Using ODML to Model Multi-Agent Organizations *

Bryan Horling and Victor Lesser
University of Massachusetts
Ambherst, MA 01003-9264

{bhorling,lesser } @cs.umass.edu

Abstract

In this paper, we introduce a domain-independent orga-
nizational design representation able to model and predict
the quantitative performance characteristics of agent orga-
nizations. This representation, capable of capturing a wide
range of multi-agent behaviors, can support the selection of
an appropriate design given a particular operational con-
text. We demonstrate the capabilities and efficacy of this
language by comparing a range of predicted metrics to em-
pirical results from a real-world system.

1. Introduction

Any real-world system must be tailored to the environ-
ment in which it exists if it is to make effective use of the
resources and flexibility available to it. In this paper, we
explore the possibility of such tailoring through the sys-
tem’s organizational design. The notion of an organization
is used in many different fields, and generally refers to how
members of a society act and relate with one another. In
multi-agent systems the organizational design can specify
the types of agents, what roles they take on, and how they
act and interact. This additional structure becomes increas-
ingly important as the system scales. Imagine how difficult
it would be for a large group of humans to function if indi-
viduals lacked job descriptions and long-term relationships.
Agent systems face similar challenges, and can derive sim-
ilar benefits from an explicit organizational design.

Consider the problem of designing a solution for a com-
plex, resource-bounded domain, such as a distributed track-
ing system. The system would consist of an array of agent-
controlled sensors deployed to track mobile targets in an

% This material is based upon work supported in part by the National
Science Foundation Engineering Research Centers Program under
NSF Award No. EEC-0313747. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.

environment. Assume that the sensor nodes must collabo-
rate in some way to be successful. Given this, a designer
must determine a way to structure the agents’ behaviors so
that tracking may be accomplished. One strategy would del-
egate a single agent to be the manager of the entire sensor
network. The manager would decide when, where and how
each sensor should take measurements, and then process the
resulting data to estimate the targets’ positions. This spec-
ification constitutes a rudimentary organizational design. It
indicates what roles agents take on, who they interact with,
and where decision making authority is located.

Under some conditions, this simple solution will perform
optimally, because the manager has an omniscient view of
the entire network that can be used to find the best assign-
ment of sensing tasks. However, under real world condi-
tions, where resources are limited, communication and data
processing takes time, and the number of sensors can be
arbitrarily large, the weaknesses of this approach quickly
become apparent. A different strategy, in the form of a
different organizational design, can compensate for these
more challenging conditions. For example, we might dis-
tribute the manager role among multiple different agents, to
more evenly balance the communication and computational
loads. We might also create an information dissemination
hierarchy among the agents that summarizes and propagates
measurement data, to use the available bandwidth more ef-
ficiently. However, distributing the role can lead to conflicts
and lower utility, because no single agent necessarily has the
appropriate local context to make the right decision. Simi-
larly, a hierarchical summarization process might introduce
unwanted latency and imprecision.

Implicit in this example is the idea that different orga-
nizations will affect performance in different ways, either
helping or hindering depending on the situation. Intuitively,
changing the manner in which agents interact or the pattern
that interactions take on can change behavior at both global
and local levels. The objectives of a particular design will
depend on the desired solution characteristics, so for differ-
ent problems one might specify organizations which aim
toward scalability, reliability, speed, or efficiency, among

other things. Confounding the search for such a design is
the fact that many potentially important characteristics can
be subtle, not readily identified as the system is being de-
veloped, or have complex interactions.

It is our belief that understanding the fundamental causes
of these characteristics and developing accurate models of
their effects are both critical to selecting an appropriate de-
sign. To address this need, we will present a new, domain-
independent language designed to capture organizational
information in a single predictive structure. This Organi-
zational Design Modeling Language (ODML) incorporates
quantitative information in the form of mathematical ex-
pressions that are used to predict organizational characteris-
tics. Succinct representations of the range of organizational
possibilities can be defined with ODML, using local knowl-
edge to automatically predict the behavior of the global sys-
tem. This representation addresses the needs outlined above
by creating a computational model that is able to uncover
the subtle effects of interactions.

Section 2 will define the ODML language. Section 3 will
discuss how ODML models are created, while Section 4
will validate the model’s accuracy. Our ultimate objective,
to use such models to automatically select the appropriate
organizational design for a particular operational context, is
outlined in Section 5.

