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Abstract – In this paper we describe the CASA project,
an ambitious engineering research problem that is drawing
on the expertise of a range of disciplines to create a next-
generation meteorological sensor network. This new net-
work, named NetRad, will be distributed across a wide area,
and consist of a large number of sensors that are both collab-
orative in their behavior and adaptive in response to chang-
ing conditions. A closed-loop control scheme is needed to
efficiently and quickly manage the network’s complexity, but
several barriers exist which confound a simple, centralized
solution as the network scales. We will present a range of
distribution strategies to cope with this problem, and com-
pare and contrast the effects they will have on the system’s
performance.

1 INTRODUCTION

The recent explosion of interest in distributed sensor net-
works has lead to a wealth of research results in network
transport and routing protocols, energy-conscious algorithms
and data dissemination and storage techniques. However,
the majority of those results target just one class of sen-
sor network, namely those using small, power-limited sen-
sors (sometimes called motes) that communicate over wire-
less networks. In this paper, we will discuss the design of
a sensor network on the opposite end of the spectrum. The
sensors we consider are significant, fixed installations that
may consume large amounts of power and have considerable
bandwidth at their disposal. As we will show, this category
of sensor has important practical applications, and important
research questions remain to be answered when constructing
networks of such sensors.
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Figure 1 - A comparison with of the current NEXRAD model
(top) with the proposed NetRad model (bottom).

The particular domain that we are considering is the tracking
of meteorological phenomena, such as storm cells, precipita-
tion and tornadoes. The existing radar-based weather moni-
toring infrastructure in the United States consists primarily of
a collection of fixed, ground-based sensor installations known
as NEXRAD. Each installation consists of a single WSR-88D
S-band radar that has an effective range of between 230 and
345 kilometers, depending on the type phenomena being ob-
served [1]. At the time of this writing, there are 158 opera-
tional NEXRAD radar systems, primarily situated across the
continental US. Despite this relatively sparse covering, the
long range of the WSR-88D allows the sensor array to pro-
vide nearly complete coast-to-coast coverage.

This infrastructure has worked admirably for over 15 years,
however, it suffers from a significant drawback under certain
conditions. Although the long range of the WSR-88D is able
to compensate for the geographic sparsity of the NEXRAD
sensor array, in doing so it also creates blind spots due to
the curvature of the Earth. Consider the single sensor shown
at the top of Figure 1. Radar pulses emitted by the sensor
travel in a straight line. Because the Earth curves away from
the radar site, an increasing large gap is created between the
radar beam and the ground as we move away from the sensor.
As a result, nearly 80% of the volume below three kilometers
cannot be sensed [7]. Low-altitude phenomena, notably tor-
nadoes, occur in these blind spots, which increases the uncer-
tainty associated with discovery and limits the ability to sense
them. This degrades the ability of meteorologists and emer-
gency response workers to track and provide timely warnings
for such phenomena.



The solution we are currently working on augments the
NEXRAD array with a network of smaller, less expensive
sensors, collectively known as NetRad. As shown at the bot-
tom of Figure 1, a denser array of smaller-ranged sensors will
not be as affected by the Earth’s curvature. This reduces the
blind spot’s size and correspondingly increases the ability to
sense low-altitude phenomena. The redundant arrangement
of sensors can also help compensate for other existing line-
of-sight barriers, such as buildings, trees and local topogra-
phy.

The NetRad array offers several other advantages over the
existing NEXRAD system. These include the ability to take
more measurements, take more directed measurements and
take advantage of multiple, overlapping sensor regions to pro-
duce higher quality data. These will be covered in more detail
in Section 2. Initial deployments of the NetRad array will be
relatively small, consisting of between two and nine sensor
nodes, and targeted to areas such as the midwest where they
offer the most benefit. However, the more generic advantages
listed above motivate the use of NetRad in areas not necessar-
ily prone to severe low-altitude phenomena. Because of this,
we envision that NetRad arrays may grow significantly larger,
to hundreds or thousands of nodes.

