
Using ODML to Model and Design Organizations for
Multi-Agent Systems !

Bryan Horling and Victor Lesser

University of Massachusetts
Amherst, MA 01003-9264

{bhorling,lesser}@cs.umass.edu

Abstract. In this paper, we introduce a new, domain-independent organizational
design representation able to model and predict the quantitative performance
characteristics of agent organizations. This representation, capable of capturing a
wide range of multi-agent behaviors, can support the selection of an appropriate
design given a particular operational context. We demonstrate the capabilities and
efficacy of this language by comparing a range of metrics predicted by an ODML
model to previously obtained empirical results from a real-world system. We then
outline how such models can serve as the foundation for automated organizational
design process by modeling a range of organizational possibilities.

1 Introduction

Any real-world system must be tailored to the environment in which it exists if it is to
make effective use of the resources and flexibility available to it. In this paper, we will
explore the possibility of such tailoring through the system’s organizational design. The
notion of an organizational design is used in many different fields, and generally refers
to how members of a society act and relate with one another. This is true of multi-agent
systems, where the organizational design of a system can include a description of what
types of agents exist, what roles they take on, and how they act both independently
and with one another. This additional structure becomes increasingly important as the
system scales in number and scope [1]. Imagine how difficult it would be for a large
human organization, such as a corporation or government, to function if individuals
lacked job descriptions and long-term peer relationships. Agent systems face similar
challenges, and can derive similar benefits from an explicit organizational design.

Consider the problem of designing a solution for a complex, resource-bounded do-
main, such as a distributed tracking system. The system would consist of an array of
sensors deployed to track mobile targets. Assume that each sensor is controlled by an
agent. Let us further assume that the sensor nodes must collaborate in some way to
be successful, because multiple sensors must illuminate a target to correctly obtain its
position. Given these assumptions, a designer must determine a way to structure the
! This material is based upon work supported in part by the National Science Foundation En-
gineering Research Centers Program under NSF Award No. EEC-0313747. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.



agents’ behaviors so that tracking may be accomplished. One strategy would create or
delegate a single agent to be the manager of the entire sensor network. The manager
would decide when, where and how each sensor should take measurements, and then
process the resulting data to estimate the targets’ positions. This layout of responsibili-
ties constitutes a rudimentary organizational design. It specifies what roles agents take
on, who they interact with, and where decision making authority is located.

Under some conditions, this simple solution will perform optimally, because the
manager can maintain an omniscient view of the entire network’s state and use that
view to find the best assignment of sensing tasks. However, under real world condi-
tions, where bandwidth and computational power is limited, communication and data
processing takes time, and the number of sensors can be arbitrarily large, the weak-
nesses of this approach quickly become apparent. A different strategy, in the form of a
different organizational design, can compensate for these more challenging conditions.
For example, we might distribute the manager role among multiple different agents,
to more evenly balance the communication and computational loads. We might also
create an information dissemination hierarchy among the agents that summarizes and
propagates measurement data to use the available bandwidth more efficiently. How-
ever, distributing the role can lead to conflicts and lower utility, because no single agent
necessarily has the appropriate local context to make the right decision. Similarly, a
hierarchical summarization process might introduce unwanted latency and imprecision.

Implicit in this example is the idea that different organizations will affect perfor-
mance in different ways, either helping or hindering depending on the situation. Intu-
itively, changing the manner in which agents interact or the pattern that interactions
take on can change behavior at both global and local levels. The objectives of a particu-
lar design will depend on the desired solution characteristics, so for different problems
one might specify organizations which aim toward scalability, reliability, speed, or ef-
ficiency, among other things. Confounding the search for such a design is the fact that
many potentially important characteristics can be subtle or have complex interactions.

It is our belief that understanding the fundamental causes of these characteristics
and developing accurate models of their effects are both critical to selecting an appro-
priate design. To enable this functionality, we will present a new, domain-independent
language designed to capture organizational information in a single predictive struc-
ture. This Organizational Design Modeling Language (ODML) incorporates quantita-
tive information in the form of mathematical expressions that are used to predict the
characteristics of an organization. Succinct but detailed representations of the range
of organizational possibilities can be defined with ODML, using local knowledge to
automatically predict the behavior of the global system. This representation addresses
the needs outlined above by creating a computational model that is able to uncover the
effects of interactions, and allow subtle effects to become more transparent.

Section 2 will define the ODML language, and demonstrate its ability to model
a complex, real-world system. Our ultimate objective is to create technology able to
reason about the type of characteristics and tradeoffs mentioned above, automatically
selecting the appropriate organizational design for a particular operational context. We
will show in Section 3 that by incorporating appropriate search strategies, the detailed
information present in ODML can serve as the foundation for such a process.



2 Representing Organizations

The practice of structuring an agent system to best suit a set of perceived strengths and
weaknesses is not a new concept. A wealth of research has been performed itemizing al-
gorithms and techniques that accomplish this objective. The solution we present differs
in that it suggests a more general way to determine which strategy is most appropriate
for a given situation, based on the characteristics endowed on a system by the organi-
zation it employs. The foundation of this approach is the representation used to capture
those characteristics.