2. Representing Organizations

An organizational model, as we envision it, serves in sev-
eral different capacities. At design time, it should enable the
evaluation of not just a single organizational instance, but an
entire family of organizational possibilities. At runtime, it
should accurately describe the current organization. In both
cases, the model must be sufficiently concrete such that one
can predict the organization’s effectiveness, and rank alter-
natives according to specified criteria. Below, we enumerate
the capabilities and characteristics the modeling language
should possess to satisfy these requirements:

1. Represent a particular organizational structure.
This would include roles, interactions and associa-
tions (e.g., coalitions or teams). Different flows in
the organization, such as communication and re-
sources, should be representable.

2. Represent the range of organizational possibilities, by
identifying general classes of organizations and the pa-
rameters which influence their behavior. Different ele-
ments should be able to be modeled at different levels
of abstraction. Identify which characteristics are under
deliberate control, and which are derived from exter-
nal factors.

3. Enable concrete performance predictions and allow
deductive analysis by quantitatively describing the rel-

evant characteristics exhibited by the structure, the
manner in which those characteristics interact, and the
constraints they are affected by. For example, both
communication overhead and the effect that overhead
has on work load should be representable.

Many different organizational representation schemes
have been developed by researchers [1, 9, 2, 3, 8, 6, 10].
Nearly all these representations can satisfy the first two
points, but none are able to incorporate quantitative knowl-
edge in such as way that concrete predictions can be made
directly from the model itself. In this section we describe a
new formalism called ODML that explores how such infor-
mation can be modeled and used.

Most existing representations fall into one of two cate-
gories: either they represent a wide range of organizational
characteristics abstractly, or they can capture a smaller set
of characteristics concretely. The former are usually good
at representing what exists or could exist, but cannot com-
pare alternatives in a quantitative way. The latter may con-
tain quantitative knowledge, but have difficulty relating that
knowledge to specific organizational concepts, mitigating
their usefulness if one is hoping to understand the effects a
particular organizational design will have.

For example, OMNI [2] and MOISE *[6] can each cap-
ture a greater variety of organizational concepts than
ODML, but do so in a largely qualitative way. Con-
versely, both SADDE [9] and MIT’s Process Handbook [8]
can incorporate arbitrary quantitative information, but nei-
ther couples this information with the organizational
structure in a way that enables one to deduce how the de-
sign characteristics affect one another. The representation
created by Sims [10] does incorporate quantitative infor-
mation, but lacks the innate ability to compare alternatives
based solely on this information. Ultimately, each rep-
resentation has its strengths, and ODML’s goal is not to
supplant these works — but to demonstrate another ap-
proach that makes different tradeoffs.

The formal definition of an ODML femplate specifica-
tion O is given below. Section 3 will give examples of how
these features are used in practice.

O = {N,HC K MV}
N = {No,Ni,...,N,} (1)
Ni = {t7p7I7H7CaK7M7V}

The bulk of the ODML template specification is made up
of the set N of nodes, each of which corresponds to a par-
ticular physical or logical entity that might exist in the orga-
nization. For example, in the sensor network scenario there
would be nodes corresponding to managers, relationships,
agents and the environment, among other things. Each node
N; contains a number of elements, defined below:

t The node’s type. This label must be unique within the set
of nodes that make up the organization.
N.t = (symbol)
YVN.MeN, Nt=Mts N=M

p An ordered list of parameters that must be passed to the
node’s template when an instance of the node is cre-
ated. These are analogous to the parameters one might
pass to an object constructor. Each parameter is speci-
fied with a type and local name.

N.p = [(symbol, type), . ..]

I The set of node types that this node has an is-a relation
with using conventional object-oriented inheritance se-
mantics. If we assume that a node’s I = {a, b}, an in-
stance of the node will also be an instance of ¢ and b,
possessing the characteristics of all three node types.
Is-a relationships cannot be cyclic, i.e., N cannot have
itself as a decedent.

N.I = {{type),...}
Vie NI,N#iAN¢&ilA..

H The set of node types that this node has a has-a rela-
tion with. If we assume that H = {a,b}, an instance
of the node will possess instances of both a and b. It
is through this type of relationship that the primary or-
ganizational decomposition is formed. The magnitude
specifies the number of instances connected by the re-
lationship.

N.H = {{symbol, type, magnitude), . ..]
magnitude = (symbol)

C A set of constants that represent quantified character-
istics associated with the node. Constants may be de-
fined with numeric constants (e.g., 42), or mathemati-
cal expressions (e.g., x + y).

N.C = {(symbol, expression),...}

K A setof constraints. Also defined with expressions, an
organization is considered valid if all of its constraints
are satisfied.

N.K = {(symbol, op, expression), ...}
op €{<,>, <, 2, =#}

M A set of modifiers that can affect (e.g., mathemati-
cally change) a value contained by a node. Multiple
modifiers may affect the same value. Modifiers model
flows and interactions by allowing the characteristics
of one node to affect those of another.