It is on these larger arrays that we will devote most of our
attention in this paper. The NEXRAD approach, because it
operates in one of two modes and does not generally consider
areas of sensor overlap, can use direct human interaction as
a viable means of real-time control. The increased speed of
the NetRad sensors, coupled with their ability to take several
types of measurements and even collaborate with neighbor-
ing sensors makes controlling such an array in an effective
manner a more challenging problem. Although human input
will be used to create and weight sensing tasks, we believe
the primary control process must be mostly or completely
automated, creating a closed-loop cycle where observations
suggest actions that produce the next set of observations. As
we will discuss in the next section, several factors conspire to
make control even more difficult as the network scales, and
preclude a purely centralized architecture. A distributed ap-
proach that takes advantage of locality to reduce the size of
these problems without unduly affecting quality seems to be
a more viable strategy.

We will present an overview of our previous work in a simi-
lar sensor network domain in Section 3. In that network’s de-
sign, we demonstrated that partitioning the environment into
smaller, more manageable pieces can be an effective way of
organizing the distributed solution [5]. A distinguished sen-
sor in each partition serves as a local locus of control, as
shown in Figure 2, and the partition boundary itself can be
made permeable to data flows or control requests. By lim-
iting interactions to only those sensors within or adjacent to
the partition, the burden on this distinguished sensor is made
tractable and the control problem becomes more manageable.
Furthermore, because it is typically only this proximal set of
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Figure 2 - A range of potential partition layouts. Shaded
nodes represent partition controllers.

sensors which are actually relevant to the decision process in
question, this limitation should not significantly reduce the
quality of those decisions.

Given this template, one must decide how large the partitions
should be, where processing is to be performed, what data
will be transferred, and how nonlocal requests are prioritized,
among other things. Each of these characteristics can affect
and be affected by available resources, the required level of
quality, timing considerations and other local or global con-
straints [4]. In Section 4 we will present a range of different
distribution schemes based on this pattern, and compare and
contrast their ramifications.

2 DCAS

The NetRad array outlined above is being designed as part
of the Collaborative Adaptive Sensing of the Atmosphere
(CASA) project. It will also be one the first deployed exam-
ples of a distributed, collaborative and adaptive sensor net-
work (DCAS) [7]. Sensors in most existing weather track-
ing systems operate under human control, and are relatively
independent of one another; each covers their own area and
data fusion takes place outside the network itself. The Ne-
tRad array will consist of a network of relatively autonomous
sensors which cooperate, to both opportunistically share rel-
evant data and dynamically adapt control policies to meet the
needs of a changing environment. These new capabilities
make the DCAS approach challenging and rewarding from
both research and practical perspectives. Designing such a
system requires the expertise and talents from a wide range
of disciplines, including sensor design, meteorology and dis-
tributed computation. A collaboration of over 100 scientists,
researchers, students and industry partners have been assem-
bled in the CASA project to meet these needs. The design
outlined earlier and presented in more detail in this section is
a result of the combined efforts of many of those individuals,
as referenced at the end of this paper. Our main contribution
to this effort will be presented in Section 4.

To better understand the characteristics and ramifications of
the distribution schemes we will outline later, we will provide
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Figure 3 - A high level overview of the control process, along with the domain characteristics which influence it.

some additional insight into NetRad’s characteristics, begin-
ning with the sensors themselves. We define the time needed
for a radar to complete a desired series of measurements as
it’s cycle time. The sensors in NEXRAD operate in one of two
modes: clear air mode and precipitation mode, which differ
principally in the sensitivity of measurements that are taken.
In both cases, the radar performs a series of 360◦ azimuthal
sweeps to sense different elevations in the atmosphere, which
leads to a cycle time of between five and ten minutes. NetRad
radars will not be constrained to perform complete sweeps,
nor will they have to sense all levels of the atmosphere. This
allows the cycle time to be reduced to roughly 30 seconds, so
that more measurements can be taken over time.

