
The Soft Real-Time Agent Control Architecture �

Horling, Bryan and Lesser, Victor Vincent, Regis Wagner, Thomas

University of Massachusetts SRI International Honeywell Laboratories

Department of Computer Science 333 Ravenswood Avenue Automated Reasoning Group

Amherst, MA 01003 Menlo Park, CA 94025 Minneapolis, MN 55418

fbhorling, lesserg@cs.umass.edu vincent@ai.sri.com wagner tom@htc.honeywell.com

Abstract

Real-time control has become increasingly important as
technologies are moved from the lab into real world situ-
ations. The complexity associated with these systems in-
creases as control and autonomy are distributed, due to
such issues as precedence constraints, shared resources,
and the lack of a complete and consistent world view. In
this paper we describe a soft real-time architecture de-
signed to address these requirements, motivated by chal-
lenges encountered in a distributed sensor allocation en-
vironment. The system features the ability to generate
schedules respecting temporal, structural and resource
constraints, to merge new goals with existing ones, and
to detect and handle unexpected results from activities.
We will cover a suite of technologies being employed, in-
cluding quantitative task representation, alternative plan
selection, partial-order scheduling, schedule consolida-
tion and conict resolution in an uncertain environment.
Technologies which facilitate on-line real-time control, in-
cluding schedule caching and variable time granularities
are also discussed.

1 Overview

In the �eld of multi-agent systems, much of the research
and most of the discussion focuses on the dynamics and
interactions between agents and agent groups. Just as
important, however, is the design and behavior of the in-
dividual agents themselves. The eÆciency of an agent's

�E�ort sponsored in part by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory Air Force Materiel Command, USAF, under agree-
ments number F30602-99-2-0525 and DOD DABT63-99-1-
0004. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. This material is also
based upon work supported by the National Science Founda-
tion under Grants No. IIS-9812755 and IIS-9988784. Any
opinions, �ndings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reect the views of the National Science Founda-
tion. Furthermore, the views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the oÆcial policies or endorsements, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), Air Force Research Laboratory or
the U.S. Government.

internal mechanics contribute to the foundation of the
system as a whole, and the degree of exibility these me-
chanics o�er a�ect the agent's achievable level of sophis-
tication, particularly in its interactions with other agents
[9, 12]. We believe that a general control architecture,
responsible for both the planning for the achievement of
temporally constrained goals of varying worth, and the se-
quencing of actions local to the agent that have resource
requirements, can provide a robust and reusable platform
on which to build high level reasoning components. In
this article, we will discuss the design and implementa-
tion of the Soft Real Time Architecture (SRTA), a generic
planning, scheduling and execution subsystem designed to
address these needs.
The SRTA architecture, a sophisticated agent control

engine with relatively low overhead, provides several key
features:

1. The ability to quickly generate plans and schedules for
goals that are appropriate for the available resources
and applicable constraints, such as deadlines and earli-
est start times.

2. The ability to merge new goals with existing ones, and
multiplex their solution schedules.

3. The ability to eÆciently handle deviations in expected
plan behavior that arise out of variations in resource
usage patterns and unexpected action characteristics.

The system is implemented as a set of interacting com-
ponents and representations. A domain independent task
description language is used to describe goals and their
potential means of completion, which includes a quan-
titative characterization of the behavior of alternatives.
A planning engine can determine the most appropriate
means of satisfying such a goal within the set of known
constraints and commitments. This permits the system
to be able to adjust which goals it will achieve, and how
well it will achieve these chosen goals based on the dynam-
ics of the current situation. Scheduling services integrate
these actions and their resource requirements with those
of other goals being concurrently pursued, while a paral-
lel execution module performs the actions as needed. Ex-
ception handling and conict resolution services help re-
pair and route information when unexpected events take
place. Together, this system can assume responsibility
for the majority of the goal-satisfaction process, which
allows the high-level reasoning system to focus on goal



selection, determining goal objectives and other poten-
tially domain-dependent issues. For example, agents may
elect to negotiate over an abstraction of their activities
or resource allocations, and only locally translate those
activities into a more precise form [13]. SRTA can then
take this description and use it to both enforce the se-
mantics of the commitments which were generated, and
automatically attempt to resolve conicts that were not
addressed through the negotiation.

Based on this architecture, it should be clear that this
research assumes sophisticated agents are best equipped
to operate and address goals within a resource-bound, in-
terdependent, mixed-task environment. In such a system,
individual agents are responsible for e�ectively balancing
the resources they choose to allocate to their multiple time
and resource sensitive activities. A di�erent approach
addresses these issues through use of groups of simpler
agents, which may individually act in response to sin-
gle goals and only as a team address large-grained issues.
In such an architecture, either the host operating sys-
tem or increased communication must be used to resolve
temporal or resource constraints, and yet more communi-
cation is required for the agents to e�ectively deliberate
over potential alternative plans in context. Decompos-
ing the problem space completely to \simple" agents does
not address the problem or remove the information and
decision requirements. We feel that such a design is over-
decomposed, and would more e�ectively be addressed by
more sophisticated agents capable of directly reasoning
over and acting upon multiple concurrent issues, thereby
saving both time and bandwidth.

In recent work on a distributed sensor network
application[7], which will be discussed in more depth be-
low, we exploited SRTA to create a virtual agent orga-
nization of simple, single-threaded agents. These \vir-
tual" agents were in fact goals, created as needed and dy-
namically assigned to a speci�c sophisticated \real" agent
based on information approximating the current resource
usage of agents and the type of resources available at each
agent. The \real" agent then performed detailed plan-
ning/scheduling based on local resource availability and
priority of these goals, and multiplexed among the di�er-
ent goals that it was concurrently executing in order to
meet soft real-time requirements.

SRTA operates as a functional unit within a Java-based
agent, which itself it running on a conventional (i.e. not
real-time) operating system. The SRTA controller is de-
signed to be used in a layered architecture, occupying a
position below the high-level reasoning component in an
agent [18, 1] (see Figure 2). In this role, it will accept new
goals, report the results of the activities used to satisfy
those goals, and also serve as a knowledge source about
the potential ability to schedule future activities by an-
swering what-if style queries. Within this context, SRTA
o�ers a range of features designed to provide support for
operating in a distributed, intelligent environment. The
goal description language supports quantitative, proba-
bilistic models of activities, including non-local e�ects of
actions and resources and a variety of ways to de�ne how
tasks decompose into subtasks. In particular, the uncer-

tainty associated with activities can be directly modeled
through the use of quantitative distributions describing
the di�erent outcomes a given action may produce. Com-
mitments and constraints can be used to de�ne relation-
ships and interactions formed with other agents, as well
as internally generated limits and deadlines. The plan-
ning process uses this information to generate a number
of di�erent plans, each with di�erent characteristics, and
ranked by their predicted utility. A plan is then used to
produce a schedule of activities, which is combined with
existing schedules to form a potentially parallel sequence
of activities, which are partially ordered based on their
interactions with both resources and one another. This
sequence is used to perform the actions in time, using the
identi�ed preconditions to verify if actions can be per-
formed, and invoking light-weight rescheduling if neces-
sary. Finally, if conicts arise, SRTA can make use of an
extendable series of resolution techniques to correct the
situation, in addition to passing the problem to higher
level components which may be able to make a more in-
formed decision.

