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ABSTRACT
Most existing organizational design processes focus on either the
qualitative or domain-independent features of candidate designs.
This paper demonstrates the significance of domain-specific fea-
tures through an examination of an organizationally-driven infor-
mation retrieval network. The behavior of a search process for ap-
propriate agents and the consequences of hierarchical control in a
continuous work flow are described. A model capable of predict-
ing these and other characteristics is then created using techniques
from queuing and probability theory. This model can then be used
to guide the search for an appropriate design.

1. INTRODUCTION
Much of the existing work on organization design in multi-agent
systems has focused on the qualitative aspects of those designs,
or on a predefined set of numeric but largely domain-independent
characteristics. In our recent work [4] we have developed a new
representation called ODML that incorporates arbitrary quantita-
tive information into the organizational model. Such a model can
be used to make detailed predictions of how candidate designs will
perform in different circumstances, which can be used as part of a
larger search process through the space of design alternatives. Al-
though such models can be more difficult to construct, we believe
the benefits this more refined view can provide warrant research.

In particular, we believe that the ability to make concrete, numeric
predictions about a range of domain-specific organizational char-
acteristics can improve the quality of an organizational design pro-
cess by capturing the complexities that exist in realistic systems.
In contrast to solutions that use instrumented simulations to mak-
ing similarly detailed predictions, such explicit, quantitative mod-
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els also offer the possibility of very rapid design evaluation. This
speed facilitates the search of the very large design space that agent
organizations frequently have.

In this paper we will demonstrate this potential by describing how
an organizationally-driven information retrieval system has been
modeled in the ODML framework. Techniques from queuing and
probability theory embedded in the model are used to capture sev-
eral different characteristics, including a utility-driven search in the
agent network and the effects of hierarchical control, both of which
are common in multi-agent systems. These features are then joined
in a common utility function that is used to provide a high-level
comparative metric. The model itself has been validated through
comparisons to empirical tests carried out in a simulation environ-
ment. The end product of the modeling process is a single, succinct
construct that both describes the space of alternatives and predicts
the performance of individual designs.

There are three principle contributions of this work. The first is
an example of the flexibility and detail that are possible using the
ODML framework. The second is a demonstration that it is pos-
sible to capture the relevant organizational characteristics of this
domain, and integrate those features into a single predictive model.
This demonstration also depicts the utility of the techniques from
queuing and probability theory that we have used. Finally, this
work also shows how complex, domain-specific system character-
istics can interact with the organizational design to affect global
performance. This fact motivates the detailed approach we take,
and suggests that if such information is missing or abstracted away
that the quality of a corresponding design process may suffer.

2. INFORMATION RETRIEVAL DOMAIN
A general peer-to-peer information retrieval (IR) system is com-
posed of a number of interconnected databases, controlled by a set
of (agent) entities. Queries are first received by individual mem-
bers of the network. An appropriate set of information sources must
then be discovered that can address the query, after which the query
is routed and processed to produce a response for the user. The in-
formation necessary for responding to a particular query may be
distributed across the network, which can cause an undirected re-
trieval process to be time consuming, costly, or ineffective, partic-
ularly when the number of sources is large.

The information retrieval model presented here is inspired by work
by Zhang et al. [10], which proposes that a hierarchical organiza-
tion can be used to address this problem. This solution organizes in-
formation sources in hierarchies, allowing queries to quickly prop-
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Figure 1: The control and communication sequence involved in
handling a query in the information retrieval organization.

agate to data sources, and results be routed back to a single agent
in the network. At the top level of each hierarchy is a mediator.
Each mediator is responsible for providing a concise and accurate
description, known as a collection signature, of the data available
in the information sources present in the hierarchy below it. An
information source may be an individual database, or an aggrega-
tor which manages other sources. Mediators are responsible for
handling the user queries, by first using the signatures of other me-
diators to compare data sources, then routing the query to those
mediators that seem appropriate, and finally collecting and deliver-
ing the resulting data. This model slightly diverges from Zhang’s
in that it takes into account the aggregation work load and omits
lateral connections between aggregators and databases.