N.M = {(symbol, op, expression), ...}
op € {+,—, x,+}

V' A set of variables, representing decisions that must be
made when the node is instantiated. Each variable is
associated with a range of values it can take on. For ex-
ample, a node might have a variable z that could take
any one value in the set [2.7,y2, w2].

N.V = {(symbol, {expression,...}),...}

symbol refers to a user-defined string, similar to a con-
ventional variable name. These typically describe or refer to
a particular characteristic. type is the type name of some de-
fined node, so AN € N such that N.t = type. expression
is an arbitrary algebraic expression, possibly referencing
constants, symbols and function calls. Expressions support
floating point values, lists of floating point values, and dis-
crete probabilistic distributions. Collectively, we refer to
C, K, M,V as anode’s fields, and the quantitative state of
a field as its value.

At first glance, the ODML language may appear to be de-
void of almost all the organizational concepts that are pro-
vided by typical organizational representations. This is par-
tially true, and by design. Instead of directly incorporating
the usual high-level organizational components, such as hi-
erarchies, roles, agents, etc., ODML provides a set of rel-
atively low-level primitives by which such structures can
be defined. For example, a node with the user-defined type
manager, having a has-a relationship with another node of
type agent could embody a role-agent relationship. A se-
quence of has-a relationships between nodes could indi-
cate a hierarchy. Although the high-level semantics for these
nodes may only be implicit, the concrete characteristics and
design ramifications are still directly and quantitatively cap-
tured by the nodes’ fields. We feel that this approach can
lead to an increased diversity of representable structures, by
avoiding the assumptions and inevitable restrictions that can
accompany frameworks with higher-level semantics.

ODML instances are quite similar to ODML templates.
The key difference is that where a template is a descrip-
tion of what could be, an instance is a description of what
is. Where a template might specify that a manager role can
be assigned to a single agent or distributed across multi-
ple agent nodes, an instance would indicate that manager 1
is distributed across agent_5 and agent_7, and so on.

The formal definition of an instance is nearly identical
to that given in Equation 1, so we will not repeat it here.
The differences principally relate to the replacement of node
types in the template with instances of those nodes in the or-
ganizational instance. Thus, the set \V is the set of node in-
stances, whose individual types no longer need be unique.
Both is-a (N.I) and has-a (IN.H) relationships no longer
reference node types, but particular node instances in N
Finally, the set p is filled with appropriate values from each
node’s parent, and the variable set V' for each node is re-
placed by a single item from that variable’s range.

It is the ability to use an ODML model to deduce quan-
titative values for node characteristics that sets it apart from
other representations. The manner in which these values
are determined for an instance node’s characteristics is de-
fined by the pseudocode in Figure 1. This shows how vari-
ous sources of information, non-local data and interrelation-
ships interact to create the features of a particular node. It is

get_value(symbol s)

r <« null
if (s is of the form s1.55)

n <« get_value(s;)

r «— n.get_value(ss)
else if (3 ¢ € C | c.symbol = s)

r «— evaluate(c.expression)

elseif (3 i € H| h.symbol = s)r — h
else if (3 v € V| v.symbol = s)

r «— evaluate(v.expression)
elseif (3p € p | p.symbol =s)r —p
else forall i € 1

r <+ i.get_value(s)

if (r # null) break
forallm e M

if (m.symbol = s)

r «<— r m.op evaluate(m.expression)

forall n ¢ \/

forall m € n.M

if (m.symbol is of the form s;.52)
AN(s1=N)NA(s2=15)
r «— r m.op n.evaluate(m.expression)

return r

evaluate(expression e)
forall s € { non—function symbols referenced by e }
Vs <— get_value(s)
substitute all occurrences of s € e with v
r < mathematical result of e
return r

Figure 1. The get_value function, used to
quantify the characteristics of a node.

through the execution of this function on a particular sym-
bol that predictions are made of the design’s performance.
For example, agent.get value(total load) would return a
prediction of agent’s total load.