An organizational model, as we envision it, serves in several different capacities.
At design time, it should be possible to use the structure to create and evaluate not
just a single organizational instance, but an entire family of organizational possibilities.
At runtime, it should accurately describe the current organization. In both cases, the
model must be sufficiently descriptive and quantitative that one can evaluate the organi-
zation’s effectiveness, and rank alternatives according to some specified criteria. Below,
we enumerate the desired capabilities and characteristics the modeling language should
possess to satisfy these requirements:

1. Represent a particular organizational structure. This would include roles, interac-
tions and associations (e.g., coalitions or teams). Differentflows in the organization,
such as communication and resources, should be representable.

2. Represent the range of organizational possibilities, by identifying general classes of
organizations and the parameters which influence their behavior. Different elements
should be able to be modeled at different levels of abstraction. Identify which char-
acteristics are under deliberate control, and which are derived from external factors.

3. Enable concrete performance predictions and allow deductive analysis by quantita-
tively describing the relevant characteristics exhibited by the structure, the manner
in which those characteristics interact, and the constraints they are affected by. For
example, both communication overhead and the effect that overhead has on work
load should be representable.

Many different organizational representation schemes have been developed by re-
searchers [2–10]. Nearly all these representations can satisfy the first two points, but
none are able to incorporate quantitative knowledge in such a way that concrete predic-
tions along multiple, interdependent dimensions can be made directly from the model
itself. In this section we describe a new formalism called ODML that explores how such
information can be modeled and used.

Most existing representations fall into one of two categories: either they represent a
wide range of organizational characteristics abstractly, or they can capture a smaller set
of characteristics concretely. The former are usually good at representing what entities
or relationships exist or could exist, but cannot compare alternatives in a quantitative
way. The latter may contain quantitative knowledge, but have difficulty relating that
knowledge to specific organizational concepts, either because the quantitative infor-
mation is only indirectly related to the organizational structure or because a separate
simulation is required to elucidate the actual performance. This mitigates their useful-
ness if one is hoping to understand the effects a particular organizational design will
have, particularly in response to the needs of a dynamic environment.



For example, OMNI [6] andMOISE+[9] can each capture a greater variety of or-
ganizational concepts than ODML, but do so in a largely qualitative way. Work by
Matson and DeLoach [4] does dynamically compute the quantitative utility of an orga-
nization, but does so using only a single aggregate statistic. Conversely, both SADDE
[5] andMIT’s Process Handbook [8] can incorporate arbitrary quantitative information,
but neither couples this information with the organizational structure in a way that en-
ables one to deduce how the characteristics of one aspect of the design affect another.
The representation created by Sims [10] does incorporate quantitative information into
a structured organizational model, but we believe ODML’s more flexible design can
model more situations at different levels of abstraction. For example, although one can
model individual agents and roles in ODML, the representation does not require that
such elements exist. By modeling these concepts only abstractly or not at all, one can
potentially create models of much larger systems without the associated high combina-
torics. At the same time, this flexibility can make the design search itself more difficult.
Each representation has its strengths and ODML’s goal is not to supplant these works,
but to demonstrate another approach that makes different tradeoffs. As shown in the
following section, ODML does so by incorporating a concrete but flexible set of prim-
itives that can model a range of organizational constructs along with the quantitative
characteristics that differentiate them.

We believe the principal benefit of using a quantitative representation is the ability to
make rapid but precise predictions about organizational performance. If one views the
process of organizational design as a search through the potentially very large space of
possible organizational structures, a critical part of that search is the ability to evaluate
alternative designs with respect to an expected operational context. We further believe
that the utility of an organizational structure should not be restricted to just a single
metric, but can be based on many characteristics that may be tightly coupled with one
another and the structure itself. ODML models are able to capture both the space of al-
ternatives and the complex characteristics they exhibit in a representation that can make
predictions much faster than is possible through simulation. If used as part of a design
process, this advantage can allow the evaluation of a greater number of alternatives,
which will increase the chance that the most suitable design will be found.

2.1 ODML

The formal, domain-independent definition of an ODML template specification O is
given below. Section 2.2 will give examples of how these features are used in practice.

O = {N , H, C, K, M, V }
N = {N0, N1, . . . , Nn} (1)
Ni = {t, p̄, I, H, C, K, M, V }

The bulk of the ODML template specification is made up of the set N of nodes,
each of which corresponds to a particular physical or logical entity that might exist in
the organization. For example, in the sensor network scenario there would be nodes



corresponding to managers, relationships, agents and the environment, among other
things. Each nodeNi contains a number of elements, defined below:

t The node’s type. This label must be unique within the set of template nodes that make
up the organization.
N.t = 〈symbol〉
∀N, M ∈ N , N.t = M.t ⇔ N = M

p̄ An ordered list of parameters that must be passed to the node’s template when an
instance of the node is created. These are analogous to the parameters one might
pass to an object constructor. Each parameter is specified with a type and local
name.
N.p̄ = [〈symbol, type〉, . . .]

I The set of node types that this node has an is-a relation with using conventional
object-oriented inheritance semantics. If we assume that a node’s I = {a, b}, an
instance of the node will also be an instance of a and b, possessing the characteris-
tics of all three node types. Is-a relationships cannot be cyclic, i.e., N cannot have
itself as a decedent.
N.I = {〈type〉, . . .}
∀i ∈ N.I, N &= i ∧ N /∈ i.I ∧ ...