An important aspect of most real-world systems is their
ability to handle real-time constraints. This is not to say
that they must be fast or agile (although it helps), but
that they should be aware of deadlines which exist in
their environment, and how to operate such that those
deadlines are reasoned about and respected as much as
possible. This notion of real-time is weaker than its rel-
ative, strict real-time, who's adherents attempt to rig-
orously quantify and formally bound their systems' exe-
cution characteristics. Instead, systems working in soft
real-time operate on tasks which may still have value for
some period after their deadlines have passed [14], and
missing the deadline of a task does not lead to disastrous
external consequences. Our research addresses a deriva-
tive of this concept, where systems are expected to be sta-
tistically fast enough to achieve their objectives, without
providing formal performance guarantees. This allows it
to successfully address domains with highly uncertain ex-
ecution characteristics and the potential for unexpected
events, neither of which are well suited for a hard real-
time approach. As its name implies, SRTA operates in
soft real-time, using time constraints speci�ed during the
goal formulation and scheduling processes, and acting to
meet those deadlines whenever necessary. In this system,
we have sacri�ced the ability to provide formal perfor-
mance guarantees in order to address more complex and
uncertain problem domains. As will be shown shortly,
this technology has been used to successfully operate in a
real-time distributed environment.

To operate in soft-real time, an agent must know when
actions should be performed, how to schedule its activities
and commitments such that they can be performed or sat-
is�ed, and have the necessary resources on hand to com-
plete them. Our solution to this problem addresses two
fronts. The �rst is to implement the technologies needed
to directly reason about real-time. As mentioned above,
we begin by modeling the quantitative and relational char-
acteristics of the goals and activities the agent may per-
form, which can be done a priori and accessed as plan li-

2



brary or through a runtime learning process[8]. This infor-
mation is represented, along with other goal achievement
and alternative plan information, in a T�MS task struc-
ture [2, 5] (discussed in more detail in section 3.1). A plan-
ning component, the Design-to-Criteria scheduler (DTC)
[16, 17], uses these T�MS task structures, along with
the quantitative knowledge of action interdependence and
deadlines, to select the most appropriate plan given cur-
rent environmental conditions. This plan is used by the
Partial Order Scheduler process to determine when indi-
vidual actions should be performed, either sequentially or
in parallel, within the given precedence and runtime re-
source constraints. In general, we feel that real-time can
be addressed through the interactions of a series of com-
ponents, operating at di�erent granularities, speed and
satis�cing (approximate) behaviors.
The second part of our solution attempts to optimize

the running time of our technologies, to make it easier to
meet deadlines. The partial order schedule provides an
inherently exible representation. As resources and time
permit, elements in the schedule can be quickly delayed,
reordered or parallelized. New goals can also be incorpo-
rated piecemeal, rather than requiring a computationally
expensive process involving re-analysis of the entire sched-
ule. Together, these characteristics reduce the need for
constant re-planning, in addition to making the schedul-
ing process itself less resource-intensive. Learning plays
an important role in the long-term viability of an agent
running in real time, taking advantage of the repetitive
nature of its activities. Schedules may be learned and
cached, eliminating the need to re-invoke the DTC pro-
cess when similar task structures are produced, and the
execution history of individual actions may be used to
more accurately predict their future performance. A sim-
ilar technique could be used to track the requisite actions
and time needed to devote to particular goals.
This article will proceed by discussing the problem do-

main which motivated much of this system. Functional
details of the architecture will be covered, along with
further discussion of the various optimizations that have
been added. We will conclude with a more thorough de-
scription of SRTA's ability to adapt to varying conditions,
and summarize the signi�cant characteristics of the archi-
tecture. Note also that a more thorough overview of this
architecture can be found in [6].

2 Problem Domain

A distributed resource allocation domain which motivated
much of this work [7] will be used throughout this article
to ground the topics which are discussed and formulate
examples. This section will briey describe the environ-
ment and the particular challenges it o�ers. Components
of the SRTA architecture have also been used successfully
in several other domains, such as intelligent information
gathering [11], intelligent home control [10], and supply
chain [4].
The distributed resource environment consists of sev-

eral sensor nodes arranged in a region of �nite area, as can
be seen in Figure 1A. Each sensor node is autonomous,

A

C

B

D

Figure 1: High-level distributed sensor allocation archi-
tecture. A) shows the initial sensor layout, decomposition
and allocation of sector managers. B) shows the dissem-
ination of scanning tasks. The new track manager in C)
can be seen coordinating with sensors to track a target,
while the resulting data is propagated in D) for process-
ing.

capable of communication, computation and observation
through the attached sensor. We assume a one-to-one
correspondence between each sensor node and an agent,
which serves locally as the operator of that sensor. The
high level goal of a given scenario in this domain is to
track one or more target objects moving through the en-
vironment. This is achieved by having multiple sensors
triangulate the positions of the targets in such a way that
the calculated points can be used to form estimated move-
ment tracks. The sensors themselves have limited data
acquisition capabilities, in terms of where they can focus
their attention, how quickly that focus can be switched
and the quality / duration tradeo� of its various mea-
surement techniques. The attention of a sensor, or more
speci�cally the allocation of a sensor's time to a particular
tracking task, therefore forms an important, constrained
resource which must be managed e�ectively to succeed.
The real-time requirement of this environment is de-

rived from the triangulation process. Under ideal condi-
tions, three or more sensors will perform measurements
at the same instant in time. Individually, each sensor can
only determine the target's distance and velocity relative
to itself. Because each node will have seen the target at
the same position, however, these gathered data can then
be fused to triangulate the target's actual location. In
practice, exact synchronization to an arbitrarily high res-
olution of time is not possible, due to the uncertainty in
sensor performance and clock synchronization. A reason-
able strategy then is to have the sensors perform mea-
surements within some relatively small window of time,
which will yield positive results as long as the target is
near the same location for each measurement. Thus, the
viable length of this window is inversely proportional to
the speed of the target (in our scenarios we use a window
of one second for a target moving one foot per second).
Competing with the sensor measurement activity are

a number of other local goals, including sector manage-
ment (Figure 1A), target discovery scanning (1B), mea-

3



surement tasks for other targets (1C), and data processing
(1D). We don't see these as separate agents or threads,
but rather as di�erent objectives/goals that an agent is
multiplexing. To operate e�ectively, while still meeting
the deadlines posed above, the agent must be capable of
reasoning about and acting upon the importance of each
of these activities.
In summary, our real-time needs for this application

require us to synchronize several measurements on dis-
tributed sensors with a granularity of one second. A
missed deadline may prevent the data from being fused,
or the resulting triangulation may be inaccurate - but no
catastrophic failure will occur. This provides individual
agents with some minimal leeway to occasionally decom-
mit from deadlines, or to miss them by small amounts of
time, without failing to achieve the overall goal. At the
same time, there is a great deal of uncertainty in when
new tasks will arrive, and how long individual actions will
take, so a strict timing policy is too restrictive. Thus, our
notion of real-time here is relatively soft, enabling the
agents to operate e�ectively despite uncertainty over the
behavioral characteristics of computations and their re-
source requirements.
Further details on this domain and the multi-agent ar-

chitecture designed to address it can be found in [7].