NEXRAD-style sensors are not inherently confined to 360◦

sweeps, this limitation is due the fact that the mounting ap-
paratus and dish rotation mechanism were not engineered to
withstand the stresses caused by continuous, rapid changes
in rotational velocity. NetRad sensors will incorporate more
robust steering mechanisms, and will therefore be able to tar-
get one or several specific points in space during a single cy-
cle. This additional flexibility allows for more sophisticated
scan strategies to be employed. For example, one might de-
cide to ignore a particular area which is either uninteresting
or who’s characteristics are already known, so that the sensor
can devote additional sensing time to more uncertain or more
important areas.

A consequence of the targeted sensing technique is that some
regions will be sensed less frequently than others. When the
phenomena in question are confined to a relatively small area,
this does not generally cause problems. However, when phe-
nomena are dispersed, the sensor may be forced to choose
among targets if high quality measurements are required.
To cope with this problem, the NetRad array will be de-
signed with areas of redundant coverage, incorporating re-
gions where multiple sensors may take measurements. In the
case where one sensor cannot accomplish its goals by itself it
may be possible for other sensors to be employed in its stead.
Recent work in meteorological radar interpretation has also

demonstrated the benefits of measuring the same region with
two or more sensors concurrently. For example, the correct
angular component of wind velocity can be determined when
two relatively orthogonal sensors take measurements of the
same space. This capability can be useful when detecting tor-
nadoes, since they exhibit particular and recognizable wind
shear patterns. Other research has shown that more accurate
compensation values can be determined for sensor attenua-
tion and clutter if data from multiple sensors are used [2]. By
overlapping the sensors’ coverage areas, the array can better
adapt to demanding scenarios and produce qualitatively dif-
ferent data than a single radar by itself.

Figure 3 gives a high-level view of how the NetRad control
process; for more additional details see [9]. Data arrives from
the radars and predictions are made, both of which are in-
corporated into a data repository. This data is then analyzed,
and a host of domain-specific characteristics are used to as-
sign a baseline utility to particular areas. Areas of common
utility are then clustered into discrete tasks for consideration.
A second process, which uses another set of domain-specific
criteria, selects the tasks to be pursued, based on their relative
importance and the capability of the sensor array to service
them. These tasks are then delivered to the relevant sensors,
which produce the data to be used on the next cycle.

The flow depicted in Figure 3 is far from comprehensive, but
it does illustrate several places where a large scale NetRad
array will encounter obstacles. First is the sheer volume of
data that will be created by the array. The raw output from
a single sensor can produce up to 100 Mbs of data. A more
succinct, but still useful version of the same output gener-
ates only 2 Mbs. However, because that volume will scale
linearly with the number of sensors, it quickly becomes im-
practical to route all sensor data to one location. Even if were
possible to do so, the amount of data would likely overwhelm
the meteorological algorithms to the degree that the desired
30 second cycle time would be unattainable. The compo-
nent with the most constraining complexity performance is
the selection process, which must optimize the allocation of



sensors to tasks. Consider all the flexibility and adaptability
outlined above. These capabilities translate to an enormous
number of alternatives at the task selection level, each with
potentially different performance characteristics and utility.
In fact, the number of alternative configurations grows expo-
nentially with both the number of sensors and the number of
tasks. Finding an optimal assignment of tasks quickly be-
comes intractable as the size of the network grows, and even
a satisfactory solution can be elusive under demanding con-
ditions.

Fortunately, we do not believe it is necessary to centralize all
data and decision making at a single location to obtain reason-
able performance. This optimization problem exhibits spatial
locality, because distant information should not be required
to make an effective local decision. For example, a detailed
view of the weather in the far western part of a state is nor-
mally not needed to decide an appropriate course of action for
a sensor in the far eastern part of that state. Because of this,
it should be possible to distribute the problem in a way that
reduces the scope of the optimization problem to manageable
levels, without a significant reduction in system utility. De-
ciding how to effectively distribute the problem is a challenge
of its own, which we will begin to address in the next two sec-
tions.