H The set of node types that this node has a has-a relation with. If we assume that
H = {a, b}, an instance of the node will possess some number of instances of
both a and b. It is through this type of relationship that the primary organizational
decomposition is formed. Each has-a has a magnitude that specifies the number of
instances connected by the relationship.
N.H = {〈symbol, type, magnitude〉, . . .]
magnitude = 〈symbol〉

C A set of constants that represent quantified characteristics associated with the node.
Constants may be defined with numeric constants (e.g., 42), or mathematical ex-
pressions (e.g., x + y).
N.C = {〈symbol, expression〉, . . .}

K A set of constraints. Also defined with expressions, an organization is considered
valid if all of its constraints are satisfied.
N.K = {〈symbol, op, expression〉, . . .}
op ∈ {<, >,≤,≥, =, &=}

M A set ofmodifiers that can affect (e.g., mathematically change) a value contained
by a node. Multiple modifiers may affect the same value. Modifiers model flows
and interactions by allowing the characteristics and decisions made in one node to
affect those of another.
N.M = {〈symbol, op, expression〉, . . .}
op ∈ {+,−,×,÷}

V A set of variables, representing decisions that must be made when the node is
instantiated. Each variable is associated with a range of values it can take on. For
example, a node might have a variable x that could take any one value in the set
[2.7, y2, πz].
N.V = {〈symbol, {expression, . . .}〉, . . .}



symbol refers to a user-defined string, similar to a variable name in a conventional
programming language. These typically describe or refer to a particular characteris-
tic. type is the type name of some defined node, so ∃N ∈ N such that N.t = type.
expression is an arbitrary algebraic expression, possibly referencing constants, sym-
bols and function calls. ODML supports the use of floating point values, lists of floating
point values, and discrete probabilistic distributions in these expressions.

The top-level organization node O also contains the elements H, C, K, M, V , pro-
viding a location to embed additional global information and constraints.

Collectively, we refer to C, K, M, V as a node’s fields, and the quantitative state of
a field as its value. For example, a constant field total load might be defined with the
expression total load = work load + communication load and have a value of 0.9 for
a particular agent. Note that the use of the term “constant” may initially be misleading.
While the expression defining total load is fixed, the value for total load produced by
that expression may change through the application of modifiers, or due to changes in
fields or values that the expression is dependent on.

At first glance, the ODML language may appear to be devoid of almost all the orga-
nizational concepts that are provided by typical organizational representations. This is
partially true, and by design. Instead of directly incorporating the usual high-level orga-
nizational components, such as hierarchies, roles, agents, etc., ODML provides a set of
relatively low-level primitives by which such structures can be defined. For example, a
node with the user-defined typemanager, having a has-a relationship with another node
of type agent could embody a role-agent relationship. A sequence of has-a relationships
between nodes could indicate a hierarchy. Although the high-level semantics for these
nodes may only be implicit, the concrete characteristics and design ramifications are
still directly and quantitatively captured by the nodes’ fields. We feel that this approach
can lead to an increased diversity of representable structures, by avoiding the assump-
tions and inevitable restrictions that typically accompany high-level structures. Section
3 will demonstrate that it also simplifies the organizational search process, by unifying
the various ways that design alternatives can be specified into two well-defined template
characteristics (has-a relationships and variables).

ODML instances are quite similar to ODML templates. The difference is that where
a template is a description of what could be, an instance is a description of what is.
Where a template might specify that a manager role can be assigned to a single agent
or distributed across multiple agent nodes, an instance would indicate that manager 1
is distributed across agent 5 and agent 7, and so on. Once instantiated, the expressions
defined by the fields, the data passed in through parameters, and the interactions caused
by relationships can all be used to predict values for an individual node’s characteristics.

The formal definition of an instance is nearly identical to that given in Equation 1,
so we will not repeat it here. The differences principally relate to the replacement of
node types in the template with instances of those nodes in the organizational instance.
Thus, the set N is the set of node instances, whose individual types no longer need
be unique. So, where there might be just a singlemanager type in the template, there
can be an arbitrary number of manager instances in the instance. Both is-a (N.I) and
has-a (N.H) relationships no longer reference node types, but particular node instances
in N . Finally, the set p̄ is filled with appropriate values from each node’s parent, and



get value(symbol s)
r← null
if (s is of the form s1.s2)

n← get value(s1)
r← n.get value(s2)

else if (∃ c ∈ C | c.symbol = s) r← evaluate(c.expression)
else if (∃ h ∈ H | h.symbol = s) r← h
else if (∃ v ∈ V | v.symbol = s) r← evaluate(v.expression)
else if (∃ p ∈ p̄ | p.symbol = s) r← p
else forall i ∈ I

r← i.get value(s)
if (r &= null) break

forall m ∈M
if (m.symbol = s)

r← r m.op evaluate(m.expression)
forall n ∈ N

forall m ∈ n.M
if (m.symbol is of the form s1.s2) ∧ (s1 = N) ∧ (s2 = s)

r← r m.op n.evaluate(m.expression)
return r

evaluate(expression e)
forall s ∈ { non−function symbols referenced by e }

vs ← get value(s)
substitute all occurrences of s ∈ e with vs

r← mathematical result of e
return r

Fig. 1. Pseudocode for the get value function of a node N . This function is used to quantify the
characteristics of instance nodes.

the variable set V for each node is replaced by a single item from that variable’s range.
Because a common syntax is shared between the two forms, for the remainder of this
document I will indicate where necessary which is being considered.

