to sub-goals,
what responsibilities are needed to satisfy those goals, and where sub-goal interac-
tions must task place. The third component is a set of role descriptions. Each role is
defined by the responsibilities it can perform, how well it performs, what it requires
and how it may be distributed across a set of agents. The last component consists
of a set of agent descriptions. Each description contains a set of arbitrary features
and capabilities, along with a set of role satisfaction tuples. Each tuple specifies a
role the agent may take on, how much that role drains local resources, and how many
messages it will produce. The search process works by first determining which roles
can satisfy which goals, and then by finding agents which can satisfy those roles. The
agents can themselves be related through higher level organizational structures that
affect their performance characteristics.

The principal difference between this representation and ODML is the amount
of flexibility. Sims’s structure has a well-defined format that facilitates construction
and manipulation. ODML’s structure is generally less rigidly-defined, which adds
both flexibility and complexity. Despite this, the class of organizations that are rep-
resentable by the two formats seems to be similar. For example, both can model
agents, roles, capabilities and constraints. They can also both represent potential
role-goal and role-agent bindings. In Sims’s structure this information is captured in
lists associated with roles, goals and agents. In ODML this information is captured
within nodes by using modifiers, is-a and has-a relationships. The former strategy
permits a more straightforward search process, while the latter can capture a wider
and potentially more abstract range of relationships and effects. The utility of an
instance in Sims’s representation is deduced by an external evaluation component,
which uses domain and model-specific heuristics to predict organizational character-
istics. This is in contrast to ODML, where the information necessary to deduce utility
is defined within the organizational structure itself.

None of the approaches outlined above meet all the representational needs out-
lined in Section 2.2.1. The TOVE enterprise, STEAM and Moise

+models are not
sufficiently quantitative, while the process handbook is not a computational model.
The EFIGE and TÆMS frameworks are both quantitative and computational, but
the former lacks the level of detail needed to serve as a deductive model, while the
latter does not have the structural primitives needed to represent and evaluate a wide
range of organizations. The SADDE framework is probably the closest structural rel-
ative of ODML, but it does not have a way of explicitly modeling fine grained detail or
comparing organizational variants without employing a simulation. Sims’s framework
shares many of the same capabilities as ODML, but does so using a less flexible model
that lacks the innate ability to evaluate organizations. A summary of key differences
between these representational styles is shown in Table 6.1. As one can see, there
are many structures capable of representing the alternative ways to organize a sys-
tem. Fewer model detailed quantitative information, and none other than ODML can
represent both aspects in a way that captures the integrated, interdependent nature
of organizations. It is this key capability which differentiates ODML from existing
organizational representations.
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Table 6.1. A comparison of the characteristics and capabilities of several different
organizational representations.
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ODML X X X X X X X X

STEAM X X X X X

TAEMS X X X X X X

EFIGE X X X

MaSE X X X X X X

TOVE X X X X X X

Process Handbook X X X X X −
Moise

+ X X X X X X

SADDE X X X X X X

Sims X X X X X X X X

OMNI X X X

6.2 Organizational Evaluation and Design

In Section 1.2 I claimed that nearly all multi-agent systems have an organization,
because any agent system will have a pattern of interactions and an assignment of
responsibilities, and these characteristics by themselves constitute an organizational
design. Viewed in this light, there has been an enormous amount of research into
the process of dynamic organizational search and design, because many of these sys-
tems decide such organizational characteristics dynamically. For example, the simple
process of contracting out or assigning a task creates a manager-worker interaction
[178]. The related work presented below is differentiated from the majority of these
projects in that the search process in each is grounded in an explicit representation
of the organizational space. Where the others are superficially related because they
implicitly result in organizational decisions, those below are more directly related
because they address the problem of automated organizational design in a direct and
(mostly) general fashion.

Before focusing on particular design methodologies, it is worth mentioning the
relationship that organizational evaluation has with design. A key characteristic of
any domain-independent design process is the ability to predictively evaluate how
well competing designs will behave under expected conditions. This can be accom-
plished in various ways, including the use of heuristic analysis, predictive models and
simulation. Like the technique-specific models described at the beginning of Section
6.1, ODML uses predictive mathematical models for its evaluation. The benefit this
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approach has over a simulation-based evaluation is speed. A mathematical model’s
evaluation type is typically measured in seconds – it requires only as much time as
needed to evaluate the equations. Conversely, a true simulation can require minutes,
hours or even days to determine characteristics for a single design consisting of a
large number of entities. Heuristic approaches are less easily categorized, as any sort
of approach (case based, analytic, simulation, or other) might possibly be embedded
in the process. In practice the drawback to using heuristics is their typical lack of
generality – a new battery of tests may needed to be devised as the organizational
alternatives change. i

As with organization representations, each of these techniques has its place. The
utility of each depends on the user’s relative need for detail, optimality, speed or gen-
erality, among other things. The analytic approach was selected for ODML because
a design process that may potentially consider all of the (potentially vast number of)
organizational design alternatives can greatly benefit from its speed and accuracy.
Although not demonstrated in this work, it is also quite possible to use a hybrid
scheme that exploited the strengths and avoided the weaknesses of each. In this case,
one might use the analytic approach to form a rough view of the organizational space,
and use detailed simulation to empirically compare a small subset of representative
instances.

The SADDE design methodology [171] discussed previously can be thought of
as an approximation of this technique. Each agent in SADDE expects a set of pa-
rameters, each of which controls some aspect of the agent’s behavior. The search
process thus attempts to find an appropriate set of values to assign to organizational
parameters for all participants. In this particular work, agents act as consumers and
producers in an electricity market. A typical parameter dictates how a producer
should generate its electricity, while another specifies the strategy consumers should
use when placing bids. This strategy allows local agent characteristics to be modi-
fied, and consequently affect how they interact with other agents, but changes to the
higher-level organizational structure are not considered without human intervention.
Iterative evolutionary computing is used to explore the space of parameters. Each
agents’ parameter set comprises a single gene, and the complete set of genes makes
up a chromosome. During the search, a particular chromosome is used to instantiate
a multi-agent system, which is then evaluated with a fitness function to determine
the utility of the organization. Biologically-inspired notions of mutation and genetic
crossover among chromosomes, weighted by the results of the fitness evaluation, are
used to create new organization candidates. These candidates are then ranked and
evolved in an iterative manner by comparing them against the equation based model
(EBM), and the most fit organization is chosen.

SADDE is only an approximation of the hybrid scheme because of its loose connec-
tion between the EBM and the agent organization. As mentioned earlier, the EBM
is a descriptive target, not a predictive model, and the genetic manipulations are
used to coerce the agents into a design that conforms to those equations. In ODML,
it is the modeling process itself that ensures the consistency between the form and
function of the design, which is what allows the utility expression to directly guide
the search process.
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Like ODML, So and Durfee [180, 179] search for structures that are a best match
between organization and environment using closed-form expressions to model the
various relevant performance metrics. The search process makes use of an organi-
zational model, a task environment model, and a performance model. The orga-
nizational model defines elements such as the available agents, and the way tasks
and work flows are assigned among them. The particular organizations considered
are limited to various forms of hierarchies, corresponding to a functionally decom-
posable task. The task environment model describes the task itself, along with any
environmental characteristics that might affect the organization’s performance. This
detailed view coincides with my own, that all relevant features of the domain must
be considered when forming the organization. The performance model consists of a
number of metrics by which the organization may be judged, such as response time,
throughput, reliability, etc. The particular metrics which are listed are all global in
character – per-agent analysis is not discussed. The search strategy employed in this
work is broken down into four phases: monitor, design, evaluate and implement. Like
ODML, evaluation is accomplished by using closed-form formulas to predict various
performance metrics. Unlike ODML, these concepts were not formalized into a gen-
eral organizational representation language suitable for defining a search space, and
only hierarchical systems are considered.

Although the primary function of the STEAM framework outlined above is to
enforce teamwork semantics at runtime, it also incorporates some adaptation facil-
ities through the specification of monitoring points and re-planning [185]. A set of
logical rules, called role-monitoring constraints, may be defined to monitor team per-
formance. At runtime, the validity of these statements may be ascertained through
plan recognition or explicit communication among participants. If a constraint is
found to be violated, and that failed constraint implies that a team goal is no longer
achievable, a repair mechanism may be invoked to handle the failure. Like the adap-
tation process described in Section 4.5, this repair process can be viewed as a form
of organizational design. The repair mechanism itself is just another team opera-
tor, which allows the existing organizational machinery to perform the repair task
correctly. Repair techniques are generally limited to role reallocation. A suitable,
non-conflicting participant is found to satisfy the failed role, and the substitution
is then announced to the other team members. Although this approach lacks the
quantitative grounding available in ODML and is limited to role-based repairs, the
runtime capabilities inherent in STEAM provide a level of automation absent in an
ODML-based implementation. Thus, while the level of design and adaptation is more
limited, the process itself is more straightforward to enact. This is a key difference be-
tween STEAM, which has robust runtime semantics and behaviors and a less detailed
representation, and ODML, which reverses this tradeoff.

Nair et al. offer a organizational adaptation technique based on a formal model
called a RMTDP (Role-based Multiagent Team Decision Problem) [138], based on a
distributed POMDP framework. The goal of an RMTDP is to provide a way to create
and adapt role-agent matchings. Like ODML, the space of possible assignments is
combinatoric, so heuristic search techniques must be used if assignments are needed
in a timely manner. Also like ODML, the RMTDP model is used for both creation
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(team formation) and adaptation (team reformation). The model itself consists of a
set of states, actions, transition probabilities, observations, observation probabilities,
a reward function and a set of roles. Actions and rewards are divided into role-taking
and role-executing types, where the former reflects an agent taking on a role and the
latter the actions agents can perform in that role. The action timeline is also divided,
so that each role-taking epoch is followed by a role-executing one. It is pointed out
that although this limits the representation, it also facilitates the cost-assignment
problem.

Initial role allocation is accomplished by associating an RMTDP policy for each
possible assignment of agents to roles. This is in contrast to ODML, where a single
template represents the entire organizational space. In order to avoid searching the
entire space of assignments, a branch-and-bound pruning approach is used. The
maximum value of each child in the search tree is estimated using the system’s plan
hierarchy, and if it is not possible gain utility by pursuing a child, it is pruned from the
tree. RMTDPs can also be used for adaptation, although like STEAM it is limited
to role-based reallocation strategies. However, it was demonstrated that using an
RMTDP-based policy along with STEAM’s normal interpreter-based repair results in
behaviors that more reliably accounts for cost and the probability of failure. RMTDP
and ODML also differ in their ability to relate organizational decisions to tangible
performance characteristics. Like ODML, the policy derived from a RMTDP may be
based on a range of characteristics. Unlike ODML, the quantitative rationale for or
explanation of a particular decision is lost in the policy’s transition function. This can
make an RMTDP policy difficult to use when runtime conditions do not match those
the policy was derived under, while an ODML structure would directly propagate
such changes through the existing model.

The MaSE framework [127, 46] uses capability functions to evaluate and rank
different organizational decisions. For example, a role capability function is used to
determine how well a particular role can satisfy a particular need. Similarly, and
organizational assignment function computes the capability score for the organiza-
tion as a whole. The design process works by finding a set of agents that have the
capabilities needed by the roles that have been selected to meet the high-level goals.
Although details are not given describing how this search is performed, the process
seems conceptually similar to the role assignment problem discussed earlier, with a
well specified way to evaluate role fitness. Although the design process used by MaSE
is based upon quantitative data, it is driven by just the singular quality value that
may not be sufficient to capture the complex tradeoffs different designs can have
along different dimensions. ODML can explicitly represent and compare among an
arbitrary set of quantitative features, and therefore can reason about tradeoffs that
MaSE cannot.

Hübner’sMoise
+model has also been used as the basis for controlled, top-down

organizational adaptation [89]. Similar to the theoretical ODML-based process out-
lined in Section 4.5, this process is separated into four phases: monitoring, design,
selection and implementation. Monitoring determines if the current organization no
longer satisfies the needs of the global purpose. In the design phase a set of candi-
date, alternative organizations are created which address the deficiency. The selection
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phase chooses one of these alternatives, which is then implemented. This must be
done according to a utility calculation where the benefits of the new organization are
balanced against the costs of implementing it. The authors envision this process per-
formed as a normal task within the system, and can therefore exploit organizational
concepts in doing so. Their proposed strategy would employ roles such as a reorgani-
zation manager, monitors, a designer and selector. General descriptions of how those
tasks would be performed are not given, and thus are difficult to compare against
ODML’s techniques. In a case study that is provided, several designers operating
concurrently use a range of domain-specific techniques to explore the organizational
space. A single selector then ranks and chooses the most appropriate structure. It
seems quite possible that ODML or an ODML-like process could coexist within this
set of designing agents.

The organizational work by Sims et al. also incorporates an automatic organiza-
tional design feature [174, 173]. This more general technique was inspired by their
earlier design-specific work on bottom-up coalition formation [175]. As indicated in
the previous section, the representation used by the design process is composed of a
number of separate characteristics, including a goal tree, a set of role specifications,
and a description of the available agents. The principal design process revolves around
finding a set of role-goal and role-goal-agent bindings. It must first find a suitable
set of roles that meet the requirements laid out in the goal tree and elsewhere, and
then find a set of agents able to provide the capabilities specified by the roles. The
search process uses a set of heuristic techniques to find and verify these bindings.
As part of that process, it may be decided that a role should be distributed among
a set of agents, to satisfy computational needs, address spatial requirements or im-
prove quality in some other way. This then creates the need for coordination among
agents in the set, which is itself a separate organizational design process applied
to a newly recognized “coordination goal”. Thus, the search is separated into two
phases: the search for application-specific bindings (domain goals), and the search for
coordination-domain bindings (coordination goals). Organizations are selected based
on their ability to meet specified domain and role requirements. The current mod-
eling framework lacks a direct means to quantitatively evaluate and rank otherwise
valid organizations in a general way. It currently uses an external heuristic evaluation
component to do so, which relies on model-specific rules and information to predict
behaviors and guide the search.

A summary of these approaches is shown in Table 6.2. All of these provide suitable
and reasonable mechanisms to enable organizational search. However, none of them
address the range of organizational characteristics representable in ODML. Chapters
2, 4 and 5 demonstrated how one can use ODML to model concepts including agent
interactions, role assignments, bounded resources, detailed performance predictions,
and high-level organizational structures such as hierarchies, coalitions and teams at
various levels of abstraction. This range encompasses and subsumes nearly all the
characteristics considered by the approaches described in this section. Because of
this, the scope of the design space using ODML can be richer in possibilities, and
correspondingly harder to effectively search.
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Table 6.2. A comparison of the characteristics and capabilities of several different
organizational design and adaptation schemes.
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SADDE Agent parameters Evolutionary computing Centralized
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RMTDP Role assignment Branch and bound Both

MaSE Role, capability assignment Role matching Centralized
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+ Various Various Decentralized
Sims Organizational structure Heuristic search Centralized
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CHAPTER 7

CONCLUSIONS

In this final chapter, I summarize the work presented in this dissertation, along with
the major intellectual contributions that have arisen from the process. This is followed
by a discussion of the conclusions that were formed and some of the high-level benefits
and drawbacks of this approach. I conclude with a brief outline of future directions
for this line of research.

7.1 Summary

The primary objective of this work is to evaluate the potential benefits and feasibil-
ity of using a domain and technique-independent representation based on predictive
quantitative information to design and evaluate multi-agent organizations. To mo-
tivate this problem, Section 2.1 demonstrates that organizations have a measurable
impact on a variety of performance characteristics, and that different organizations
will result in different performance. This is shown through experiments with an
existing, organizationally-driven distributed sensor network application. Those ex-
periments demonstrate that the organizational design had a measurable effect on a
range of characteristics, including overall communication volume, how evenly commu-
nication and action loads were distributed, the relative frequency of different message
types and the tracking quality exhibited by the system as a whole.

These experiments also show that certain members of that organization may lo-
cally benefit under some organizational conditions while the performance of other
members degrades under those same conditions. It is only when the needs of both
are taken into account that the global performance may be optimized. Together, these
results also provide the necessary insight that the utility of an organizational design
can depend on the complex interactions of the participants, the environment, the
designer’s expectations and the relationships and direction imparted by the organiza-
tional design itself. Being able to capture and predict the effects of such interactions
in an essential first step towards determining which alternative design is most appro-
priate.

The remainder of Chapter 2 introduces ODML, an organizational design lan-
guage that exhibits the quantitative and predictive character this dissertation seeks
to explore. ODML possess a core set of features that allow it to address a range of
problems, including:

• support for abstract entities called nodes that can be used to represent tangible
and intangible components of the organization;
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• the ability to precisely define characteristics of each node with mathematical
expressions or a set of intrinsic functions;

• the ability to define node interaction and inheritance relationships;

• the ability to define organizational decision points;

• support for hard constraints and soft constraining effects;

• support for floating point, list and probabilistic distribution data types;

• support for analytic and Monte Carlo-based organizational evaluation.

These features enable it to capture a range of designs, particularly those that
consist of a set of related entities that possess a set of interconnected, potentially
constrained characteristics.

One of the key differentiating characteristics of this representation is that it strives
to be both flexible and concrete. As shown in the comparison to related work in
Chapter 6, existing representations achieve one aspect or the other, to varying degrees,
but not both. For example, very flexible representations typically do so at the expense
of the detail needed to make concrete predictions. Detailed representations make
assumptions about the structure’s form, function or characteristics that preclude
their use across a wide range of applications. ODML’s representation is built around
arbitrary mathematical expressions and makes few assumptions about the model’s
contents, which allows it to capture a wide range of structures and interactions at a
fine level of detail. An example of how these expressions exist and interrelate within
a larger organizational structure is shown in Figure 2.13. Figures 2.9 and 2.14 show
the algorithms used to deduce quantitative information from such a structure.

Section 2.2.2, Chapter 3 and Chapter 5 demonstrate ODML’s capabilities by pre-
senting a number of models of different organizations in different domains. They
also show predictions made from these models, which are validated through empirical
testing. Complete models are shown for the distributed sensor network (DSN) ap-
plication mentioned above and for an information retrieval (IR) network. A number
of additional examples in Section 5.2 show the breadth of ODML’s applicability by
capturing the common organizational paradigms surveyed in Appendix B. Each of
these models shows how different characteristics may be defined and approximated,
how existing mathematical modeling techniques may be integrated, and how the full
set of interacting characteristics may be used to evaluate organizational utility. These
are offered both as proof of ODML’s representational ability and as examples of how
its features can be used in practice.

For example, the DSN model from Section 2.2.2 shows how agents, roles, coalitions
and organizational relationships may be represented. Interactions between individual
agents, the environment and performance expectations are shown. The potentially
negative consequences of multiple-role assignment are taken into account, as are the
consequences of choices made dynamically in response to changing conditions. Sec-
tion 2.3.8 demonstrates how ODML can be used to craft an appropriate model of
utility. The validity of this model is evaluated by comparing the predictions it makes
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with the experimental results mentioned above. In particular, Figure 2.17 and 2.18
in Section 2.3.9 show that the model accurately predicts both global and local char-
acteristics, such as the expected RMS tracking error the system will exhibit and the
communication and computational loads of individual agents. Figure 2.19 shows how
these predictions hold as the environmental demands change.

Additional discussion in Section 5.1 shows how this same model can be enhanced
to predict additional detail, including geographic heterogeneity and temporal inter-
actions. In doing so, this demonstrates ODML’s capability to capture information
at multiple levels of abstraction, which assists in the design process by ensuring only
relevant characteristics are present in the model. Organizations for larger systems can
be made more tractable by omitting low-level information, while focused predictions
can be made for smaller designs when necessary.

The IR model from Chapter 3 is a second example of ODML’s application to
a complex domain. That model shows how the effects of a quality-driven search
process may be represented, as well as the queuing and potential bottleneck behav-
ior of individuals taking part in the resulting work flow. The former characteristic,
known as response recall, is predicted with an appropriate probabilistic function that
models the search process performed by agents in the system. The latter, known
as response time, is predicted using existing techniques from networked queuing sys-
tems and order statistics. This model also shows how very detailed information can
be propagated through the organization, as in lieu of simple averages it predicts a
complete probability density function of the response time for the organization. A
simulation environment was used for validation experiments shown in Figures 3.4 and
3.8. As with the DSN model, a utility function for the IR system was devised. Fig-
ure 3.9 shows how this utility changes for different designs of the same organization
as the environmental work load changes. This is a concrete example of the type of
organizational space ODML can define and help evaluate, and also demonstrates how
the appropriate design of an organization can change depending on the conditions in
which it is used.

Chapter 4 continues this line of thought by showing how the organizational space
defined by an ODML model can be searched in a variety of ways. The NEXP-
complexity of the search is proved, demonstrating that it resides within a class of
computationally very difficult problems. A set of algorithmic techniques are shown in
Section 4.2 that help address this challenge, by avoiding parts of the space that can
be determined to be invalid or redundant. In particular, Figures 4.7 and 4.8 show
that the search space can be reduced by orders of magnitude without affecting opti-
mality by intelligently pruning the space. Using the first technique, the monotonicity
of certain constrained characteristics is exploited to avoid provably invalid alterna-
tives. Experiments in the distributed sensor network domain, which contains such
constrained monotonic trends, show the search time of a nine-sensor organization is
reduced from two hours to two seconds with this technique. The second technique
defines classes of equivalence that can be used to avoid effectively redundant design
choices. For example, over 90% of the possible design alternatives in the nine-sensor
DSN search are eliminated when this technique is used, with no loss of optimality. Ex-
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periments with other models provided additional examples of when these techniques
are and are not beneficial.