3 Real-Time Control Architecture

Our previous agent control architecture, used exclusively
in controlled time environments, was fairly large grained.
As goals were addressed by the problem solving compo-
nent, they would be used to generate task structures to
be analyzed by the Design-To-Criteria (DTC) scheduler.
The resulting linear schedule would then be directly used
for execution by the agent. Task structures created to ad-
dress new goals would be merged with existing task struc-
tures, creating a monolithic view of all the agent's goals.
This combined view would then be passed again to DTC
for a complete re-planning and re-scheduling. Execution
failure would also lead to a complete re-planning and re-
scheduling. This technique leads to \optimal" plans and
schedules at each point if meta-level overheads are not in-
cluded. As will be discussed in section 3.2, however, the
combinatorics associated with such large structures can
get quite high. This made agents ponderous when work-
ing with frequent goal insertion or handling exceptions,
because of the need to constantly perform the relatively
expensive DTC process. In a real-time environment, char-
acterized by a lot of uncertainty in the timing of actions
and the arrival of new tasks, where the agent must con-
stantly reevaluate their execution schedule in the face of
varied action characteristics, this sort of control architec-
ture was impractical.
In the SRTA architecture, we have attempted to make

the scheduling and planning process more incremental and
compartmentalized. New goals can be added piecemeal
to the execution schedule, without the need to re-plan all
the agent's activities, and exceptions can be typically be
handled through changes to only a small subset of the
schedule. Figure 2 shows the new agent control architec-

Solver
Problem

TAEMS Library

Partial Order Scheduler

Resource Modeler

Coordination
Negotiation /

Commitments
Goals

Other Communication

Learning

Update
Expectations

High-Level
Reasoning
Subsystem

Schedule
Failure

Structure
Combined

Soft
Real-Time
Architecture

Structures
Multiple

Schedule Failure

Execution Module

Conflict Resolution

Parallel

TAEMSUpdate Cache

Plan

TAEMS

Goal Characteristics

Cache Check

DTC Planner

Cache Hit

Method Usages

Resource Used

Schedule

Fixed Schedule

Results

Schedule

Schedule Merging

Figure 2: High-level agent control architecture.

ture we have developed to meet our soft real-time needs.
We will �rst present an overview of how it functions, and
cover the implementation in more detail in later sections.
In this architecture, goals can arrive at any time, in re-
sponse to environmental change, local planning, or be-
cause of requests from another agents. The goal is used by
the problem solving component to generate a T�MS task
structure, which quantitatively describes the alternative
ways that goal may be achieved. The T�MS structure
can be generated in a variety of ways; in our case we use a
T�MS \template" library, which we use to dynamically
instantiate and characterize structures to meet current
conditions. Other options include generating the struc-
ture directly in code [11], or making use of an approximate
base structure and then employing learning techniques to
re�ne it over time [8].
The Design-To-Criteria component, used in the origi-

nal controller described earlier, retains a critical role in
SRTA. Where before it was responsible for both selecting
an appropriate plan of activities and producing a schedule
of actions for monolithic structures, SRTA generally ex-
ploits only its planning capabilities for discrete structures.
Using the T�MS structure mentioned above, along with
criteria such as potential deadlines, minimum quality, and
external commitments, DTC selects an appropriate plan.
The resulting plan is used to build a partially or-

dered schedule, which will use structure details of the
T�MS structure to determine precedence constraints and
search for actions which can be performed in parallel.
Several components are used during this �nal scheduling
phase. A resource modeling component is used during
this analysis to ensure that resource constraints are also
respected. A conict resolution module reasons about
mutually-exclusive tasks and commitments, determining
the best way to handle conicts. Finally, a schedule merg-
ing module allows the partial order scheduler to incorpo-
rate the actions derived from the new goal with existing
schedules. Failures in this process are reported to the
problem solver, which is expected to handle them (by, for

4



0 500 1000 1500 2000 2500 3000

Initialize
(Task1)

Track
(Task2)

Negotiate
(Task3) Task2 Deadline

Figure 3: The timeline of events for our running scenario.
Shown are the arrival times for the goals shown in Figures
4 and 5, along with the negotiated deadline for Task 2.

Task2
q_min

Set−Parameters
enables2

Must−Update−Parameters (80.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [500.0, 1.0]

Already−Set−Correctly (20.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [250.0, 0.1]

Track
q_max

Track−Low
Outcome (100.0%)
Q: [5.0, 0.5, 1.0, 0.5]
C: [0.0, 1.0]
D: [750.0, 1.0]

Track−Medium
Outcome (100.0%)
Q: [10.0, 0.7, 5.0, 0.3]
C: [0.0, 1.0]
D: [1350.0, 1.0]

Track−High
Outcome (100.0%)
Q: [20.0, 0.9, 10.0, 0.1]
C: [0.0, 1.0]
D: [2100.0, 1.0]

enables3 Send−Result

lock2

release2

Outcome (100.0%)
Q: [6.0, 1.0]
C: [0.0, 1.0]
D: [500.0, 1.0]

RF

0.0 / 1000.0 / 1000.0

limits2

Figure 4: An example T�MS task structure for tracking.
The expected execution characteristics are shown below
each method, and the Send-Resultsmethod in this �gure
has a deadline of 2500.

instance, relaxing constraints such as the goal completion
criteria or delaying its deadline, completing a substitute
goal with di�erent characteristics, or decommiting from a
lower priority goal or the goal causing the failure).
Once the schedule has been created, an execution mod-

ule is responsible for initiating the various actions in the
schedule. It also keeps track of execution performance and
the state of actions' preconditions, potentially re-invoking
the partial order scheduler when failed expectations re-
quire it. As will be shown later, the partial order sched-
uler can use a fast action shifting mechanism to resolve
such failures with minimal overhead where possible.
To better explain our architecture's functionality, we

will work through a example in the next several sections,
using simpli�ed versions of task structures in the actual
sensor network application. The initial timeline for this
example can be seen in Figure 3. At time 0 the agent rec-
ognizes its �rst goal - to initialize itself. After starting the
execution of the �rst schedule it will receive another goal
to track a target and sent the results before time 2500.
Later, a third goal, to negotiate for delegating tracking
responsibility, is received. We will show how these dif-
ferent goals may be achieved, and their constraints and
interdependencies respected.

3.1 T�MS Generation

Before progressing, we must provide some background on
our task description language, T�MS. T�MS, the Task
Analysis, Environmental Modeling and Simulation lan-
guage, is used to quantitatively describe the alternative
ways a goal can be achieved [2, 5]. A T�MS task struc-
ture is essentially an annotated task decomposition tree.
The highest level nodes in the tree, called task groups,
represent goals that an agent may try to achieve. The
goal of the structure shown in Figure 4 is Task2. Be-

low a task group there will be a set of tasks and methods
which describe how that task group may be performed, in-
cluding sequencing information over subtasks, data ow
relationships and mandatory versus optional tasks. Tasks
represent sub-goals, which can be further decomposed
in the same manner. Task2, for instance, can be per-
formed by completing subtasks Set-Parameters, Track,
and Send-Results.
Methods, on the other hand, are terminal, and repre-

sent the primitive actions an agent can perform. Meth-
ods are quantitatively described, with probabilistic dis-
tributions of their expected quality, cost and duration.
These quantitative descriptions are themselves grouped
together as outcomes, which abstractly represent the
di�erent ways in which an action can conclude. cost
incurred. Set-Parameters, then, is described with
two potential outcomes, Must-Update-Parameters and
Already-Set-Correctly, each with its relative probabil-
ity and description of expected duration.
The quality accumulation functions (QAF) below a task