As mentioned above, it is the ability to use an ODML model to deduce quantitative
values for specific characteristics that sets it apart from other representations. The man-
ner in which these values are determined for an instance node’s characteristics is defined
by the pseudocode in Figure 1. This shows how various sources of information, non-
local data and node interrelationships all interact to describe the features of a particular
node. It is through the execution of this function on a particular symbol that predictions
are made of the design’s performance. The process shown by the pseudocode formal-
izes what should be a mathematically intuitive way of determining a symbol’s value.
For example, if a constant c is defined to be a.x + y, then get value(c) will proceed
by evaluating a.x + y, which will recursively call get value() on a.x and y. The dot-



Sensor
Sensor

Sensor
Sensor

Sensor

Sector 
Manager

Sector 
Manager

< 
Sc

an
 T

as
ks

Res
ult

s >
Sensor

Sensor
Sensor Sensor

Track 
Manager

Tr
ac

k 
Ta

sk
s 

>
< 

Re
su

lts

Track 
Manager

Negotiation

Track Information >

< Sensor Information

Target 

Sector

Sector

 Target 

organization

environment

1

sector

env.num_sectors

track_manager

env.num_targets

sector_manager

1

sensor

num_sensors

agent

1

robust-agent normal-agent

1

num_agents sm_tm_relation

sector_managers

s_tm_relation

sensors

(a) (b)

Fig. 2. The a) conceptual DSN organizational design and b) corresponding ODML template struc-
ture.

sensor_organization

environment sector sector TM

SM S S

a a

SM S S

a a

SM-TM SM-TM S-TM S-TM S-TM S-TM

Fig. 3. An instance created from the template in Figure 2b.

notation of a.x indicates that the value of x in node a is being referenced. y refers to
the value of y in the local node, which may be another local constant, variable, or pa-
rameter, or be inherited from an is-a relationship. The effect of modifiers is somewhat
less intuitive, because they may change the value of a symbol without being part of that
symbol’s definition. For example, there might be a modifier in some other node b that
increments the value of c by some amount z. The effect of this operation is as if c were
actually defined as (a.x + y) + b.z.

Section 3 will show that the process of finding an appropriate organization revolves
around first finding the set of valid designs, and selecting from that set the one that is
most desirable. The validity of a particular organizational instanceO is defined as:

O is valid iff ∀N ∈ O.N , N is valid (2)
N is valid iff ∀k ∈ N.K, (N.get value(k.symbol) k.op k.expression) = true

The “desirability” of instance O can be quantified by defining a utility character-
istic in the organization. This can then be computed using the existing machinery by
calling O.get value(utility). Once such a value has been computed for all candidate
organizational designs, they may be ranked and the best selected. These concepts will
be revisited in Section 3.



2.2 Representing Organizational Characteristics

ODML’s method of defining organizations is more free-form than most other existing
organizational representations. On one hand, this characteristic can offer a great deal of
flexibility in how and what organizations are represented. The drawback is its lack of
high-level guiding structures, which can make it difficult to initially grasp how ODML
models should be created and how the various pieces of a model really interrelate.
Because of this, the capabilities of ODML are best explained through an example.

We will use a working system that was developed for a distributed sensor network
(DSN) domain to motivate and demonstrate the capabilities of ODML. This framework
was designed and developed prior to the existence of ODML, making it an ideal plat-
form to gauge ODML’s ability to accurately depict the characteristics of a real-world
system. The goal in this domain is to use a collection of sensors to track targets in an
area. Each sensor is controlled by an agent that can communicate over a low-bandwidth,
wireless network. Individual sensors can return only simple amplitude and frequency
values, so a sensor is incapable of determining the absolute position of a target by itself.
To track under these conditions, the sensors must be organized and coordinated in a
manner that permits their measurements to be used for triangulation.

The system employs an explicit organizational design, as seen in Figure 2a, in an
effort to reduce overhead without negatively impacting performance. This begins with
the agents dividing the environment into a series of logical sectors, each a rectangu-
lar portion of the available area. The intent of these divisions is to limit the interac-
tions needed between sensors, to reduce and distribute the overall communication load.
There are also three types of responsibilities, or roles, that agents may take on: sector
manager, track manager and sensor. Each role specifies behaviors, responsibilities and
interactions that must be enacted by the agent it is assigned to. Agents can take on mul-
tiple roles. The complete architecture, described in detail in [11], has been demonstrated
successfully in both simulation and real-world experiments.