Although both of the above approaches are domain-independent, they do exploit
characteristics that do not necessarily exist in all models. I have devised other ap-
proaches that can be used in situations where they are not applicable. For example,
Section 4.3 shows how the model itself can be manipulated, by increasing homogene-
ity or abstractions to shrink the search space. Tables 4.1 and 4.2 show how models
that incorporate such modifications can significantly reduce the number of alterna-
tives that must be considered. By limiting choice within the model, which in turn
makes the internal structure more homogeneous, entire branches of the search tree
may be eliminated. Increasing the level of abstraction can have a similar effect, by
removing large numbers of choices at the periphery of the search tree. Results from
using these techniques in the information retrieval domain show that even small orga-
nizations can reduce the number of valid design alternatives from thousands to tens
with modest reductions in utility.

If the algorithmic techniques are not applicable, and the designer does not wish to
change the model itself, there are still other techniques that may be employed. Section
4.4.1 describes a value caching technique that helps avoid unnecessary computations
that occur during the successive evaluations in the search process. The distributed
search process from Section 4.4.2 attacks the search directly through parallel compu-
tation. Experimental results in Figure 4.17 show that ODML’s search space can be
effectively partitioned, allowing the distributed approach to achieve significant sav-
ings in time. Although the achievable performance gains from these two techniques
are not as great as those shown above, they are attractive because they require little
or no assistance from the designer and work to varying degrees under all conditions.

The output of this search process, regardless of what techniques are employed, is
an organizational design that can then be used to guide the construction and behavior
of a working system. Section 4.4.3 shows one way this can be accomplished.

Chapter 6 discusses how this approach differs from the representation and design
approaches that have come before it. In particular, it shows how no other represen-
tation exhibits the quantitative yet flexible approach that ODML does, and contrasts
the approaches others have used to address the automated organizational design prob-
lem.

7.2 Contributions

As part of this research, a number of tangible contributions have been made to the
state of the art.

1. I have developed a quantitatively-grounded representation, and shown

that it is an effective way of capturing organizational characteristics.

As shown in Section 6.1, many different organizational representation languages
have been created by researchers in the past. None meet all the requirements
first outlined in Section 2.2.1, particularly the need to incorporate the arbitrary
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quantitative information I believe is required to correctly evaluate the utility of
an organization situated in a complex, real-world environment. To demonstrate
that it is possible and useful to do so, I presented the Organizational Design
Modeling language (ODML) in Chapter 2.

ODML differs from these approaches in its capacity to directly model both the
quantitative characteristics of an organization and the range of possible designs
that can be created. Lacking this information, those earlier efforts may be able
to describe the range of possible organizations, but they are generally not able
to directly and computationally deduce how or why one design is better than
another in a given context. In the few representations where it is possible to
deduce some aspects of runtime performance, those predictions are either qual-
itative [59] or not tightly bound to organizational decisions [171, 40]. I believe
ODML’s ability to incorporate detailed, quantitative information, along with
a concrete description of how organizational characteristics interact to produce
local and global behaviors make it a fundamentally more capable representation.

2. I have demonstrated that it is possible to use a quantitative language

to effectively and accurately model and predict the complex, interre-

lated characteristics of real-world computational organizations.

A representational language is only as useful as its ability to represent. Exist-
ing representations were shown to be either limited in their capacity to model
quantitative details, or limited by their assumptions to model a wide range
of organizational situations. ODML’s intentionally primitive yet quantitative
approach avoids these limitations.

This was demonstrated through the creation and validation of many different
models. These include a complete model of a distributed sensor network archi-
tecture (Section 2.2.2), whose predictions were validated against the existing
system it describes. Modeled characteristics include aggregate level features
such as average RMS tracking error and communication disparity, as well as in-
dividual entity elements such as communication load, role frequency and sensor
usage. A second complete model was generated for a peer-to-peer, distributed
information retrieval network (Chapter 3), which was verified through empirical
comparison to a simulation environment that implements the concepts. This
model incorporates techniques from probability theory and queuing theory to
predict the results of search and the probability density function of the organi-
zation’s response time.

Section 5.1 also showed how organizational characteristics that lack explicit
support in ODML, such as geographic heterogeneity, temporal interactions, and
task decomposition, could also be approximated. As part of this set of modeling
experiments, a survey of common multi-agent organizational paradigms was
compiled (Appendix B), which is intended to be of interest to the broader MAS
community.
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3. I have demonstrated it is possible to use the same representation

to describe the range of organizational alternatives, which defines a

space of possibilities that may be searched.

Chapter 6.1 and Section 4.2.3 showed how simple mathematical optimization
procedures fail to capture the range of possibilities that are typical considered
as part of an organizational design process. ODML’s variable fields capture the
capabilities of these mathematical representations, and its has-a relationships
allow one to define many alternatives that they do not capture. Section 3.3.6
showed explicit examples of some of the different organizational designs that
can be derived from the information retrieval model, for example.

In addition to the two complete models that were provided that employ these
features, Section 5.2 demonstrates this ability to represent a range of situations
by applying ODML to a number of the organizational paradigms commonly
used in multi-agent systems. Section 4.1 uses the information retrieval do-
main to show how these choices map to a space of organizational alternatives.
Sections 4.3.2 and 5.1.3 further showed that this representation can capture
organizational concepts at different levels of abstraction.

4. I have demonstrated it is possible to use the embedded quantitative

information to evaluate and rank organizational instances as part of

an automated organizational design process.

The quantitative expressions embedded within an ODML structure have the
capability to model a range of complex and interdependent organizational be-
haviors. By using those expressions, along with a suitable description of the
expected operational context, the model is able to predict the characteristics
the organization will exhibit when instantiated and used in that context. These
quantitative predictions can then support a validity evaluation, by checking the
satisfaction of hard constraints that exist in the model. When combined through
a suitable expression, these predictions also support a utility-based calculation,
with which candidate organizations can be directly compared.

Existing representations either lack the ability to automatically compare orga-
nizations [122, 50, 89], or rely on a separate analysis or simulation component
to do so [171, 174, 46]. More uncertain environments, or environments that
are known to be more dynamic can be also evaluated with ODML’s built-in
hierarchical Monte Carlo evaluation process, described in Section 2.2.3.3. The
results from these evaluation techniques were verified for the two most complete
models through empirical comparison to tests in simulation environments.

The principal reason to employ a quantitative, predictive model such as ODML
is its ability to support an automated organizational design process. This work
has shown that it is possible to embed a range of organizational alternatives
within the model itself, and that these alternatives can be viewed as a space of
designs that can be searched. Several techniques to search through the space
embodied by an ODML template, including algorithmic techniques to prune the
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search space of invalid, equivalent and redundant instances (Sections 4.2.1 and
4.2.2), modeling techniques that employ abstraction and heterogeneity (Sections
4.3.2 and 4.3.1), the ability to use general mathematical solvers as part of the
search (Section 4.2.3), and the ability to distribute the search across several
machines (Section 4.4.2). Although the utility of each of these approaches
changes under different circumstances, it was shown that a suitably informed
model designer can create models that are able to exploit these techniques. The
observable benefit of employing these search techniques, in the form of a reduced
search space or a shorter search time, was shown through empirical tests.

7.3 Discussion

In addition to the contributions listed above, I have also reached several additional
conclusions that merit discussion.

1. Creating models can be difficult, but if successful the model is capable of evalu-
ating designs much more rapidly than a prototype or simulation.

Both the DSN and IR models required a fair amount of domain and modeling ex-
pertise to create. Techniques were explored, revised and sometimes abandoned
during this process, but ultimately a useful, working artifact was produced.
Although searching through the organizational space created by these models
is difficult, the ability to quickly evaluate candidate designs makes it possible
to compare many more alternatives that would be otherwise possible. Evalu-
ating an ODML instance is orders of magnitude faster than running the trials
needed to analyze a working system. This ability means that more designs can
be searched in less time, which can correspondingly increase the quality of the
final result.

2. The value of a particular organizational design depends on a range of charac-
teristics that can differ between designs, domains and system objectives.

The empirical tests performed in Sections 2.1.2, 2.3 and 3.3 showed how the or-
ganization affects a range of different characteristics of the running system. By
their nature, different designs will exhibit different behaviors, and the interac-
tion of those behaviors with the environment and the system’s stated objectives
will ultimately determine the value of those designs. Because of this variety,
there is no single, succinct set of detailed characteristics that can be used to
determine the utility of a design in the general case. The availability of different
resources, such as communication, computational or other physical devices, will
change what behavioral effects are important. Domain-specific metrics such
as RMS error or information recall may be critical in one domain but absent
in another. The ability to explicitly represent the relevant characteristics and
combine them into a single comparable utility value is a key component of any
design evaluation process. This need to precisely encode a variable set of inter-
related characteristics motivates the flexible “web of equations” approach used
by ODML.
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3. Quantitative modeling is possible and effective, but not practical in all cases.

The benefit that employing a simulation over a more mathematical represen-
tation such as ODML is that the simulated system may become arbitrarily
complex. What may be a trivial change to a running program could in the
worst case require a complete reformulation of the model that describes it, if
a basic assumption is violated. A mathematical model is almost always much
more compact than the system it describes. To arrive at the same result using
less machinery, appropriate techniques must be found and correctly employed
that capture the system’s behavior. This is not always possible to do, because
the predictive techniques have not been discovered or those that are known are
insufficiently accurate. It is for this reason that I believe that, given enough
time, a well-designed simulation environment can always be used to elicit more
“truth” than an abstract model. The tradeoff, as the previous point alluded to,
is that the running time or computational resources needed to do so may be
so great as to make a methodical search of a large space impractical with this
technique. Both approaches have their place, and can work well in harmony if
simulation trials are used to analyze a set of solutions previously culled by a
model-based approach.

4. Allowing arbitrary mathematical expressions can give a great deal of flexibility
to the organizational designer, but has the potential to create a correspondingly
difficult search space.

One of ODML’s key advantages over existing representations is its ability to
quantitatively capture a wide range of characteristics. It does so by embracing
the complexity and diversity that I believe exists in the real world, through
its lack of structural assumptions and support of arbitrary mathematical ex-
pressions. Most related representations have a set of supported organizational
concepts, which generally interact through a predefined set of parameterized
relationships. Although the latter systems have less flexibility, their ability to
make strong assumptions about the contents of the organization facilitates the
search process.

For example, if one assumes that agents take on roles and that in doing so some
of the agent’s local resources will be consumed, it is possible design a search
technique around that fact. Because ODML does not make such assumptions,
it can be difficult to create techniques that efficiently search the range of organi-
zational spaces that can be encountered – one is limited to features that can be
deduced from the underlying mathematics. For example, the constraint-based
technique from Section 4.2.1 exploits the existence of constrained, monotonic
characteristics. If such characteristics are not available, the technique cannot
be used.

Although the search process is made more difficult, this dissertation demon-
strates the potential benefits of making such a tradeoff. The ability to make
concrete, quantitative predictions about the set of contextually relevant char-
acteristics makes such a representation better equipped to judge utility than
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those that lack such information or hide it within relatively coarse-grained ab-
stractions.

5. Existing mathematical techniques can play an important role in a model without
being the entire model.

Another key feature of ODML it its ability to merge disparate aspects of orga-
nizational behavior into a single model. For example, Chapter 3 showed how
techniques from probability and queuing theory have been successfully inte-
grated into the IR model. By themselves, these techniques only capture certain
aspects of the system, despite the fact that they are intimately related. Only
when the predictions from both are available can the performance and utility
of the design be known.

While existing theoretical models of such systems frequently choose to focus
on particular aspects of their performance, the overall behavior of a system of
any realistic amount of complexity will not be so narrowly defined. As with
the domains described in Sections 2.2.2 and 3.1, the behavior of most realistic
applications will be dictated by a range of external and internal factors, each of
which may be appropriately modeled with a technique different than the others.
It is for this reason that I believe representations that are limited to a single,
specific approach may be unable to capture all the relevant details of a realistic
system. This will necessarily impact their ability to make accurate predictions,
and degrade their utility in evaluating alternatives.

This co-mingling of techniques can give other benefits, by making the search
process more efficient than it might be otherwise. For example, in the DSN
model the relatively inexpensive constrained trend technique from Section 4.2.1
was used to prune the search space before the more expensive organizational
utility calculation was performed. Therefore, although the trend of utility was
not monotonic, the search as a whole could be guided by other aspects that
were. This is an example where the potentially large and difficult space of one
design aspect is assisted by the presence of others that are more tractable.

7.4 Future Directions

Many of the possible future directions from this work have been discussed in earlier
sections. In this section I will summarize and expand on these and other issues that
merit further attention.

1. Develop techniques to adapt the organization at runtime.

In the face of a changing environment, any static organization is vulnerable
to contextual changes that can render it inefficient or ineffective. I believe
the search space provided by the ODML model can be used to facilitate the
adaptation or reorganization of the running system. The existing model can
first be reused as the basis for a model-based diagnosis process that monitors for
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and evaluates operational faults, by comparing predicted characteristics to those
that are observed. Appropriate search strategies must then be developed to find
organizational appropriate solutions in a timely manner. I feel ODML’s ability
to represent not just the space of adaptive solutions, but also the rationale
behind observed symptoms and the consequences of organizational change allow
it to support a more deliberate and directed search than is currently possible.
Section 4.5 outlines a high-level approach that uses ODML to accomplish this.

2. Develop an effective, incomplete search.

The existing search techniques described in Chapter 4 are all integrated within
an encompassing, exhaustive search. The benefit of this approach is that it is
complete and optimal, but it can be a very expensive process if the space has
sufficient size or complexity. When the size of the pruned search space remains
intractable, an incomplete but informed search of the space can be used in
an attempt to derive good but not necessarily optimal results. A heuristic
approach could attempt to guide decision making based on locally observable
characteristics, although the ramifications of a particular choice can be difficult
to ascertain and it is not always obvious what characteristics are most relevant.
Genetic, sampling or other stochastic approaches could be employed to avoid
this by attempting to divine what the space of possibilities looks like (through
their utility or other characteristics), and guide the search into promising areas.

3. Develop a general approach to domain-specific search.

As mentioned above, the space of possible organizations in an ODML tem-
plate can be quite large, while the underlying mathematics do not necessarily
facilitate navigating through this space. I have intentionally focused on domain-
independent approaches in this dissertation, but in a practical, more restricted
application it seems likely that domain-specific knowledge could significantly
aid the search process. Section 4.2.6 outlines some ways this could be done.

4. Experiment with bottom-up organization construction.

As introduced in Section 4.4.2.2, a more emergent and bottom-up approach
to organizational design could be an interesting alternative to the top-down
manner that is currently implemented. This seems particularly appropriate
where privacy is an issue, where computational resource or time are constrained,
or where agents are not necessarily cooperative. In each of these cases, dividing
the model and passing restricted types of information between entities would
allow agents to locally organize without losing sight of more global concerns.

5. Explore applicability of ODML to more competitive domains.

The majority of the exploration that has taken place in this dissertation concerns
cooperative domains - those where the participants operate in concert to achieve
a common global objective. Many realistic domains exist that do not have
this property, and are partially or fully competitive. Sections 5.2.6 and 5.2.4
touched on ODML’s use in such circumstances while discussing the society and
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marketplace paradigms. It is precisely because these domains are competitive
that there is typically no single organizing authority capable of imposing a high-
level structure on all participants. The centralized, top-down approach that this
work focuses on is therefore is not likely to be appropriate.

As described in those sections, it is still possible to use ODML to guide the
decision making processes of individual entities that exist or can exist in the
environment. In a marketplace, for example, an agent seeking to determine if it
should join that organization can use a model of the existing market forces and
participants to estimate the potential benefits and drawbacks of doing so. In
this case it is a utility function in the agent’s node, not the global organizational
utility, that would guide the search and evaluation process.

Even more than has been demonstrated, it may be difficult to craft effective
and accurate models of such environments. In particular, because the other
participants in the organization are competitive, it may be impossible to obtain
good models of their behavior. In addition, it is quite possible that those be-
haviors could change in unexpected ways as a result of organizational decisions
made by the modeling agent. Additional research is needed to evaluate ODML’s
usefulness in such situations.

6. Explore applicability of ODML to existing organizations.

Another area where ODML has potential benefits is in the evaluation of existing
organizational structures. For example, one might which to know how good an
existing structure is relative to how good it could be. One might also want to
determine how robust or brittle the structure is to changes in the environment,
behavioral assumptions or participants.

Section 4.5 outlined how ODML could be used as part of a model-based diag-
nosis system to support online organizational adaptation. The same traits that
would seem to support that can offer assistance in this problem. Assume, for
example, that an appropriate template can be constructed for the system in
question. Like all templates, this would describe the range of organizational
alternatives, and relate all relevant characteristics together to produce a high-
level utility function. Further assume that the existing organization can be
derived from the template as a single instance, by making appropriate choices
for each embedded decision point.

As with the adaptation technique, the relationships embedded in the ODML
model can be used to answer these questions. For example, to determine the rel-
ative utility of the existing instance, the utility of that instance can be directly
computed as normal. A search of the template space can then find the optimal
organizational structure, who’s utility can also be determined and compared
against the existing utility. One way to evaluate the robustness of an organiza-
tional design uses the instance model as a simple, manual exploration tool. The
designer may change constants, sever relationships, eliminate participants, etc.,
and then recompute the utility. If the model has been designed correctly, the
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severity of the observed change in utility should be indicative of the severity of
the change being evaluated.
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APPENDIX A

TRANSLATING ODML TO MATHEMATICA

As described previously in Section 4.2.3, it is possible to translate portions of the
ODML search space into a representation that may be interpreted by a general math-
ematical solver. It is recommended that the reader read that section before continuing.
This appendix will provide additional details of that process, including tables which
define equivalent mappings into Mathematica’s expression language.

A successful translation can take place on any ODML partially-instantiated model
that does not have any unbound variables that can affect a has-a relationship and does
not contain functions that lack an appropriate mapping. The floating point and list
data types from Section 2.2.3 are supported, but discrete distributions currently are
not and therefore should also not be present. Given such an instance, the translation
process operates starting from the root node and continuing recursively to all nodes
the initial node has a has-a relationship with.

The translation of a node N begins by listing its has-a relationships. Each rela-
tionship H the node has is specified as a list with the form N[H] = {n1, . . . , nn},
where n is the unique name of another node in the organization. The parameters
passed to N when it was created are listed next, followed by the node’s fields (con-
stants, constraints, modifiers and variables). These are translated as shown in Table
A.1 (cf. the elements list in Section 2.2.1). The expressions are differentiated in italics
because they will undergo further translation, as outlined below.

Because symbolic references within nodes are considered local, ODML’s names-
pace is broken into isolated parts. Mathematica’s namespace is flat, so to avoid

Figure A.1. ODML model element to Mathematica translation table.

Type Contents Mathematica Equivalent
Parameter N.P = 〈s, e〉 N[s] = e
Constant N.C = 〈s, e〉 N[s] = e
Constraint K = 〈N [s], op, e〉 AppendTo[constraints, N[s] op e]
Modifier N.M = 〈s, op, e〉 N[s] = N[s] op e

Variable (bound) N.V = 〈s, e〉 N[s] = e

Variable (unbound)
N.V = 〈s,
{e1, . . . , en}〉

AppendTo[variables, N[s]]

AppendTo[constraints,

(N[s] == e1 || . . . || N[s] == en)]
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introducing collisions in translation, all symbols must be rewritten to take into ac-
count their node of origin. This is done by prefixing them with the node’s name,
which is guaranteed to be unique. For example, the constant c in N would become
N.c. In addition, Mathematica does not natively support a notion of an “object”
(i.e., a structure with a set of named characteristics or methods), or the dot-notation
syntax that ODML uses to reference nonlocal characteristics. To overcome this limi-
tation, I abuse Mathematica’s function notion by creating a set of functions for each
node, where each function defines a single characteristic (e.g., parameter, field, etc.)
for that node. For example, the node:

<node name="A">

<constant name="x">1</constant>

<constant name="y">x + 1</constant>

</node>

. . . would be defined with the functions:

A[x] = 1

A[y] = A[x] + 1

From Mathematica’s perspective, A is actually the name of a function that has
been overloaded to supply two different expressions depending on the parameter that
is passed in. When called, the parameter is the name of a characteristic in the original
node A, which allows it to simulate the desired behavior despite the fact that there
is no true object backing the definition. Because function names may be stored and
referenced directly in Mathematica, chained object references can be simulated as
well. For example, if A[x] = 10 and B[y] = A, then B[y][x] would produce the
desired value of 10, just as if B[y] actually contained a reference to the node A.

This is an abuse of the function notation because it relies upon the fact that x

and y are unbound symbols in the resulting set of equations. This has the side effect
of causing Mathematica to maintain the intended definitions. If, however, x and
y were subsequently set to some common value (say the numeric constant 5), then
both definitions would resolve to A[5], and one of the two definitions would be lost.
Because all symbols are prefixed by node names during the translation and the global
scope is cleared before beginning, this cannot occur during the maximization process
outlined earlier.