describes how the quality of its subtasks is combined to
calculate the task's quality. For example, the min QAF
below Task2 speci�es that the quality of Task2 will be the
minimum quality of all its subtasks - so all the subtasks
must be successfully performed for the Task2 task to suc-
ceed. On the other hand, the max below Track says that
its quality will be the maximum of any of its subtasks.
Interactions between methods, tasks, and a�ected re-

sources are also quantitatively described as interrelation-
ships. The enables interrelationships in Figure 4 repre-
sent precedence relationships, which in this case say that
Set-Parameters, Track, and Send-Resultsmust be per-
formed in-order. An analogous disables interrelationship
exists, as well as the softer relations facilitates and hin-
ders. These latter two are particularly interesting because
they permit the further modeling of choice - the agent
might choose to perform a facilitating method prior to
its target to obtain an increase in the latter's quality, or
ignore the method to save time.
lock2 and release2 are resource interrelationships, de-

scribing, in this case, the consumes and produces e�ects
method Send-Results has on the resource RF. These in-
dicate that when the method is activated, it will consume
or produce some quantity of that resource. The resource
e�ect is further described through the limits interrelation-
ship, which de�nes the changes in the method's execu-
tion characteristics when that resource is over-consumed
or over-produced. The resource itself is also modeled, in-
cluding its bounds and current value (as shown below the
RF triangle), and whether it is consumable or not (e.g.
printer paper is consumable, where the printer itself is
not).
Together, these descriptions provide the foundation for

the scheduling and planning processes to reason about the
e�ects of selecting this method for execution, so a planner
can choose correctly when the agent is willing to trade o�
uncertainty against quality or some other metric.
The problem solver is responsible for translating its

high-level goals into T�MS, which serves as a more de-
tailed representation usable by other parts of the agent.

5



This can be done by building T�MS structures dynami-
cally at runtime, reading static structures from a library,
or using a hybrid scheme consisting of a library of tem-
plate structures which can be annotated at runtime.
At time 0 the agent will use its template library to gen-

erate the initialization structure seen in Figure 5A. In this
structure, the agent must �rst Init and then Calibrate

its sensor. Properties passed into the template specify
the particular values used in Init, such as the sensor's
desired gain settings or communications channel assign-
ment, as well the number of measurements to be used dur-
ing Calibrate. As speci�ed by the enables interrelation-
ship, Init must successfully complete before the agent
can Send-Message, reporting its capabilities to its local
manager. Send-Message also uses resource interrelation-
ships to obtain an exclusive lock on the RF communication
resource. Only one action at a time can use RF to send
message, so all messaging methods have similar locking
interrelationships. As we will see later, this indirect in-
teraction between messaging methods creates interesting
scheduling problems. Task2 and Task3, shown in Figures
4 and 5B, respectively, are generated later in the run in a
similar manner.

3.2 DTC Planner / Initial Scheduler

Design-to-Criteria (DTC) scheduling is the soft real-time
process of evaluating di�erent possible courses of action
for an intelligent agent and choosing the course that best
�ts the agent's current circumstances. For example, in a
situation where the RF resource is under a great deal of
concurrent usage, the agent may be unable to send data
using the traditional quick communications protocol and
thus be forced to spend more time on a more reliable, but
slower method to produce the same quality result (anal-
ogous to selecting between a UDP or TCP session). Or,
in a di�erent situation when both time and cost are con-
strained, the agent may have to sacri�ce some degree of
quality to meet its deadline or cost limitations. Design-
to-Criteria is about evaluating an agent's problem solving
options from an end-to-end view and determining which
tasks the agent should perform, when to perform them,
and how to go about performing them. Having this end-
to-end view is crucial for evaluating the relative perfor-
mance of alternative plans able to satisfy the goal.
One would expect any reasonable planning process to

enforce so-called \hard" constraints - ones which must
be satis�ed for a goal to be achieved or a commitment
satis�ed. It is DTC's additional ability to reason about
weaker, optional interactions which sets it apart. The
sum QAF in T�MS , for instance, de�nes a task who's
quality is determined by the sum of all its subtasks' qual-
ities. In a time critical situation, DTC may opt for a
shorter, but lower quality plan which only calls for one
of these subtasks to be executed. In more relaxed con-
ditions, more may be added to the plan. Similarly, soft
interrelationships such as facilitates or hinders may be re-
spected or not, depending on their speci�c quantitative
e�ects and the current planning context. DTC's behav-
ior is governed through the use of a criteria description,

which is provided to it along with each T�MS structure.
This criteria speci�es, for example, the desired balance
between plan quality and duration, or what level of un-
certainty is tolerable[15]. More information covering the
techniques DTC uses can be found in [16].
Returning to our example, DTC is used to select the

most appropriate set of actions from the initialization
task structure. In this case, it has only one valid plan:
Init, Calibrate, and Send-Message. A more interest-
ing task structure is seen in Task2 from �gure 4, which
has a set of alternative methods under the task Track.
A deadline is associated with Send-Result, correspond-
ing to the desired synchronization time speci�ed by the
agent managing the tracking process. In this case, DTC
must determine which set of methods is likely to obtain
the most quality, while still respecting that deadline. Be-
cause T�MS models duration uncertainty, the issue of
whether or not a task will miss its deadline involves prob-
abilities rather than simple discrete points. The tech-
niques used to reason about the probability of missing
a hard deadline are presented in [17]. It selects for ex-
ecution the plan Set-Parameters, Track-Medium, and
Send-Results. After they are selected, the plans will be
used by the partial order scheduler to evaluate precedence
and resource constraints, which determine when individ-
ual methods will be performed.

3.3 Partial Order Scheduler

DTC was designed for use in both single agents and agents
situated in multi-agent environments. Thus, it makes no
assumption about its ability to communicate with other
agents or to \force" coordination between agents. This
design approach, however, leads to complications when
working in a real-time, multi-agent environment where
distributed resource coordination is an issue. When re-
sources can be used by multiple agents at the same time,
DTC lacks the ability to request communication for the
development of a resource usage model. This is the
task of another control component that forms schedul-
ing constraints based on an understanding of resource us-
age. In most applications, these constraints are formed
by rescheduling to analyze the implications of particular
commitments. In the real-time sensor application, the
rescheduling overhead is too expensive for forming these
types of relationships. The solution we have adopted is to
use a subset of DTC's functionality, and then o�oad the
distributed resource and �ne grained scheduling analysis
to a di�erent component - the partial order scheduler.
Speci�cally, DTC is used in this architecture to reason
about tradeo�s between alternative plans, respect order-
ing relationships in the structure, evaluate the feasibility
of soft interactions, and ensure that hard duration, qual-
ity and cost constraints are met.
DTC presents the partial order scheduler with a linear

schedule meeting the requested deadline. Timing details,
with the exception of hard deadlines generated by com-
mitments to other agents and overall goal deadlines, are
ignored in the schedule, which is essentially used as a plan.
The partial order scheduler uses this to build a partially

6



Task1
q_min

Init

enables1

Calibrate Send−Message

lock1

release1RF

0.0 / 1000.0 / 1000.0

Task3
q_min

Negotiate_Tracking

enables4

Send_Tracking_Info

lock3

release3RF

0.0 / 1000.0 / 1000.0

A) Initialization task structure. B) Tracking goal negotiation task structure.