We will proceed with an overview of how an ODML model was produced for this
system. For clarity, the names of nodes and fields that reside in nodes will be repre-
sented in italics. A graphical depiction of some aspects of the ODML template created
for the DSN domain can be seen in Figure 2b. Space precludes showing the complete
XML-based specification, which is roughly 300 lines long, but a representative portion
can be seen in Figure 4. Vertices in the graph, such as sensor and track manager, cor-
respond to nodes in the ODML model. Nodes can represent both tangible (e.g. agent)
and intangible (e.g. sector) entities. At the root there exists an organization node. The
organization node serves as the common root of all other nodes in the structure. This
is true even if multiple, otherwise independent structures exist, because they still oper-
ate within a common environment (the agent world) that relates them even if no other
aspects do. For example, the sector nodes are related in a peer-to-peer fashion; no con-
crete entity exists above to manage or control them (although one could be added to do
so). Thus, although the graph-inspired design used by ODML facilitates the modeling
of decomposable organizations, it is not limited to depicting this class.

Edges in the graph show relations between nodes. Directed edges with a solid arrow
represent has-a relations, and the corresponding label indicates the relation’s magnitude.
For example, consider the track manager node, which corresponds to the DSN’s track



1 <node type="track_manager">
2 <param>organization:org,environment:env,[sector]:sectors</param>
3 <is-a>entity</is-a>
4 <has-a name="agent" size="num_agents">agent(env)</has-a>
5 <has-a name="sm_relations">forall(sm, sector_managers):sm_tm_relation(org, this, sm)</has-a>
6 <has-a name="s_relations">forall(s, sensors):s_tm_relation(org, this, s)</has-a>
7
8 <!-- Determine target bounds -->
9 <constant name="uncertainty_radius">5</constant>
10 <constant name="influence_radius">uncertainty_radius + 10</constant>
11 <constant name="target_area">3.14 * influence_radiusˆ2</constant>
12
13 <!-- Calculate requested measurement rate -->
14 <constant name="desired_sensors">3</constant>
15 <constant name="sensor_density">forallavg(sectors.sensor_density)</constant>
16 <constant name="actual_sensors_available">target_area * sensor_density</constant>
17 <constant name="requested_sensors">min(desired_sensors, actual_sensors_available)</constant>
18 ...
19 </node>
20
21 <node type="s_tm_relation">
22 <param>organization:org,track_manager:tm,sensor:s</param>
23
24 <!-- Calculate actual measurement rate -->
25 <constant name="requested_sensor_rate">tm.requested_sensors / org.total_sensors</constant>
26 <constant name="requested_measurement_rate">tm.requested_measurement_rate * requested_sensor_rate</constant>
27 <modifier name="s.requested_measurement_rate" op="+">requested_measurement_rate</modifier>
28
29 <!-- Assign measurement communication load -->
30 <constant name="actual_measurement_rate">requested_measurement_rate * s.actual_measurement_ratio</constant>
31 <modifier name="tm.actual_measurement_rate" op="+">actual_measurement_rate</modifier>
32 <modifier name="s.message_rr" op="+">actual_measurement_rate</modifier>
33 ...
34 </node>

Fig. 4. A portion of the ODML specification for the track manager and s tm relation nodes.

manager role. It has a number of agents defined by num agents, shown in line 4 of Fig-
ure 4, that represent the agents the role is bound to. In the DSN system, a track manager
role may migrate amongmany different agents over time. The magnitude num agents is
used here to represent this behavior, and modifiers distribute the characteristics accord-
ingly. Has-a relationships in the template may also be recursive or self-referential. This
facilitates the modeling of self-similar organizations, such as hierarchies, by making it
possible to represent organizations with varying numbers of levels.

A hollow-arrow edge represents an is-a relation, so normal agent is an instance of
agent. Shaded nodes, such as agent, are abstract and cannot be directly instantiated.
Thus, any node with a has-a relation with agent can instead substitute normal agent.
This indirection allows the model to represent alternative nodes with different capabili-
ties. For example, suppose there were two types of agents available: a normal agent, and
a “robust” agent that had better processing and computational powers but a higher cost.
To model this, a robust agent node is depicted that also has an is-a relation with agent,
and can be substituted for agent in the same way. A similar arrangement could model a
range of alternative roles that had different characteristics but could serve overlapping
purposes. For example, if different sensors types existed with different characteristics,
they would all have an is-a relationship with the common node sensor.

Figure 3 shows one particular instance created from the template in Figure 2b. Ver-
tices in the instance graph represent nodes, and a gray directed edge indicates the exis-
tence of a non-local modifier from the source node to a field in the target node. Black
directed edges represent has-a relationships, but unlike the template they have no mag-
nitude. Because this is a particular instance of the sensor network organization, the
decision points present in the template have all been decided. Therefore, where sector



might have the num sensors magnitude on its sensor relationship in the template, a dis-
crete value of two has been chosen for that field in this particular instance. Because of
this, each sector in the instance has a has-a relationship with two distinct sensors (S).
Normal agents (a), sector managers (SM), track managers (TM), and two kinds of track
manager relations (SM-TM and S-TM), are also present.