3 BACKGROUND

Prior to this current work on CASA, our research laboratory
participated in a four year, DARPA-funded effort known as
the ANTs project (Autonomous Negotiating Teams) [6]. Like
CASA, the working environment of ANTs consists of an ar-
ray of Doppler sensors, which are used to track multiple, mo-
bile targets. In fact, many of the challenges and assumptions
of the CASA project are similar to those we experienced in
ANTs, including the need to cope with mounting complex-
ity as the network scales. Our initial attempt at addressing
CASA’s distribution problem will be to build upon those ex-
periences, by exploring the approaches used in ANTs, and
determining if they remain viable within the CASA domain.

Although the sensors used in ANTs are much smaller and less
expensive than those we described in Section 2 (for example
their range is measured in feet, not miles), they still share sev-
eral other important characteristics. Like CASA, the ANTs
sensors have fixed locations, a wired power source, and a fair
amount of local processing power. Each sensor has a process
that runs on the local processor that is responsible for mak-
ing decisions and controlling the sensor. We will refer to this
local process as an agent.

The sensors used in ANTs can return only simple ampli-
tude and frequency values, so no individual sensor is ca-
pable of precisely tracking a target by itself. Instead, the
agents that control the sensors must collaborate in some way
to achieve their common goal. The sensors must therefore

be organized and coordinated in a manner that permits their
measurements to be used for triangulation, and geographi-
cally distinct groups of such coordinated sensors used to pro-
duce a continuous track. More measurements, and particu-
larly more measurements taken in groups at approximately
the same time, will lead to better triangulation and a higher
resolution track. Additional hurdles include the need to scale
to hundreds or thousands of sensor platforms and the ability
to operate within a real time, uncertain environment. As with
CASA, closed-loop control is necessary to make control de-
cisions in a timely manner. A more detailed description of
the entire framework and the environment it operates in can
be found in [6].

Unlike the CASA domain, the ANTs sensors are connected
with a FM-based wireless network that is divided into eight
communication channels. Each channel has limited capacity,
and agents may communicate over only one channel at a time.
The provided transport protocols are unreliable, and conges-
tion can quickly result in significant losses of messages.

Because the effective range of the ANTs sensors is relatively
small, it is important to have a low cycle time, to ensure a rea-
sonable number of measurements can be taken. For example,
it is not uncommon for a target to enter and leave a sensor’s
viewable area in less than ten seconds. A cycle time of one
second is used, which in practice results in a tight, but not
onerous constraint on computation. This is in contrast to the
DCAS architecture, where computational complexity appears
to be the most limiting factor. In ANTs, limits on communi-
cation proved dominant, and much of our solution is designed
to cope with this barrier. The question then, is whether that
solution, devised for a somewhat different purpose, can be
effective under a new set of conditions.

4 DISTRIBUTION

The concept of organizational design is used in many differ-
ent fields, and generally refers to how members of a society
act and relate with one another. This is also true of distributed
and multi-agent systems, where the organizational design of
a system can include a description of what types of agents
exist in the environment, what roles they take on, and how
they interact with one another. The objectives of a particular
design will depend on the desired solution characteristics, so
for different problems one might specify organizations which
aim toward scalability, reliability, speed, or efficiency, among
other things. The questions we are attempting to answer in
CASA, such as where computational responsibilities lie, how
data is routed through the network, and how individual sen-
sors behave, can therefore be framed as an organizational de-
sign problem.

The organizational design used in our ANTs system is in-
tended to address the scalability problem, by exploiting spa-
tial locality and organizational constraints to impose limits on



Figure 4 - An example ANTs sensor organization. Each di-
vided circle represents a sensor, with the center color indicat-
ing its role. Arrow represent communication.

how far classes of both control and data messages propagate.
Our design uses environmental partitioning to create local-
ized regions of interaction, called sectors, as shown in Figure
4. Within these sectors, agents take on different and poten-
tially multiple responsibilities which dictate their individual
behaviors. The number of sensors in these sectors affects
how efficient the system is, as large regions may create un-
welcome disparities in communicative or processor load, and
small regions make it difficult to quickly send and receive
the necessary information to make decisions. We have shown
how sector size affects the overall communication load, load
disparity between agents, average communication distance,
and the quality of tracking in the system [4]. By varying just
this one aspect of the organization, we demonstrated that the
performance of the system can be greatly influenced by the
organization’s design parameters.