The validity of candidate organizational instance O, de-
rived from the satisfaction of the constraints within it, is de-
fined as:

O isvalidiff VN € ON, N is valid)
N isvalidiff Vk e N.K,
(N.get_walue(k.symbol) k.op k.expression) = true

3. Modeling Organizations

A working system that was developed for a distributed
sensor network (DSN) domain will be used to motivate and

demonstrate the capabilities of ODML. The DSN frame-
work was designed prior to the existence of ODML, making
it an ideal platform to gauge ODML’s ability to accurately
depict the characteristics of a real-world system. The sys-
tem employs an explicit organizational design that is com-
posed of several different elements. This begins by dividing
the environment into a series of logical sectors, which are
intended to explicitly limit the interactions needed between
sensors. There are also three types of responsibilities, or
roles, that agents may take on: sector manager, track man-
ager and sensor. Each role specifies behaviors, responsibil-
ities and interactions that must be enacted by the agent it is
assigned to. Agents can take on multiple roles. The architec-
ture, comprising roughly 40,000 lines of Java code and de-
scribed in detail in [7], has been demonstrated in both sim-
ulation and real-world experiments.

We will proceed with an overview of how an ODML
model was produced for this system. For clarity, the names
of nodes and fields will be represented in italics. A graphi-
cal depiction of some aspects of the ODML DSN template
can be seen in Figure 2a. Vertices in the graph, such as sen-
sor and track_manager, correspond to nodes in the ODML
model. Nodes can represent both tangible (e.g. agent) and
intangible (e.g. sector) entities. Space precludes showing
the complete specification, which is roughly 300 lines long.

Edges in the graph show relations between nodes. Those
with a solid arrow represent has-a relations, and the cor-
responding label indicates the relation’s magnitude. For
example, consider the track_manager node, which corre-
sponds to the DSN’s track manager role. It has a number
of agents defined by num _agents, modeled by the has-a re-
lationship between the two nodes in Figure 2a, that repre-
sent the agents the role is bound to. In the DSN system,
a track manager role may migrate among different agents
over time. The magnitude num _agents is used to represent
this behavior, and modifiers distribute the characteristics ac-
cordingly. It is worth noting that has-a relationships in the
template may also be self-referential. This facilitates the
modeling of hierarchies, by making it possible to represent
organizations with varying numbers of levels.

A hollow-arrow edge represents an is-a relation, so nor-
mal_agent is a type of agent. Shaded nodes, such as agent,
are abstract and cannot be directly instantiated. Thus, any
node with a has-a relation with agent can instead substi-
tute normal_agent. This indirection can be used to model al-
ternatives with different capabilities. For example, suppose
there were two types of agents available: a normal agent,
and a “robust” agent that had more processing power but a
higher cost. To model this, a robust_agent node is depicted
that also has an is-a relation with agent, and can be substi-
tuted for agent in the same way.

Figure 2b shows a particular instance created from the
template in Figure 2a. Vertices in the graph represent nodes,

organization

num_agents [sm_tm_relation] [s_tm_relation

(a)

Sensor_organization

(b)

Figure 2. Example ODML (a) template and (b) instance structures for the DSN organization.

and a gray edge indicates the existence of a non-local mod-
ifier from the source to a field in the target. Black directed
edges again represent has-a relationships, where template
has-a relationships are replaced with a set of distinct edges
of size magnitude. So, where sector — agent might have the
magnitude num _sensors in the template, a discrete value of
two has been chosen in this particular instance. Because of
this, each sector in the instance has a has-a relationship with
two distinct sensors (S). Normal agents (a), sector managers
(SM), track managers (TM), and two kinds of track man-
ager relations (SM-TM and S-TM), are also present.

The heart of any ODML model exists in the expres-
sions encoded within nodes’ fields. Each expression con-
sists of a sequence of standard mathematical operations
(e.g., +,+,xY, etc.) and a limited number of predefined
functions (e.g., min, max, sqrt, round, forallavg, etc.). These
expressions allow one to represent how different character-
istics of the node may be computed, by combining local and
nonlocal information to calculate new local values as de-
fined by the process in Figure 1.

A selection of these fields, contained by the
track_manager and s_tm_relation nodes, are shown in Fig-
ure 3. The former defines the track manager role, while
the latter represents the relationship that role has with sen-
sors in the environment. This fragment shows a simple set
of expressions used to calculate the track manager’s log-
ical footprint (area) of a target as it moves through the
environment. This area will depend on the amount of un-
certainty the manager has in the target’s location. In our
model, this area will be a circle; line 10 shows how the rar-
get_area of a track manager is derived from the target’s
uncertainty_radius. The number of sensors presumed ca-
pable of sensing the target is the average number of sen-
sor which lie within the target area. Therefore, although the
number of desired_sensors is independent of the environ-
ment, the actual sensors_available to the manager will de-
pend indirectly on the target_area and sensor density, as
shown in line 15. The requested sensors will be the mini-

mum of the desired and available.

The number of measurements provided to the
track manager is modeled in a similar way. The ac-
tual_measurement rate in the sensor-track manager
relationship is derived from the locally calculated re-
quested_measurement _rate and actual _measurement ratio
computed by the sensor node. This value is then used in
a pair of modifiers defined in lines 29 and 30 that spec-
ify for the track manager and sensor the actual number of
measurements that will be taken.