Figure 5: Two T�MS task structures, abstractions of those used in our agents.

ordered schedule, which includes descriptions of the inter-
relationships between the scheduled actions in addition
to their desired execution times. This partially ordered
schedule explicitly represents precedence relationships be-
tween methods, constraints and deadlines. This informa-
tion arises from commitments, resource and method in-
terrelationships, and the QAFs assigned to tasks, and is
encoded as a precedence graph. This graph can then be
used both to determine which activities may potentially
be run concurrently, because they have no precedence re-
lation between them or they do not have interfering re-
source usage, and where particular actions may be placed
in the execution timeline. Of particular signi�cance, this
latter functionality allows the scheduler to quickly re-
assess scheduled actions in context, so that some forms
of rescheduling can be performed with very low overhead
when unexpected events require it. Much of this infor-
mation can be directly determined from the T�MS task
structure.

Consider the tracking task structure shown in Figure 4.
Enables interrelationships between the tasks and meth-
ods indicate a strict ordering is necessary for the three
activities to succeed. In addition (although not shown in
the �gure), a deadline constraint exists for Send-Result,
which must be completed by time 2500. Next look at the
initialization structure in Figure 5A. While an enables in-
terrelationship orders Init and Send-Message, it does
not a�ect the Calibrate method. Internally, the partial
order scheduler will use this information to construct a
precedence graph. In this example, the graph will �rst be
used to determine that Calibratemay be run in parallel
with the other two methods in its structure. Later, when
Task2 arrives, the updated graph can be used to �nd an
appropriate starting time for Set-Parameters which still
respects the deadline of Send-Result.

While the partial order scheduler may directly reason
about direct precedence rules as outlined above, a more
robust analysis is needed to identify indirect interactions
which occur through common resource usage. Because of
uncertain and probabilistic interactions between resources
and actions, both locally and those to be performed by
other agents, a thorough temporal model is needed to cor-
rectly determine acceptable times and limits for resource
usage.

3.4 Resource Modeler

In order to bind resources, we use another component
called the resource modeler. The partial order sched-
uler does this by �rst producing a description of how a
given method is expected to use resources, if at all. This
description includes such things as the length of the us-
age, the quantity that will be consumed or produced, and
whether or not the usage will be done throughout the
method's execution or just at its start or completion. The
scheduler then gives this description to the resource mod-
eler, along with constraints on the method's start and
�nish time, and asks it to �nd a point in time when the
necessary resources are available.
As with most elements in T�MS the resource usage is

probabilistically described, so the scheduler must also pro-
vide a minimum desired chance of success to the modeler.
At any potential insertion point, the modeler computes
the aggregate a�ects of the new resource usage, along with
all prior usages up to the last known actual value of the
resource. The expected usage for a given time slot can
become quite uncertain, as the probabilistic usages are
carried through from each prior slot. If the probability of
success for this aggregate usage lies above the range spec-
i�ed by the scheduler, then the resource modeler assumes
the usage is viable at that point. Since a given usage
may actually take place over a range of time, this check
is performed for all other points in that range as well.
If all points meet the success requirement, the resource
modeler will return the valid point in time. After this,
the scheduler will insert the usage into the model, which
will then be taken into account in subsequent searches.
If a particular point in time is found to be incompati-
ble, the resource modeler continues its search by looking
at the next \interesting" point on its timeline - the next
point at which a resource modi�cation event occurs. The
search process becomes much more eÆcient by moving di-
rectly from one potential time point to the next, instead
of checking all points in between, making the search-time
scale with the number of usage events rather than the
span of time which they cover. Caching of prior results,
especially the results of the aggregate usage computation,
is also used to speed up the search process.
This information is used by the resource modeler to

search for appropriate places where new resource usages
may be inserted. In general, the scheduling process will
provide a set of resource usage descriptions extracted from

7



Calibrate

Set-Parameters

Init

A) Track-Medium

Send-Message

Send-Result

Negotiate-Tracking Send-Tracking-Info

Calibrate

Set-Parameters

Init

B) Track-Medium

Send-Message

0 500 1000 1500 2000 2500

Send-Result

Negotiate-Tracking Send-Tracking-Info

3000

0 500 1000 1500 2000 2500 3000

Calibrate

Set-Parameters

Init

C) Track-Medium

Send-Message

0 500 1000 1500 2000 2500

Send-Result

Negotiate-Tracking

3000

Send-Tracking-Info

Figure 6: A) Initial schedule produced after all the goals
have been received, with a Send-Result deadline of 2500,
B) the invalid schedule showing that constraint broken by
the unexpected long duration of Negotiate-Tracking,
and C) the corrected schedule respecting the deadline.

methods it is attempting to schedule, which may a�ect
multiple di�erent resources at di�erent times, along with
start and �nish time bounds and a minimumdesired prob-
ability of success, and the resource modeler will return the
�rst possible match if one is found. These constraints are
then used along with direct structural precedence rules
and the existing schedule to lay down a �nal schedule.

3.5 Schedule Merging

Once potential interactions, through interrelationships,
deadlines or resource uses are determined, the partial or-
der scheduler can evaluate what the best order of exe-
cution is. Wherever possible, actions are parallelized to
maximize the exibility of the agent, as was introduced
in section 3.3. In such cases, methods running concur-
rently require less overall time for completion, and thus
o�er more time to satisfy existing deadlines or take on
new commitments. Once the desired schedule ordering is
determined, the new schedule must be integrated with the
existing set of actions.
The partial order scheduler makes use of two other tech-

nologies to integrate the new goal with existing scheduled
tasks. The �rst is a conict resolution module, which
determines how best to handle un-schedulable conicts,
given the information at hand. A second component han-
dles the job of merging the new goal's schedule with those
of prior goals. The speci�c mechanism used is identical
to that which determines order of execution. Interdepen-
dencies between this large set of methods, either direct or
indirect, are used to determine which actions can be per-
formed relative to one another. This information is then
used to determine the �nal desired order of execution.
To this point in our example, the agent has been asked

to work towards three di�erent goals, each with slightly
di�erent execution needs. Task1 allows some measure
of parallelism within itself, as Init and Calibrate can
run concurrently because no ordering constraints exist be-
tween them. Task2, received some time later, must be run
sequentially, and its method Send-Result must be com-

pleted by time 2500. Task3 is received later still, and also
must be run sequentially. All three, however, require the
use of the RF resource, for communication needs, and are
thus indirectly dependent on one another. The partial
order scheduler produces the schedule seen in Figure 6A,
where all the known constraints are met. Some measure
of parallelism can be achieved, seen with Set-Parameters
and Send-Message, and also between Track-Medium and
the methods in Task3. Note that the resource modeler
detected the incompatibility between the methods using
RF (shaded gray), however, and therefore do not overlap.