Figure 1 shows an example trace of how a particular organization
using this approach processes a single query. The process begins
when a user query is sent to a mediator (1). The mediator then
queries a number of other mediators to determine if they are ap-
propriate to handle the user query (2). After the responses are sent
(3) and collected, a subset of those searched are selected based on
their reported collection signatures (4) and notified that they should
handle the query (5). In this case, MediatorR was selected, while
MediatorL was not. The user query is then propagated down all
branches of the mediators’ hierarchies (6, 7), until the terminal
databases at the leaves are reached. Each database processes the
query (8) and reports it back to its immediate manager (9). These
transmission and processing activities will occur in parallel with
others taking place in the organization. Intermediate aggregators
will wait until all subordinates have responded, and then consoli-
date the results (10) before delivering the information up the next
level in the hierarchy (11). Mediators perform a similar consolida-
tion step (12). Any mediators that were selected to handle the query
report their results back to the originating mediator (13), which per-
forms a final consolidation step (14) before delivering the final re-
sponse to the user (15).

This organizational design provides several advantages. The use of
collection signatures to model the contents of a number of individ-
ual sources can dramatically reduce the number of agents that must
be searched and queried. The use of hierarchies introduces paral-
lelism into the query distribution process. These same hierarchies
also distribute the communication and processing load.

At the same time, if the structures are poorly designed they can
lead to inefficiencies. A single collection signature, which must be
bounded by size to be efficiently used, can become unacceptably
imprecise if the set of sources it models is large or extremely di-
verse. This can cause data sources to be overlooked, potentially
reducing the response quality. If the data sources are distributed
across many different mediators it may require a more extensive
search and query process to obtain a high quality result. Whenever
a hierarchy is used, there also exists a tension between the width
and height of the structure. Because each agent is a bounded re-
source, very wide structures can lead to bottlenecks, as particular
individuals with high in-degree may become overwhelmed by the
number of interactions. Very tall structures can be slow or unre-
sponsive, as the long path length from root to leaf increases latency.

An organizational model for this domain was created using ODML
[4]. It is possible to use such a model as part of a larger search pro-
cess to determining the most appropriate organization of agents and
databases, given the desired characteristics of the system, the pro-
vided characteristics of the environment and the tradeoffs we have
presented here. Like prior models created with this language, this
model uses notions of roles, a task environment and performance
constraints. However, other underlying phenomena that must be
captured are significantly different, and drive the shape of the orga-
nization in different directions. These include statistically predict-
ing the results of the source discovery process, determining how
the information contents of a hierarchy affect its expected load
and approximating the effects of increased signature uncertainty
caused by summarization. This paper will focus on these latter
characteristics; the reader can refer to [4] for a description of more
domain-independent characteristics this model also possesses. In
the discussion below, italicized terms refer to specific characteris-
tics present in the organizational model.

3. MODELING IR CHARACTERISTICS
Like the working system it represents, there are many facets to the
model. This includes how the collection information signatures
are generated, a description of the query and response propagation
model, a detailed model of the system’s response time, and how all
these features are combined into a utility value. Although each can
be modeled as a particular, distinct characteristic of the system, in
reality they interact in complex ways. The tensions that arise in the
resulting model embody the tradeoffs and decisions that must be
made when designing the organization.

3.1 Data Sources and Collection Signatures
To correctly estimate work levels in the system, we must first know
the type and quantity of information that a source may provide.
Different organizations may be necessary if the available informa-
tion for that topic is concentrated in one spot, or if it is distributed
across many separate sources. In this model, we are concerned with
a single class or topic of information. This is modeled by specify-
ing the total amount of information owned by a source, along with
the fraction of which that is relevant to the topic. Aggregators and
mediators, which have no information of their own, derive these
values as the sum of the information that exists in thesources that



exist below them. Ultimately, this is used to calculate the response
size of the mediator, the total amount of relevant information that
will be searched while processing a query.