Through modifiers or the assimilation of nonlocal values,
the characteristics of one node may affect or be affected by
those of another. ODML models are generally constructed
by designing individual nodes, and linking them through
nonlocal dependencies or modifiers. The resulting web of
equations allows one to model important concepts such as
information flow, control flow, and the effects of interac-
tions. By propagating data through these expressions, the
model can correctly predict the characteristics of both indi-
vidual nodes and the organization as a whole.

This description touches on just a portion of the model
that was created for the DSN system. A range of characteris-
tics not described here have also been incorporated, includ-
ing the physical and task environment, agent interactions,
multiple role assignments, dynamic role assignment, het-
erogeneity, geographic coalitions, potential conflicts, and
both hard and soft constraints. Each was successfully mod-
eled, suggesting that the relatively modest set of primitives
offered by ODML is capable of representing a wide range
of complex and relevant organizational factors.

4. Evaluating the Representation

Our previous work analyzed the effects that the DSN or-
ganization had on performance across a range of metrics
[5]. In those tests, the number of agents in each sector was
varied to demonstrate how changing the organization can
have far-reaching consequences. To gauge the representa-

<node type="track_manager">

<param>organization:org,environment:env, [sector]:sectors</param>

<is-a>entity</is-a>

<has-a name="agent" size="num_agents">agent(env)</has-a>

<has-a name="sm_relations">forall(sm, sector_managers):sm_tm relation(org, this, sm)</has-a>
<has-a name="s_relations">forall(s, sensors):s_tm relation(org, this, s)</has-a>

<!-- Determne target bounds -->
<constant name="uncertainty radius">5</constant>

<constant name="target_area">3.14 * uncertainty radius”2</constant>

<!-- Calcul ate requested neasurenment rate -->
<constant name="desired_sensors">3</constant>

<constant name="sensor_density">forallavg(sectors.sensor_density)</constant>
<constant name="actual_sensors_available">target_area * sensor_density</constant>
<constant name="requested_sensors">min(desired_sensors, actual_sensors_available)</constant>

</node>

<node type="s_tm relation">

<param>organization:org,track manager:tm,sensor:s</param>

<!-- Calcul ate actual neasurenent rate -->

<constant name="requested_sensor_rate">tm.requested_sensors / org.total_sensors</constant>
<constant name="requested_measurement_rate">tm.requested measurement_rate * requested sensor_rate</constant>
<modifier name="s.requested measurement_rate" op="+">requested measurement_rate</modifier>

<!-- Assign neasurenent communi cation |oad -->

<constant name="actual_measurement_rate">requested measurement_rate * s.actual_measurement_ratio</constant>
<modifier name="tm.actual_measurement_ rate" op="+">actual_measurement_rate</modifier>
<modifier name="s.message_rr" op="+">actual measurement_ rate</modifier>

</node>

Figure 3. A portion of the raw ODML specification for the rrack_manager and s_tm relation nodes.

tional efficacy of ODML, we have used the model described
in the previous section to create organizational instances
that match those prior test runs. Characteristics defined in
the ODML model make predictions for the same metrics
that were originally tested, allowing us to calculate values
that can be compared against the empirical results. These
predictions were obtained using the get value function de-
scribed in Figure 1. This exercise both demonstrates how
ODML can be used as a predictive tool for different operat-
ing contexts, and evaluates how well a specific model was
able to capture real-world behaviors.

The comparative results are shown in Figure 4. Note
that the behavioral details behind these results are beyond
the scope of this document. In this context, we are explor-
ing only the accuracy of the ODML model’s predictions.
Additional details of the original empirical results can be
found in [5]. Solid lines represent the values predicted by
the ODML model, while dashed are those obtained through
the previous empirical testing. Figure 4a shows communi-
cation totals by type. Figure 4b shows the communication
disparity, which measures how well or poorly the communi-
cation load is distributed in the population. Figure 4c shows
the average RMS error of the tracking tasks. Although there
are some points of difference, in most cases the model does
a good job predicting performance. One difference can be
seen in Figure 4b, where the predicted standard deviation
underestimates the actual performance in most cases. This is
a byproduct of our assumption that all sensors were equally

used. In the running system, sensors in the center of the en-
vironment are used more than those at the edges, and will
have different communication profiles because of it. Our
model does not capture these geographic differences, and
will therefore generally have a lower estimated deviation.