The heart of any ODML model exists in the expressions encoded within nodes’
fields. Each expression consists of a sequence of standard mathematical operations
(e.g.,+,÷, xy , etc.) and a limited number of predefined functions (e.g., min, max, sqrt,
round, forallavg, etc.). A selection of these fields, contained by the track manager and
s tm relation nodes, are shown in Figure 4. The former defines the track manager role,
while the latter represents the relationship that role has with sensors in the environment.
Each node’s field contains a mathematical equation, combining local and nonlocal in-
formation to calculate new local values. These expressions allow one to represent how
different characteristics of the node may be computed. For example, suppose we wish to
define how to calculate the bounds of a target that moves through the environment. This
will depend on the uncertainty the manager has in the target’s location, along with a fac-
tor modeling the range of the target’s influence. In our model, this area will be approxi-
mated as a circle; line 11 shows how the track manager’s target area constant is derived
from the target’s influence radius. The number of sensors presumed capable of sensing
the target is the average number that lie within this area. Therefore, although the num-
ber of desired sensors is independent of the environment, the actual sensors available
to the manager depends indirectly on the target area and sensor density, as shown in
line 16. The constant requested sensors is the minimum of the desired and available.

We maymodel the number of measurements provided to the track manager in a sim-
ilar way. The actual measurement rate constant from line 30 of the sensor-track man-
ager relationship is derived from the locally calculated requested measurement rate and
actual measurement ratio computed by the sensor node. This value is then used in a
pair of modifiers defined in lines 31 and 32 that specify for the track manager and sen-
sor the actual number of measurements that will be taken. This value will eventually be
used along with other characteristics to estimate the rms error the track manager will
exhibit. Variables and constraints present elsewhere in the model are similarly defined.
These descriptions give only the spirit of the calculation process, refer back to Figure 1
for a more rigorous definition of how these values are assimilated in practice.

Through modifiers or the assimilation of nonlocal values, the characteristics of one
node may affect or be affected by those of another. ODML models are generally con-
structed by designing individual nodes, and linking them through nonlocal dependen-
cies or modifiers. The resulting web of equations allows one to model important con-
cepts such as informationflow, control flow, and the effects of interactions. By propagat-
ing data through these expressions, the model can correctly predict the characteristics
of both individual nodes and the organization as a whole. Perhaps more importantly, it
also allows the model to predict characteristics not envisioned by the designer, as results
can flow through the graph in unanticipated ways.

Although space precludes providing a complete description, the model we have
created also captures a range of other characteristics of the DSN system, including the
physical and task environment, agent interactions, single and multiple role assignments,



Agents per Sector
0 5 10 15 20 25 30 35 40

M
es

sa
ge

s 
(1

00
0’

s)

0

0.5

1

1.5

2

2.5
Tracking Control Diurectory Service Results

Agents per Sector
0 5 10 15 20 25 30 35 40M

es
sa

ge
 V

ol
um

e 
St

an
da

rd
 D

ev
ia

tio
n

0

10

20

30

40

50

60

Agents per Sector
0 5 10 15 20 25 30 35 40

Av
er

ag
e 

RM
S 

Er
ro

r

0

1

2

3

4

5

(a) (b) (c)

Fig. 5. ODML DSN model predictions versus empirical observations for a) Message totals by
type, b) Messaging disparity and c) RMS error. Predicted lines are solid, empirical are dashed.

Agents per Sector
0 5 10 15 20 25 30 35 40

Av
er

ag
e 

To
ta

l

0

10

20

30

40

50

60

70

Role ’A’ Characteristics

Role Count
Results

Tracking Control
Directory Service

Agents per Sector
0 5 10 15 20 25 30 35 40

Av
er

ag
e 

To
ta

l
0

50

100

150

200

250

Role ’AM’ Characteristics

Role Count
Results

Tracking Control
Directory Service

(a) (b)

Fig. 6. Comparison of ODML DSN model’s role-specific predictions.

dynamic role assignment, heterogeneity, geographic coalitions, potential conflicts, and
both hard and soft constraints. Each was successfully modeled, suggesting that the rel-
atively modest set of primitives offered by ODML is capable of representing a wide
range of complex and relevant organizational factors.

One feature absent in the ODML language is a well-defined notion of time. Al-
though the DSN model captures rates of change and expected value, there is no explicit
representation of a varying timeline or change points present in ODML. This makes
ODML more tractable to work with by reducing the search space of organizations, but
can also make representing some characteristics more difficult. The absence of time
means that ODML instances generally represent a snapshot of a running system, or an
averaging or probabilistic distribution of effects as they would occur over some span
of time. If dynamic elements exist, they may be represented in that way, and can still
be used to guide organizational decisions. For example, one might identify that sensor
resources must be available to satisfy the needs of dynamically discovered targets. By
using an expected or worst-case value to quantify this need, or creating a distribution
that captures the range of possible targets, the organization can be designed appropri-
ately even though the specific context is uncertain at design time.

2.3 Evaluating the Representation

Previous work analyzed the effects that the DSN organization had on performance
across a range of metrics [12]. In those tests, the number of agents in each sector



was varied to demonstrate how changing the organization can have far-reaching con-
sequences. To gauge the representational efficacy of ODML, we have used the model
described in the previous section to create organizational instances that match those
prior test runs. Characteristics defined in the ODML model measure the different met-
rics that were originally tested, allowing us to calculate values that can be compared
against the empirical results. Values for these characteristics were obtained using the
get value function described in Figure 1. This both demonstrates how ODML can be
used as a predictive tool for different operating contexts, and evaluates how well a spe-
cific model was able to capture real-world behaviors. Ideally, the empirical and modeled
results will match, demonstrating that the model captures the complexity present in the
system and that predictions derived from the model are accurate.