This raw information is only half the picture, however, as the num-
ber of queries that a mediator receives is not dependent on the ac-
tual amount of data it manages, but on the data that othersperceive
it to manage. The IR search process is based on the mediator’s
collection signature, which is generated from the information in its
hierarchy. Ideally, this would be a perfect synopsis. In practice,
the signature’s accuracy may be skewed by the technique used to
generate it, or because of abstraction inherent in the aggregation
process. This factor is taken into account in the simple recursive
calculation ofperceived response size for mediators (m.prs), ag-
gregators (a.prs) and databases (d.prs).

m.prs =
X

s∈m.sources

s.prs ∗ aggregation factor (1)

a.prs =
X

s∈a.sources

s.prs ∗ aggregation factor (2)

d.prs = response size (3)

3.2 Probabilistic Search and Query
The query load incurred by a mediator, and by relation any sources
beneath it, is dependent on the number of queries that mediator is
asked to service. This value depends on the mediator’s perceived
value, the average number of queries arriving in the system, the
number and value of competing mediators, and how many medi-
ators are used to answer a query. To estimate this, we must first
determine the relative rank orderingmr of the mediator in ques-
tion m, and the number of mediatorsRr that share that ranking.

mr = 1 +
“

X

k∈O.mediators

0max(m.prs−k.prs,0)

−0abs(m.prs−k.prs)
”

(4)

Rr =
X

k∈O.mediators

0abs(mr−kr) (5)

WhereO is the high-level organization andm.prs is the media-
tor’s perceived response size. The summation term will equate to
1 when the competing size is higher, and 0 when lower. Thus, the
highest ranked mediator will be 1, followed by 2, and so forth. Me-
diators with the same value will have the same ranking. Using this
information, it is possible to compute the probabilityP (m) that a
mediatorm will be selected to service queryQ.

P (m) =
s

|M |

1
`

|M|−1
s−1

´

“

q−1
X

i=0

min(s,Rr)−1
X

j=0

 

mr − 1

i

! 

Rr − 1

j

!

 

|M | − mr − Rr + 1

s − i − j − 1

!

min
“

1,
q − i

j + 1

””

(6)

Where|M | is the total number of mediators,s is the number of
mediators that will be searched and compared, andq is the number
of mediators that will be given the query. Equation (6) models

the search process and subsequent mediator selection that will take
place when a query is received by the system. In this particular
domain, some subset of the available mediators will be searched,
and ranked based on their collection signatures. Using these ranks,
a subset of those searched will actually be selected to service the
query. This is a common strategy employed by agent systems, so it
is worth discussing the equation in greater detail.

First, assume that all mediators may be initially searched with equal
probability, and that selection from a set of equally-ranked media-
tors is done uniformly. The probability that mediatorm is searched,
which depends on the total number searched and the total num-
ber of mediators, is s

|M|
. The nested summations count the total

number of sets of remaining mediators that both could be searched
and would result inm receiving the query. A ratio of this total
to the number of possible mediator combinations from the search
`

|M|−1
s−1

´

provides the final desired probability. The summations it-
erate over the various ways in which the mediator search set might
be composed. On each loop, a value is selected for the numberi
of higher ranked mediators andj of equally ranked mediators that
will exist in the set, the remainder being made up of lower ranked
mediators. There are

`

Rr−1
j

´

equal valued mediators competing
for the available query slots, and the final ratio is calculates the
fraction of those that might containm. These equations are used
to determine the finalquery rate for a particular mediator, and its
query probability which is used elsewhere in the model.

An example organization exhibiting these features is shown in Fig-
ure 2. In this instance, there are four mediators, one with three
sources, two with two sources each, and one with a single source.
All databases in this model have an equal amount of topic data, so a
ranking of{1, 2, 2, 4} can be determined among the mediators re-
spectively, as shown in the model. In addition, there are three other
mediators in the organization that contain an insignificant amount
of topic data and are not graphically shown. These “other” media-
tors are significant because they can potentially distract the search
process, resulting in a decrease in expected utility. Theenviron-
ment node shows that thesearch set size in this instance is set to
5, indicating that the collection signatures of five other mediators
will be searched. Thequery set size, the number of mediators from
the search set that will actually be queried, is set to 3. Therefore,
as the number of “other” mediators grows, the chance that one of
the relevant mediators will be found and subsequently queried de-
creases. The value of|M | in Equation (6) is the sum of the relevant
mediators and these other mediators. Together these data allow the
calculation ofP (m), thequery probability for mediatorm. These
are used to compute the organization’sresponse recall, and ulti-
mately affect the utility of the organizational structure.