The remainder of the translation revolves around the expressions themselves. Be-
cause most of ODML’s expression syntax uses standard infix notation, the majority of
a typical expression can be passed in unchanged. There are two important differences.
The first is that numeric constants, such as the literal “25.0”, are wrapped with the
Rationalize function (e.g., Rationalize[25.0]). This causes Mathematica to treat
them as exact rational value, rather than reals, which are only approximations. This
allows the output of the maximization process to respect the intuitive meaning of
certain inequalities when used in a discrete variable context. This is demonstrated in
the following two variants of the same maximization process:
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Figure A.2. ODML built-in function to Mathematica translation table.

ODML Function Mathematica Equivalent
min(x1, . . . , xn) Min[x1,. . . ,xn]

max(x1, . . . , xn) Max[x1,. . . ,xn]

abs(x) Abs[x]
choose(x, y) ((x)!/((x-y)!y!))

sqrt(x) Sqrt[x]
round(x) Round[x]

map(x, yv
1 , y

e
1, y

v
2 , y

e
2, . . . , ∗, ∗e) Currently not supported.

list(x1, . . . , xn) Flatten[x1,. . . ,xn]

listitem(x̄, i) Part[x̄, i]
size(x̄) Length[Flatten[x̄]]

unique(x̄) Union[x̄]

forall(y, x̄, e)
Map[e’ &, x̄],
where e’ = (e =~ s/y/#/g)

forrange(y, xl, xh, e)
Map[e’ &, Range[xl, xh - 1]],
where e’ = (e =~ s/y/#/g)

forallsum(x̄) Total[x̄]
forallprod(x̄) Apply[Times, x̄]
forallavg(x̄) Mean[x̄]

forallstddev(x̄) StandardDeviation[x̄]
E(D) Currently not supported.
V (D) Currently not supported.

Pr(D, op, x) Currently not supported.
mc(D, seed) Currently not supported.

In := Maximize[u, (u == 9.0] || u == 10.0) && (u < 10.0), u]

Out := {10., {u -> 10.}}

In := Maximize[u, (u == Rationalize[9.0] || u == Rationalize[10.0])

&& (u < Rationalize[10.0]), u]

Out := {9, {u -> 9}}

Notice that in the first maximization the strict inequality was not respected, while in
the second it was.

The second aspect of expression translation is the mapping of ODML’s built-in
functions into something equivalent using Mathematica’s intrinsic functions. The
currently implemented mappings are shown in Table A.2. Each ODML expression is
scanned during translation, and when such a function is found it is converted as the
table indicates. An example of this translation is shown in Figure 4.10.
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APPENDIX B

A SURVEY OF MULTI-AGENT ORGANIZATIONAL

PARADIGMS

The organization of a multi-agent system is the collection of roles, relationships, and
authority structures which govern its behavior. All multi-agent systems possess some
or all of these characteristics and therefore all have some form of organization, al-
though it may be implicit and informal. Just as with human organizations, such agent
organizations guide how the members of the population interact with one another,
not necessarily on a moment-by-moment basis, but over the potentially long-term
course of a particular goal or set of goals. This guidance might influence authority
relationships, data flow, resource allocation, coordination patterns or any number of
other system characteristics [75, 23]. This can help groups of simple agents exhibit
complex behaviors and help sophisticated agents reduce the complexity of their rea-
soning. Implicit in this concept is the assumption that the organization serves some
purpose – that the shape, size and characteristics of the organizational structure can
affect the behavior of the system [62]. It has been repeatedly shown that the organi-
zation of a system can have significant impact on its short and long-term performance
[23, 156, 51, 84, 128, 6, 180, 17], dependent on the characteristics of the agent pop-
ulation, scenario goals and surrounding environment. Because of this, the study of
organizational characteristics, generally known as computational organization theory,
has received much attention by multi-agent researchers.

It is generally agreed that there is no single type of organization that is suitable
for all situations [91, 32, 112, 23]. In some cases, no single organizational style is
appropriate for a particular situation, and a number of different, concurrently oper-
ating organizational structures are needed [63, 86]. Some researchers go so far as to
say no perfect organization exists for any situation, due the inevitable tradeoffs that
must be made and the uncertainty, lack of global coherence and dynamism present
in any realistic population [150]. What is clear is that all approaches have different
characteristics which may be more suitable for some problems and less suitable for
others. Organizations can be used to limit the scope of interactions, provide strength
in numbers, reduce or manage uncertainty, reduce or explicitly increase redundancy
or formalize high-level goals which no single agent may be aware of [113, 61]. At the
same time, organizations can also adversely affect computational or communication
overhead, reduce overall flexibility or reactivity, and add an additional layer of com-
plexity to the system [84]. By discovering and evaluating these characteristics, and
then encoding them using an explicit representation [59], one can facilitate the process
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Figure B.1. A hierarchical organization.

of organizational-self design [31] whereby a system automates the process of select-
ing and adapting an appropriate organization dynamically [112, 161]. This approach
will ultimately enable suitably equipped agent populations to organize themselves,
eliminating at least some of the need to exhaustively determine all possible runtime
conditions a priori. Before this can occur, the space of organizational options must
be mapped, and their relative benefits and costs understood.

These benefits and costs, and the potential advantages that could be provided by
technologies able to make use of such knowledge, motivate the need to determine the
characteristics of organizations and under what circumstances they are appropriate.
While no two organizational instances are likely to be identical, there are identifiable
classes of organizations which share common characteristics [150]. Several organi-
zational paradigms suitable for multi-agent systems have emerged from this line of
research [61]. These cover particularly common, useful or interesting structures that
can be described in some general form. In this paper we will describe several of these
paradigms, give some insight into how they can be used and generated, and compare
their strengths and weaknesses. The vast amount of research which has been done in
this field precludes a complete survey of any one technique; we hope to provide the
reader with a concise description and a sample of the interesting work that has been
done in each area.

In the following sections, we will describe the origin, form, function and character-
istics of a typical structure for each organizational paradigm. Example applications
will be presented, along with a discussion of techniques that have been employed to
create the structures. By separating these concepts, we will distinguish between the
characteristics of the organization generation process and those of the organizational
structure itself, independently of how it was generated.

B.1 Hierarchies

The hierarchy or hierarchical organization is perhaps the earliest example of struc-
tured, organizational design applied to multi-agent system and earlier distributed
artificial intelligence architectures [60, 115, 61, 37, 11, 123, 132]. Agents are concep-
tually arranged in a tree-like structure, as seen in Figure B.1, where agents higher
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in the tree have a more global view than those below them. In its strictest inter-
pretation, interactions do not take place across the tree, but only between connected
entities. More recent work [126] has explored starting with a strict hierarchy and
augmenting it with cross links to allow more direct communication, which can reduce
some of the latency that results from repeated traversals up and down the tree.

The data produced by lower-level agents in a hierarchy typically travels upward
to provide a broader view, while control flows downward as the higher level agents
provide direction to those below [11]. The simplest instance of this structure consists
of a two-level hierarchy, where the lower level agents’ actions are completely specified
by the upper, which produces a global view from the resulting information [25]. More
complex instances have multiple levels, while data flow, authority relations or other
organizationally-dictated characteristics may not be absolute.

Fox [60] describes several different types of organizational hierarchies. The simple
hierarchy endows a single apex member with the decision making authority in the
system. Uniform hierarchies distribute this authority in different areas of the system
to achieve efficiency gains through locality. Decisions are made by the agents which
have both the information needed to reason about the decision, and the organizational
authority to do make the decision. Each level acts as a filter, explicitly transferring in-
formation and implicitly transferring decisions up the hierarchy only when necessary.
Multi-divisional hierarchies further exploit localization by dividing the organization
along “product” lines, where products might represent different physical artifacts,
services, or high-level goals. Each division has complete control over their product,
which facilitates the decision making and resource allocation process by limiting out-
side influences. The divisions themselves may still be organized under a higher-level
entity which evaluates their performance and offers guidance, but is strictly separated
from the divisional decision process. These more sophisticated hierarchies look very
much like like holarchical organizations, which are discussed in Section B.2.

Characteristics

The applicability of hierarchical structuring comes from the natural decomposition
possible in many different task environments. Indeed, task decomposition trees are a
popular way of modeling individual agent plan recipes [42]; a hierarchical organiza-
tion can be thought of as an assignment of roles and interconnections inspired by the
global goal tree. The hierarchy’s efficiency is also derived from this notion of decom-
position, because the divide-and-conquer approach it engenders allows the system to
use larger groups of agents more efficiently and address larger scale problems [213].
This type of organization can constrain agents to a number of interactions that is
small relative to the total population size. This allows control actions and behavior
decisions become more tractable, increased parallelism can be exploited, and because
there is less potentially distracting data they can obtain a more cohesive view of the
information pertinent to those decisions [132].

It is not sufficient to simply aggregate increasing amounts of information to ob-
tain higher utility or better performance. This information must be matched with
sufficient computational power and analysis techniques to make effective use of the
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information [111]. Without this, the effort to transfer the data may be wasted and
the excess information distract the agent from more important tasks. Alternatively,
the information can be summarized, approximated or otherwise processed on its way
up the tree to reduce the information load. However, in doing so, a new dimension
of uncertainty is introduced because of the potential for necessary details to be lost.
In this situation, the decision making authority should be correctly placed within the
structure to maximize the tractable amount of useful information that is available
that retains an acceptable level of uncertainty or imprecision [60, 113].

Using a hierarchy can also lead to an overly rigid or fragile organization, prone
to single-point failures with potentially global consequences [130]. For example, if
the apex agent were to fail the entire structure’s cohesion could be compromised.
Of course this agent could be replaced, but it may then prove costly to restore the
concentrated information possessed by its predecessor. It is similarly susceptible to
bottleneck effects if the scope of control decisions or data receipt is not effectively
managed – consider what would happen if that apex agent received all the raw data
produced by a large group of agents below it.

Formation

Although the algorithm itself does not enforce a strict hierarchy such as the one
described earlier, Smith’s contract net protocol [178, 37] provides a straightforward
mechanism to construct a series of connections with most of the same characteristics.
In some of this early contract net work, the protocol was to explicitly form long-
term organizational relationships, rather than the short-term contracts it has been
typically used for more recently. The hierarchical structure that is produced by the
process is implicitly based on the way the high-level goal can be decomposed. Upon
receipt of a new task, an agent first chooses to perform the task itself, or search
for agents willing to help complete the task. As part of this search process, the
agent may decompose the task into subtasks or contracts. The agent, acting as a
contractor, announces these contracts along with a bid specification to a subset of its
peers who then decide if they wish to submit a bid. The bids which return to the
contractor contain relevant information about the potential contractee which allows it
to discriminate among competing offers. A contractee is selected and notified. Upon
receipt of the new task, the contractee now faces the same question - should it perform
the task itself or contract it out? Repeated invocations of this process produce a
hierarchy of contractors and contractees. Because agents individually choose which
contracts to bid on, and contractors choose which bids to accept, this strategy can
effectively assign tasks among a population of agents without the need for a global
view. The drawback to this approach is that it is myopic. Because the contracting
agent does not necessarily take into account the needs of other contractors, it may
bind scarce resource in suboptimal ways. For example, it may select a particular
bid when viable alternatives exist, even though that particular bidder is critical to
another agent [175].

As with most organizational structures, the shape of the hierarchy can affect
the characteristics of both global and local behaviors. A very flat hierarchy where
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Figure B.2. A holarchical organization.

agents have a high degree of connectivity can lead to overloading if agent resources
are both limited and consumed as a result of these connections. Conversely, a very
tall structure may slow the system’s performance because of the delays incurred by
passing information across multiple levels. One approach to making this tradeoff
is the use of agent cloning [91, 41, 130]. An agent in such a system may opt to
create a copy or clone of itself, possessing the same capabilities as the original, in
response to overloaded conditions. If additional resources are available for this clone
to use, this process allows the agent to dynamically create an assistant that can
relieve excess burden from the original, reducing load-related errors or inefficiencies
in the process. If the new agent is subordinate to the original, then a hierarchical
organization will be formed in the process. Shehory [165] discusses using cloning when
other task-reallocation strategies are not viable. In this work, an agent’s overall load is
a function of its local processing, free memory and communication. It uses a dynamic
programming technique to compute an optimal time to clone, and an appropriately
idle computational node to house the new agent. The clone receives a subset of the
original task(s). The clones themselves require resources, and the results they produce
may require an additional hop to get to their ultimate destination, so they may also
be merged or destroyed when these costs outweigh their benefits.

B.2 Holarchies

The term holon was first coined by Arthur Koestler in his book The Ghost In The
Machine [103]. In this work, Koestler attempts to present a unified, descriptive
theory of physical systems based on the nested, self-similar organization that many
such systems possess. For example, biological, astrological and social systems are all
comprised of multi-leveled, grouped hierarchies. A universe is comprised of a number
of galaxies, which are comprised of a number of solar systems, and so on, all the
way down to subatomic particles. Each grouping in these systems has a character
derived but distinct from the entities that are members of the group. At the same

194



time, this same group contributes to the properties of one or more groups above it.
The structure of each of these groupings is a basic unit of organization that can be
seen throughout the system as a whole. Koestler called such units holons, from the
Greek word holos, meaning “whole”, and on, meaning “part”. Each holon exists
simultaneously as both a distinct entity built from a collection of subordinates and
as part of a larger entity.

True to Koestler’s intent, this notion of a hierarchical, nested structure does accu-
rately describe the organization of many systems. This concept has been exploited,
primarily in business and manufacturing domains, to define and build structures
called holarchies or holonic organizations which have this dual-nature characteristic.
A sample such organization is shown in Figure B.2. In this diagram, hierarchical
relationships are represented as directed edges, while circles represent holon bound-
aries. Enterprises, companies, divisions, working groups and individuals can each be
viewed as a holons taking part in a larger holarchy. Fischer [56], Zhang [216], and
Ulieru [194] have each organized agent systems by modeling explicit or implied divi-
sions of labor in real-world systems as holons. In doing so, they create abstractions
of these divisions, imparting capabilities to individual holons instead of individual
agents. This layer of abstraction allows other entities in the system to make more
effective use of these capabilities, by reasoning and interacting with the group as a
single functional unit.

The defining characteristic of a holarchy is the partially-autonomous holon. Each
holon is composed of one or more subordinate entities, and can be a member of one
or more superordinate holons. Holons frequently have both a software and physi-
cal hardware component [216, 193], although this does not preclude their usage in
purely computational domains. The degree of autonomy associated with an individ-
ual holon is undefined, and could differ between levels or even between similar holons
at the same level. There is the presumption, however, that the level of autonomy
is neither complete nor completely absent, as these extremes would lead to either a
strict hierarchy or an unorganized grouping, respectively. Within the holarchy, the
chain of command generally goes up – that is, subordinate holons relinquish some
of their autonomy to the superordinate groupings they belong to. However, there is
also the more heterarchical notion that individual holons determine how to accom-
plish the tasks they are given, since they are likely the locus of relevant expertise.
Many holonic structures also support connections between holons across the organi-
zation, which can result in more amorphous, web-like organizational structures that
can change shape over time [56, 216].

It would not be incorrect to conclude that a holarchy is just a particular type
of hierarchy. If we relax our definition of hierarchy to allow some amount of cross-
tree interactions and local autonomy, the two styles share many of the same features
and can be used almost interchangeably. These richer models then begin to resemble
and take on the characteristics of nearly-decomposable hierarchies [172], where lateral
interactions are weak but still relevant. Very flat holarchies can also begin to resemble
federations, which will be discussed in Section B.7.
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Characteristics

As with the conventional hierarchies from the previous section, holarchies are more
easily applied to domains where goals can be recursively decomposed into subtasks
that can be assigned to individual holons (although this is not essential). Given such a
decomposition, or a capability map of the population, the benefits the holonic organi-
zations provide are derived primarily from the partially autonomous and encapsulated
nature of holons. Holons are usually endowed with sufficient autonomy to determine
how best to satisfy the requests they receive. Because the requester need not know
exactly how the request will be completed, the holon potentially has a great deal of
flexibility in its choice of behaviors, which can enable it to closely coordinate poten-
tially complementary or conflicting tasks. This characteristic reduces the knowledge
burden placed on the requester and allows the holon’s behavior to adapt dynamically
to new conditions without further coordination, so long as the original commitment’s
requirements are met. A drawback to this approach is that, lacking such knowledge,
it is difficult to make predictions about the system’s overall performance [12].

Formation

The challenge in creating a holonic organization revolves around selecting the appro-
priate agents to reside in the individual holons. The purpose of the holon must be
useful within the broader context of the organization’s high-level goals, and the holon’s
members must be effective at satisfying that purpose. Zhang [216] uses a model of
static holons along with so-called mediator holons to create and adapt the organiza-
tion. The static groups consist of product, product model and resource holons, each
of which corresponds to a group of physical or information objects in the environment
(e.g. manufacturing device, design plans, conveyors, etc.). The mediator holon ties
these together, by managing orders, finding product data and coordinating resources
in a manner similar to a federation, which will be discussed in Section B.7. Each
new task is represented by a dynamic mediator holon (DMH), which is created by
the mediator holon. The DMH is destroyed when the task is completed.

Another approach to holarchy construction uses fuzzy entropy minimization to
guide the formation of individual holonic clusters [182, 193]. In this work, the col-
lection of holons is assumed to be initially described with a set of source-plans, each
of which describes a potential assignment of holons to clusters, along with a set of
probabilities that describe the degree of occurrence of those clusters. From this initial
uncertain information, one can derive the preferences which agents have to work with
one another, and then choose the source plan which has the minimal entropy with
respect to those preferences. The goal of this technique is to ensure that each holon
has the necessary knowledge and expertise needed to perform its task. The preference
that one agent has for another represents this knowledge or expertise requirement, so
the minimally fuzzy set will satisfy this goal by clustering agents which have common
preferences. In [193], Ulieru adds a genetic algorithm approach to this scheme to help
explore the space of possible clustering assignments.
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Figure B.3. A coalition-based organization.

B.3 Coalitions

The notion of a coalition of individuals has been studied by the game theory commu-
nity for decades, and has proved to be a useful strategy in both real-world economic
scenarios and multi-agent systems. If we view the population of agents A as a set,
then each subset of A is a potential coalition. Coalitions in general are goal-directed
and short-lived; they are formed with a purpose in mind and dissolve when that need
no longer exists, the coalition ceases to suit its designed purpose, or critical mass is
lost as agents depart. Related research has extended this to longer-term agreements
based on trust [15] and to the iterative formation of multiple coalitions in response to
a dynamic task environment [131]. They may form in populations of both cooperative
and self-interested agents.

A population of agents organized into coalitions is shown in Figure B.3. Within a
coalition, the organizational structure is typically flat, although there may be a distin-
guished “leading agent” which acts as a representative and intermediary for the group
as a whole [102]. Once formed, coalitions may be treated as a single, atomic entity.
Therefore, although coalitions have no explicit hierarchical characteristic, it is possi-
ble to form such an organization by nesting one group inside another. Overlapping
coalitions are also possible [164]. The agents in this group are expected to coordinate
their activities in a manner appropriate to the coalition’s purpose. Coordination does
not take place among agents in separate coalitions, except to the degree that their
individual goals interact. For example, if one coalition’s goal depends on the results
of another, these two groups might need to agree upon a deadline by which those
results are produced. In this case, it would be the leading or representative agents
forming the commitment, not arbitrary members of the coalition.

In addition to the problem of generating coalition structures, one must also de-
termine how to solve the goal presented to the coalition. If the population is self-
interested, a division of value to be apportioned to participants once that goal has
been satisfied must also be generated and agreed upon [157].
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Characteristics

The motivation behind the coalition formation is the notion that the value of at least
some of the participants may be superadditive along some dimension. Analogously,
participants’ costs may be subadditive. This implies that utility can be gained by
working in groups – this is the same rationale behind buying clubs, co-ops, unions,
public protests and the “safety in numbers” principle. For instance, in an economic
domain, a larger group of agents might have increased bargaining strength or other
monetary reward [190]. In computational domains we might expect more efficient
task allocation, or the ability to solve goals with requirements greater than any single
agent can offer [164]. In physically-limited systems, coalitions have been used to trade
off the scope of agent interactions with the effectiveness of the system as a whole [175].
This last application directly affects the coordination costs incurred by the system;
we will see that this capability and purpose are shared by congregations in Section
B.5.

One could argue that all agents in the environment should always join to form the
all-inclusive grand coalition. Indeed, under certain circumstances this is appropriate,
since the structure would have the resources of all available agents at its disposal,
which theoretically would provide the maximum value. There are costs associated
with forming and maintaining such a structure however, and in real world scenarios
this can be both an impractical and unnecessarily coarse solution [157]. Therefore,
the problem of coalition formation becomes one of selecting the appropriate set(s)
S ⊆ A which maximizes the utility (value minus costs) that coalition vS can achieve
in the environment. The value and cost of the coalition are generic terms, which may
in fact be functions of other domain-dependent and independent characteristics of the
structure.

Formation

The complexity of the coalition formation task depends on the conditions under which
the coalitions will exist, and the types of coalitions which are permitted. As with all
organizations, operating in dynamic environments will be harder to maintain than
in static ones. Additional complexity is also incurred if the partitioning of agents
is not disjoint; that is, agents can have concurrent membership in more than one
coalition. Uncertain rewards, self-interested agents and a potential lack of trust while
coordinating add further obstacles to the process.