To evaluate how our model captures finer-grained de-
tails, we compared the communication profiles of individ-
ual roles, as seen in Figure 5. In addition to communica-
tion totals, these graphs also include role counts, indicating
how many agents took on the specified role. ‘A’ represents
the sensor role, ‘M’ is the sector_manager, while ‘T’ is the
track_manager. ‘AM’ describes agents acting as both sen-
sors and sector managers. Predictions at this more detailed
level are also accurate. Many of the differences that do exist
can be attributed to geographic variances in a small sample
size. For example, the 36- and 18-size scenarios had only
one or two sector managers. Their individual geographic lo-
cations can affect performance, and these variations are not
reflected in the predicted values.

5. Using ODML to Design Organizations

We have thus far argued that organizations can have a
tangible effect on performance, and it is therefore useful
to be able to understand those effects when designing an
agent system. The previous section demonstrated ODML’s
ability to correctly model and predict the global and local
characteristics of particular organizational designs used in a

25
~A——A Tracking Control ~©———< Diurectory Service ~~B——F1 Results

Messages (1000's)

Average RMS Error

Message Volume Standard Deviation

T T T
15 20 25
Agents per Sector

(a)

T
15

Agents per Sector

(b)

T T T
15 20 25
Agents per Sector

()

T
20 25

Figure 4. ODML DSN model predictions versus empirical observations for a) Message totals by type,
b) Messaging disparity and c) RMS error. Predicted lines are solid, empirical are dashed.

Role 'A’ Characteristics

~A——A Role Count
-0 Results

~E——8 Tracking Control
O Directory Service

~A——A Role Count

o 0% Results

Average Total
Average Total

Role "AM’ Characteristics

~E——8 Tracking Control
O Directory Service

o

Role 'AT’ Characteristics

~A——A Role Count
~“©O——< Results

~E——8 Tracking Control
o O Directory Service

T T T
15 20 25
Agents per Sector

(a)

Agents per Sector

(b)

T T
15 20

25
Agents per Sector

()

Figure 5. Comparison of the ODML DSN model’s role-specific predictions.

previously constructed, real-world application. Our ultimate
goal, however, is to use this capability to support an auto-
mated organizational design process. It is this objective that
motivates the need for the detailed information that makes
up an ODML model. In this section we will outline how
this has been accomplished, by using ODML as the foun-
dation for a new design methodology. Space permits only
a superficial description of this work, a more detailed de-
scription will be given in a later publication.

Recall that ODML representations are divided into two
distinct classes: remplates that encompasses the range of all
possible organizations, and instances that are each particu-
lar organizations derived from a template. The range of pos-
sible instances in a template, defined by how its variables
and has-a relations can be decided, constitutes an organiza-
tional space that can be searched.

For example, one of the environment node’s variables
expresses the range of possible sensors_per_sector, which
controls the shape of part of the organization. Other uses
of variables might be to decide the relative priority of an
agent’s tasks, or the amount of time it is willing to wait for
aresponse. Decisions made for the agent has-a relationships
in the three roles will determine the specific role-agent bind-
ings that will be used. Sequences of similar decisions could
also decide if the manager role will be distributed, or how

tall a data processing hierarchy should be. A range of op-
tions are possible, and different choices will result in dif-
ferent organizations. Constraints defined within nodes have
the opposite effect, by limiting the set of valid organizations
to some subset of those that are possible.

As with other characteristics, an ODML model can be
used to capture the expected utility of an organization by re-
lating organizational characteristics with mathematical ex-
pressions. For example, in the DSN model, utility is based
on average_rms, which is derived from the rms _error val-
ues of the tracker roles, which are themselves dependent on
many other factors. By defining a field with the semantics
of “utility”, one can quantitatively evaluate and rank candi-
date organizations by comparing these fields’ values. This
provides a clear way to discriminate and decide among the
alternatives that exist in the template’s organizational space.

An automated organizational design process can be
built upon these two concepts, by leveraging the pre-
dicted characteristics to navigate the organizational space.
Each ODML model includes a description of the ex-
pected operating context, available resources, etc., in addi-
tion to the possible organizational structures. Given such a
model, the most appropriate design (i.e. the one with maxi-
mal utility) can be found with an appropriate search of the
organizational space defined by the model.

The number of possible organizations grows exponen-
tially with the number of decisions that must be made in
its construction. When organizations are being designed for
a large number of agents, or when the template is particu-
larly flexible, the space of possibilities can easily become
intractable. Because of this, it is important to develop tech-
niques able to cope with such situations.