To test this formulation, a set of simulation trials were performed,
and the observed response recall compared to the predicted value
for each scenario. The environment consisted of six mediators and
nine databases, and each trial consisted of 100 queries from a simu-
lated user to a random mediator in the organization. The first medi-
ator had four of the databases below it, the second had three and the
third had two. The remaining three mediators with no appropriate
data sources served as distractions. Theperceived response size
for each mediator was proportional to the number of databases it
had access to. In the trials, both the number of mediators that
were searched for,search set size, and the number of mediators
that were queried,query set size ranged from 1 to 6. A graph com-
paring the values predicted by the ODML model and the empirical
results are shown in Figure 3. As expected, when the search size is
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Figure 2: An information retrieval instance with variously ranked mediators.

Figure 3: A comparison of the predicted and empirical re-
sponse recall values as the search and query sizes are varied.

small, the recall suffers, because it is less likely a good information
source will be found. Thequery set size has a similar but lesser
effect. This shows that the predictions were quite accurate in most
cases, with an average of 0.9% error over all cases. Experiments
not shown here with other designs produced similar results.

The relationships described here are a good example of how changes
to the organization can indirectly affect the characteristics of many,
potentially distant parts of the structure. In this case, the perceived,
relative quality of a mediator affects the ranking of all other medi-
ators in the organization. These rankings affects query load, which
affects the load imposed on the agents, which can affect the re-
sponse time of a mediator’s hierarchy as a whole. Thus it is possi-
ble for a single source added to some segment of the organization
to dramatically affect agents with which it does not obviously inter-
act. These effects can be subtle yet important, motivating the need
for a model capable of representing them.

3.3 Queuing Response Time
The response time of the IR system is the amount of time that
elapses between a user query and the system’s response. This par-
ticular characteristic is clearly important from an evaluation stand-
point, as it captures an easily observable phenomena that is im-
portant to the end user. Like the probabilistic query model, the
response time is intimately tied to the structure of the organization.

Several characteristics affect this value. For example, each commu-
nication event incurs some message transit latency. The query pro-
cessing by the databases, and the aggregation performed by both
the aggregator and mediator will take some variable amount of
time. The latter two entities must also wait for slowest of their
information sources before they can themselves respond. Finally,
because multiple queries can exist simultaneously in the network,
additional delays at individual agents can be incurred when a query
must wait for existing processing to complete. The model of this
system draws upon techniques from probability and queuing the-
ory. This section will first discuss why simpler techniques are in-
sufficient and derive the actual solution in stages, gradually incor-
porating new elements as deficiencies are recognized.

The mediator’squery rate characteristic predicts the arrival rate
of queries to that mediator based on the probabilistic model given
above. One can infer that responses will, on average, be returned
back to the user at this same rate. The response rate cannot be
faster, because the system would eventually run out of queries to
process. If the response rate were slower, the number of queries
in the system (along with the expected response time) would tend
to infinity as new queries encounter an ever lengthening queue of
existing queries upon arrival. Of course, this is not an impossible
situation, just undesirable, so we must include constraints in the
model that specify that the possible rate at which tasks are serviced
must be greater than or equal to the rate at which they arrive. Given
these constraints, we can assume that the query rate will equal the
response rate. We can furthermore assume this is the case for all
agents in the hierarchy by analogous reasoning, after observing that
the arrival and response rates of one agent dictate the complemen-
tary rates of the other agents they are attached to.