Sandholm [156] analyzes the worst case performance of forming exhaustive, dis-
joint coalitions over a static agent population from a centralized perspective. They
show that by searching only the two lowest levels of a complete coalition structure
graph, an a-approximate value solution can be found to the partitioning problem,
where a = |A|. Although the search of 2a−1 possible allocations still grows exponen-
tially with a, the fraction of coalition structure needing to be searched approaches
zero. They also present an anytime algorithm which can meet tighter bounds given
additional time. Later work empirically evaluates the average-case performance of
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three anytime search techniques [105]. The algorithms’ performances varied by do-
main characteristics; and no single technique was best in all conditions.

Shehory [164] has studied how coalitions may be used to enable task achievement
by a group of agents. In their scenario, a set of interdependent (precedence) tasks
must be accomplished, some of which require multiple agents to perform. The agents
are cooperative and potentially heterogeneous in their capabilities. The strategy they
employ draws on techniques used by Chvatal’s greedy set covering algorithm [27],
which tries to find the minimum set of subsets that together contain each member
of a target set. The initial values of all possible size-bounded coalitions are first
computed and then iteratively refined in a distributed manner by the agents, taking
into account task ordering and capability requirements. Once computed, the highest
valued coalitions, either disjoint or overlapping depending on the selection algorithm,
are instantiated. This algorithm was also augmented to support dynamically arriving
tasks. A drawback to this addition is that, in the worst case, the organization process
needs to be redone for each task, incurring a significant communication cost. Also
limiting the potential scalability of this approach is the need for each agent to have
full knowledge of the available agents and tasks.

Lerman [108] presents a scalable strategy where coalitions are formed between self-
interested agents based only on local decision making. In this work agents operate in
an electronic marketplace consisting of a number of extant purchase orders, with the
objective of forming or joining a coalition of buyers that satisfied a need at the lowest
price. Coalitions form around purchase orders, where agents form or join a coalition by
adding a purchase request to an order, and can leave that coalition by removing their
request. Agents in the system can move at will between purchase orders, searching
for the one which offers the best value (lowest cost). An analysis based on differential
equations shows that this strategy reaches equilibrium (later work [107] expands on
these mathematical techniques to analyze other distributed behaviors). It also has
low communication and computational requirements. However, it does not provide
guarantees on the achievable value or convergence rate, which would be affected by
scale, and does not have a notion of deadlines on the purchase orders.

Soh [181] presents a technique where coalitions are dynamically created in re-
sponse to the recognition of tracking tasks in a distributed sensor network. In this
work, agents are assumed to have incomplete, uncertain knowledge and must respond
to events in real time for goal achievement to be possible. As such, coalitions are
formed in a saticificing, rather than optimal manner. An agent initiates coalition
formation by first using local knowledge to select a subset of candidate partners that
it believes will satisfy its requirements, both in terms of capabilities and willingness
to cooperate. Next, it sequentially engages these candidates, in utility-ranked order,
in argumentative negotiation, where offers and counteroffers are exchanged. This
proceeds until satisfactory membership is decided, or the candidate list is exhausted.
Agents are cooperative, so during this negotiation process agents explicitly decide
what coalition(s) they are willing to join based on perceived gains in utility. This ap-
proach does not make any guarantees about coalition value, or even that a satisfactory
coalition will be found, but given the relatively short time in which an allocation must
be made it would seem to be a reasonable strategy. In addition, reinforcement learn-
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Figure B.4. A team-based organization.

ing is used over the course of events to estimate candidate utility more accurately
and select the most beneficial negotiation strategy, which should improve coalition
value in the long run for reasonably stable environments. By storing preferences over
multiple episodes, this learning also implicitly adds longevity to coalitions, giving
organizational structures produced by this technique an interesting mix of dynamic
and long-term characteristics.

B.4 Teams

An agent team consists of a number of cooperative agents which have agreed to work
together toward a common goal [61, 185, 8]. In comparison to coalitions, teams
attempt to maximize the utility of the team (goal) itself, rather than that of the
individual members. Agents are expected to coordinate in some fashion such that
their individual actions are consistent with and supportive of the team’s goal. Within
a team, the type and pattern of interactions can be quite arbitrary, as seen in Figure
B.4, but in general each agent will take on one or more roles needed to address the
subtasks required by the team goal. Those roles may change over time in response to
planned or unplanned events, while the high-level goal itself usually remains relatively
consistent (although exception handling may promote the execution of previously
dormant subtasks).

This description of agent teams is quite general, and nearly any cooperative agent
system has characteristics that are similar to these, if only implicitly. However, sys-
tems that maintain an explicit representation of their teamwork or joint mental state
are differentiated in their ability to reason more precisely about the consequences
of their teamwork decisions [93, 70, 185]. For example, they will typically have
representations of shared goals, mutual beliefs and team-level plans. This type of
representation provides flexibility and robustness by allowing the agents to explicitly
reason about team-level behaviors, where a less explicit system may rely on a set
of assumptions that ultimately make the system brittle in the face of unexpected
situations.

200



Characteristics

The primary benefit of teamwork is that by acting in concert, the group of agents
can address larger problems than any individual is capable of [72]. Other potential
benefits, such as redundancy, the ability to meet global constraints, and economies of
scale can also be realized [77]. However, it is the ability of the team (members) to rea-
son explicitly about the ramifications of inter-agent interactions which gives the team
the needed flexibility to work in uncertain environments under unforeseen conditions.
The drawback to this tighter coupling is increased communication [141], so the team
and joint goal representations, domain characteristics and task requirements are fre-
quently used to determine what level of cooperation (and therefore communication)
is needed [145].

Jennings [93] describes an electricity transportation management system which
employs teamwork to organize the activities of diagnostic agents. Lacking such struc-
ture, the agents were prone to incoherent and wasteful activities, since they did
not always share useful behavior information or propagate important environmental
knowledge. By providing agents with an explicit representation of shared tasks and
the means by which cooperation should progress, the agents were able to accurately
reason about and resolve these interactions by employing team-level knowledge. Sim-
ilarly, in [185], teamwork is used to provide the structure and coordination needed
by agents to address interdependent goals in dynamic environments, such as tacti-
cal military exercises and competitive soccer games. These works demonstrate how
pathological, but hard to predict failures can be addressed if the plans are backed up
by a general model of teamwork.

Formation

The challenges associated with team formation involve three principal problems: de-
termining how agents will be allocated to address the high-level problem, maintaining
consistency among those agents during execution, and revising the team as the envi-
ronment or agent population changes [93, 125, 188].

The selection and role-assignment of agents that will work on the high-level prob-
lem depends on the goal’s requirements, the capabilities of the candidate agents, and
the knowledge of the selecting process itself [189, 8]. Initially, the process or agent
performing the team construction must be aware of the agents which could poten-
tially form the team. In the case of a static, reasonably sized agent population this
can be done off-line as part of the system design, or the members can be dynamically
discovered and assessed. This latter technique can be accomplished using well-known
discovery mechanisms such as the contract net protocol [178] or matchmaker inter-
mediaries [184]. Once a suitable pool has been found, the capabilities and preexisting
responsibility of those agents must be evaluated relative to the needs of the goal. Typ-
ically, agents are each denoted to have a set of capabilities, while the goal’s subtask(s)
are of a particular type. If an agent’s capabilities include that subtask’s type, it can
perform the task [189, 55]. The discovery mechanisms may include an implicit ranking
technique, such as the bidding process employed in contract net, which makes the se-
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lection process relatively straightforward. Tidhar [189] suggests a different technique
where the agent characteristics are derived at compile time, either through designer
input or automatic analysis of the agent’s plan library. Candidate teams comprised
of a subset of those agents may also be specified, which also are marked with their
characteristics. At runtime, these characteristics are matched with the goal require-
ments as part of the team allocation search. By including these characteristic labels,
the number of possible team combinations can be greatly reduced.

Tambe’s STEAM [185] architecture provides a flexible method for representing
and adapting team behaviors. It is based on the joint intentions framework [116],
which formally defines how agents should reason over joint commitments and shared
goals, and SharedPlans theory [71], which provides a formal way to encode and reason
about joint plans, intentions and beliefs. Together, these help ensure a consistency of
belief, or a desire to enact such a belief, across all team members. The commitments
formed through the joint intentions process provide the explicit structure needed to
reason about and monitor performance on a team level. Team plans are represented
using a hierarchical decomposition tree, with nodes representing tasks for both teams
and individuals, with associated preconditions, application and termination rules.
Agents may simultaneously take part in several different tasks, and corresponding
roles. The team’s cohesion is derived primarily from the joint intentions created as
part of executing the team plans. Upon selecting a team task, agents first broadcast
this intention to affected agents, and wait until a commitment to that task has been
established between all participants. The existence of this commitment directs agents
to propagate changes whenever the task is perceived to be achieved, unachievable or
irrelevant, before taking local action itself. This trades off the potential reaction
speed of the team and the cost of communication with group conformity. A decision
theoretic approach is used to guide communication acts, which explicitly trades off
the costs of communication with those of inconsistent beliefs. Nair [137] has also
explored the possibility of using simulated emotions to provide the motivation to
enforce team-level behaviors.

In STEAM, monitoring and repair of the team is accomplished with the use of
role constraints [185]. Team members are assigned a role, based on the particular
task they are working on. These roles are further constrained such that some partic-
ular combination of them (e.g. and, or) are needed to accomplish the task. One can
then monitor if a task is achievable by monitoring the health of the individual agents,
and using that information to evaluate the satisfiability of the role constraints. Such
monitoring can be performed through explicit queries, environmental observations or
by eavesdropping on communication, which can reduce the increased communication
usually associated with teams. Kaminka [98] has demonstrated that the latter tech-
nique can perform well when coupled with a plan-recognition algorithm. Failures can
thus be detected, and potentially resolved through an appropriate role-substitution,
or the task abandoned if no substitution is possible. Alternately, one could use a
diagnosis system [93, 78] to more precisely identify the root cause of the failure. In-
terestingly, this repair operation can itself be cast as a team task, so mutual agreement
that a repair is necessary must be achieved before potentially drastic measures are
taken. Nair [138] shows how an MDP incorporating team and role-allocation knowl-
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Figure B.5. Congregations of agents.

edge can improve the system’s response in cases of multiple role failure. In this case,
a suitable locally optimal policy for the reallocation decision problem can be found
by analyzing the team’s plans, and then used to guide online responses to failures.
This work showed that such policies can provide improved performance versus more
heuristic and analytic techniques. A similar technique was also shown in that work
to improve initial role allocation.

Tidhar [188] uses a similar hierarchical plan representation to represent team-
work in a tactical air mission scenario. Team membership and role assignment are
performed by matching agent capabilities to one or more role’s requirements. As in
STEAM, teams can be broken down into sub-teams, and agents may use both implicit
(observation) and explicit (messaging) forms of coordination.

The Generalized Partial Global Planning (GPGP) framework also employs tech-
niques that allow agents to act using team semantics [38, 109]. Where a STEAM-
driven system will typically organize in an explicit, controlled fashion in response to a
perceived goal, a GPGP-team is created in a more dynamic, emergent fashion. GPGP
agents are provided with a set of individual plans which model a range of alternative
ways that goals may be achieved. The sub-goals modeled in these plans may affect
or be affected by other agents in the environment, although this may not be initially
recognized. By communicating with one another and exchanging plans and schedules,
these non-local interrelationships between tasks may be recognized. For example, the
results from one agent’s activity may be a strict prerequisite for another agent’s task.
They may alternately be a facilitating, but not required input to a task. By recogniz-
ing these interrelationships, and sharing knowledge of what goals are being pursued,
agents gradually build an internal model of how their actions may affect others. This
knowledge is similar to that created by the more formal joint intentions of STEAM,
and allows agents to influence local behavior and communicate results as if they were
members of a common team.

B.5 Congregations

Similar to coalitions and teams, agent congregations are groups of individuals who
have banded together into a typically flat organization in order to derive additional
benefits. Unlike these other paradigms, congregations are assumed to be long-lived
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and are not formed with a single specific goal in mind. Instead, congregations are
formed among agents with similar or complementary characteristics to facilitate the
process of finding suitable collaborators, as modeled in Figure B.5. The different
shadings in this figure represent the potentially heterogeneous purpose behind each
grouping, in comparison to the typically more homogeneous coalitions in Figure B.3.
Individual agents do not necessarily have a single or fixed goal, but do have a stable set
of capabilities or requirements which motivate the need to congregate [18, 69]. Anal-
ogous human structures include clubs, support groups, secretarial pools, academic
departments and religious groups, from which the name is derived.

Congregating agents are expected to be individually rational, by maximizing their
local long-term utility. Group or global rewards are not used in this formalism [18].
It is this desire to increase local utility which drives congregation selection, because
it is the utility that can be provided by a congregation’s (potential) members that
determine how useful it is to the agent. Agents may come and go dynamically over
the existence of the congregation, although clearly there must be a relatively stable
number of participants for it to be useful. Agents must also take enough advantage of
the congregation so that that the time and energy invested in forming and finding the
group is outweighed by the benefits derived from it. Since congregations are formed
in large part to reduce the complexity of search and limit interactions, communication
does not occur between agents in different congregations, although the groups are not
necessarily disjoint (i.e., an agent can be a member of multiple congregations). The
net result of the congregating behavior is an arrangement that can produce greater
average utility per cycle spent computing or communicating [16].

Characteristics

Although congregations can theoretically share many of the same benefits of coali-
tions, their function in current research has been to facilitate the discovery of agent
partners by restricting the size of the population that must be searched. As a sec-
ondary effect these groupings can also increase utility or reliability by creating tighter
couplings between agents in the same congregation, typically by imposing higher
penalties for decommitment or increasing information sharing among congregating
peers. The downside to this strategy is that the limited set may be overly restrictive,
and not contain the optimal agents one might interact with given infinite resources.
So, in forming the congregation, one is trading off quality and flexibility for a reduc-
tion in time, complexity or cost. If an appropriate balance can be found, this will
result in a net gain in utility.

This hypothesis is borne out in the experiments from an information economy
domain [16]. This work varied the number of congregations that agents were allowed
to form. Since the population size was static, the average congregation size decreased
as the number of congregations increased. The accumulated quality decreased pro-
portionally because of less flexibility in agent interactions. However, these smaller
congregations also incurred lower overhead, and thus had less cost. A median point
was discovered in the space which produced maximum value.
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Formation

Like coalition formation, congregation formation involves selecting or creating an
appropriate group to join, and suffers from similar complexity problems as the agent
population grows. Because congregations are more ideologically or capability driven,
and there is usually no specific goal or task to unite them, one must first define how
these groups may be differentiated. In [17] Brooks proposes using labels to address
this problem. A label is a suitably descriptive tag assigned to each congregation which
serves to both distinguish it from other groups and advertise the characteristics of its
(desired) members. Assuming that agents have an ordered preference for such labels,
the congregators’ action is simply to move to the congregation for which it has the
highest preference. The problem is then to create a number of logical points where
agents may congregate and then decide upon the labels each congregation point will
have; these labels help determine the makeup of the population which gathers there.
Each agent was placed into one of several affinity groups, and a congregation is stable
if and only if it contains only members of the same affinity group. Different numbers
of labelers were then added which could attach labels to the congregation points.
As with the congregators, the labelers were stable if and only if the congregation
they provided the label to was homogeneous. The experimental and analytic results
demonstrated that by increasing the number of labelers the system converged more
quickly.

Brooks [16] presents a variation of this formation technique used in an information
economy which also takes into account the costs associated with congregation size.
In this scenario there are a set of buyers and sellers. Each buyer has an information
preference, and each seller may choose what type of information to offer. The buyer’s
preference is soft – they have an optimal type, but are also willing to purchase related
information, where similarity determines how much they are willing to pay. Instead of
explicitly labeling congregation points, agents freely move through the system seeking
groups that provide acceptable utility. The scenario is episodic, where during each
episode agents elect to stay in place or randomly move to a new congregation. At
the end of each episode an auction takes place from which buyers and sellers obtain
their utility. The utility is based on the price of the goods bought and sold, combined
with the costs incurred during the auction. This cost, divided uniformly among the
congregation members, is proportional to the complexity of the auction, which is itself
determined by the number of participants. Satisfied agents remain, while those which
do not obtain enough utility move. This process results in an emergent population of
congregations that trades off utility for computation time.

Griffiths’ notion of a clan closely parallels the definition of a congregation [69].
He presents a technique where clans are formed as part of a self-interested activity
to increase local utility or decrease the probability of failure. If a motivating factor
is exhibited by the agent, such as a desire to increase information gain or decrease
commitment failure, clan formation may be initiated. Clan formation begins with
the agent identifying how large a clan it wishes to create, which is based on the
competing utility (in value added) and cost (in computational complexity) that grow
in proportion to clan size. A trust value is then used to determine what agents it
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Figure B.6. An agent society.

could invite, while the perceived capabilities or benefits of those individual agents
are used to determine the appropriately sized subset that it will invite. In lieu of
a negotiation process or explicit reward, invitation recipients determine if they will
accept the invitation based first on their trust in the sender, and second on the
perceived local gain they would receive by joining. The sender includes information
about itself in the invitation as a sort of capability advertisement to facilitate this
determination. If a sufficient number of agents agree, the clan is formed, otherwise
the attempt is abandoned.

Although it does not strictly deal with congregating agents, Sen’s work on re-
ciprocal behavior [162] has some of the same characteristics. In this system, agents
become more inclined to cooperate or assist another agent when it has a favorable
history with that other agent. Specifically, agents track if others have cooperated
with it in the past, or if it has cooperated with them, along with the approximate
costs of those experiences. If an agent has a favorable balance of cooperation, it will
be more inclined to give or receive assistance. The cooperation decision process is
stochastic, enabling reciprocal relationships to be created or promoted even when a
strictly positive balance does not exist. Weak groups may form between agents using
this strategy who have complementary capabilities, which is similar to the notion
of congregations we have presented. Because agents will more likely communicate
with those that will help it, interactions can become implicitly confined within the
group. These groupings are not formalized or well-defined, however, and communi-
cation is not necessarily restricted by the approximate boundaries that form. Sen
showed that, among a group of self-interested agents operating in a package delivery
domain, a population containing reciprocal agents outperformed a selfish population.

B.6 Societies

Drawing from our own experiences with biological societies, a society of agents intu-
itively brings to mind a long-lived, social construct. Unlike some other organizational
paradigms, agent societies are inherently open systems. Agents of different stripes
may come and go at will while the society persists, acting as an environment through
which the participants meet and interact. A canonical example of this paradigm is the
electronic marketplace (discussed in more detail in Section B.8), consisting of buyers
and sellers striving to maximize their individual utility [205, 4]. A more ambitious
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example is the “agent world”, a permanent operating environment for agents that
in some ways parallels our own [44, 208]. Agents will have different goals, varied
levels of rationality, and heterogeneous capabilities; the societal construct provides
a common domain through which they can act and communicate. Societies are also
more ephemeral constructs than others paradigms we have seen so far. They impose
structure and order, but the specific arrangement of interactions can be quite flexi-
ble. Within the society, agents may be sub-organized into other organizations, or be
completely unrelated.

A second distinguishing characteristic of societies is the set of constraints they
impose on the behavior of the agents, commonly known as social laws, norms or
conventions. This arrangement is shown abstractly in Figure B.6, where the agents
within the society have been provided with a set of specified norms. These are rules or
guidelines by which agents must act, which provides a level of consistency of behavior
and interface intended to facilitate coexistence. For example, it might constrain the
type of protocol(s) agents can use to communicate, specify a currency by which they
can transfer utility, or limit the behaviors the agent can exhibit in the environment.
Penalties or sanctions may also exist to enforce these laws.

The set of laws embedded in a society must strike a balance among objectives [57].
It must be sufficiently flexible that goals are achievable, but not so much so that the
beneficial constraints provided by the laws are lost. It must also be fair, such that
the goals of one class of individuals are not incorrectly valued higher than those of
another. These issues arise naturally in any structured, multiple participant system;
Moses argues that most multi-agent systems have some form of social laws in place,
if only implicitly [133].

Characteristics

In [168], Shoham presents a grid world where robots must move from one location to
another in accordance with a set of dynamically arriving tasks. Conflicts can arise
when two or more agents attempt to occupy the same location at the same time along
their chosen paths. They argue that a centralized solution is untenable, because of
the potentially large number of interactions that must be continuously reasoned over
in the heterogeneous population. Neither is a fully decentralized solution appropriate,
because of the number of negotiation events that would need to take place at each
time step. This motivates the need for “traffic laws”, a type of social law which
does not eliminate such interactions, but should minimize the need for them. The
traffic laws in this research are computed offline, and constrain the robots’ movement
patterns in such a way that collisions do not occur, and destinations are reachable
within a bounded amount of time. Vehicular traffic laws serve the same purpose in
human societies. When driving a car there is no central authority which determines
when and where we should go, and neither is there a free-for-all on the roads where
one must talk to every other driver before proceeding. The challenge then is to design
a set of laws that minimizes conflicts and encourages efficient solutions.