This partitioning and role assignment strategy appears to be
a viable option for the CASA domain as well. Under such a
design, a logical partitioning arrangement would be imposed
over the sensor network. Within each partition, the agents
controlling the sensors could take on particular roles. Parti-
tions act as semi-permeable barriers, causing agents to limit
the types of interactions they have with agents and sensors
outside their own partition. An extreme example of such a
configuration allows no interactions at all. Each partition con-
tains an isolated fragment of the sensor network, operating
independently of its neighbors. A single distinguished node,
which we shall call the manager, acts as the locus of control,
collecting data and assigning tasks to sensors in the sector.
By artificially limiting the geographic area in this way, the
number of sensors and tasks will be similarly reduced. This
will constrain both the computational load incurred by the op-
timization process and the magnitude of sensor data that must
be handled.

As with ANTs, selecting the appropriate design for the DCAS
array will depend on identifying relevant characteristics, and
determining how they are affected by different organizations.
Some of these characteristics are the same as those observed

in ANTs, such as communication and computational loads.
Others, such as the utility-affecting factors from Figure 3 are
more domain-specific. We itemize and expand on a subset of
these below:

Computational Load This represents the amount of pro-
cessing work that must be performed by agents. Both
average and individual loads are relevant.

Communication Load The amount of data which must be
sent or received by the agents.

Control Quality The quality of task optimization decisions
that can be made by the agents. Fewer available sen-
sors reduces the number of ways tasks can be assigned,
which can limit the quality attainable by the control pro-
cess.

Data Availability The percentage of the total amount of rel-
evant data that is available when and where it is needed.

Capability Availability The availability of relevant sensor
or processing capabilities. For example, a sensor might
be needed to take a measurement in a particular area.
Capabilities therefore include location as well as any
special functionality (in the case of a heterogeneous sen-
sor network).

In each of these characteristics, we would compare the or-
ganizations performance against some ideal or oracle when
possible. For example, control quality would be compared to
optimal control decisions made by an equivalent, theoretical
sensor network that is free of resource or time constraints. So,
if the optimal decision in a scenario is to use sensors A and B,
but the design causes only A to be accessible, we have sacri-
ficed the control quality. Similarly, if data flow is somehow
constrained, we would compare the limitation against what
would be available in that theoretical network. The organi-
zation being compared is then evaluated on the magnitude,
importance, and frequency of those differences.

Other important factors exist that are derivations of those in
the list above. For example, the average time needed to dis-
cover new phenomena by the system is dependent on the con-
trol quality and the capability availability. Similarly, the ac-
curacy of analyses and predictions is dependent on the data
availability and computational load. Ideally, we would like
to devise a model or set of tests which evaluates a funda-
mental set of characteristics. The quality of derivative fac-
tors could then be estimated from those characteristics, and a
utility function incorporating all these values could assess the
overall performance of that organization. This process will
be discussed briefly in Section 5.

4.1 Strict Partitions

We will refer to the rigid partitioning example we outlined
above as strict partitioning. In this design, there is just one



Figure 5 - Data-permeable partitions, either manager initi-
ated (left) or sensor initiated (right).

parameter - the number of sensors to include in each sector.
No communication or other forms of interaction take place
across sector boundaries. This strategy has almost ideal scal-
ability characteristics. Because each sector is independent,
if an appropriate size can be determined for one sector, the
array as a whole can grow to an arbitrary size by simply di-
viding the sensor population accordingly. As shown earlier
in Figure 2, there are a range of possible sector sizes, from
just a single sensor, to the size of the entire array. The single-
sensor design is similar to the current NEXRAD organization.
Each sensor is an island, operating without regard to its neigh-
bors. The all-sensor design represents our baseline approach,
where anyone can communicate with everyone.