More concretely, the existing model assumes that queries arrive
to the mediator with a Poisson arrival distribution and mean rate
query rate. The model also specifies that tasks arrive with ratear-
rival rate, where each task is a query andarrival rate = query rate
in this instance. This means that the amount of time between sub-
sequent tasks will be a random value sampled from an exponential
distribution with parameterarrival rate — on average, a new query
will arrive at the mediator everyarrival rate−1 milliseconds.

After some amount of time elapses, during which the query makes
its way down through any aggregators, the databases themselves
will receive the query. By the logic given above, we can assume
that they arrive at ratearrival rate. Each database is also associated
with a service rate, which reflects its ability to complete queries
given to it. When this new query arrives there may be previously re-
ceived queries currently being processed or waiting to be processed



by the database. Because we assume first-in, first-out processing,
the amount of time the new query must wait before being addressed
will depend in part on these existing queries.

We can exploit existing techniques from the field of queuing theory
[6, 8] to analyze how long the wait will be, an approach that has re-
cently proved successful in other MAS models [3, 9]. For example,
the database can be described as aM/M/1 queue. This model as-
sumes a Poisson task arrival rate (i.e.,arrival rate) and service rate
(i.e., service rate), and a single processor (i.e., the agent perform-
ing the database role and the resources under its control). From
this information, one may immediately determine the expectedser-
vice time of the database, using the formula [8]:

service time =
1

service rate − arrival rate

Unfortunately, this single expected value is not sufficient, for rea-
sons that will become clear below. Instead, the model uses this
same basic information to compute approximations of the proba-
bility density function (pdf) and cumulative distribution function
(cdf) of the service time characteristic. These functions represent
richer forms of the same waiting time knowledge, because they pre-
serve the statistical character of the phenomena, rather than just a
sample mean. The pdffM (x, λ) and cdfFM (x, λ) of the M/M/1
queue’s waiting time distribution are [2]:

fM (x, λ) = λe−λx

FM (x, λ) = 1 − e−λx,

wherex ≥ 0 andλ = service rate − arrival rate. The model
maintains this information as a discrete list of sampled points, which
are calculated dynamically from the two underlying functions. In
particular, it defines the following two lists:

pdf list = [fM (x0 d step, λ), . . . , fM (xn d step, λ)] (7)

cdf list = [FM (x0 d step, λ), . . . , FM (xn d step, λ)],(8)

wherexn = n and(0 ≤ n < d range
d step

). d range represents the
upper bound on the sampled points, whiled step is the stride length
between points. Note that, if we wish, we can compute an expected
service time for the database from this data, using the conventional
definition of expected value:

service time =

d range/d step
X

x=1

(x pdf list[x] d step2) (9)

Ignoring the aggregator for the moment, we will focus our atten-
tion on the mediator. Recall that it must wait for responses from
all its information sources before progressing, which directly ties
its service time to those of the information sources below it. One
approach would find the average suchservice time, and use that
to estimate that component of the mediator’s service time. How-
ever, this metric is actually a biased approximation of the service
time. Recall that databases are modeled as Poisson processes. Al-
though they do have a mean service time, most of the time a greater
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Figure 4: A comparison of the waiting time distributions for
differently sized sets of databases.

or lesser value will be observed in practice. If there is just one
database to wait for, the sample mean would be a sufficient. How-
ever, if there are two or more databases, multiple samples will be
made, effectively increasing the chance that a greater-than-mean
value will be observed. This skews the response time distribution
so that the aggregate waiting time is no longer Poisson. This effect
can be seen in Figure 4, which shows how the waiting time distri-
bution of a processing agent changes with the number of databases
below it. Notice that as the number of databases increases the dis-
tribution shifts to the right, which is consistent with our intuition.

The underlying issue is that the mediator in this system must wait
for theslowest responder, which means that its service time will be
dependent on themaximum service time of those below it, not sim-
ply the average. This is the motivation for explicitly representing
the pdf and cdf of the database response above. Given this more de-
tailed information, it is possible to determine what the mediator’s
actual waiting time distribution is. A branch of probability theory
known asorder statistics is useful here. Assume that we haven
samples from some distributionX, (X1, . . . , Xn). X(k), thekth
smallest sample from this set, is known as thekth order statistic [1,
7]. Thenth or maximum order statistic of the distribution is the
expected maximum value in the set of samples. This corresponds
to the amount of time the mediator is expected to wait before all
responses have been received.