Although social laws were used to provide efficiency benefits in the work above,
the purpose of an agent society is not always as quantitatively-driven as other organi-
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zational constructs. Indeed, most research on agent societies is more concerned with
how the concepts they embody can be used to facilitate the construction of large-
scale, open agent systems in general. For example, Moses [133] argues that social
laws can provide a formal structure upon which more complex inter-agent behaviors
can be built. By limiting and enforcing these restrictions, agents can make simplify-
ing assumptions about the behavior of other agents, which can make interaction and
coordination more tractable.

In additional to formalizing normative behaviors, mechanisms may also be estab-
lished to ensure or encourage that such laws are respected. One approach accom-
plishes this through explicit representations of reputation or trust [135, 152, 153].
An agent’s behavior and interactions are observed by its peers and evaluated in the
context of the norms it has agreed to. Deviation from those norms will result in a
worsening reputation. This decreased reputation can in turn affect the utility the
agent obtains, through increased decommitment penalties or competition from more
reputable peers. In a rational agent this will serve as a deterrent to violating conven-
tions. A different, but complementary approach instantiates and enforces social laws
using social institutions provided in the environment [44, 30]. Agents are expected
to formalize their interactions using contracts, which are independently verified by
these institutions, thereby relocating some of the traditionally agent-centric complex-
ity into a service available to the population as a whole. This reduces the burden
placed on agent designers, and provides a mechanism where systemic (non-localized
or long-term) failures may be detected more readily. This more rigorous enforcement
of social laws also helps address the problem of unreliable, dishonest or malicious
agents operating in the open environment.

Huhns [90] provides similar motivation for common communication languages,
shared or interoperable ontologies and coordination and negotiation protocols, all of
which may be specified as part of the society’s structure. These beliefs can be sup-
ported by our own experiences in real life. It should be clear that complex human
societies are founded upon the ability to interact with one another. Mutually un-
derstood and respected norms simplify many aspects of day-to-day existence. These
principles can be used to the same effect in agent societies.

Formation

There are two aspects to the society formation problem. The first is to define the
roles, protocols and social laws which form the foundation of the society. Given such
a definition, the second problem is to implement the more literal formation of the
society, by determining how agents may join and leave it.

If the society is to be an open and flexible system, its structure must be formally
encoded so that potential members may analyze it and determine compatibility. This
description can be as simple as a set of common interfaces that must be implemented,
or a complex description of permissible roles, high-level objectives and social laws.
Dignum [49, 48] presents a three-part framework, consisting of organizational, social
and interaction models. The organizational model defines the roles, norms, inter-
actions and communication frameworks that are available in the environment. The
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social model, instantiated at run-time, defines which roles agents have taken on. The
interaction model, also created at run-time, encodes the interactions between agents
that have been agreed-upon, including the potential reward and penalties. The latter
two models are supported by contracts between the relevant entities. This formalism
is similar to that proposed by Artikis [4], which provides additional details describ-
ing operators that can be used to encode social laws, roles and normative relations.
Because the society is intended to be open, these structures do not involve the inter-
nal implementation of agents, but describe only the intended or expected externally
observable characteristics of the participants and environment.

Assuming it is possible to encode the social laws in a way that makes them intelli-
gible to agents, one still faces the challenge of determining what conventions should be
enacted. Fitoussi [57] presents a notion of minimal social laws, where he argues that
one should choose the smallest and simplest set of norms that address the needs of the
society. This is consistent with the tradeoff between flexibility and complexity men-
tioned above. Work has also been done exploring the dynamic emergence of norms,
for when social laws cannot specified off-line or if there is a desire for the corpus to be
responsive to changing conditions [5, 76]. Walker and Wooldridge [200] propose and
evaluate a number of ways that a group of agents can reach norm consensus based
on locally available information.

Dellarocas defines the act of an agent entering a society to be the socialization
process [44]. In that work, they suggest this can be accomplished through an explicit
negotiation process between the agent and a representative of the society, as shown
in the left side of Figure B.6. This exchange results in a social contract, or an explicit
agreement made between the agent and the society indicating the conditions under
which the agent may join that society. This allows the possibility of capable agents
dynamically learning, and potentially negotiating over, the rules it must abide by in
that society. López y López [212], present a framework in which the facilities for
norm reasoning needed to support these behaviors can take place. A similar view is
taken by Glaser in [66], with the additional stipulation that the joining agent must in-
crease the utility of the society. This naturally extends to multi-society environments,
where an agent’s skills and goals define how good a fit it is with a particular society.
Some of the challenges associated with operating in multi-society environments seem
to be comparable, though larger in scale, to those encountered during coalition or
congregation formation.

Because of their inherent flexibility, a great deal of additional complexity may
be associated with social organizations. Sophisticated legal systems, communication
bridges, ontologies, exception handling services, directories may all be part of the
society model [44, 49, 100]. Some or all of these may be directly instantiated by trusted
agents taking on so-called facilitation roles (differentiated from the operational roles
taken on by worker agents). Of course, agents acting in the society must have a certain
level of sophistication to know how and when to use such services. An interesting
almost-paradox exists in this relationship. Although the society exists in part to
reduce the complexity burden imposed on the participants, the participants must
raise their level of complexity to take advantage of these benefits. In the case where
interactions with some or all social services are mandatory (e.g. legal or arbitration
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Figure B.7. An agent federation.

services), this additional complexity is similarly unavoidable and can act as a barrier
to entry.

B.7 Federations

Agent federations, or federated systems, come in many different varieties. All share
the common characteristic of a group of agents which have ceded some amount of
autonomy to a single delegate which represents the group [206, 65]. This organiza-
tional style is modeled on the governmental system of the same name, where regional
provinces retain some amount of local autonomy while operating under a single central
government. The delegate is a distinguished agent member of the group, sometimes
called a facilitator, mediator or broker [184, 75]. Group members interact only with
this agent, which acts as an intermediary between the group and the outside world,
as shown in Figure B.7. In that figure each grouping is a federate, and the white
agent situated at the edge of each federate is the delegated intermediary. Typically,
the intermediate accepts skill and need descriptions from the local agents, which it
uses to match with requests from intermediaries representing other groups. In this
way the group is provided with a single, consistent interface. This level of indirection
is similar to that seen in holons, and provides some of the same benefits.

Characteristics

The capabilities provided by the intermediary are what differentiate a federation
from other organizational types. The intermediary functions on one hand by receiv-
ing potentially undirected messages from its group members. These may include skill
descriptions, task requirements, status information, application-level data and the
like. These will typically be communicated using some general, declarative commu-
nication language which the facilitator understands [65]. Outside of the group, the
intermediary sends and receives information with the intermediaries of other groups.
This could include task requests, capability notifications and application-level data
routed as part of a previously created commitment. Implicit in this arrangement is
that, while the intermediary must be able to interact with both its local federation
members and with other intermediaries, individual normal agents do not require a
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common language as they never directly interact. This makes this arrangement par-
ticularly useful for integrating legacy or an otherwise heterogeneous group of agents
[65, 167].

The intermediary itself can function in many different capacities. It may act as
a translator, perform task allocation, or monitor progress, among other things. An
intermediary which accepts task requests and allocates those tasks among its mem-
bers is known as a broker or a facilitator. As part of the allocation, the broker may
decompose the problem into more manageable subtasks. This allows agents to take
advantage of all the capabilities of the (potentially changing) federation, without re-
quiring knowledge of which agents perform a task or how they go about doing it. This
reduces the complexity and messaging burden of the client, but also has the potential
of making the broker itself a bottleneck [75] (a possibility common to all intermedi-
aries). An intermediary acting as go-between among agents is known variously as a
translator, embassy or mediator depending on its specific characteristics. Embassy
agents provide a layer of security for members of their federation, by having the ability
to deny communication requests. Mediator agents store representations of all related
parties, reducing their individual complexity by providing a layer of abstraction. This
capacity can be further exploited to arbitrate conflicts [120]. Intermediaries which
provide the ability to track the state of one or more of its participants are known as
monitors. For example, result information can be automatically propagated to inter-
ested parties. Of course, one or more of these roles may be combined into a single
intermediary which offers several types of services.

Formation

Singh and Genesereth in [177, 65] describe how a general federated system would
work. All agents are expected to communicate using an Agent Communication Lan-
guage (or ACL, a somewhat-generic term used by many researchers to describe their
agents’ communication protocol), which in this work is a combination of the first-
order predicate calculus KIF with the KQML agent messaging language. Knowledge
and statements sent between agents are encoded as KIF statements, which are then
wrapped in KQML to provide a standard mechanism for specifying the sender, re-
ceiver, intent, and so forth. This provides a common language and set of behavioral
constraints that will allow the various agents to interact. Not all agents must imple-
ment the entire class of concepts in the ACL, but the aspects they do use must be
correct with respect to the ACL’s specification. In addition, although they speak the
same language, not all agents must use the same vocabulary to describe a particular
situation, although to interact there must be an intermediary capable of translating
the vocabularies. The system is initialized with a set of intermediaries called facil-
itators, which serve many of the roles outlined above, notably brokering. Agents
connecting to the system start by sending their capabilities to the local facilitator.
Implicit in this communication is the notion that the agent is willing to use those
capabilities in service of requests posed by the facilitator. Needs are similarly routed
to the facilitator, which then attempts to find other facilitators that can service that
need. Each facilitator provides a yellow pages function which supports this search.
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Figure B.8. A multi-agent marketplace.

Khedro’s Facilitators [99] and the jointly developed PACT project [34] have produced
very similar systems that also use a common ACL and a community of intermediaries
to produce a robust and dynamic task decomposition and allocation scheme among
a group of heterogeneous participants.

The MetaMorph I [130] and II [167] architectures described by Maturana and
Shen demonstrate a federated agent system for use in intelligent manufacturing. In
this domain, agents are used to drive aspects of product design and manufacturing,
contending with heterogeneous resources, dynamically changing conditions, and hard
and soft constraints on behavior. MetaMorph’s name is derived from the fact that
the system can continuously change shape, adapting to new conditions as they are
perceived. This is accomplished in part through the use of intermediaries called medi-
ators, which are responsible for brokering, recruiting and conflict resolution services.
The recruiting service is similar to brokering, but is differentiated by the fact that
the intermediary can remove itself from the relationship once the partners have been
discovered. This weaker form of federation provides efficiency gains at the cost of less
flexibility, both due to the loss of the layer of abstraction that exists in the brokered
approach. The federations themselves are dynamically created in response to new
task arrivals or requests from other groups using a contract net [178] approach, or are
statically created from agents in a common subsystem (e.g. tools, workers, etc.).

B.8 Markets

In a market-based organization, or marketplace as shown in Figure B.8, buying agents
(shown in white) may request or place bids for a common set of items, such as
shared resources, tasks, services or goods. Agents may also supply items to the
market to be sold. Sellers (shown in black), or sometimes designated third parties
called auctioneers, are responsible for processing bids and determining the winner.
This arrangement creates a producer-consumer system that can closely model and
greatly facilitate real-world market economies [204]. These latter systems fall into
the more general category of agent-mediated electronic commerce [73]. Because of
this similarity, a wealth of research results from human economics and business can
be brought to bear on agent-based markets, creating a solid theoretical and practical
foundation for creating such organizations [203, 205, 32].

Markets are similar to federated systems in that a distinguished individual or
group of individuals is responsible for coordinating the activities of a number of
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other participants. Unlike a federation, market participants are typically competitive.
In addition, participants do not cede operational authority to those distinguished
individuals, although they do trust the entities managing the market and abide by
decisions they make. It is also common for markets to operate as open systems [204],
allowing any agent to take part so long as it respects the system’s specified rules and
interface. As such, they share some of the benefits and drawbacks of societies.

When using the terms “buyer” and “seller”, one may implicitly assume that an
artifact will eventually be transferred in exchange for some form of compensation
[26, 191]. Although this paradigm is common, it is not always the case, and market-
based organizations have been used in various projects to accomplish less obvious
goals. For example, Wellman [201] proposes using a market-based approach to per-
form decentralized factory scheduling. In this work, each factory job is associated
with a duration, deadline and value. The factory itself, acting as the seller, has a
reserve price associated with the time slots it has available. Agents bid on a set of
slots that have sufficient total time to satisfy the job duration and do not exceed the
deadline, using the job value as a maximum bid price. Market forces will cause agents
to seek out the most cost-effective time slots, while higher-valued jobs will naturally
take precedence over lower ones. This should lead to an efficient allocation of (time)
resources, while maximizing the factory’s overall utility. Bussman [19] has developed
an auction-based manufacturing control system with a similar purpose, where agents
are used to represent workpieces, transportation conveyors and machines. In this
work, machines bid for the right to work on workpieces, which act as sellers, by re-
lating an expected time to completion. When a machine’s bid is accepted, a series of
additional negotiations between the workpiece and the conveyors move the piece to
the appropriate location. Yet another example is the Mariposa distributed database
system [183], which uses market-based techniques to optimize query processing. Indi-
vidual nodes buy and sell fragments of information. Queries inserted into the system
are associated with a biding profile, indicating how much the user is willing to pay.
A brokering process takes the query and requests bids from relevant nodes. who then
submit bids in an effort to win the rights to process the query.

More generally, Wellman proposes the notion of market-oriented programming
[203], which uses the marketplace paradigm as a general programming methodology
that can efficiently address multi-commodity flow and resource allocation problems.
His WALRAS framework that implements this concept has been used to create so-
lutions for transportation logistics, product design and distributed information ser-
vices. Many other marketplace frameworks have also been developed for general use
[26, 149, 28, 29, 33]; Kurbel and Loutchko provide a comparative analysis of structure
and function [104].

Characteristics

Markets excel at the processes of allocation and pricing [205]. If agents bid correctly
(i.e. make truthful bids according to their perceived utility gain if they win), the
centralized arbitration provided by the auctioneer can result in an effective allocation
of goods. The Kasbah system [26] is an example of an agent-based marketplace that
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demonstrates many of the typical characteristics of this type of organization. Agents
in Kasbah are segregated into two categories: buyers and sellers. Both types indicate
the type of object they are interested in (buying or selling) with a feature vector,
along with a desired price, a threshold price (lower or upper bound), and a negotiation
strategy that controls how their offered price changes over time. A sale occurs when
a seller’s price matches what a buyer is willing to pay. The objects being sold in this
system represent the targets of the allocation process, and the price is determined
dynamically according to supply and demand. The mechanism that is employed in
Kasbah corresponds to an intuitively fair way to allocate among competitors, at least
from a self-interested point of view: all agents gradually compromise, and the agent
willing to meet the seller’s price first wins.

The behaviors embodied in a marketplace, namely the existence of buyers and
sellers, a potential multitude of goods, and competition among participants, make
such organizations intrinsically linked with the properties of auctions. Kasbah is an
example of a two-sided auction, because both sides compromise. If one of the two
parties maintained a fixed price, it would be one-sided auction. Many other types of
auctions exist to service the different needs of different communities, each with their
own characteristics [210, 104]. For example, in a combinatorial auction, participants
bid on collections of goods, rather than single objects. In an reverse auction, sellers
bid rather than buyers. In sealed-bid auctions, the participants do not see competing
bids while the auction is is progress. In continuous auctions, a pool of items exist,
exchanges occur as soon as two compatible bids are made, and the bidding process
continues uninterrupted. The particular type of auction which is employed dictates
the manner in which the participants interact. Much of the complexity involved in
designing an effective market and marketplace agent revolves around understanding
the subtleties of the auction’s characteristics, and crafting an appropriate strategy
based on that knowledge.

There are two drawbacks to market-based organizations. The first is the potential
complexity required to both reason about the bidding process and determine the
auction’s outcome. The former computation may require a detailed approximation of
competitors’ beliefs, a practice known as counterspeculation, especially in single-shot
or sealed bid auctions [191]. The latter computation, also known as clearing the the
trade, can be particularly difficult in the case of combinatorial auctions. This is known
to be a NP-complete problem [154], although solutions have been devised that have
good performance in practice [155]. The second is security; in addition to the practical
network-related security issues inherent in any open system, one must also be able to
verify the validity of the auction approach itself. For example, the bidding strategy
used in the Kasbah system is vulnerable to a form of cheating known as collusion. If
two or more bidders in the system agree to reduce their rate of compromise, they have
a chance to artificially lower the final sale price. It is also important that the bidding
process does not reveal information about the participants. For example, if a seller
could determine the threshold prices of some of its buyers, it could simply wait until
the maximum such price is reached, thereby artificially increasing the sale price. Some
of these issues can be resolved by selecting an appropriate auction type. The Vickrey
auction’s structure [197], where the highest bidder wins but pays the second highest
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bid price, promotes truthful bidding and discourages counterspeculation. Enforcing
anonymity and secure communication channels can also help avoid many common
pitfalls.

Formation

As is the case of many open systems, marketplaces are frequently static, pre-existing
entities that do not require a formal creation process beyond starting the actual mar-
ket process (if any) and allowing agents to connect. The well-known Trading Agent
Competition market [202] operates in such a fashion, albeit for a limited amount of
time. They may have certain barriers to entry, such as respecting a defined pro-
gramming interface, implementing a particular transaction language, and respecting
the rules of the market’s auction type. These entry conditions are similar to those
discussed earlier in the context of societies, although there is generally no formal ne-
gotiation or socialization process involved. Wellman [204] outlines a number of other
practical characteristics that should be exhibited for a marketplace to be successful.
They must maintain temporal integrity, meaning that the outcome of an auction de-
pends on the arrival sequence of bids, and is independent of any delays internal to
the market itself. Transactions performed by the market must be atomic, that is,
they have no effect if they fail or are canceled prior to completion. As noted above,
they also require attention to security risks, so that participant information is ade-
quately protected and the auction process itself is kept safe from conventional attacks,
particularly if there is an actual exchange of goods, information or currency in the
market. Markets may also incorporate product discovery services, banking services,
brokering middle-agents and negotiation support, to reduce the burden placed on the
participants [191, 73].

Other works have explored dynamic formation of markets. As mentioned in Sec-
tion B.5, Brooks has used the notion of congregations to dynamically form markets
within a group of agents [16]. Recall that congregations are groups of agents which
have banded together because of some common long-term interest or goal. In this
work, that long term goal is the cost-effective exchange of goods or services. In a
large population, it can be difficult to directly find suitable trading partners, and
expensive to contact or broadcast to all possible partners. A suitably formed congre-
gation serves to limit the scope of this search or broadcast, which in turn facilitates
the marketplace creation.

A relatively new concept being exploited in both human [134] and agent [3, 58,
21] organization research is the virtual organization (VO). A virtual organization is
one that has a fixed purpose (e.g., to provide a set of services) but a potentially
transient shape and membership. The key characteristics of a VO are that they are
formed by the grouping and collaboration of existing entities, and there is a separation
between form and function that precludes the need to rigidly define how a behavior
will take place. This provides flexibility in how a particular goal is satisfied, by
allowing the system to adapt the set of participants to meet resource availability and
service demand. The concept is similar to the coalition and congregation paradigms
discussed earlier, and has many of the same benefits as a federation, although a virtual
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Figure B.9. A matrix organization.

organization can generally be thought of as an entity in and of itself more so than an
empty coalition or congregation.

The CONOISE project has explored the dynamic creation of virtual organizations
within a larger marketplace environment [139]. In this context, the creation of a VO
can be thought of as the creation of a new market entity (buyer or seller) from a group
of existing participants. This can give those participants greater leverage, efficiency
or reliability as they combine their producing or consuming power. The members of
a VO may remain distinct when outside of the marketplace, but within the market
they act as a single unit. For example, two producers might combine to offer a new
joint product. Two consumers might combine to obtain greater buying power. In
responding to bids, a VO will then be able to offer the union of services or goods over
all its members. VOs may also split when the relationship is no longer beneficial or
if levels of trust or reputation have been sufficiently degraded. In all cases, the shape
of the market is affected as these changes are made, and thus the market as a whole
will evolve over time based on the needs and capabilities of the participants, and the
corresponding consolidation decisions they make.

B.9 Matrix Organizations

We have seen that the strict hierarchical organization method is based on a tree-
like structure of control. Agents or agent teams report to a single manager, which
provides the agents with goals, direction and feedback. Matrix organizations relax
the one-agent, one-manager restriction, by permitting many managers or peers to
influence the activities of an agent. This forms a mixed-initiative environment, where
successful agents reason about the effects their local actions can have on multiple
entities. This is in some sense a closer approximation to how humans exist. A
person may receive guidance or pressures from their manager, co-workers, spouse,
children, colleagues, etc. Even in a purely business setting one might have to report
to an immediate supervisor, project managers, vendors, and peers at cooperating
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businesses. Interrelationships can come from many directions, each with its own
objectives, relative importance and pertinent characteristics [199].

The term matrix organization comes from a grid based view of the participants.
One can place managers (black) around a group of “worker” agents (white), and use a
directed edge to indicate authority, as in Figure B.9. Alternately, agents are the rows
and managers the columns (these sets may overlap), and a check is used to denote
where an authority relationship exists. Like the hierarchy’s tree, the matrix provides
a graphical way to depict which managers can influence the activities of each agent.

Characteristics

Matrix organizations provide the ability to explicitly specify how the behaviors of an
agent or agent group may be influenced by multiple lines of authority [43]. In this
way, the agent’s capabilities may be shared, and the agent’s behaviors (hopefully)
influenced so as to benefit all. This is particularly important if the agents themselves
are viewed as a functional, limited resources. For example, if a particular skill is
needed by two separate tasks, the agent can be used to address both, provided it
has sufficient computational power. In the case where the agent has multiple ways of
performing a task, it can also choose the method which best satisfies its peers.