The comparative results are shown in Figure 5. Note that the behavioral details be-
hind these results, which are presented in [12], are beyond the scope of this document.
In this context, we are exploring only the accuracy of the ODML model’s predictions.
Solid lines in the graphs represent the values predicted by the ODML model, while
dashed are those obtained through the previous empirical testing. Figure 5a shows
communication totals by type. Figure 5b shows the communication disparity, which
measures how well or poorly the communication load is distributed in the population.
Figure 5c shows the average RMS error of the tracking tasks. Although there are some
points of difference, in most cases the model does a good job predicting performance.
One difference can be seen in Figure 5b, where the predicted standard deviation under-
estimates the actual performance in most cases. This is a byproduct of our assumption
that all sensors were equally used. In the running system, sensors in the center of the
environment are used more than those at the edges, and will have different communi-
cation profiles because of it. Our model does not capture these geographic differences,
and will therefore generally have a lower estimated deviation.

To evaluate how our model captures finer-grained details, we analyzed the predicted
communication profiles of individual roles. A comparison of these role-specific behav-
iors can be seen in Figure 6. In addition to communication totals, these graphs also
include role counts, indicating how many agents take on the specified role. ’A’ repre-
sents the sensor role, ’M’ is the sector manager, while ’T’ is the track manager. ’AM’
describes agents acting as both sensors and sector managers. Predictions at this more
detailed level are also accurate. Many of the differences that do exist can be attributed
to geographic variances in a small sample size. For example, the 36- and 18-size scenar-
ios had only one or two sector managers. Their individual geographic locations would
likely affect performance, and these variations are not reflected in the predicted values.

3 Using ODML to Design Organizations

We have thus far argued that organizations can have a tangible effect on performance,
and it is therefore useful to be able to understand those effects when designing an agent
system. The previous section demonstrated ODML’s ability to correctly model and pre-
dict the global and local characteristics of particular organizational designs used in a
previously constructed, real-world application. Our ultimate goal, however, is to use
this capability to support an automated organizational design process. It is this objec-



tive that motivates the need for the detailed information that makes up an ODMLmodel.
In this section we will outline how this has been accomplished, by using ODML as the
foundation for a new design methodology. Space permits only a superficial description
of this work, a more detailed description will be given in a later publication.

Recall that ODML representations are divided into two distinct classes: templates
that encompasses the range of all possible organizations, and instances that are each
particular organizations derived from a template. The range of possible instances in a
template, defined by how its variables and has-a relations can be decided, constitutes an
organizational space that can be searched.

For example, one of the environment node’s variables expresses the range of possi-
ble sensors per sector, which controls the shape of part of the organization. Other uses
of variables might be to decide the relative priority of an agent’s tasks, or the amount
of time it is willing to wait for a response. Decisions made for the agent has-a relation-
ships in the three roles will determine the specific role-agent bindings that will be used.
Sequences of similar decisions could also decide if the manager role will be distributed,
or how tall a data processing hierarchy should be. A range of options are possible, and
different choices will result in different organizations. Constraints defined within nodes
have the opposite effect, by limiting the set of valid organizations to some subset of
those that are possible.

As with other characteristics, an ODML model can be used to capture the expected
utility of an organization by relating organizational characteristics with mathematical
expressions. For example, in the DSN model, utility is based on average rms, which is
derived from the rms error values of the tracker roles, which are themselves dependent
on many other factors. By defining a field with the semantics of “utility”, one can quan-
titatively evaluate and rank candidate organizations by comparing these fields’ values.
This provides a clear way to discriminate and decide among the alternatives that exist
in the template’s organizational space.

An automated organizational design process can be built upon these two concepts,
by leveraging the predicted characteristics to navigate the organizational space. Each
ODML model includes a description of the expected operating context, available re-
sources, etc., in addition to the possible organizational structures. Given such a model,
the most appropriate design (i.e. the one with maximal utility) can be found with an
appropriate search of the organizational space defined by the model.

The number of possible organizations grows exponentially with the number of de-
cisions that must be made in its construction. When organizations are being designed
for a large number of agents, or when the template is particularly flexible, the space of
possibilities can easily become intractable. Because of this, it is important to develop
techniques able to cope with such situations.

One technique that we have implemented bounds the search by exploiting hard con-
straints that exist in the system. The expression-based knowledge in the ODML model
makes this possible. Recall that all hard constraints must be satisfied in an organization
for it to be considered valid (see Equation 2). If a constraint has become unsatisfied
during the course of an organizational search, it may be reasonable to halt the search
before the organization is fully formed, and backtrack from that point. Two issues com-
plicate this process. The first is that constraints may be initially unsatisfied in a partially



instantiated structure, and only become satisfied later in the decision making process.
Additionally, because values may change nonmonotonically, a constraint can change
its state repeatedly during the instantiation process. Both cases may cause a backtrack
decision to be incorrect by missing valid organizations.

By analyzing the relationships that exist between fields, it is sometimes possible
to determine when choices may be safely ignored. For example, in the DSN domain a
single agent cannot control more than one sensor. Each agent has a sensors controlled
value, that is initially zero and later incremented using a modifier when it is assigned
to a sensor. This restriction is modeled by the hard constraint sensors controlled ≤ 1.
For a particular organization with n sensors and a available agents, there are a n pos-
sible assignments of agents to sensors. However, only

(
a
n

)
of them are valid according

to the sensors controlled constraint. If it were possible to detect when an invalid as-
signment had been made before all organizational decisions have been completed, one
could bound the search at that point and backtrack to where the constraint was satisfied.