The example statistic given above is known as the independent,
identically distributed (iid) case, because alln samples are from
the same random variableX. Unfortunately, this is not the case
seen in the IR system. First, we do not assume that all databases
have the same service rate. Second, different aggregation struc-
tures with different heights and widths will also produce different
waiting time distributions. The model does make a simplifying as-
sumption, that the various samples are independent. Together, this
is known as the independent, non-identically distributed (inid) case.
The model generates the pdff(n) and cdfF(n) sample distributions
of thenth order statistic for the source service time using the fol-
lowing functions from [1] and [7]:

f(n)(x) =
h

n
Y

i=1

Fi(x)
i

n
X

i=1

“ fi(x)

Fi(x)

”

(10)

F(n)(x) =
n
Y

i=1

Fi(x), (11)

wherefi andFi represent the pdf and cdf of theith sample, re-



spectively (i.e., the service time distribution of theith information
source). Sample lists are generated for these two distributions in
the same manner shown in equations 7 and 8.

The mediator itself is not simply a pass-through, but must pro-
cess and aggregate the resulting data as well. Just as with the
processing of queries by the database, the processing of the re-
sults by the mediator also takes time, potentially causing newly
arrived results to wait until the mediator can devote attention to
them. Thus, the mediator can also be viewed and modeled as
a queue. In this case we will assume it is also aM/M/1 queue,
with an arrival rate consistent with the argument presented ear-
lier. The service rate of the mediator depends on the number of
responses it receives, which depends on the number of informa-
tion sources below it. The mediator’s pdf and cdf can also be pro-
duced using Equations 7 and 8, witharrival rate = query rate,
service rate = response service rate/num sources, and a
Poisson rate ofλ = arrival rate − service rate.

To complete the model we must determine the behavior of the total
service time that combines these two activities. This can be accom-
plished by recognizing that this service time will be the sum of the
times exhibited by these two random variables, since the local pro-
cessing phase takes place after all results have been received. The
total service time pdffC and cdfFC can then be determined by
finding the convolution of the corresponding distribution functions,
which has the general form:

fC(x) =

d range/d step
X

i=0

fs(i)fl(x − i)d step (12)

FC(x) =

d range/d step
X

i=0

fs(i)Fl(x − i)d step (13)

For the mediator,fs would be the aggregate information source pdf
given in Equation 10, whilefl andFl would be the pdf and cdf of
the waiting time for the localM/M/1 queuing process.

Both these convolution equations and those used earlier to com-
pute the maximum order statistics make no assumptions about the
underlying distributions they reference. Because of this, any other
queuing model can be substituted for theM/M/1 queues used in
these roles, so long as it can be characterized or approximated
through a closed form formula using the mathematical primitives
supported by ODML. One could also directly provide a complete
discrete distribution in its place.

The model can now compute the expectedservice time of the me-
diator by using the same expression previously shown in Equation
9, coupled with the cumulative overhead incurred by the message
transit times of the query and result propagation process. This can
be used along with the mediator’squery probability to predict the
response time distribution of the organization as a whole.

Note that Equations 10-13 are recursive, in that they rely upon both
the pdf and cdf distributions of the sources below the mediator.
The equations make no assumptions about the form of those dis-
tributions, so they can be used both when the information source
is a single database or an arbitrarily complex aggregator hierarchy.
This same assumption also allows Equations 10 and 11 to be used to

compute the pdf and cdf distributions for the aggregator itself. The
recursive definition will terminate in the exponential response dis-
tribution exhibited by the databases. The aggregator also performs
response aggregation, which can be approximated with a suitable
queuing model. The expressions given in Equations 12 and 13 are
again used to combine these two characteristics to determine the
aggregator’s total service time pdf and cdf distributions.