These two approaches provide good examples of the trade-
offs we are concerned with. The single-sensor design has
very good load characteristics, but limiting the access to just
one sensor results in poor control quality, data and capabil-
ity availability. The all-sensor design has very good control
quality and availability, but as we have shown, the compu-
tational and communication burden on the manager will be
too high. This matches our experience with the ANTs sensor
array, where larger sectors correlated with both better RMS
error rates and worse load distribution [4].

Without constructing an accurate model, or performing em-
pirical tests, it is hard to estimate just how much the lack
of interaction caused by the boundary will affect the perfor-
mance of the system. However, it is clear that those areas
near the edge will not be able to take advantage of one of the
principle benefits of the NetRad design, namely the ability to
sense a region with multiple radars. This will limit the types
of measurements that can be taken in those areas, and cre-
ate a more difficult sensor allocation problem by ignoring the
built-in redundancy. We will continue by exploring how these
deficiencies can be addressed.

4.2 Data-Permeable Partitions

One possible strategy is to make the partition boundaries per-
meable to data flows. By this we mean that some sensor data
will be exchanged among sensors. Data could either be auto-
matically pushed to neighboring sectors, or opportunistically
pulled when the need arises. As shown in Figure 5, this ar-
rangement can route data in two different ways. One option is

Figure 6 - Control-permeable partitions, either manager di-
rected (left) or sensor directed (right).

to take advantage of the fact that the local manager is already
centralizing the sector’s data, and have it serve as the source.
The drawback to this approach is the manager already suffers
from a significant communication load, which is exacerbated
by this design. The other option is to directly involve the sen-
sor(s) producing the data, which avoids loading the manager
but creates a larger query pool in the case the pull mechanism
is used. Conversely, a push mechanism would require the
agent at each sensor to locally determine nonlocal relevance
or importance, which may not always be possible.

Because no control messages are passed between sectors, any
data which is shared through this scheme is undirected. The
recipient will have had no influence on the original measure-
ment type or direction. In a pull-based system it may request
measurements of only a particular type, but sending that re-
quest will not affect the remote manager’s task optimization
process. So, to a certain extent, this mechanism requires some
amount of luck for the correct data to be produced and then
shared. That said, we can expect that some emergent behav-
iors may make this technique more viable than it initially ap-
pears. For example, if an interesting phenomena is occurring
near a partition border, it is likely that both managers will as-
sign that phenomena a high utility. Therefore, it is also likely
that both managers will choose to sense in that area, so that
synergistic measurements will taken and potentially shared.
This raises this design’s data availability characteristic. How-
ever, because the two managers do not coordinate these activ-
ities, they cannot expect that this cooccurrence will happen,
and the control quality and capability availability will remain
compromised.

4.3 Control-Permeable Partitions

The natural next step in this process is to make the parti-
tion permeable to control messages. As with data flow, this
can occur in two ways, as seen in Figure 6. In the manager
directed approach, one manager would contact another, re-
questing the use of a particular sensor, or requesting a mea-
surement in a particular area. In the sensor directed approach,
the manager would contact a particular sensor directly. This
latter option has rather profound affects on the control cy-
cle as we have described it. In this design, individual sen-
sors would regain some of the autonomy they had previously
ceded to their local manager. Upon receipt of conflicting



tasks, the sensor would decide locally which it would ser-
vice, and potentially how it would service them. Although
this does simplify the control process of the managers some-
what, it does so at the expense of quality, since an individual
sensor will likely not have the context necessary to always
make the globally correct decision. Sensing tasks could go
unsatisfied, which would reduce the predictability of the sys-
tem. This does not seem to be a viable strategy.

The manager directed approach avoids this problem by allow-
ing individual managers to retain control of their local sen-
sors. However, their individual control processes are made
more complicated, because this design has the same effect
as increasing the size of the sector so that neighboring sec-
tors overlap. When the manager has the option of requesting
measurements from its neighbors, its partition has in some
ways grown in size to incorporate neighboring sensors, and
the number of alternative configurations it must consider in-
creases accordingly. Moreover, some of these configurations
now have some probability of failure, because requesting a
remote measurement does not guarantee it will actually be
taken. One could incorporate a request-commit phase, where
the target manager agrees or declines to perform the requested
task, but the communication delay will add delays to an al-
ready time-bounded process. Finally, when conflicts do arise
between local and nonlocal tasks, it is not always straightfor-
ward to choose among them. For example, one could simply
resolve conflict by selecting the task with the higher expected
utility. However, if that task could be accomplished by an-
other sector at slightly reduced utility without conflict, that
may be the globally better option. Maintaining or obtaining
the state necessary to correctly make that decision adds fur-
ther overhead.