3.6 Conict Resolution

Suppose next that Negotiate-Tracking is taking
longer than expected, forcing the agent to dynam-
ically reschedule its actions. Because the method
Send-Tracking-Info cannot start before the completion
of Negotiate-Tracking, due to the enables interrelation-
ship shown in Figure 5B, the partial order scheduler must
delay the start of Send-Tracking-Info. A naive ap-
proach would simply delay Send-Tracking-Info by a
corresponding amount. This has the undesirable conse-
quence of also delaying Send-Result, because of the con-
tention over the RF resource. This will cause Send-Result
to miss its deadline of 2500, as shown in the invalid sched-
ule seen in Figure 6B.
Fortunately, the partial order scheduler was able to de-

tect this failure, because of the propagation of execution
windows. Send-Result was marked with a latest start
time of 2000. This caused the scheduler to try other
permutations of methods, which resulted in the schedule
shown in Figure 6C, which delays Send-Tracking-Info
in favor of Send-Result. This allows the agent to proceed
successfully despite a failed expectation. This process is
accomplished by �rst delaying the �nish time of the of-
fending method in the schedule to reect the current state
of a�airs, and then recursively delaying any other meth-
ods which are dependent on that method until a valid
solution is found or a recursive limit is reached.
This type of simple conict resolution is performed

automatically, through the cooperation of the execution
module, which detects the unexpected behavior, and the
scheduling component which attempts to repair the prob-
lem using the quick shifting technique shown above. In
some cases, in particular when methods actually fail to
achieve their goal, this sort of simple shifting is not suf-
�cient to repair the problem. To handle these cases, we
have developed a conict resolution module capable of
analyzing a particular situation and suggesting solutions.
Abstractly, the conict resolution module is a customiz-

able engine, which applies techniques encoded as \plug-
ins" to a particular situation. If the set of techniques
available is not appropriate for the agent designer, they
are free to add or remove techniques as needed. Each tech-
nique plug-in is associated with a discrete numeric priority
rating, typically speci�ed by the designer of the plug-in,
which controls the ordering in which the techniques are
applied. When searching for a conict resolution, the en-
gine will begin by applying all techniques marked with the

8



highest priority. If one or more solutions are suggested,
then that set of solutions is returned for the caller to select
from. If no solutions are suggested, the engine will apply
the techniques at the second-to-highest level, and so on.
If the designer orders the techniques appropriately, for
instance with quick or highly e�ective techniques �rst fol-
lowed by slower or less applicable ones, the engine should
make eÆcient use of its time.

As an example, consider the T�MS structure shown
in Figure 4. We will assume three di�erent resolution
plug-ins are in use by the agent, corresponding to several
of the techniques outlined above. At the highest priority
level is Check-Cache, which searches for cached resolution
techniques which are applicable to the current problem.
At the next level is Alternate-Plan, which looks for com-
patible results from the previous scheduling activity. At
the lowest priority level is Regenerate-Plans, which uses
DTC to generate a completely new set of viable plans.
The initial schedule generated from this structure would
be f Set-Parameters, Track-High, Send-Results g. In
this instance however, Track-High fails, forcing the con-
ict resolution subsystem to �nd an appropriate solution.
Check-Cache has never seen this problem and context be-
fore, so it o�ers no solution. The prior planning activ-
ity, however, returned three di�erent plans, so two po-
tentially viable plans remain for Alternate-Plan to exam-
ine. In this case, the plan f Set-Parameters, Track-Low,
Send-Results g both avoids the failed method and still
ful�lls related commitment criteria. This schedule is of-
fered as a solution. Since a solution was o�ered at a lower
level, Regenerate-Plans is not invoked. Because only one
solution is provided, the execution subsystem will in-
stantiate the Alternate-Plan solution. If multiple solu-
tions were provided, they would be discriminated through
their respective expected qualities (which can be obtained
from the task structure). Note that if this problem were
seen again, Check-Cache would immediately recognize the
context and provide this same solution, avoiding further
search.

4 Optimizations

The high-level technologies discussed above address the
fundamental issues needed to run in real-time. Unfor-
tunately, even the best framework will fail to work in
practice if it does not obtain the processor time needed
to operate, or if activity expectations are repeatedly not
met. A good example of this is the execution subsystem.
It may be that planning and scheduling have successfully
completed, and determined that a particularmethod must
run at a particular time in order to meet its deadline. If,
however, some other aspect of the agent has control of
the processor when the assigned start time arrives, the
method will not be started on time and may therefore fail
to meet its deadline. In this section we will cover a pair of
techniques which aim to reduce the overhead of di�erent
aspects of the system, to avoid such situations.

Component Average Calls Execution Time
DTC Scheduler 72.14 300 ms
DTC Cache 31.12 74 ms
PO Scheduler 531.03 36 ms

Table 1: Average results from 1077 runs of 180 seconds.

4.1 Plan Caching

An issue a�ecting the agent's real time performance is
the signi�cant time that meta-level tasks such as planning
and scheduling can take themselves. In systems which run
outside of real-time, the duration performance of a par-
ticular component will generally not a�ect the success or
failure of the system as a whole - at worst it will make
it slow. In real time, this slowdown can be critical, for
the reasons cited previously. Complicating this issue is
the fact that these meta-level activities may be randomly
interspersed with method executions. New goals, com-
mitments and negotiation sessions may occur at any time
during the agent's lifetime, and each of these will require
some amount of meta-level attention from the agent in a
timely manner. To address this, our control architecture
attempts to optimize the meta-level activities performed
by the agent.

One particular computationally expensive process for
our agents is planning, primarily because the DTC plan-
ner runs as a separate process, and requires a pair of disk
accesses to use. Unfortunately, this is an artifact caused
by DTC's C++ implementation; the remainder of the ar-
chitecture is in Java. We noticed during our scenarios that
a large percentage of the task structures sent to DTC were
similar, often di�ering in only their start times and dead-
lines, and resulting in very similar plan selections. This
is made possible by the fact that DTC is now used on
only one goal at a time, as opposed to our previous sys-
tems which manipulated structures combining all current
goals. To avoid this overhead, a plan caching system was
implemented, shown as a bypass ow in Figure 2. Each
task structure to be sent to DTC is used to generate a key,
incorporating several distinguishing characteristics of the
structure. If this key does not match one in the cache,
the structure is set to DTC, and the resulting plan read
in, and added to the cache. If the key does match one
seen before, the plan is simply retrieved from the cache,
updated to reect any timing di�erences between the two
structures (such as expected start times), and returned
back to the caller. This has resulted in a signi�cant per-
formance improvement in our agents, which leaves more
time for low-level activities, and thus increases the likeli-
hood that a given deadline or constraint will be satis�ed.
Quantitative e�ects of this system can be seen in Table 1.

To test the caching subsystem, we performed 1077 runs
in simulation using eight sensors and one target. As
shown in the table, the caching system in these tests was
able to avoid calling DTC 30% of the time, resulting in a
signi�cant savings in both time and computational power.

9



Time Granularity (msec)
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Ratio of sequential clicks to time

Ratio of actions to rescheduling events

Figure 7: The e�ect of varying time granularity on agent
behavior. A higher time ratio indicates that a greater
percentage of sequential time units are seen, which should
reduce the need for rescheduling. A higher action ratio
indicates the available time was used more eÆciently.