This sharing come as a price, however, because the shared agent becomes a po-
tential point of contention. If its managers disagree, the agent’s actions may become
dysfunctional as it is pulled in too many directions at once [161, 150]. To operate
effectively, the agent must have a commitment ranking mechanism and sufficient au-
tonomy to resolve local conflicts, or the ability to promote conflicts to a higher level
where they may be resolved [121]. Wagner’s motivational quantities framework [199]
is one approach that addresses this problem. In that work, task valuation is per-
formed by combining both the local intrinsic worth of the task with the perceived
or specified worth that task will have on other entities. This valuation is quantified
through the expected production and consumption of different motivational quanti-
ties (MQs), which act as a virtual resource or medium of exchange. The preference
for particular MQs is specified with a set of utility curves that together determine the
agent’s overall utility. By coupling the production of different types of MQs with the
tasks associated with different managers, the framework is able to capture the quan-
titative motivation behind a particular course of action. This explicitly represents
the type and state of the relationships the agent has with those managers, which can
enable it to correctly balance its behavior in a matrix organization.

Formation

Decker [43] describes the MACRON organizational architecture, in which agents form
a matrix organization. The domain for their system is cooperative information gath-
ering, where multiple agents search for relevant data in response to a user’s query.
Individual agents are separated into predefined functional groups that contain agents
able to access a particular type of information. These groups are under the control of
a functional manager, who assigns agents to query tasks as they arrive. User query
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Figure B.10. A compound organization.

agents generate those query tasks, and therefore use the functional managers to dy-
namically select agents to satisfy their own goals. Individual gathering agents report
to two agents: a static functional manager, and a query manager which changes de-
pending on the user’s actions. This has the effect of assigning the minimal needed set
of agents to the query, increasing efficiency when compared to a system employing
a set of static teams where particular team members might go unused, depending
on the query characteristics. At the same time, this approach uses fewer resources
than one lacking functional groups, which would have to search through all available
agents for each query.

In [86], Horling and Mailler describe a distributed sensor network application
where a matrix organization is used to address a resource allocation problem. In
this case, the sensors themselves were limited resources, since their heterogeneous
locations and orientations made each one unique. The tracking process for each target
was controlled by a different track manager, which was responsible for discovering and
coordinating with the sensors needed to track its target. When multiple targets came
in close proximity to the same sensor, a matrix organization is dynamically formed
as the relevant managers interact with that sensor. At the same time, that sensor
may have previously been given tasks by a regional manager responsible for detecting
new targets. The result is an individual which may be under contention by three or
more managers, and which must then decide how best to meet those demands. This
was done using a combination of a predefined ranking scheme (tracking has higher
priority than scanning for new targets), local autonomy (round robin scheduling) and
conflict elevation (track managers negotiate directly once aware of the conflict).

B.10 Compound Organizations

Not all organizational structures fit neatly into a particular category, and some ar-
chitectures may include characteristics of several different styles. A system may have
one organization for control, another for data flow, a third for discovery, and so on.

218



For example, Durfee’s PGP [53] incorporates one organization for interpretation, and
another separate structuring of the same agents to manage coordination problems.
Compound organizations can be overlapped, operating as virtual peers at the same
conceptual level, or be nested, so that some subset of agents in a group are organized
in a potentially different way within the larger context. A sample such organization
is shown in Figure B.10, which combines a hierarchy with a set of coalitions. As with
singular organizations, they may be created or adapted over time, or they may be in-
stantiated as part of a transient form while a population shifts between organizational
styles. Ideally, these compound architectures can use the most effective structure for
the particular goal at hand, without limiting options that might be used elsewhere in
the system. The tradeoff in this situation is usually one of complexity. Because an
individual agent might take on different roles in response to different organizational
demands, the agent itself must have sufficient sophistication to act efficiently and
asynchronously in all those roles.

Some of the organizational paradigms which have been discussed so far are more
amenable to coexistence than others. In much of the teamwork research, for example,
a loose hierarchy of control was created among the agents after the team had formed
[185, 189]. Hierarchical structures for interpreting and consolidating raw data are
also a popular mechanism for handling scale that can augment a preexisting or lower-
level structure [213]. Societies frequently have an internal organizational structure
within the larger context defined by the social laws and norms [44, 49]. In other
cases, researchers have exploited the characteristics of one type of organization to
create another. Congregations, for example, have been used to facilitate the dynamic
formation of markets [16], while both markets [108] and hierarchies [2] have been used
to efficiently create coalitions. Societies can also be viewed as a common “pool” of
agents, from which a range of other organizations can be constituted. In this type
of compound organization, the society may exist in support of other, more dynamic
structures created to address particular tasks [169]. This begins to touch on the
notion of organization longevity, which will be addressed in Section B.12.

Characteristics

The positive and negative characteristics of a compound organization are derived
primarily from its constituent parts. However, the interplay between organizations
can lead to unexpected consequences. For example, if the distinguished intermediary
in a federated system plays a key role in a separate overlay organization, it may be
unable to fulfill both roles adequately. Similar to a matrix organization, agents may be
faced with conditions where it is not clear which of two competing objectives it should
satisfy [150]. Conversely, its knowledge of the requirements of both organizations
may enable it to make more globally effective decisions. The possible interactions
and formation strategies among arbitrary coexisting organizations are difficult to
characterize in a general manner; instead we will proceed with a discussion of example
systems employing this technique.
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Example Compound Organizations

The distributed sensor network solution described by Horling and Mailler [86] uses
several different overlapping organizational techniques. Agents are first partitioned
into federations, called sectors, where membership is based on their geographic prox-
imity. A distinguished member of each group is given the role of sector manager,
who provides a form of recruiting service to other agents in the environment. This
recruiting service supports the activities of track managers, who must discover and
use the appropriate sensors as part of their tracking task. In forming the federations,
the search time is reduced because only a subset of the population (the sector man-
agers) needs to be interacted with, and communication requirements requirements
are reduced because only the necessary subset of sensors will be returned. As dis-
cussed in Section B.9, both the sector and track managers provide tasks to individual
sensors, forming a matrix organization in the process. This arrangement facilitates
resource sharing by allowing the sensors to guide their local activities based on the
needs of potentially several interested parties, but can also lead to conflicts caused
by over-demand. Because the sensor is a finite resource, a cloning technique like the
one discussed in Section B.1 cannot be used to address the conflict. Instead, a loose
peer-to-peer relationship between track managers allows them to negotiate directly,
alleviating the conflict through demand relaxation or by using alternate sensors. This
resource allocation scheme employs a second, weaker form of federation through its
use of mediators [120]. The conflicts, which may be potentially multi-linked and far-
reaching, are partially centralized by a mediator agent which acts on the part of the
relevant agents to find a suitable solution. In [84] the quantitative effects of these
interactions are demonstrated through a set of experiments that vary the shape of
the organizational structure.

Yadgar [213] describes a different approach in a distributed sensor environment.
Groups of geographically-related sensors are first formed into sampler groups, which
are essentially federations with a single agent called the sampler group leader acting
as the intermediary. These groups then form the lowest level of a data aggregation
hierarchy that exists above them. This arrangement is similar to the example orga-
nization shown in Figure B.10. The sampler group leader collects raw data from the
members of its group, and passes the data to its parent agent in the hierarchy, known
as a zone leader. It is this zone leader’s responsibility to interpret the sensor data to
the best of its ability, by building motion equations and combining data perceived to
be from the same target. This more abstract view is then passed to the next level of
the hierarchy, where the process repeats. This will eventually terminate at the apex
agent which should be able to reconstruct a global view from the abstract pieces it
receives. The hierarchy itself is strict, and communication is only permitted between
connected agents, which reduces the level of sophisticated needed by the agents. The
experimental results showed that this solution could scale to thousands of sensors
and targets. The tradeoff they discovered was that shorter hierarchies produced more
accurate results, because the fragmentation of the area was minimized, which in turn
reduced the number of fusion processes data must survive before it is incorporated.
Conversely, taller hierarchies dramatically reduced the computational load placed on
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any one agent, because the area each agent was responsible for became relatively
small. By weighing these characteristics against the domain requirements one can
select an appropriate structure to use.

B.11 Other Organizational Topics

In this survey we have focused entirely on particular organizational paradigms. How-
ever, there are a number of other topics related to organizational design which we
will not cover in detail, but are sufficiently important to warrant mention. These are
outlined below:

1. Global Organizational Representation Implicit in the concept of an intentional
organizational design is an explicit representation of its structure. This is of
use to designers, as a means of specification and exploration, and to the agents
themselves, as a template and diagnostic tool. A number of general modeling
representations have been proposed, notably by Fox [59], Tambe [187], Hübner
[88], Pattison [143], Dignum [49], Sims [174], Horling [81] and Vázquez-Salceda
[196].

2. Local Organizational Representation The organization’s global view is not al-
ways the most appropriate vehicle to guide agents’ behaviors. It can be too
coarse in granularity, too qualitative or simply too large to be of practical use.
Agents require a well-defined, quantitative mechanism that can be used to select
appropriate local actions while respecting global organizational specifications.
This process was originally described as local elaboration by March and Simon
[124], where the activities performed by an agent are first constrained by its
position in the organization, and then selected using local information and ca-
pabilities. The social consciousness model suggested by Glass and Grosz [67],
Decker’s TÆMS language [40], Shoham’s social laws [168], and Wagner’s MQ
framework [199] provide ways to accomplish this.

3. Organizational Performance Other researchers have taken a different approach
by creating formal analytic or statistical models that focus on the activities or
behaviors of the organization, rather than representing the organization as a
whole [123, 39, 132, 179, 107, 166, 68, 81, 160]. These typically more quantita-
tive representations can provide insights into organizational performance that
are largely absent from purely descriptive or logical representations. A different
approach is to use experimental or simulation studies, which can offer a more
general-purpose approach to analyze organizational performance that may not
be amenable to modeling [114, 117, 171]. The drawback to using empirical anal-
ysis is the time required to run such tests, which is usually much greater than
that needed for analytic techniques. Conversely, analytic models may require
simplifying assumptions to be tractable, or otherwise fail to take into account
the complexity real-world behaviors. Parunak [142] provides further discussion
on the tradeoffs between these approaches. However they are obtained, such
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predictions can play a critical role in the search and evaluation process, by allow-
ing the designer to directly compare alternative organizational strategies before
implementing a design. This can provide the foundation for a more proscriptive
organizational tool.

4. Generative Paradigms In each section, we have presented different ways in
which organizations may be formed. We have not, however, presented a unified
discussion of specific generative paradigms – a classification of the techniques
that may be used to produce organizations. These may be broadly separated
into at least three classes: scripted, controlled and emergent. The first includes
organizations that are produced from statically predefined instructions, possibly
from an external third party or during start-up. The second includes those that
are explicitly applied to a population by an individual or group of individuals
in response to perceived conditions. The third captures techniques which have
no central or global direction, but are instead self-directed or grown organi-
cally through the individual actions of agents. In practice, it may be difficult
to clearly classify particular techniques. For example, congregations emerge
from individual agent decisions using the technique described by Brooks [17].
However, the fact that it uses heuristics intended to simulate a controlled deci-
sion, along with agents which provide labels to guide the formation, gives the
appearance of a controlled process.

5. Organizational Adaptation Although we have briefly touched on adaptation
previously, an organization’s ability to adapt is a general concept that is critical
in any dynamic environment. The organization must have the ability to detect
and react to changes in a timely manner in realistic, open domains [22, 6, 78].
Any organizational change which occurs at runtime will have associated costs.
These costs may be observed in direct consumption of resources, such as band-
width or processing power, or indirectly because of inefficiencies or opportunities
missed while in an intermediate state. The ability to adapt an organization de-
pends on first recognizing potential problems, evaluating the costs and benefits
of candidate solutions, and then implementing the selected changes. Related to
adaptation is the notion of social pathologies, which occur when an organization
adapts inappropriately [192, 94].

6. Coordination and Negotiation Many of the organizational styles that we have
covered assume some that some sort of interaction or coordination will take
place between agents. This is seen in the authority relationships of hierarchies,
the joint intentions of teams, data routing protocols in federations, and negotia-
tions of society members. The characteristics provided by these interactions are
critical to the effective qualities of these paradigms. For example, aggregating
nodes and managers in hierarchies and intermediaries in federations frequently
take on responsibilities related to coordination, by assigning tasks or routing
information in such a way that interrelationships among their subordinates can
be avoided [62]. Argumentative negotiation has been shown to be effective in
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resolving conflicts in team settings [97]. The techniques that are used can heav-
ily influence the interactions and behaviors exhibited by the group, ultimately
affecting the performance of the organizational structure. Work by Prasad
[144], Lesser [109] and Toledo [54] have also explored the dynamic selection
of coordination strategies, which in this context can be considered a form of
organizational adaptation.

7. Autonomy The manner in which an agent behaves, and in particular how
its motivations are determined, is intimately related to its position within the
organization. Agents may be externally directed, self-directed or some combi-
nation of the two [113]. For example, we have seen that agents in hierarchies,
federations and matrix organizations all generally have manager-supervisor re-
lationships, implying that local actions are partially or completely decided by
an external entity. Conversely, agents operating in markets are typically more
autonomous, independently deciding how and when to bid. Like other charac-
teristics, the level of autonomy can affect the performance of the system as a
whole. Authoritarian structures can exploit centralization to make good deci-
sions, while an organization of more autonomous entities offers better balance
and parallelism. Because the needs and constraints exhibited by participants
change over time, it can also be beneficial to dynamically adapt agents’ levels
of autonomy in response to changing events [6, 158, 217].

8. Human Organizational Analogues For much of the time that multi-agent or-
ganizations have been researched, attempts have been made to draw upon the
large body of work that has been done on human organizations. The fields of
sociology, anthropology, biology, economics, business management and formal
organization theory (among others) contain a wealth of analytic and case study
information describing how human organizations are structured and perform
[61, 64]. Although on the surface much of this work is intimately tied to the
human experience, attempts to extract concepts and abstractions have met with
some success.

9. Diversity Although role assignment clearly plays a critical role in an organiza-
tional specification, the notion of agent diversity is rarely treated as or reasoned
about as a first-class characteristic. As with stock portfolios, animal popula-
tions and security techniques, diversity can play an important role in agent
systems susceptible to failure. Enforcing agent diversity through heterogeneous
roles, agent types or division of labor, can impart semantic and capability fault-
tolerance on the system as a whole [31, 147, 32, 118]. Diversity can be embedded
in the organizational design to encourage such characteristics.

B.12 Discussion

In this article we have presented a number of methods by which a multi-agent system
could be organized. A brief comparison of the potential benefits and drawbacks of
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Paradigm Key Characteristic Benefits Drawbacks
Hierarchy Decomposition Maps to many

common domains;
handles scale well

Potentially brittle;
can lead to
bottlenecks or
delays

Holarchy Decomposition with
autonomy

Exploit autonomy
of functional units

Must organize
holons; lack of
predictable
performance

Coalition Dynamic,
goal-directed

Exploit strength in
numbers

Short term benefits
may not outweigh
organization
construction costs

Team Group level
cohesion

Address larger
grained problems;
task-centric

Increased
communication

Congregation Long-lived,
utility-directed

Facilitates agent
discovery

Sets may be overly
restrictive

Society Open system Public services; well
defined conventions

Potentially complex,
agents may require
additional
society-related
capabilities

Federation Middle-agents Matchmaking,
brokering,
translation services;
facilitates dynamic
agent pool

Intermediaries
become bottlenecks

Market Competition
through pricing

Good at allocation;
increased utility
through
centralization;
increased fairness
through bidding

Potential for
collusion, malicious
behavior; allocation
decision complexity
can be high

Matrix Multiple managers Resource sharing;
multiply-influenced
agents

Potential for
conflicts; need for
increased agent
sophistication

Compound Concurrent
organizations

Exploit benefits of
several
organizational styles

Increased
sophistication;
drawbacks of several
organizational styles

Figure B.11. Comparing the qualities of various organization paradigms.
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each strategy is summarized in Figure B.11. A more complete depiction of the range
of relevant organizational characteristics in general has been compiled by Carley and
Gasser [23], while Malone and Smith [123] provide a focused comparison of the charac-
teristics of hierarchy and marketplace designs. It should be clear from this discussion
that no single approach is necessarily better than all others in all situations. The se-
lection made by a designer should be dictated by the needs imposed by the system’s
goals, the resources at hand, and the environment in which the participants will exist.
That said, if one looks at the depth of available research and how frequently their con-
cepts have been applied, it is the case that hierarchical, team-centric, coalition-based
organizations and marketplaces have proved to be most popular among multi-agent
researchers. These four paradigms seem to offer the most in terms of flexibility, ease
of implementation and their innate ability to produce demonstrable, positive effects.
Hierarchies are effective at addressing issues of scale, particularly if the domain can be
easily decomposed along some dimension. Teamwork can be critical when working on
large-grained tasks that require the coordinated capabilities of more than one agent.
Coalitions allow agents to take advantage of economies of scale, without necessarily
ceding authority to other agents. Markets take advantage of competition and risk to
decide allocation problems in a fair, utility-centric manner. We also feel that if the
broad vision of an agent-connected or agent-facilitated world that many proponents
of multi-agent technology describe is to be realized, many of the characteristics of the
agent society paradigm must be incorporated [64].

A popular approach not mentioned thus far is the (sparsely) connected graph
structure, sometimes called a network organization or adhocracy [195, 13], where
agents interact because of particular role-based requirements but no overarching de-
sign principle is explicitly applied. The connection pattern superficially resembles a
team, but without a team’s strong interaction semantics. Some aspects of the struc-
ture may be statically defined, but a more emergent, dynamic construction is more
typical. If there is an absence of explicit control over the organizational structure,
the set of of interactions may change in response to every newly recognized goal. The
network design is also a common basis for compound organizations in a manner simi-
lar to societies, where individual entities in the network are entire sub-organizations.
These approaches can be effective and cost-efficient, but as the environment scales
or the agent population becomes more dynamic a more structured organization can
provide additional framework to address the more demanding context. Corkill and
Lander [32] enumerate several other factors which motivate the need for explicit or-
ganization, including scarce resources, the potential for collaboration and the amount
of repetition of work.

Other conditions may in fact preclude the use of particular paradigms. For in-
stance, it can be difficult to generate optimal coalition or congregation structures when
there is either limited time or a large population. When individual agent resources
are constrained, particular instances of organizations which suffer from bottleneck ef-
fects, such as hierarchies, federations and holarchies, can become inefficient. We have
also previously noted how some types of structures, such as matrices, societies, and
certain compound organizations, require a somewhat higher level of sophistication of
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the participating agents. As above, the operating context will guide, or in this case
restrict, the choice of organizational design.

As research progresses in these areas, typically by adding features and relaxing
assumptions, it can become difficult to precisely categorize a particular approach.
For example, we noted how hierarchies and holarchies are closely related, as are
coalitions and congregations. To a certain extent, we have focused on the extreme or
most constrained examples of organizations in this paper to better delineate discrete
classes, and it is frequently the case that the “rules” of a particular paradigm as
we have presented them have been broken in an attempt to broaden its abilities or
applicability. While this might frustrate one’s attempt at categorization, our opinion
is that the convergent evolution of these strategies towards a common form lends
additional credence to the applicability of that form.

A somewhat more elusive goal is to define what exactly constitutes an organization
in general. At what level of abstraction in the system’s design should the influence of
the organization diminish and more transient “operational” decisions become more
important? Must a structure exist for some period of time or some number of itera-
tions before it is considered an organization? We have looked at strategies that are
generally short-lived, such as coalitions, while societies may outlast the lifetime of
any of its participants. Teams may exist to satisfy only a single goal, while federa-
tions see a continuous stream of different tasks. In each of these cases, the pattern of
interactions between the agents is a defining characteristic, influencing the behaviors
and qualities exhibited by the system. If this same pattern exists in two different cir-
cumstances, is one an organization and the other not? To a certain extent, this is just
a matter of semantics, and we could just as easily name it a “pattern of interactions”
and leave it at that. However, maintaining a broad and flexible concept of organiza-
tion allows one to more easily recognize that commonalities may exist between these
architectures. In particular, characteristics observed in superficially different circum-
stances may be derived specifically from these interactions. Thus, we propose that
under all circumstances this pattern can be interpreted as an organizational design.
The fact that it may exist for a single moment or a single task certainly impacts its
performance and construction, but much of the underlying purpose and qualities of
the structuring remain the same, and should be recognized as such.

Whatever they are called, the type of short and long term patterns of interaction
we have described in this article will become increasingly important as multi-agent
technology is used to address more complex, real-world problems. Scale, real-time
constraints and bounded rationality all conspire to create challenging environments
to operate in. Because of their ability to regulate the increased complexity of the local
problem solving process required in such domains, organizations should be a critical
part of any comprehensive, multi-agent solution. By recognizing and understanding
organizational paradigms such as those we have presented, we hope that the use of
explicit organizational design is encouraged and facilitated.
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APPENDIX C

DISTRIBUTED SENSOR NETWORK ODML MODEL

This appendix contains the complete textual definition of the ODML model created
for the distributed sensor network domain introduced in Chapter 2 and described more
completely in [110]. The graphical template first shown in Figure 2.10a is repeated
above for convenience. The code itself is commented to facilitate inspection, and I
will provide a brief outline of its contents below.