Because role assignments are permanent, there is no decision that could be made
to reduce the number of sensors controlled by an agent. Therefore, it is reasonable and
correct to bound the search and backtrack if an agent is ever found to control more than
one sensor, because that constraint will never be satisfied. While a human expert might
intuitively know to avoid such impossible configurations, a generic search process is
too myopic to perceive this fact. However, the relationship that this knowledge is based
upon is represented in the organizational template, in that sensors controlled is affected
by only that one type of modifier from the sensor node, that increments the value by
a positive constant. It is possible to use this information to deduce the monotonically
increasing trend of sensors controlled, and backtrack when appropriate.

Our technique uses partial derivatives on a field’s dependent variables as a general
way of determining the trend of that field’s value. The trends for a constrained value
and the expression it is constrained by are determined by first recursively finding the
trends of all the fields they depend on. By taking the partial derivative with respect to
each field referenced by an expression, along with the trend of each field, the trend of
the original expression may be determined.With this information one can automatically
detect when constraints have become unsatisfiable, and correctly bound the search.

4 Conclusions

The ODML-based approach that we have presented in this paper is both general and
flexible enough to model a range of common organizational characteristics. It is partic-
ularly useful when describing features that have a quantitative character. To support this
claim, we have created and tested a complete model of a previously existing sensor net-
work framework. Other work has also used ODML to model a hierarchical information
retrieval service [13], as well as more abstract, theoretical problems such as SUBSET-
SUM and TILINGS. These models demonstrate ODML’s ability to accurately predict
the small- and large-grained behaviors of an organizationally-driven agent system.

We believe the detailed, quantitative knowledge embedded in ODML models is
relevant because it provides the foundation for prescriptive technologies, such as the
automated design service outlined above.We have described one strategy currently used



to cope with the potentially large organizational search space by inferring value trends
to find unsatisfiable constraints. Additional techniques are currently being developed.
Armed with such techniques, the full potential of ODML can be realized by using its
flexible but detailed representation of organizational possibilities to effectively design
agent organizations.

References

1. Corkill, D.D., Lander, S.E.: Diversity in Agent Organizations. Object Magazine 8 (1998)
41–47

2. Tambe, M., Adibi, J., Alonaizon, Y., Erdem, A., Kaminka, G.A., Marsella, S., Muslea, I.:
Building agent teams using an explicit teamwork model and learning. Artificial Intelligence
110 (1999) 215–239

3. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D., Podor-
ozhny, R., NagendraPrasad, M., Raja, A., Vincent, R., Xuan, P., Zhang, X.: Evolution of the
GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems 9 (2004) 87–143

4. Matson, E., DeLoach, S.A.: Autonomous organization-based adaptive information systems.
In: Proceedings of the IEEE International Conference on Knowledge Intensive Multiagent
Systems (KIMAS ’05). (2005)

5. Sierra, C., Sabater, J., Augusti, J., Garcia, P.: SADDE: Social agents design driven by equa-
tions. In Bergenti, F., Gleizes, M., Zambonelli, F., eds.: Methodologies and software engi-
neering for agent systems. Kluwer Academic Publishers (2004)

6. Dignum, V., Vazquez-Salceda, J., Dignum, F.: Omni: Introducing social structure, norms and
ontologies into agent organizations. In: Second International Workshop on Programming
Multi-Agent Systems at the Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems, New York, NY (2004) 91–102

7. Fox, M., Barbuceanu, M., Gruninger, M., Lin, J.: An Organizational Ontology for Enter-
prise Modeling. In Prietula, M.J., Carley, K.M., Gasser, L., eds.: Simulating Organizations:
Computational Models of Institutions and Groups. AAAI Press / MIT Press (1998) 131–152

8. Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J.,
Osborn, C.S., Bernstein, A., Herman, G., Klein, M., O’Donnell, E.: Tools for inventing
organizations: Toward a handbook of organizational processes. Management Science 45
(1999) 425–443

9. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Proceedings of the Brazilian
Symposium on Artificial Intelligence (SBIA’02). (2002) 118–128

10. Sims, M., Corkill, D., Lesser, V.: Separating Domain and Coordination in Multi-Agent Or-
ganizational Design and Instantiation. In: Proceedings of the International Conference on
Intelligent Agent Technology (IAT 2004), Beijing, China (2004)

11. Lesser, V., Ortiz, C., Tambe, M., eds.: Distributed Sensor Networks: A Multiagent Perspec-
tive (Edited book). Volume 9. Kluwer Academic Publishers (2003)

12. Horling, B., Mailler, R., Lesser, V.: A Case Study of Organizational Effects in a Distributed
Sensor Network. In: Proceedings of the International Conference on Intelligent Agent Tech-
nology (IAT 2004), Beijing, China (2004)

13. Horling, B., Lesser, V.: Quantitative Organizational Models for Large-Scale Agent Systems.
In: Proceedings of the International Workshop on Massively Multi-Agent Systems, Kyoto,
Japan (2004) 297–312