4.2 Time Granularity

The standard time granularity of agents running in our
example environment is one millisecond, which dictates
the scale of timestamps, execution statistics and commit-
ments. Because we run in a conventional (i.e. not real-
time) operating system, in addition to our relatively un-
predictable activity durations, it becomes almost impos-
sible to perform a given activity at precisely its scheduled
time. For instance, some action X may be scheduled for
time 1200. When the agent �rst checks its schedule for
actions to perform, it is time 1184. In the subsequent cy-
cle, 24 milliseconds have passed, and it is now time 1208.
To maintain schedule integrity (especially with respect to
predicted resource usage), we must shift or reschedule the
method which missed its execution time before performing
it. Despite our existing optimizations, in large numbers
these actions can still consume a signi�cant portion of the
agents' operating time.
To compensate for this, we scale the agents' time gran-

ularity by some �xed amount. This theoretically trades
o� prediction and scheduling accuracy for responsiveness
[3], but in practice a suitably chosen value has few draw-
backs, because the agent is e�ectively already operating
at a lower granularity due to the real time missed be-
tween agent activity cycles. Using this scheme, if we say
that every agent tick corresponds to 20 milliseconds, the
above action would be mapped to run at time 60. At
time 1184, the agent would operate as if it were time 59,
while 1208 would become 60, the correct scheduled time
for X, thus avoiding the need to shift the action. Clearly
we can not eliminate the need for rescheduling, due to
the inherent uncertainty in action duration in this envi-
ronment, but the hope is to reduce the frequency it is
needed. Experimentation can �nd the most appropriate
scaling factor for an agent running on a particular sys-
tem, by searching for the granularity which optimizes the
number of actions which are able to be performed against
the number of rescheduling events which must take place.
Our experiments, the results of which can be seen in Fig-

ure 7, resulted in a 35% reduction in the number of shifted
or rescheduled activities by using a time granularity be-
tween 40 and 60 ms. Ideally, the system should \see"
each sequential time click, but as the graph shows, as the
system reaches that point, the coarse timeline unnecessar-
ily restricts the number of actions which may take place,
reducing the overall eÆciency.

5 Adapting to Environmental Conditions

An agent's ability to adapt to changing conditions is es-
sential in an unpredictable environment. SRTA supports
this notion with T�MS , which provides a rich, quanti-
tative language for modeling alternative plans, and DTC
and the partial order scheduler, which can reason about
those alternatives. As discussed previously, this combina-
tion can also make use of activity and resource constraints
in addition to results of completed actions, providing the
necessary context for analysis and decision making.
Consider the model shown in Figure 8, where a vari-

ety of strict and exible options are encoded. Because
Goal has a seq sum QAF, it will succeed (e.g. accrue
quality) if all of its subtasks are completed in sequence.
The quality it does accrue will be the sum of the qualities
of it's subtasks. The structure indicates that D must be
performed for Task2 to succeed, and also that the agent
cannot execute E after F. Task1 and Task2 have slightly
more exible satisfaction criteria. Their sum QAFs spec-
ify that they will obtain more quality as more subtasks
are successfully completed { without any ordering con-
straints. Finally, the facilitates relationships between A, B
and C model how the agent can improve C's performance
through the successful prior completion of A or B. Speci�-
cally, A will augment C's quality by 25%, while B will both
increase C's quality by 75% and reduce its cost by 50%.
There are several other classes of alternatives which are

not shown in the �gure. Resource interrelationships, for
example, may be used to model a variety of e�ects on
both the resources and the activities using them. The
presence or absence of nonlocal activities, as discussed
in the previous section, can indicate alternative means
of accomplishing a task. Multiple outcomes on methods
may indicate alternative solutions which may arise from
a method's execution, so the probability densities asso-
ciated with each outcome provide an additional source
of discriminating information which can help control the
uncertainty of generated plans. The individual probabil-
ity distributions for the quality, cost and duration of each
outcome serve in the same capacity, as do analogous prob-
abilities modeling the quantitative e�ects of interrelation-
ships. The available time, desired quality, and maximum
cost, along with other execution constraints provide the
context in which to generate and evaluate the alternative
plans such a structure may produce.
To demonstrate how the system adapts to varying con-

ditions, several plans derived from the task structure in
Figure 8 are shown in Table 2. These plans are produced
for di�erent environmental conditions that place di�erent
resource constraints on the agent. As one would expect,
when the agent is completely unconstrained and has a

10



Goal
q_seq_sum

Task1
q_sum

A

facil1

outcome (100.0%)
Q: [2.0, 1.0]
C: [0.0, 1.0]
D: [15.0, 1.0]

B facil2

outcome (100.0%)
Q: [1.0, 1.0]
C: [0.0, 1.0]
D: [15.0, 1.0]

C
outcome (100.0%)
Q: [10.0, 1.0]
C: [10.0, 1.0]
D: [25.0, 1.0]

D enables

outcome (100.0%)
Q: [10.0, 1.0]
C: [0.0, 1.0]
D: [20.0, 1.0]

Task2
q_sum

E

outcome (100.0%)
Q: [5.0, 1.0]
C: [0.0, 1.0]
D: [5.0, 1.0]

F
disables

outcome (100.0%)
Q: [10.0, 1.0]
C: [2.0, 1.0]
D: [10.0, 1.0]

Figure 8: A T�MS task structure modeling several dif-
ferent ways to achieve the same goal.

Conditions Schedule Q C D
1 Unconstrained A B C D E F 49.9 7.0 90.0
2 Deadline 40 A D E 17.0 0.0 40.0
3 Deadline 50 A D E F 27.0 2.0 50.0
4 Deadline 76 B C D E F 43.5 7.0 75.0
5 Cost 3 A B D E F 28.0 2.0 65.0
6 Balanced A D E F 27.0 2.0 50.0

Table 2: A variety of schedules, and their expected
qualities, costs and durations, generated from the
T�MS structure in Figure 8 under di�erent conditions.

goal to maximize quality, the plan shown in row one is
produced. Note that the selected plan has an expected
quality of 49.9, expected cost of 7.0, and an expected du-
ration of 90.0. The quality shown is not a round integer
even though the qualities shown in Figure 8 are integers
because A and B facilitate method C and increase C's
quality when they are performed before it.
Row two shows the plan selected for the agent under a

hard deadline of 40 seconds. This is the path through the
network with the shortest duration enabling the agent to
perform each of the major subtasks. Note the di�erence
in quality, cost, and duration between rows one and two.
Row three shows the plan selected for the agent if it is

given a slightly more loose deadline of 50 seconds. This
case illustrates an important property of scheduling and
planning with T�MS { optimal decisions made locally
to a task do not combine to form decisions that are op-
timal across the task structure. In this case, the agent
selected methods ADEF. If the agent were planning by sim-
ply choosing the best method at each node, it would se-
lect method C for the performance of Task 1 because C

has the highest quality. It would then select D as there is
no choice to be made with respect to method D. It would
then select method E because that is the only method that
would �t in the time remaining to the agent. The plan
CDE has an expected quality of 25, cost of 10, and dura-
tion of 50. Planning with T�MS requires stronger tech-
niques than simple hill climbing or local decision making.
This same function holds when tasks span agents and the
agents work to coordinate their activities, evaluate cross
agent temporal constraints, and determine task value.
Row four shows the plan produced if the agent is given

a hard deadline of 76 seconds. What is interesting about
this choice is that DTC selected BCDEF over ACDEF even
though method B has a lower quality than method A and

they both require the same amount of time to perform.
The reason for this is that B's facilitation e�ect (75%
quality multiplier) on method C is stronger than that of
method A (which has a 25% quality multiplier). The net
result is that BCDEF has a resultant expected quality of
43.5 whereas ACDEF has an expected quality of 39.5.
Row �ve shows the plan produced by DTC if the agent

has a soft preference for schedules whose cost is under
three units. In this case, schedule ABDEF was selected over
schedules like ADEF because it produces the most qual-
ity while staying under the cost threshold of three units.
DTC does not, however, deal only in speci�c constraints.
The \criteria" aspect of Design-to-Criteria scheduling also
expresses relative preferences for quality, cost, duration,
and quality certainty, cost certainty, and duration cer-
tainty. Row six shows the plan produced if the scheduler's
function is to balance quality, cost, and duration. Con-
sider the solution space represented by the other plans
shown in Table 2 and compare the expected quality, cost,
and duration attributes of the other rows to that of row
six. Even though the solution space represented by the
table is not a complete space, once can see where the so-
lution in row six falls relative to the rest of the possible
solutions { it is a good balance between maximizing qual-
ity while minimizing cost and duration.
Note these examples do not illustrate DTC's ability

to trade-o� certainty against quality, cost, and duration.
The examples also omit the quality, cost, and duration
distributions associated with each item that is sched-
uled/planned for and the distributions that represent the
aggregate behavior of the schedule/plan.