The code itself is divided into several different sections. The enclosing organiza-
tion provides the structure in which the other node definitions exist. It begins by
defining the high-level has-a relationships, which are nominally the root entities of
the working organization. These consist of the environment, a set of sectors and
a set of track managers. The high level utility calculation is also contained here,
which is simply the negative average RMS error predicted by the model. The bulk
of the remaining fields in organization are a set of constants that gather a range of
organizational statistics for logging purposes. They are not used elsewhere.

Following the organization is a series of node definitions, beginning with environ-
ment. It is here that the num targets and sensors per sector variables are defined,
encoding two important organizational choices that must be made during instantia-
tion. The remainder of environment consists of a number of constants defining the
shape of the sensor area and characteristics of the sensors and activities entities can
perform. These could be placed elsewhere (in the sensor node, for example), but are
kept in environment just to combine all such external factors in one place.

The sector node follows. It provides two functions of interest. The first is its struc-
tural importance, as the root for a sector manager and a set of sensors. The second
is the effective area, the constant used to specify the dimensions of the sector itself.
As described in Section 2.3.1, a map function is used to determine this characteristic
on a case-by-case basis.

The sector manager is the first role seen in the model. It is fairly simple, containing
a has-a relationship with the agent that will take on the role, an is-a relationship with
entity to acquire a set of common characteristics, and a set of modifiers used to pass
communication load values to the agent. The communication values themselves are
initialized to zero in entity, and are determined exclusively by the relationships the
manager will take part in.

The sensor node also has a has-a relationship with agent, an is-a relationship with
entity, and a set of modifiers to disseminate its communication load. In addition, it
has a set of constants that are used to determine the sensing tasks it will perform.
Its requested measurement rate is initialized to zero, and will be affected by the rela-
tionships it forms with track managers. The requested rate, along with the maximum
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env.num_sectors
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Figure C.1. Graphical view of the ODML DNS model.

possible sensing rate, is used to determine the actual measurement rate. A scaling
factor actual measurement ratio is also calculated here, which is used to determine
how much of the sensor’s efforts will go to each track manager.

The track manager role comes next, with similar relationships to agent and entity
that the previous two roles have. Unlike those two roles, the has-a relationship with
agent can have a non-unary size num agents. As described in Section 2.3.5, role
migration is modeled by applying the effects of the role to one or more agents. A
set of constants is used to estimate this num agents, which is used to specify the
magnitude of the has-a relationship and to scale the communication load values passed
on to those agents. Has-a relationships are also created to a set of sm tm relations
and s tm relations, to model the track manager’s relationships to the available sector
managers and sensors, respectively. Following this, a set of constants determine the
requested sensors, which is used to determine the requested measurement rate. The
actual measurement rate, which is initialized to zero, is determined by the aggregate
effects of the track manager’s relationships. This is then used to calculate the rms
error, which is estimated with a function derived from empirical data.

The first type of track manager relationship, the s tm relation that binds it to a
sensor, is used to propagate the demand of the manager to the sensor in question.
The specific track manager and sensor are themselves passed in as parameters during
the initialization process. The relationship uses those references to first determine
the requested measurement rate, and to pass that value to the sensor with a modi-
fier. The actual measurement rate created by the relationship is calculated by scaling
the requested measurement rate by the actual measurement ratio computed by the
sensor. This is then provided to the track manager with another modifier. The com-
munication load and messages types needed to support these acts are also calculated
here, and passed along with modifiers.

The sm tm relation connects a track manager to a sector manager. The communi-
cation load of the sector manager is used to estimate a directory delay. This value can
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reduce the requested measurement rate of the track manager as described in Section
2.3.7. Like the previous relationship, the messaging totals needed to support this
relationship are also calculated here.

The node definitions for agent, normal agent, and robust agent follow. These con-
tain default values the number of sensors under control and the number of roles taken
on. It also has an is-a relationship with entity. As described in Section 2.3.4, these
are used primarily to aggregate and store the effects of multiple role assignments.
Constraints put in place here also control the number of sensors that may be con-
trolled.

The final node definition is for entity, which is a simple base node that is extended
by many of the nodes described above. It provides default values for the various
message loads covered by the model, as well as a communication load constant that
combines them into a single representative metric. This node is of little significance
in the model, and has been omitted from previous descriptions for clarity.

The textual model itself follows below. Text surrounded by the normal XML
comment syntax (<!-- comment -->) are inline comments.

<?xml version="1.0" encoding="UTF -8"?>

<organization name="sensor_organization ">

<!-- Members -->

<has -a name="env">environment </has -a>

<has -a name="sectors" size="env.num_sectors">sector(this ,env)</has -a>

<has -a name="trackers" size="env.num_targets">track_manager (this ,env ,sectors)</has

-a>

<!-- A few convenience values -->

<constant name="sensor_density">forallavg(sectors.sensor_density)</constant >

<constant name="total_sensors ">forallsum(sectors.num_sensors)</constant >

<constant name="total_targets ">env.num_targets </constant >

<!-- Calculate utility -->

<constant name="average_rms">forallavg(trackers.rms)</constant >

<constant name="utility">-1 * average_rms </constant >

<!-- Some statistics to log -->

<constant name="agents">unique(trackers.agent , sectors.manager.agent , sectors.

sensors.agent)</constant >

<constant name="stddev_agent_comm_load ">forallstddev (agents.communication_messages

)</constant >

<constant name="total_agent_comm_load ">forallsum(agents.communication_messages )</

constant >

<constant name="sector_managers ">unique(sectors.manager)</constant >

<constant name="sensors">unique(sectors.sensors)</constant >

<constant name="roles">unique(trackers , sector_managers , sensors)</constant >

<constant name="message_update">forallsum(roles.message_tb) + forallsum(roles.

message_rb)</constant >

<constant name="message_directory">forallsum(roles.message_drq) + forallsum(roles.

message_drr)</constant >

<constant name="message_measurement ">forallsum(roles.message_rr)</constant >

<log name="RMS">average_rms </log>

<log name="data" file="organization.dat" append="true">[env.sensors_per_sector ,

env.num_sensors , env.num_targets , average_rms , stddev_agent_comm_load ,

total_agent_comm_load / 1000, message_update * env.time / 1000,

message_directory * env.time / 1000, message_measurement * env.time / 1000] </

log>

<log name="data" file="directory.dat" append="true">[env.sensors_per_sector ,

forallavg(sector_managers .communication_load ), forallavg(trackers.

directory_delay ), average_rms]</log>
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<log name="messages">agents.communication_messages </log>

<log name="organization_dot" file="results/organization.dot">todot(this)</log>

<log name="organization_dot" file="results/organization -SS -NT.dot">todot(this)</

log>

<log name="organization_template_dot " file="results/organization -template.dot">

todot(this.template)</log>

<log name="organization_depdot " file="results/organization -dependencies.dot">

todepdot(this.template)</log>

<!-- Environment -->

<node type="environment" name="environment" size="1">

<!-- Organizational decisions , these control how many targets -->

<!-- there will be and the size of the sectors -->

<variable name="num_targets" decision="NT">1,2,4,6,8,12,24</variable >

<variable name="sensors_per_sector " decision="SS">1,2,4,9,18,36</variable >

<!-- Number of entities in the environment -->

<constant name="num_sensors">36</constant >

<!-- Area values -->

<constant name="width">90</constant >

<constant name="height">90</constant >

<constant name="area">width * height </constant >

<constant name="sensor_radius ">20</constant >

<constant name="num_sectors">num_sensors / sensors_per_sector </constant >

<!-- Behavior constants -->

<constant name="slot_length">900</constant > <!-- ms -->

<constant name="measurement_duration">900 / 1</constant > <!-- ms /

measurement -->

<constant name="measurement_rate">1 / slot_length </constant > <!-- Rate that

measurements are requested -->

<constant name="update_rate">1 / 2000 * 1.3</constant > <!-- Rate that

SMs are given target updates -->

<constant name="time">143840 </constant >

<log name="area">area</log>

<log name="sensors_per_sector ">sensors_per_sector </log>

</node>

<!-- Sector -->

<node type="sector" name="sector">

<param >organization:org ,environment:env </param >

<!-- Populate the sector with a manager and sensors -->

<has -a name="manager">sector_manager(org ,env ,this)</has -a>

<has -a name="sensors" size="num_sensors">sensor(org ,env ,manager)</has -a>

<constant name="num_sensors">env.sensors_per_sector </constant >

<!-- Determine the dimensions of the sector -->

<constant name="actual_area">env.area / env.num_sectors </constant >

<constant name="actual_coverage ">actual_area / env.area</constant >

<constant name="influence_range ">env.sensor_radius </ constant >

<constant name="influence_range ">11</constant >

<constant name="effective_area">map(env.num_sectors ,

1, env.area ,

2, env.width * (env.height / 2 + influence_range ),

3, (1 / env.num_sectors) *

(2 * env.width * (env.height / 3 + influence_range ) +

1 * env.width * (env.height / 3 + influence_range * 2)),

4, (env.width / 2 + influence_range ) * (env.height / 2 + influence_range ),

9, (1 / env.num_sectors) *

(4 * (env.width / 3 + influence_range ) * (env.height / 3 + influence_range )

+

4 * (env.width / 3 + influence_range * 2) * (env.height / 3 +

influence_range ) +

(env.width / 3 + influence_range * 2) * (env.height / 3 + influence_range *

2)),

230



18, (1 / env.num_sectors) *

(4 * (env.width / 3 + influence_range ) * (env.height / 6 + influence_range )

+

2 * (env.width / 3 + influence_range * 2) * (env.height / 6 +

influence_range ) +

8 * (env.width / 3 + influence_range ) * (env.height / 6 + influence_range *

2) +

4 * (env.width / 3 + influence_range * 2) * (env.height / 6 +

influence_range * 2)),

36, (1 / env.num_sectors) *

(4 * (env.width / 6 + influence_range ) * (env.height / 6 + influence_range )

+

8 * (env.width / 6 + influence_range * 2) * (env.height / 6 +

influence_range ) +

8 * (env.width / 6 + influence_range ) * (env.height / 6 + influence_range *

2) +

16 * (env.width / 6 + influence_range * 2) * (env.height / 6 +

influence_range * 2))

)</constant >

<constant name="effective_coverage ">effective_area / env.area</constant >

<constant name="sensor_density">num_sensors / actual_area </constant >

<log name="actual_area">actual_area </log>

<log name="effective_area">effective_area </log>

</node>

<!-- Sector Manager -->

<node type="sector_manager" name="SM">

<param >organization:org ,environment:env ,sector:sector </param >

<is -a>entity </is -a>

<!-- Role -Agent relationship -->

<has -a name="agent" discriminator ="roles ,sensors_controlled " decision="new{

normal -agent">agent(env)</has -a>

<!-- Constants -->

<constant name="role">"M"</constant >

<constant name="target_updates">0</constant >

<!-- Characteristics passed to the bound agent -->

<modifier name="agent.message_rr" op="+">message_rr </ modifier >

<modifier name="agent.message_tb" op="+">message_tb </ modifier >

<modifier name="agent.message_rb" op="+">message_rb </ modifier >

<modifier name="agent.message_drr" op="+">message_drr </modifier >

<modifier name="agent.message_drq" op="+">message_drq </modifier >

<modifier name="agent.roles" op="+">1</modifier >

</node>

<!-- Sensor Manager -->

<node type="sensor" name="S">

<param >organization:org ,environment:env ,sector_manager:manager </param >

<is -a>entity </is -a>

<!-- Role -Agent relationship -->

<has -a name="agent" discriminator ="sensors_controlled ">agent(env)</has -a>

<!-- Role constants -->

<constant name="role">"A"</constant >

<constant name="radius">env.sensor_radius </constant >

<constant name="area">3.14 * radius ^2</constant >

<!-- Calculate actual measurement performance -->

<constant name="requested_measurement_rate">0</constant >

<constant name="measurement_duration">env.measurement_duration </constant >

<constant name="requested_measurement_duration ">requested_measurement_rate *

1000 * measurement_duration </constant >
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<constant name="actual_measurement_duration ">min(requested_measurement_duration

, 1000) </constant >

<constant name="actual_measurement_rate ">actual_measurement_duration / (

measurement_duration * 1000) </constant >

<constant name="actual_measurement_ratio ">actual_measurement_rate /

requested_measurement_rate </constant >

<!-- DR Messages -->

<modifier name="message_drr" op="+">2 / env.time</modifier >

<!-- Characteristics passed to the bound agent -->

<modifier name="agent.message_rr" op="+">message_rr </ modifier >

<modifier name="agent.message_tb" op="+">message_tb </ modifier >

<modifier name="agent.message_rb" op="+">message_rb </ modifier >

<modifier name="agent.message_drr" op="+">message_drr </modifier >

<modifier name="agent.message_drq" op="+">message_drq </modifier >

<modifier name="agent.sensors_controlled " op="+">1</modifier >

<modifier name="agent.roles" op="+">1</modifier >

<log name="req_rate">requested_measurement_rate * 1000 </log>

<log name="ac_rate">actual_measurement_rate * 1000</log>

</node>

<!-- Track Manager -->

<node type="track_manager " name="TM">

<param >organization:org ,environment:env ,[ sector]:sectors </param >

<is -a>entity </is -a>

<!-- Agent(s) the role is bound to , and the relationships it has with other

entities -->

<has -a name="agent" size="num_agents" discriminator ="roles" decision="roles

=1.0, roles =2.0, roles =3.0, roles =4.0, roles =5.0, roles =6.0">agent(env)</has -a>

<has -a name="sm_relations">forall(sm , sector_managers ):sm_tm_relation (org , this

, sm)</has -a>

<has -a name="s_relations">forall(s, sensors):s_tm_relation(org , this , s)</has -a

>

<!-- Role constants -->

<constant name="role">"T"</constant >

<constant name="update_rate">env.update_rate </constant >

<constant name="velocity">1 / 1000</constant >

<constant name="sector_managers ">list(sectors.manager)</constant >

<constant name="sensors">list(sectors.sensors)</constant >

<!-- Track migration effectively means the TM role for a target affects

multiple agents -->

<constant name="average_sector_area ">forallavg(sectors.actual_area)</constant >

<constant name="average_sector_path ">0.8 * average_sector_area ^0.5</constant >

<constant name="migration_rate">1 / ((2 * average_sector_area )^0.5 / velocity)<

/constant >

<constant name="max_agents">5</constant >

<constant name="num_agents">max(1, min(max_agents , migration_rate * env.time))<

/constant >

<constant name="sectors_seen">min(env.num_sectors , (1 / average_sector_path ) *

velocity * max(1, uncertainty_radius / average_sector_path ) * env.time)</

constant >

<constant name="percent_sectors_seen">sectors_seen / env.num_sectors </constant >

<constant name="percent_sectors_seen">1</constant >

<constant name="uncertainty_radius ">5</constant >

<constant name="influence_radius">uncertainty_radius + 10</constant >

<constant name="target_area">3.14 * influence_radius ^2</constant >

<constant name="desired_sensors ">3</constant >

<constant name="sensor_density">forallavg(sectors.sensor_density)</constant >

<constant name="actual_sensors_available ">target_area * sensor_density </

constant >
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<constant name="requested_sensors ">min(desired_sensors ,

actual_sensors_available )</constant >

<constant name="directory_delay ">forallavg(sm_relations.directory_delay )</

constant >

<constant name="migration_delay ">8000</constant >

<constant name="requested_measurement_rate">env.measurement_rate * 4.0^ min(0,

velocity * 1000 * ( (env.num_sensors / (requested_sensors * org.

total_targets )) - 1.9)) * (1 - (velocity / average_sector_path ) * (

directory_delay + migration_delay /2))</constant >

<constant name="actual_measurement_rate ">0</constant >

<constant name="rms"> -1.8 + 1.59e-2 * (actual_measurement_rate + 1.35e-3)^-1</

constant >

<!-- Distribute communication evenly -->

<modifier name="agent.message_rr" op="+">message_rr / num_agents </modifier >

<modifier name="agent.message_tb" op="+">message_tb / num_agents </modifier >

<modifier name="agent.message_rb" op="+">message_rb / num_agents </modifier >

<modifier name="agent.message_drr" op="+">message_drr / num_agents </modifier >

<modifier name="agent.message_drq" op="+">message_drq / num_agents </modifier >

<modifier name="agent.roles" op="+">1</modifier >

<log name="req_sensors">requested_sensors </log>

<log name="actual_msmnts ">actual_measurement_rate </log>

<log name="sectors_seen">sectors_seen </log>

<log name="rms">rms</log>

</node>

<!-- Sensor -Track Manager Relationship -->

<node type="s_tm_relation " name="S-TM">

<param >organization:org ,track_manager:tm ,sensor:s </param >

<!-- Determine measurement rate -->

<constant name="requested_sensor_rate ">tm.requested_sensors / org.total_sensors

</constant >

<constant name="requested_measurement_rate">tm.requested_measurement_rate *

requested_sensor_rate </constant >

<modifier name="s.requested_measurement_rate" op="+">requested_measurement_rate

</modifier >

<!-- RR Messages -->

<constant name="actual_measurement_rate ">requested_measurement_rate * s.

actual_measurement_ratio </constant >

<modifier name="tm.actual_measurement_rate " op="+">actual_measurement_rate </

modifier >

<modifier name="s.message_rr" op="+">actual_measurement_rate </modifier >

<!-- RB Messages -->

<constant name="rebind_rate">requested_sensor_rate * (tm.velocity / (s.radius /

4))</constant >

<modifier name="tm.message_rb" op="+">rebind_rate </modifier >

<log name="req_rate">requested_measurement_rate * 1000 </log>

<log name="ac_rate">actual_measurement_rate * 1000</log>

</node>

<!-- Sector Manager -Track Manager Relationship -->

<node type="sm_tm_relation" name="SM -TM">

<param >organization:org ,track_manager:tm ,sector_manager:sm </param >

<!-- TB messages -->

<constant name="message_tb">sm.sector.effective_coverage * tm.update_rate </

constant >

<modifier name="sm.target_updates" op="+">message_tb </modifier >

<modifier name="tm.message_tb" op="+">message_tb </modifier >

<!-- DR Messages -->
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<constant name="directory_queries ">tm.percent_sectors_seen * tm.num_agents * sm

.sector.num_sensors / org.env.time</constant >

<modifier name="tm.message_drq" op="+">tm.percent_sectors_seen / org.env.time</

modifier >

<modifier name="sm.message_drr" op="+">directory_queries </modifier >

<!-- Directory Delay -->

<constant name="directory_delay ">3000</constant >

<constant name="per_message_delay ">0</constant >

<modifier name="directory_delay " op="+">sm.communication_load * 1000 *

per_message_delay </modifier >

</node>

<!-- Base agent type -->

<node type="agent" abstract="true">

<param >environment:env </param >

<is -a>entity </is -a>

<!-- Some defaults -->

<constant name="sensors_controlled ">0</constant >

<constant name="roles">0</constant >

<constraint name="sensors_controlled " op="&lt;=">1</constraint >

<!-- Communication characteristics -->

<constant name="communication_messages ">communication_load * env.time</constant

>

<constant name="communication_profile ">[message_rr * env.time , message_tb * env

.time , message_rb * env.time , message_drr * env.time , message_drq * env.

time]</constant >

<log name="profile">communication_profile </log>

<log name="messages">communication_messages </log>

<log name="roles">parents.role</log>

</node>

<!-- Normal Agent -->

<node type="normal -agent" name="a">

<param >environment:env </param >

<is -a>agent(env)</is -a>

<constraint name="sensors_controlled " op="==">1</constraint >

<constraint name="roles" op="&lt;=">6</constraint >

</node>

<!-- Robust Agent - example only , not used in experiments -->

<node type="robust -agent" name="r">

<param >environment:env </param >

<is -a>agent(env)</is -a>

<constraint name="roles" op="&lt;=">0</constraint >

</node>

<!-- Base entity type -->

<node type="entity" abstract="true">

<constant name="message_rr">0</constant >

<constant name="message_tb">0</constant >

<constant name="message_rb">0</constant >

<constant name="message_drq">0</constant >

<constant name="message_drr">0</constant >

<constant name="communication_load ">message_rr + message_tb + message_rb +

message_drr + message_drq </constant >

<log name="comm">communication_load </log>

</node>

</organization >
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APPENDIX D

INFORMATION RETRIEVAL ODML MODEL

This appendix contains the complete ODML listing for the information retrieval do-
main model described in Section 3.1 and inspired by work presented in [214, 215]. The
original abstract model is shown graphically above in Figure D.1. The raw textual
model given below contains additional structure not shown in that figure; a com-
plete structural graph is shown in Figure D.2. The key differences include separating
out the user and other mediator roles, as well as the addition of a role node. These
changes are for modeling convenience only, and do not affect the discussion given in
Section 3.3.

As with other ODML models, this one is structured with the organization char-
acteristics defined first, followed by a series of node definitions for the other entities
in the organization. The environment node specifies a set of scenario constants, and
contains the two variables that decide the size of the search and query sets of the
mediator. The user node is similarly used to store scenario information, in this case
to define the rate at which queries will enter the system.