One technique that we have implemented bounds the
search by exploiting hard constraints that exist in the sys-
tem. The expression-based knowledge in the ODML model
makes this possible. Recall that all hard constraints must
be satisfied in an organization for it to be considered valid
(see Equation 2). If a constraint has become unsatisfied dur-
ing the course of an organizational search, it may be rea-
sonable to halt the search before the organization is fully
formed, and backtrack from that point. Two issues compli-
cate this process. The first is that constraints may be initially
unsatisfied in a partially instantiated structure, and only be-
come satisfied later in the decision making process. Addi-
tionally, because values may change nonmonotonically, a
constraint can change its state repeatedly during the instan-
tiation process. Both cases may cause a backtrack decision
to be incorrect by missing valid organizations.

By analyzing the relationships that exist between fields,
it is sometimes possible to determine when choices may be
safely ignored. For example, in the DSN domain a single
agent cannot control more than one sensor. Each agent has
a sensors_controlled value, that is initially zero and later in-
cremented using a modifier when it is assigned to a sen-
sor. This restriction is modeled by the hard constraint sen-
sors_controlled < 1. For a particular organization with n
sensors and a available agents, there are a™ possible as-
signments of agents to sensors. However, only (Z) of them
are valid according to the sensors_controlled constraint. If
it were possible to detect when an invalid assignment had
been made before all organizational decisions have been
completed, one could bound the search at that point and
backtrack to where the constraint was satisfied.

Because role assignments are permanent, there is no de-
cision that could be made to reduce the number of sensors
controlled by an agent. Therefore, it is reasonable and cor-
rect to bound the search and backtrack if an agent is ever
found to control more than one sensor, because that con-
straint will never be satisfied. While a human expert might
intuitively know to avoid such impossible configurations,
a generic search process is too myopic to perceive this fact.
However, the relationship that this knowledge is based upon
is represented in the organizational template, in that sen-
sors_controlled is affected by only that one type of modifier
from the sensor node, that increments the value by a positive
constant. It is possible to use this information to deduce the
monotonically increasing trend of sensors controlled, and
backtrack when appropriate.

Our technique uses partial derivatives on a field’s depen-
dent variables as a general way of determining the trend of
that field’s value. The trends for a constrained value and
the expression it is constrained by are determined by first
recursively finding the trends of all the fields they depend
on. By taking the partial derivative with respect to each
field referenced by an expression, along with the trend of
each field, the trend of the original expression may be de-
termined. With this information one can automatically de-
tect when constraints have become unsatisfiable, and cor-
rectly bound the search.

5.1. Applying Designs to Actual Systems

Once the search process has completed successfully, a
particular design will be available that must then be applied
to a running system, assuming it has not already been grad-
ually phased in in an emergent fashion as described above.
ODML’s free-form nature precludes a simple, straightfor-
ward mapping from design to system for an arbitrary model.
For example, parts of the model may clearly correspond
to tangible artifacts that can be directed, such as roles or
agents. Other parts may be more ephemeral, or be there
solely to model an environmental response that needs no
instruction. Yet another class of information may not corre-
spond to any specific process, despite the fact that it con-
tains details that must be correctly incorporated for the or-
ganization to function. The secfor node from the sensor net-
work model is such a case, because although it is only a log-
ical construct it still contains vital information, such as the
size and membership of the set of sensors belonging to it.

Because of this, the translation from design to running
system is a model-specific process. At one extreme, a de-
signer can create a model where each node corresponds to
a specific, real entity that can make direct use of the infor-
mation stored in the node. In this case, the node description
can be used like a normal configuration file. At the other ex-
treme, the model may be just a superficial approximation of
the system in question, where individual nodes have no di-
rect connection with any entity that will exist in the real sys-
tem. In this case the design would be less of a blueprint and
more a set of guidelines from which an engineer could de-
rive insights when building the system.

In practice, the construction process usually falls some-
where between these two cases, where some details may be
directly used and others require more effort on the part of
the designer or running agent to gain access to. For exam-
ple, a simulation environment has been created to evaluate
a model of a hierarchical information retrieval domain (for
more details, see [4]). This simulation takes an ODML in-
stance model as input, and uses it to create the environment
and the agent organization that operated within it. A boot-
strap system starts the process by determining how many

agents will exist in the system. Once created, individual
agents learn of the set of roles they are expected to take on
by obtaining the appropriate agent node and finding the role
nodes that have a has-a relationship with it. These roles can
then be created and bound to the agent. Each role is respon-
sible for inspecting its counterpart in the instance model to
obtain any role-specific parameters. Finally, each role also
determines the set of other roles that it should be interacting
with and how those interactions should take place, which
is also accomplished primarily by following has-a relation-
ships. Other information present in the model, such as the
performance metrics originally used to estimate the design’s
utility, can be used to evaluate runtime behaviors. This can
be particularly useful when the system or environment is
subject to change, by providing a set of expectations that
observed behaviors can be compared against.