6 Conclusion

The SRTA architecture has been designed to facilitate the
construction of sophisticated agents, working in soft-real
time environments possessing complex interactions and
a variety of ways to accomplish any given task. With
T�MS , it provides domain independent mechanisms to
model and quantify such interactions and alternatives.
DTC and the partial ordered scheduler reason about these
models, using information from the resource modeler and
the runtime context to generate, rank and select from a
range of candidate plans and schedules. An execution
subsystem executes these actions, tracking performance
and rescheduling or resolving conicts where appropriate.
The engine is capable of real-time responsiveness, allow-
ing these techniques to be used to analyze and integrate
solutions to dynamically occurring goals.
SRTA's objective is to provide domain independent

functionality enabling the relatively quick and simple con-
struction of agents and multi-agent systems capable of
exhibiting complex and applicable behaviors. It's abil-
ity to adapt to di�erent environments, respond to unex-
pected events, and manage resource and activity-based in-
teractions allow it to operate successfully in a wide range
of conditions. We feel this type of system can form a
reusable foundation for agents working in real-world en-
vironments, allowing designers to focus their e�orts on
higher-level issues such as organization, negotiation and

11



domain dependent problems.
More generally, the signi�cance of the work presented

in this paper comes from its demonstration that it is pos-
sible to perform in soft real-time the complex modeling,
planning and scheduling that has been described in our
prior research. Previously, these techniques were analyzed
only in theory or simulation, and it was not clear that
our heuristic approach would be suÆciently responsive
and exible to address real-world problems. The SRTA
architecture shows that engineering can be used to com-
bine and streamline these approaches to make a viable,
coherent solution.

References

[1] R.H. Bordini, A.L.C. Bazzan, R.O. Jannone, D.M.
Basso, R.M. Vicari, and V.R. Lesser. Agents-
peak(xl): EÆcient intention selection in bdi agents
via decision-theoretic task scheduling. In Proceed-
ings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS-2002), Bologna, Italy, 2002.

[2] Keith S. Decker and Victor R. Lesser. Quantita-
tive modeling of complex environments. Interna-
tional Journal of Intelligent Systems in Accounting,
Finance, and Management, 2(4):215{234, December
1993. Special issue on \Mathematical and Computa-
tional Models of Organizations: Models and Charac-
teristics of Agent Behavior".

[3] E. Durfee and V. Lesser. Predictability vs. respon-
siveness: Coordinating problem solvers in dynamic
domains. In Proceedings of the Seventh National
Conference on Arti�cial Intelligence, pages 66{71,
St. Paul, Minnesota, August 1988.

[4] Bryan Horling, Brett Benyo, and Victor Lesser. Us-
ing self-diagnosis to adapt organizational structures.
In Proceedings of the Fifth International Conference
on Autonomous Agents, pages 529{536, 2001.

[5] Bryan Horling, Victor Lesser, Regis Vincent,
Anita Raja, and Shelley Zhang. The t�ms
white paper, 1999. http://mas.cs.umass.edu/res-
earch/taems/white/.

[6] Bryan Horling, Victor Lesser, Regis Vincent, and
Tom Wagner. The soft real-time agent control ar-
chitecture. Computer Science Technical Report TR-
02-14, University of Massachusetts at Amherst, April
2002.

[7] Bryan Horling, R�egis Vincent, Roger Mailler, Jiay-
ing Shen, Raphen Becker, Kyle Rawlins, and Vic-
tor Lesser. Distributed sensor network for real time
tracking. In Proceedings of the Fifth International
Conference on Autonomous Agents, pages 417{424,
2001.

[8] D. Jensen, M. Atighetchi, R. Vincent, and V. Lesser.
Learning quantitative knowledge for multiagent co-
ordination. In Proceedings of the Sixteenth National
Conference on Arti�cial Intelligence, Orlando, FL,
July 1999. AAAI.

[9] V. R. Lesser. A retrospective view of FA/C dis-
tributed problem solving. IEEE Transactions on
Systems, Man, and Cybernetics, 21(6):1347{1363,
November 1991.

[10] Victor Lesser, Michael Atighetchi, Bryan Horling,
Brett Benyo, Anita Raja, Regis Vincent, Thomas
Wagner, Ping Xuan, and Shelley XQ. Zhang. A
Multi-Agent System for Intelligent Environment
Control. In Proceedings of the Third International
Conference on Autonomous Agents (Agents99), 1999.

[11] Victor Lesser, Bryan Horling, Frank Klassner, Anita
Raja, ThomasWagner, and Shelley XQ. Zhang. BIG:
An agent for resource-bounded information gathering
and decision making. Arti�cial Intelligence, 118(1-
2):197{244, May 2000. Elsevier Science Publishing.

[12] Victor R. Lesser. Reections on the nature of multi-
agent coordination and its implications for an agent
architecture. Autonomous Agents and Multi-Agent
Systems, 1(1):89{111, 1998.

[13] Roger Mailler, R�egis Vincent, Victor Lesser, Jiaying
Shen, and Tim Middlekoop. Soft real-time, cooper-
ative negotiation for distributed resource allocation.
In Procceedings of the 2001 AAAI Fall Symposium
on Negotiation, 2001.

[14] John A. Stankovic and Krithi Ramamritham. Edi-
torial: What is predictability for real-time systems?
The Journal of Real-Time Systems, 2:247{254, 1990.

[15] Thomas Wagner, Alan Garvey, and Victor Lesser.
Complex Goal Criteria and Its Application in Design-
to-Criteria Scheduling. In Proceedings of the Four-
teenth National Conference on Arti�cial Intelligence,
pages 294{301, July 1997. Also available as UMASS
CS TR-1997-10.

[16] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. Inter-
national Journal of Approximate Reasoning, Special
Issue on Scheduling, 19(1-2):91{118, 1998. A version
also available as UMASS CS TR-97-59.

[17] Thomas Wagner and Victor Lesser. Design-to-
Criteria Scheduling: Real-Time Agent Control. In
O. Rana and T. Wagner, editors, Infrastructure for
Large-Scale Multi-Agent Systems, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2000. A
version also appears in the 2000 AAAI Spring Sym-
posium on Real-Time Systems and as UMASS CS
TR-99-58.

[18] Xiaoqin Zhang, Anita Raja, Barbara Lerner, Vic-
tor Lesser, Leon Osterweil, and Thomas Wagner.
Integrating high-level and detailed agent coordina-
tion into a layered architecture. Lecture Notes in
Computer Science: Infrastructure for Scalable Multi-
Agent Systems, pages 72{79. Springer-Verlag, Berlin,
2000. Also available as UMass Computer Science
Technical Report 1999-029.

12