The mediator role follows the user, and begins by specifying the agent it will be
bound to, and the number and type of source entities that will exist below it. The
mediator’s rank and query probability are computed next, which determine how likely
it is the mediator will be selected to answer a query. From this the work load can
be deduced, which is used to determine the pdf and cdf distributions described in
Section 3.3.4. The service and response times are computed last.

The other mediator node is used to represent the mediators in the system that
do not compete with the mediator, but are still a distraction because they must be
searched during the first part of the query handling phase. They are nearly identical
to the normal mediator, except that they have no sources below them.

The aggregator and database nodes are similar to mediators, except they do have
have the ranking and query probability computations. The local query rate of each is
determined from the manager above it. This is used to determine the work load and
response times of the entity.

The agent and regular agent nodes contain a small number of default character-
istics. The role, manager and sources nodes do as well, although they serve a dual
purpose in helping frame the structural decision problems by providing base types
that the other entities may inherit.

The code for the model follows below.

<?xml version="1.0" encoding="UTF -8"?>
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Figure D.1. Graphical view of the ODML information retrieval model.

<organization name="content_organization">

<!-- Create the root level participants -->

<has -a name="env">environment(this)</has -a>

<has -a name="users" size="num_users">user(env , this)</has -a>

<has -a name="mediators" size="num_topic_mediators ">mediator(env , this)</has -a>

<has -a name="other_mediators " size="num_other_mediators ">other_mediator(env , this

)</has -a>

<!-- Some scenario values -->

<variable name="num_topic_mediators ">1,2,3,4</variable >

<constant name="num_users">1</constant >

<constant name="num_other_mediators ">3</constant >

<constant name="total_mediators ">num_topic_mediators + num_other_mediators </

constant >

<!-- Gross organizational characteristics -->

<constant name="response_time ">max(mediators.response_time )</constant >

<constant name="response_recall ">forallsum(mediators .recall_portion) / env.

topic_size </constant >

<constraint name="response_recall " op="&gt;=">0.70</constraint >

<constant name="utility">response_recall * 10 - response_time / 100</constant >

<!-- Data to log -->

<log name="organization_dot" file="organization -shape.dot" append="false">todot(

this , "true", "false")</log>

<log name="utility">utility </log>

<log name="other_mediators ">num_other_mediators </log >

<log name="response_recall ">response_recall </log>

<log name="response_time ">response_time </log>

<!-- Environment -->

<node type="environment">

<param >organization:org </param >

<constant name="topic_size">700</constant > <!-- Total amount of

topic data -->

<constant name="topic_query_rate">forallsum(org.users.topic_query_rate)</

constant >

<constant name="nontopic_query_rate ">forallsum(org.users.nontopic_query_rate )

</constant >
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Figure D.2. Graphical view of the complete ODML information retrieval model
obtained from the source in this appendix.

<constant name="message_latency ">20</constant > <!-- Time to send a

message -->

<constant name="query_service_rate ">25/25 </constant > <!-- Service rate to

interpret query -->

<constant name="process_service_rate">1/200 </constant > <!-- Service rate to

perform query -->

<constant name="response_service_rate ">1/50</constant > <!-- Service rate to

interpret response -->

<variable name="search_size">1,2,3,4,5,6</variable > <!-- How far

searches propogate -->

<variable name="query_size">1,2,3,4,5,6</variable > <!-- How far

queries propogate -->

<constraint name="search_size" op="&lt;=">org.total_mediators </constraint >

<constraint name="query_size" op="&lt;=">org.num_topic_mediators </constraint >

<constant name="search_set_size ">search_size </constant >

<constant name="query_set_size">query_size </constant >

<constant name="search_probability ">search_set_size / org.total_mediators </

constant >

<constant name="mediator_query_rate ">topic_query_rate * search_probability

* min(1, query_set_size / org.num_topic_mediators )</constant >

<log name="topic_query_rate">topic_query_rate </log>

<log name="topic_size">topic_size </log>

<log name="query_set_size">query_set_size </log>

<log name="search_set_size ">search_set_size </log>

</node>

<!-- Users -->

<node type="user">

<param >environment:env , organization:org </param >

<has -a name="agent">agent </has -a>

<constant name="query_limit">10000 </constant >
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<constant name="topic_query_rate">2/1000 </constant >

<constant name="nontopic_query_rate ">0/1000 </constant >

</node>

<!-- Top Level Topic Mediators -->

<node type="mediator">

<param >environment:env , organization:org </param >

<is -a>manager </is -a>

<has -a name="agent">agent </has -a>

<has -a name="sources" size="num_sources">source(this ,env)</has -a>

<variable name="num_sources">1,2,3,4,5,6,7,8</variable >

<constant name="search_set_size ">env.search_set_size </constant >

<constant name="query_set_size">env.query_set_size </ constant >

<!-- Determine the mediators rank , based on its percieved recall -->

<constant name="rank">1 + forallsum(forall(s, org.mediators.

perceived_response_size ,

0^max(perceived_response_size - s, 0) - 0^abs(perceived_response_size - s

)))</constant >

<constant name="rank_ties">forallsum(forall(r, org.mediators.rank ,

0^abs(r - rank)))</constant >

<!-- Determine the probability the mediator will be queried -->

<constant name="query_probability ">(search_set_size / org.total_mediators ) *

(1 / choose(org.total_mediators - 1, search_set_size - 1)) *

forallsum(forrange(r, 0, query_set_size ,

forallsum(forrange(g, 0, min(search_set_size , rank_ties),

choose(org.total_mediators - rank - rank_ties + 1,

search_set_size - r - g - 1)

* choose(rank - 1, r)

* choose(rank_ties - 1, g)

* min(1, (query_set_size - r) / (g + 1))

))

))</constant >

<constant name="data_size">forallsum(sources.data_size)</constant >

<constant name="topic_size">forallsum(sources.topic_size)</constant >

<constant name="topic_percentage">topic_size / data_size </constant >

<constant name="actual_response_size">topic_size </constant >

<constant name="perceived_response_size ">topic_size </constant >

<constant name="recall_portion">query_probability * actual_response_size </

constant >

<!-- Determine the work load the mediator will see -->

<constant name="query_rate">query_probability * env.topic_query_rate

+ (1 - topic_percentage) * env.nontopic_query_rate </constant >

<constant name="response_rate ">0</constant >

<constant name="arrival_rate">query_rate </constant >

<constant name="service_rate">env.response_service_rate / num_sources </

constant >

<constant name="effective_service_rate ">arrival_rate / agent.work_load </

constant >

<constant name="poisson_rate">effective_service_rate - arrival_rate </constant

>

<constraint name="arrival_rate" op="&lt;=">effective_service_rate </constraint

>

<modifier name="agent.work_load" op="+">arrival_rate / service_rate </modifier

>

<constant name="local_pdf_list">forrange(x, 0, (dist_range / dist_step),

poisson_rate * e^(- poisson_rate * (x) * dist_step) /* Exp pdf f(x)

*/

)</constant >

<constant name="local_cdf_list">forrange(x, 0, (dist_range / dist_step),
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1 - e^(- poisson_rate * (x+1) * dist_step) /* Exp cdf F(x)

*/

)</constant >

<constant name="source_pdf_list ">forrange(x, 0, (dist_range / dist_step),

forallprod(forall(s, sources , listitem(s.cdf_list , x)))

* forallsum(forall(s, sources , listitem(s.pdf_list , x) / listitem(s.

cdf_list , x)))

)</constant >

<constant name="source_cdf_list ">forrange(x, 0, (dist_range / dist_step),

forallprod(forall(s, sources , listitem(s.cdf_list , x)))

)</constant >

<constant name="pdf_list">forrange(x, 0, (dist_range / dist_step),

forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list , i) * listitem(local_pdf_list , x - i) *

dist_step

))

)</constant >

<constant name="cdf_list">forrange(x, 0, (dist_range / dist_step),

forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list , i) * listitem(local_cdf_list , x - i) *

dist_step

))

)</constant >

<log name="pdf" file="pdf.dat">forrange(x, 0, (dist_range / dist_step),

[(x * dist_step) + overhead_time , listitem(pdf_list , x)]

)</log>

<!-- Determine service and response times -->

<constant name="service_time">forallsum(forrange(x, 1, (dist_range /

dist_step),

(x * dist_step) * (listitem(pdf_list , x) * dist_step)

))</constant >

<constant name="overhead_time ">

env.message_latency /* Query down from user */

+ env.message_latency /* Search to mediators */

+ env.message_latency /* Search reply from mediators */

+ env.message_latency /* Query to mediators */

+ env.message_latency /* Query down to sources */

+ max(sources.overhead_time ) /* Subordinate overhead */

+ env.message_latency /* Response from mediators */

+ env.message_latency /* Response up to user */

</constant >

<constant name="response_time ">overhead_time + service_time </constant >

<log name="topic_size">topic_size </log>

<log name="rank">rank</log>

<log name="query_probability">query_probability </log >

<log name="response_time ">response_time </log>

<log name="poisson_rate">poisson_rate </log>

<log name="query_rate">query_rate </log>

<log name="service_rate">service_rate </log>

<log name="response_rate ">response_rate </log>

<log name="service_time">service_time </log>

</node>

<!-- Non -Topic Mediators -->

<node type="other_mediator">

<param >environment:env , organization:org </param >

<is -a>manager </is -a>

<has -a name="agent" discriminator ="work_load">agent </has -a>

<constant name="sources">list()</constant >

<constant name="num_sources">0</constant >

<constant name="search_set_size ">env.search_set_size </constant >

<constant name="query_set_size">env.query_set_size </ constant >
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<constant name="query_rate">query_probability * env.topic_query_rate

+ (1 - topic_percentage) * env.nontopic_query_rate </constant >

<constant name="response_rate ">0</constant >

<constant name="overhead_time ">

env.message_latency + /* Query down */

env.message_latency /* Response up */

</constant >

<constant name="response_time ">overhead_time </constant >

<constant name="service_rate">1</constant >

<constraint name="query_rate" op="&lt;=">service_rate </constraint >

<constant name="rank">1 + forallsum(forall(s, org.mediators.

perceived_response_size ,

0^max(perceived_response_size - s, 0) - 0^abs(perceived_response_size - s

)))</constant >

<constant name="rank_ties">forallsum(forall(r, org.mediators.rank ,

0^abs(r - rank)))</constant >

<constant name="query_probability ">(search_set_size / org.total_mediators ) *

(1 / choose(org.total_mediators - 1, search_set_size - 1)) *

forallsum(forrange(r, 0, query_set_size ,

forallsum(forrange(g, 0, min(search_set_size , rank_ties),

choose(org.total_mediators - rank - rank_ties + 1,

search_set_size - r - g - 1)

* choose(rank - 1, r)

* choose(rank_ties - 1, g)

* min(1, (query_set_size - r) / (g + 1))

))

))</constant >

<constant name="data_size">forallsum(sources.data_size)</constant >

<constant name="topic_size">forallsum(sources.topic_size)</constant >

<constant name="topic_percentage">topic_size / data_size </constant >

<constant name="actual_response_size">topic_size </constant >

<constant name="perceived_response_size ">topic_size </constant >

<constant name="recall_portion">query_probability * actual_response_size </

constant >

<log name="topic_size">topic_size </log>

<log name="rank">rank</log>

<log name="query_probability">query_probability </log >

</node>

<!-- Mid -Level Aggregation Nodes -->

<node type="aggregator" recurse="5">

<param >manager:manager ,environment:env </param >

<is -a>source(manager ,env)</is -a>

<is -a>manager </is -a>

<has -a name="agent" discriminator ="work_load">agent </has -a>

<has -a name="sources" size="num_sources">source(this ,env)</has -a>

<variable name="num_sources">2,3,4</variable >

<constant name="query_rate">manager.query_rate </constant >

<constant name="response_rate ">0</constant >

<!-- Determine the work load the aggregator will see -->

<constant name="arrival_rate">query_rate </constant >

<constant name="service_rate">env.response_service_rate / num_sources </

constant >

<constant name="effective_service_rate ">arrival_rate / agent.work_load </

constant >

<constant name="poisson_rate">effective_service_rate - arrival_rate </constant

>

<constraint name="arrival_rate" op="&lt;=">effective_service_rate </constraint

>

<modifier name="agent.work_load" op="+">arrival_rate / service_rate </modifier

>
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<constant name="local_pdf_list">forrange(x, 0, (dist_range / dist_step),

poisson_rate * e^(- poisson_rate * (x) * dist_step) /* Exp pdf f(x)

*/

)</constant >

<constant name="local_cdf_list">forrange(x, 0, (dist_range / dist_step),

1 - e^(- poisson_rate * (x+1) * dist_step) /* Exp cdf F(x)

*/

)</constant >

<constant name="source_pdf_list ">forrange(x, 0, (dist_range / dist_step),

forallprod(forall(s, sources , listitem(s.cdf_list , x)))

* forallsum(forall(s, sources , listitem(s.pdf_list , x) / listitem(s.

cdf_list , x)))

)</constant >

<constant name="source_cdf_list ">forrange(x, 0, (dist_range / dist_step),

forallprod(forall(s, sources , listitem(s.cdf_list , x)))

)</constant >

<constant name="pdf_list">forrange(x, 0, (dist_range / dist_step),

forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list , i) * listitem(local_pdf_list , x - i) *

dist_step

))

)</constant >

<constant name="cdf_list">forrange(x, 0, (dist_range / dist_step),

forallsum(forrange(i, 0, x+1,

listitem(source_pdf_list , i) * listitem(local_cdf_list , x - i) *

dist_step

))

)</constant >

<!-- Determine the service and response times -->

<constant name="service_time">forallsum(forrange(x, 1, (dist_range /

dist_step),

(x * dist_step) * (listitem(pdf_list , x) * dist_step)

))</constant >

<constant name="overhead_time ">

env.message_latency /* Query down to sources

*/

+ max(sources.overhead_time ) /* Subordinate overhead

*/

+ env.message_latency /* Response up to manager

*/

</constant >

<constant name="response_time ">overhead_time + service_time </constant >

<constant name="data_size">forallsum(sources.data_size)</constant >

<constant name="topic_size">forallsum(sources.topic_size)</constant >

<modifier name="manager.response_rate " op="+">response_rate / num_sources </

modifier >

<log name="data_size">data_size </log>

<log name="topic_size">topic_size </log>

<log name="response_time ">response_time </log>

<log name="poisson_rate">poisson_rate </log>

<log name="service_time">service_time </log>

</node>

<!-- Leaf Source Nodes -->

<node type="database">

<param >manager:manager ,environment:env </param >

<is -a>source(manager ,env)</is -a>

<has -a name="agent" discriminator ="work_load">agent </has -a>

<!-- Determine the work load the aggregator will see -->

241



<constant name="query_rate">manager.query_rate </constant >

<constant name="arrival_rate">query_rate </constant >

<constant name="service_rate">env.process_service_rate </constant >

<constant name="effective_service_rate ">arrival_rate / agent.work_load </

constant >

<constant name="poisson_rate">effective_service_rate - arrival_rate </constant

>

<constraint name="arrival_rate" op="&lt;=">effective_service_rate </constraint

>

<modifier name="agent.work_load" op="+">arrival_rate / service_rate </modifier

>

<constant name="local_pdf_list">forrange(x, 0, (dist_range / dist_step),

poisson_rate * e^(- poisson_rate * (x) * dist_step) /* Exp pdf f(x)

*/

)</constant >

<constant name="local_cdf_list">forrange(x, 0, (dist_range / dist_step),

1 - e^(- poisson_rate * (x+1) * dist_step) /* Exp cdf F(x)

*/

)</constant >

<constant name="pdf_list">local_pdf_list </constant >

<constant name="cdf_list">local_cdf_list </constant >

<constant name="service_time">forallsum(forrange(x, 1, (dist_range /

dist_step),

(x * dist_step) * listitem(pdf_list , x) * dist_step

))</constant >

<constant name="overhead_time ">

env.message_latency /* Response up to

manager */

</constant >

<constant name="response_time ">overhead_time + service_time </constant >

<constant name="data_size">100</constant >

<constant name="topic_percentage">0.8</constant >

<constant name="topic_size">data_size * topic_percentage </constant >

<modifier name="manager.response_rate " op="+">query_rate </modifier >

<log name="data_size">data_size </log>

<log name="topic_size">topic_size </log>

<log name="response_time ">response_time </log>

<log name="poisson_rate">poisson_rate </log>

</node>

<!-- Agents -->

<node type="agent" abstract="true">

<constant name="work_load">0</constant >

</node>

<node type="regular_agent " name="agent" size="50">

<is -a>agent </is -a>

</node>

<!-- Types -->

<node type="manager" abstract="true">

<is -a>role</is -a>

<constant name="response_time ">0</constant >

<constant name="query_rate">0</constant >

</node>

<node type="source" abstract="true">

<is -a>role</is -a>

<param >manager:manager ,environment:env </param >

<constant name="response_time ">0</constant >

<constant name="topic_size">0</constant >

<constant name="data_size">0</constant >
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</node>

<node type="role" abstract="true">

<constant name="e">2.71828183 </constant >

<constant name="dist_step">10</constant >

<constant name="dist_range">4000</constant >

</node>

</organization >
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APPENDIX E

TILING REDUCTION MODEL

This appendix contains the complete ODML listing for the TILING reduction model
described in Section 4.1.1.

<?xml version="1.0" encoding="UTF -8"?>

<organization name="tiling">

<has -a name="rows" size="N" ordered="true">row(N)</has -a>

<has -a name="columns" ordered="true">forall(i, N_range ):column(N, i, rows)</has -a

>

<!-- Problem Grid Size -->

<constant name="N">3</constant >

<constant name="N_range">forrange(r, 0, N, r)</constant >

<!-- Cell (0 ,0) Constraint -->

<constant name="toprow">listitem(rows , 0)</constant >

<constant name="origin">listitem(toprow.tiles , 0)</constant >

<constant name="origintype">origin.type</constant >

<constraint name="origintype" op="==">0</constraint >

<log name="insdot" file="results/organization.dot">todot(this)</log>

<log name="tmpdot" file="results/organization -template.dot">todot(this.template)<

/log>

<node type="row">

<param >float:N </param >

<has -a name="tiles" size="N" ordered="true">tile</has -a>

<has -a name="relations">forall(i, N-1) :horizontal_relation(tiles , i))</has -a>

<constant name="N-1">forrange(r, 0, N-1, r)</constant >

</node>

<node type="column">

<param >float:N ,float:c ,[row]:rows </param >

<has -a name="relations">forall(i, N-1) :vertical_relation (tiles , i))</has -a>

<constant name="tiles">forall(r, rows , listitem(r.tiles , c))</constant >

<constant name="N-1">forrange(r, 0, N-1, r)</constant >

</node>

<!-- Abstract Structures -->

<node type="tile" abstract="true">

<param >float:type </param >

</node>

<node type="relation" abstract="true">

<param >float:t1t ,float:t2t ,[tile]:tiles ,float:i </param >

<constant name="t1">listitem(tiles , i)</constant >

<constant name="t2">listitem(tiles , i+1)</constant >

<constraint name="t1t" op="==">t1.type</constraint >

<constraint name="t2t" op="==">t2.type</constraint >

</node>

<node type="horizontal_relation " abstract="true">
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<param >float:t1t ,float:t2t ,[tile]:tiles ,float:i </param >

<is -a>relation(t1t ,t2t ,tiles ,i)</is -a>

</node>

<node type="vertical_relation " abstract="true">

<param >float:t1t ,float:t2t ,[tile]:tiles ,float:i </param >

<is -a>relation(t1t ,t2t ,tiles ,i)</is -a>

</node>

<!-- Tiles -->

<node type="t_0" name="0">

<is -a>tile (0)</is -a>

</node>

<node type="t_1" name="1">

<is -a>tile (1)</is -a>

</node>

<!-- Compatibility Relations -->

<node type="h_01" name="h_01">

<param >[tile]:tiles ,float:i </param >

<is -a>horizontal_relation (0,1,tiles ,i)</is -a>

</node>

<node type="h_10" name="h_10">

<param >[tile]:tiles ,float:i </param >

<is -a>horizontal_relation (1,0,tiles ,i)</is -a>

</node>

<node type="v_01" name="v_01">

<param >[tile]:tiles ,float:i </param >

<is -a>vertical_relation (0,1,tiles ,i)</is -a>

</node>

<node type="v_10" name="v_10">

<param >[tile]:tiles ,float:i </param >

<is -a>vertical_relation (1,0,tiles ,i)</is -a>

</node>

</organization >
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APPENDIX F

SUBSET-SUM REDUCTION MODEL

This appendix contains the complete ODML listing for the SUBSET-SUM reduction
model described in Section 4.2.1.

<?xml version="1.0" encoding="UTF -8"?>

<organization name="subset_sum">

<has -a name="N" size="5">number(this)</has -a>

<constant name="sum">0</constant >

<constant name="t">0</constant >

<constraint name="sum" op="==">t</constraint >

<node type="number" abstract="true">

</node>

<node type="number_empty" size="4">

<param >organization:sum </param >

<is -a>number ()</is -a>

</node>

<node type="number -1" size="2">

<param >organization:sum </param >

<is -a>number ()</is -a>

<modifier name="sum.sum" op="+">-1</modifier >

</node>

<node type="number1" size="3">

<param >organization:sum </param >

<is -a>number ()</is -a>

<modifier name="sum.sum" op="+">1</modifier >

</node>

</organization >
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