The end result of this inspection process is a system that
can take an arbitrary information retrieval instance model
as input and create a running system from it. The code re-
quired to do this, however, is specific to the particular model
in question. The model does not indicate exactly what an
agent or each role should do on a moment-by-moment ba-
sis. Nor does it define the communication protocols or tech-
niques needed to perform local operations. Such details are
typically much too fine grained to be practically incorpo-
rated into a model. If these elements are crucial to organiza-
tional performance then they will be appropriately modeled
with an expression and the relevant characteristics used to
parameterize the running code, but it would be unusual for
model to provide all the details necessary to fully specify
those behaviors from an implementation standpoint.

6. Conclusions

The ODML-based approach that we have presented in
this paper is both general and flexible enough to model a
range of common organizational characteristics. It is partic-
ularly useful when describing features that have a quantita-
tive character. To support this claim, we have created and
tested a complete model of a previously existing sensor net-
work framework. Other work has also used ODML to model
a hierarchical information retrieval service [4], as well as
more abstract, theoretical problems such as SUBSET-SUM
and TILINGS. These models demonstrate ODML’s ability
to accurately predict the small- and large-grained behaviors
of an organizationally-driven agent system.

We believe the detailed, quantitative knowledge embed-
ded in ODML models is relevant because it provides the
foundation for prescriptive technologies, such as the auto-
mated design service outlined above. We have described
one strategy currently used to cope with the potentially large
organizational search space by inferring value trends to find
unsatisfiable constraints, and also discussed how the infor-

mation obtained from this search can be put to use in prac-
tice. Additional techniques are currently being developed.
Armed with such techniques, the full potential of ODML
can be realized by using its flexible but detailed represen-
tation of organizational possibilities to effectively design
agent organizations.

References

[1] S. DeLoach. Modeling organizational rules in the multi-
agent systems engineering methodology. In Proceedings of
the 15th Conference of the Canadian Society for Computa-
tional Studies of Intelligence on Advances in Artificial Intel-
ligence, pages 1-15. Springer-Verlag, 2002.

[2] V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: In-
troducing social structure, norms and ontologies into agent
organizations. In Second International Workshop on Pro-
gramming Multi-Agent Systems at the Third International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 91-102, New York, NY, July 20 2004.

[3] M. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. An Or-
ganizational Ontology for Enterprise Modeling. In M. J. Pri-
etula, K. M. Carley, and L. Gasser, editors, Simulating Orga-
nizations: Computational Models of Institutions and Groups,
pages 131-152. AAAI Press / MIT Press, 1998.

[4] B. Horling and V. Lesser. Quantitative Organizational Mod-
els for Large-Scale Agent Systems. In Proceedings of the
International Workshop on Massively Multi-Agent Systems,
pages 297-312, Kyoto, Japan, December 2004.

[5] B. Horling, R. Mailler, and V. Lesser. A Case Study of Or-
ganizational Effects in a Distributed Sensor Network. In
Proceedings of the International Conference on Intelligent
Agent Technology (IAT 2004), pages 51-57, Beijing, China,
September 2004.

[6] J. E Hiibner, J. S. Sichman, and O. Boissier. A model for the
structural, functional, and deontic specification of organiza-
tions in multiagent systems. In Proceedings of the Brazilian
Symposium on Artificial Intelligence (SBIA’02), pages 118—
128, 2002.

[7] V. Lesser, C. Ortiz, and M. Tambe, editors. Distributed Sen-
sor Networks: A Multiagent Perspective (Edited book), vol-
ume 9. Kluwer Academic Publishers, May 2003.

[8] T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Del-
larocas, G. Wyner, J. Quimby, C. S. Osborn, A. Bernstein,
G. Herman, M. Klein, and E. O’Donnell. Tools for invent-
ing organizations: Toward a handbook of organizational pro-
cesses. Management Science, 45(3):425-443, 1999.

[9] C. Sierra, J. Sabater, J. Augusti, and P. Garcia. SADDE:
Social agents design driven by equations. In F. Bergenti,
M. Gleizes, and F. Zambonelli, editors, Methodologies and
software engineering for agent systems. Kluwer Academic
Publishers, 2004.

[10] M. Sims, D. Corkill, and V. Lesser. Separating Domain and
Coordination in Multi-Agent Organizational Design and In-
stantiation. In Proceedings of the International Conference
on Intelligent Agent Technology (IAT 2004), pages 155-161,
Beijing, China, September 2004.