The final aspect that must be taken into consideration is the effect
that multiple roles have on performance. This will be approximated
by weighting theservice rate for each role based on the proportion
of local processing time it is expected to receive. In particular, ifλi

andµi are the originalarrival rate andservice rate for an agent’s
ith role, let theeffective service rate (µiE

) of that role be:

µiE
= µi

λi/µi
P#roles

r=0 λr/µr

=
λi

agent.work load
(14)

whereagent.work load is the location in the model where the ag-
gregate demand is stored. This expression uses each role’s arrival
and service rates to first determine the expected proportion of time
the agent will be busy, and then to scale the individual service rates
accordingly. The role’s arrival rate remains unchanged.

The results of a several sample runs are shown in Figure 5. Each
scenario measures the response time performance of a different
IR organizational design, by submitting 1000 queries to it in a
Poisson fashion as described previously. The organizational de-
sign of each scenario is depicted on the left, along with the pre-
dicted and empirical response time data on the right. The solid
line represents the distribution of response times predicted by the
ODML model, while the dashed line indicates the observed fre-
quency of individual response times in the simulation. A bin width
of W = 2(IQR)N−1/3 was used to group the empirical response
times, whereN is the number of trials and IQR is the interquartile
range of the data (the difference between the 75th percentile and
25th percentile of the data). This is the Freeman-Diaconis rule, as
discussed in Izenman’s bin width strategy analysis [5].

As can be seen in the performance graphs, the ODML model does
a good job of predicting the response time distribution of the dif-
ferent organizational designs. Additional response time trials were
performed for organizations with three agents [1M,2D], five agents
[1M,4D], 10 agents [1M,2A,7D], and 14 agents [1M,3A,10D], with

similar results. The coefficient of determinationR2 (= 1− (y−ŷ)2

(y−ȳ)2
)

was calculated for each scenario, which estimates how much of
the observed behavior can be explained by the model [2].R2 was
greater than 0.8 for all tested scenarios, where a value of 0.7 or
above is considered good for this statistic.

The effort taken to preserve the underlying probability distributions
in this aspect of the model has other benefits, besides being neces-
sary to accurately model the response time behavior. This same in-
formation can be used to support high-level behavioral constraints.
For example, a constraint can be defined using the mediator’s cdf
that places an upper bound on the probability that a particular re-
sponse time is exceeded. The pdf can also be used to determine the
average response time as shown above, which will be used to de-
fine the organizational utility in the following section. By explicitly
capturing the “fuzzy” nature of the running system’s performance,
these richer statistics allow the designer greater control over the
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Figure 5: A comparison of the predicted and observed response time distributions in organizations with (a,b) fifteen [1M,6A,8D],
and (c,d) twenty-eight [1M,7A,20D] agents. In (a,c), node M isa mediator, A are aggregators, and D are databases.

evaluation and output of an organizational design process.

3.4 Determining Design Utility
Bothresponse recall andresponse time are used by [10] to evaluate
the performance of the system. These two metrics are combined
in the ODML model to produce a singleutility field, which can
then be used to compare and rank candidate designs during a search
process. In this case, recall is more important than response time,
so a multiplicative factor is applied to the recall value, after which
the response time is subtracted out:

utility = response recall ∗ 1000 − response time/10

Recall is the proportion of the possible information that was re-
ported ([0 . . . 1]), while time is measured in milliseconds ([0 . . .∞),
generally in the thousands). The normalization terms cause this for-
mulation to generally favor quality over speed, and instances with
equal recall will be differentiated by their response time. An arbi-
trary utility function could be substituted as needed.

Figure 6 shows how utility is affected by the expected user query
rate. Optimal values are shown in bold. This figure shows all eigh-
teen possible organizations that are possible in a six database en-
vironment with a maximum height of three and a minimum of two
subordinates per node. Thesearch set size andquery set size of
each organization is set to one. Organizations have zero utility at a
given query rate when the query arrival rate exceeds the organiza-
tion’s service rate, resulting in an infinite length queue.