The benefit to this approach is that activities requiring multi-
ple sensors, or tasks that could benefit from redundancy, can
now be accommodated. This increases the control quality,
and data and capability availability, with the drawbacks out-
lined above. It is possible to use this design, but to ignore or
heuristically solve the more complex aspects (such as seeking
globally correct decisions, ensuring success for all tasks). In
this case, it is unclear how much performance will degrade,
particularly in pathological scenarios. Again, it is hard to pre-
cisely predict how much these additions will improve the per-
formance of the system in the absence of real-world data.

4.4 Dynamic Partitions

To conclude our design alternatives, we will mention two
ways in which the partitioning process can be made dynamic
and adaptive. The first, shown on the left in Figure 7, is to
incorporate a form of roaming partition. In this design, non-
critical phenomena are sensed using one of the partitioning
strategies outlined above. However, when a particularly im-
portant object is detected, a partition is dynamically created
to encompass it. A new manager is also dynamically selected
to control the sensors in that new partition. This manager’s

Figure 7 - Dynamic partitions, either roaming (left) or resiz-
able (right).

tasks will take precedence over those of the existing man-
agers. As the phenomena moves, the roving sector follows it,
maintaining a continuous track over its lifetime. The organi-
zational design implemented by our ANTs system incorpo-
rated a variant of this approach. The highlighted sensors in
the center of Figure 4 represent such a roaming sector. This
strategy avoids the partition boundary problems, as the sector
is assumed to always encompass the sensors that are needed,
and therefore the control quality and capability availability
characteristics are good. If the size of the sector can be kept
to a reasonable level, this approach also has good computa-
tional and communication loads. The drawback to this design
lies in the additional complexity needed to implement it. In
addition, it requires a conflict resolution strategy, since mul-
tiple roaming sectors may intersect and contend for the same
sensors.

On the right side of Figure 7 is an example of resizable parti-
tions. In this design, sectors may grow and shrink in response
to demand. For example, instead of making a single request
to use a particular sensor, a manager could request to transfer
that sensor to its control. Like the roaming strategy, this tech-
nique can avoid the partition boundary problem by effectively
moving the boundary away from the phenomena. However,
deciding when it is appropriate to both request and relinquish
control of a sensor is a complex problem, with many trade-
offs that can be difficult to gauge in a timely manner. This
strategy can also suffer from conflicts when two or more man-
agers desire the same sensor. This strategy has been explored
in greater detail in [8].

5 CONCLUSION

In this paper we have explored a range of different organi-
zational possibilities for a DCAS-style sensor network. The
alternatives presented are by no means exhaustive, and com-
pletely different organizational paradigms may ultimately re-
place or augment the partitioning approach. For example,
a data distribution hierarchy that incorporates aggregation
and summarization capabilities might help manage large data
flows, while coexisting with a partitioned organization.

Although in the previous section we compared and contrasted
the qualitative characteristics of the different approaches, we



feel that a quantitative approach is needed to more rigorously
evaluate candidate designs in context. To this end, we have
developed a domain-independent organizational design mod-
eling language, able to capture quantitative details of organi-
zations and environments, and use that information to predict
runtime characteristics [3]. Using such a tool, one can de-
termine, for example, what the appropriate sector size is for a
given design, and how information and control decisions flow
through the organization to produce measurements or create
load imbalances. This type of model can define primary and
derivative factors such as those listed in Section 4, how they
interact, and how they combine to determine a utility value for
the organization as a whole. Given this value, one can then
rank and select the most appropriate organizational design.
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