The single-level, single-mediator organization number 1 is predicted
to be optimal when the query rate is 0.5 or less (i.e., less than one
query every other second). This is intuitive, because the slow query
rate avoids queuing delays, causing the response time to be domi-
nated by the height of the organization.

As the query rate increases, first organization 8, then number 9 and
finally number 11 become optimal, as the highly-connected media-
tor in organization 1 becomes an increasing bottleneck. In contrast
to most of the competing designs, organizations 8, 9 and 11 are all
balanced (as is number 1). In an unbalanced organization, the seg-
ment with greater load tends to dominate the response time because
the final result must wait for the slowest responder. These three de-
signs avoid this by evenly spreading the load among participants.

Organization 9 outperforms 8 under higher loads because the database
aggregation is better distributed, which reduces the chance that any
one node will observe high queuing delays. By having three aggre-
gation points of size two rather than two of size three, the range of
likely durations is reduced (see Figure 4).

Because the search and query sizes are set to one, the multi-mediator
organizations 11-18 exhibit different recall characteristics than 1-
10. At most one mediator is searched in these tests, so at most one
will contribute to the user’s query. The recall of organizations with
two mediators is roughly half that of those with one, while organi-
zation 18 with three mediators has but a third of that recall. This
correspondingly degrades the organization’s utility.

The benefit the multi-mediator designs offer is increased robustness
to high work loads. Where no single-mediator organization can
handle more than six queries per second, all eight multi-mediator
designs can obtain utility with at least seven queries per second.
This is because the smaller search size reduces the query rate any
individual mediator sees. The aggregate demand on the system is
lower, which reduces the growth rate of individual agents’ queues,
which allows the system as a whole to tolerate higher query rates
(albeit with lower recall).

These tests show the spectrum of tradeoffs that can be made in
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Figure 6: The utility predicted for the range of possible six-
database organizations when the query rate (queries per sec-
ond) is varied. Mediators and aggregators are shown as hollow
circles, while the solid databases form the leaves. Higher is bet-
ter, optimal values for each rate are shown in bold.

this design in different environments. Organization 1 is fast but
quite centralized. To avoid the increasing chance of bottlenecks,
organization 9 trades off response time and 11 trades off response
quality. Despite these different tactics, the underlying pressures
are the same — note the parallels between organizations 11 and 1,
which are optimal at opposite ends of the spectrum.

Additional experiments not shown here have also explored the con-
sequences of setting thesearch set size and query set size so all
mediators will be employed for each query. The resulting designs
essentially undo the tradoffs made by the multi-mediator organiza-
tions 11-18. The response recall in each is brought up to the levels
of the single mediator designs, but the response times increase cor-
respondingly. For example, the utility of organization 11 is 721 at
rate 0.1, 695 at rate 2, and 0 at rates higher than 5. The end result
is that these designs rarely offer benefits not found in their single-
mediator counterparts.

4. CONCLUSIONS
This paper has discussed some of the interesting, organizationally-
driven characteristics that exist in a working information retrieval
system. A model of that system created in the ODML framework

was described that captures these behaviors, including a utility-
driven search process in the agent network and the consequences of
queuing on response time in a distributed work flow. This demon-
strates how existing mathematical techniques can be successfully
incorporated into organizational models, and how the detailed pre-
dictions they make can be used to predict the utility of design alter-
natives.

In particular, the search behavior of this system as well as the hier-
archical control it employs are not uncommon in the field of multi-
agent systems. This suggests that techniques we have used from
the fields of queuing and probability theory can be used elsewhere
with similar results.

More importantly, this work demonstrates how significant domain-
specific characteristics can be affected by choices made in an orga-
nizational design. If such characteristics are not accounted for in
the design process, or if they are approximated to the degree that
important interactions are lost, then the ramifications of decisions
that affect those characteristics may also be lost. We believe this
will affect the quality of any resulting design, as those interactions
are real and must be considered. This fact motivates the detailed
view of organizational behavior that is expressed in this paper.
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