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Abstract

For complex perceptual tasks that are char�
acterized by object occlusion and non�
stationarity� recognition systems with adaptive
signal processing front�ends have been devel�
oped� These systems rely on hand�crafted sym�
bolic object models� which constitutes a knowl�
edge acquisition bottleneck� We propose an ap�
proach to automate object model acquisition
that relies on the detection and resolution of
signal processing and interpretation discrepan�
cies� The approach is applied to the task of
acquiring acoustic�event models for the Sound
Understanding Testbed �SUT��

� Introduction

To meet the challenge of recognition in environments
that are characterized by varying signal�to�noise ra�
tio� unpredictable object activity and possible object
occlusion� Adaptive Perceptual Systems �Draper� �		
�
Lesser et al�� �		
� Ming and Bhanu� �		� have emerged�
Recognition in such systems is dependent on the in�
teraction between feature extraction and interpreta�
tion�matching� failure to account for some or all data
or to adequately support a hypothesis triggers data re�
processing using alternate signal processing algorithms
�SPAs� and�or parameters� Symbolic object models are
used to interpret data� guide reprocessing and predict
object interaction� Typically� these object models are
hand�crafted� a tedious and error prone activity that con�
stitutes a knowledge acquisition bottleneck�

Model acquisition involves selecting for each object the
appropriate SPAs �from a �nite set of SPAs� and deter�
mining parameter settings for the selected SPAs such
that the salient features of the object are extracted� en�
abling the induction of unambiguous object models� Au�
tomating model acquisition translates to automating the
above search for SPAs and their parameterizations� Our
approach relys on the very mechanisms that make a sys�
tem adaptive� namely those that detect signal processing
inadequacies and suggest alternate processing strategies�
To counteract the reduced top�down guidance due to a
lack of knowledge about all the object classes� the learn�
ing system uses a greater number of signal processing

discrepancy detectors that rely on comparing processing
results of two or more SPAs� Where available� generic
model expectations may also be exploited� The learning
system has an additional focus� combining the multiple
�views� of the signal that are exposed during the search
process to generate a composite� more complete repre�
sentation of the object that meets the prediction needs
of adaptive perceptual systems�
In Section � we brie�y discuss learning e�ort in the

area of model acquisition� In Section 
 salient aspects
of the ound Understanding Testbed are presented along
with an example of a sound event model� Before we
present the learning algorithm� we discuss the rami�ca�
tions of parameterized SPAs in Section � and the classes
of discrepancies and their diagnosis in Section �� In Sec�
tion � we present the learning algorithm and some ex�
amples� The status of the work and our conclusions are
presented in Sections � and � respectively�

� Related Work

Automating model acquisition for adaptive perceptual
systems has received relatively limited attention� Mori
et al ��	�� address learning to identify speaker�modes�
viewing it as a planning task that may possibly require
elaboration and�or re�nement� which in turn translates
to extracting new features� When the feature set is de�
termined to be insu�cient� the domain expert intervenes
to suggest alternate�additional features� Vadala ��		�
presents an approach for acquiring models of sounds in
the context of the SUT �Lesser et al�� �		
� an adap�
tive perceptual system for non�speech sound recognition�
The models are acquired through adaptive processing of
the signals� however� the work is limited in that �rstly
user guidance is necessary to initialize key SPA parame�
ters and secondly� the number and nature of the sounds
being modeled must be speci�ed a priori� To summa�
rize� the above rely on human intervention to initialize
critical parameters and�or suggest alternate features to
extract when feature inadequacies are encountered�
In the domain of vision� TRIPLE �Ming and Bhanu�

�		� learns models for aircraft identi�cation when pre�
sented two dimensional images� The features used in
the individual concepts are subsets of a �xed set of fea�
tures �or SPA parameterizations� determined to be suf�
�cient for the class of objects� TRIPLE however is not



truely adaptive because it assumes that the images are
adequately segmented� Likewise� Murase and Nayar�s
��		
 work on learning object models for recognition and
pose estimation using principal component techniques�
assumes the availability of adequately segmented images�
More recently� Bhanu et al ��		
 have been addressing
adaptive segmentation� independent though of model ac�
quisition�

� SUT� The Sound Understanding
Testbed

The SUT seeks to identify acoustic�events given wave�
form data �a sequence of time�amplitude pairs�� Signal
understanding proceeds through a bi�directional search
in the space of the SPAs and their parameters� The
bottom�up search is aimed at achieving signal process�
ing results that are free of discrepancies �refer Section ��
that are detectable through the application of two or
more SPAs of distinct strengths� and comparing their
results� The top�down search is guided by the desire to
�nd valid signal interpretations based on expectations
about the environment� SUT sound models are patterns
of synchronized �Bregman� �		� sets frequency compo�
nents �Cohen� �		��
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Figure �� Data Abstraction Levels used in the Sound
Understanding Testbed

Figure � shows the SUT data abstraction levels� Win�
dowed waveform data that is analyzed for its spectral
content is represented at the spectrum level� Peaks are
localized regions of higher energy in a spectrum� Crite�
ria such as the absolute cut�o� energy and the relative
magnitude of a peak with respect to its neighbors deter�
mine what are considered as peaks in a spectrum� Con�
tours are a sequence of peaks that move forward in time
and share the same energy�frequency trend� Noisebeds
are regions of seemingly uncorrelated spectral activity�
Contours that are consecutive in time and bear certain
frequency and energy relationships are grouped together
to form a microstream� Microstreams that are synchro�
nized either in their onset and�or o�set times� energy be�
havior with respect to time� or whose frequencies are har�
monically related� are grouped together to form streams�
Groups of streams support a source level hypothesis�
Periodic sources would display a repeating pattern of
stream support units�

To date the SUT database consists of �� models�
The models were acquired by manually analyzing sev�
eral recordings of each sound� The tediousness of the

task provides the motivation for this work� For exam�
ple� consider the sound produced by a hair dryer� The
acoustic signal is due to the working of a motor and
the forcing of air through a nozzle� The component fre�
quencies of the sound are harmonically related with a
fundamental whose frequency is that of the power line�
The relative energies of the harmonics are dependent on
the speed of operation and the hair dryer construction
�di�ering for di�erent manufacturer models�� Noisebeds�
which are an artifact of the air �ow through the noz�
zle of the hair dryer� surround the primary frequency
components� The operation of a hair dryer exhibits two
distinct phases� the transition or chirp phase that corre�
sponds to the hair dryer being turned on or o�� and a
steady phase when it is operating at either high or low
speed� The processing parameters that best bring out
the time frequency characteristics in the two phases are
in opposition �refer Section �����
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Figure �� Acoustic Event Model for an Hair Dryer operating

at a high speed�

The models are speci�ed at the source� stream and
microstream levels of data abstraction� In Figure �� we
show portions of the SUT model for a given hair dryer
operating at high speed� The source level unit is made
of a single stream level unit� hd�high�st� which in turn is
made of several microstream units� two of which ���high�
� and ��high��� are shown� Note that the microstream
durations are approximately equal and since their rel�
ative temporal o�sets with respect to the stream start
time are zero� their onset and end times are said to be in
synchrony� A stream level representation that captures
the complete behavior of a sound source� in terms of its
constituent events� is possible� For example� the hair
dryer sound may be speci�ed as�

HDon�HDhigh �HDlow��HDoff



where HDon� HDhigh� HDlow and HDo� denote the hair
dryer coming�on� operating at high speed� operating at
low speed and going�o� events� respectively� The above
representation indicates that the HDon and HDo� events
are mandatory� and that the HDon event precedes in
time the HDo� event� In contrast� the HDhigh and HD�
low events may each occur zero or more times �denoted
by the ��� and in any order �denoted by the ��� Our
goal is to �rst acquire models for each of the constituent
events of a sound source� Eventually we plan to extend
the work to building representations that capture such
complex temporal patterns�

� Rami�cations of Parameterized SPAs

In this section we discuss the e�ect of varying SPA pa�
rameters on the features extracted and introduce the no�
tion of SPA�correlate to emphasize the connection be�
tween the features extracted and the SPAs and their
parameter settings used� We next discuss the inherent
uncertainty in an object model� a consequence of its sig�
nal processing and interpretation history� The need for
model synthesis is then discussed with a brief descrip�
tion of how it is achieved� Finally we discuss how generic
models may be used to reduce search e�ort�

��� Parameterized SPAs

Distinct parameterizations of an SPA extract the same
class of features� but the actual features extracted may
be very di�erent� This is because in the mathematical
formulation of the SPAs� the parameters are used to cap�
ture assumptions about the underlying signal� To em�
phasize the relationship between the features extracted
and its processing context �SPAs and their parameter
settings�� the features extracted are also known as SPA�
correlates� Since some parameterizations of an SPA ex�
pose certain salient features while obscuring others� it
is useful to compare the SPA�correlates obtained under
di�erent parameterizations of an SPA� This is possible
using knowledge of the underlying signal processing the�
ory which forms the basis of the SPA implementation
�Lesser et al�� �		
�

For instance� consider the analysis of time�amplitude
waveform data corresponding to an acoustic�event com�
posed of two constant�frequency components with an
inter�component spacing of �� Hz� With a sampling fre�
quency of � KHz� a Fourier Transform based algorithm
for frequency analysis would be unable to expose the
relevant frequency detail unless a data window that af�
fords the minimumrequired frequency resolution is used�
This is illustrated using the Short�Time Fourier Trans�
form �STFT� algorithm �Nawab and Quatieri� �	�� for
spectral analysis in Figure 
� Note that the uncertainty
in frequency spread i�e�� �width� of each component re�
duces when the data is processed with greater frequency
resolution�
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Figure 
� Signal corresponding to two closely spaced steady

frequency components� processed with �a� shorter and �b�

longer STFT window� Note the better frequency resolution

obtained in �b� due to the longer window�

Secondly� certain SPA parameterizations a�ord a view
of the signal data that leads to a simple �physical expla�
nation� For instance� consider the analysis of a near�
linear rising chirp� sound sampled at a frequency of
�KHz� If the signal data is processed for spectral content
using the STFT algorithm �Nawab and Quatieri� �	��
with a small window and narrow decimation ���� and ��
data points respectively� and then contouring applied�
we would obtain results as shown in Figure �a� Keep�
ing all other processing parameters constant� but using a
much longer STFT window ����� data points�� a broken
curve as shown in Figure �b would be obtained� While
the former may be interpreted as a �chirp�� the latter
could be interpreted as the presence of several sound
sources� each of which emits a short burst of sinusoidal
activity that is separated by approximately �� Hz� Fur�
ther� the latter interpretation indicates that the activity
is highly synchronized in the sense that as a lower fre�
quency source decays� the next higher one becomes ac�
tive� Given the rarity of �nding distinct physical events
that are so highly synchronized� this interpretation re�
quires too many assumptions making it not simple and
hence discounted in favor of concluding that the signal
was inappropriately processed� The reasoning embodied
in the learning system is that imple interpretations map
to the notion of intrinsic object characteristics� originat�
ing in the physics of the excitation production mecha�
nism�
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Figure �� Semi�linear chirp processed with �a� shorter and

�b� longer STFT window� Note the broken contours of �b�

due to insu�cient time resolution�

�The principle also known as Occam�s Razor or the law
of parsimony may be stated as follows	 entities must not
be multiplied beyond what is necessary� that is an argument
must be shaved down to its absolutely essential and simplest
terms�

�A chirp is a rising
falling frequency modulated
component�



��� Model Uncertainty

With any search process� there is inherent uncertainty
due to the limited nature of our search� With DiMac�
it is a consequence of the SPA parameterizations unex�
plored� The learning system maintains Symbolic Sources
of Uncertainty �SOUs� for each hypothesis to capture its
uncertainty as a consequence of the uncertainty present
in its support structures and the SPAs and parameters
used in its creation� Symbolic SOUs recommend them�
selves because they may be examined to direct search in
directions that promise to decrease uncertainty� Unac�
ceptable levels of uncertainty in a model are treated as
a data�expectation discrepancies� e�ectively serving as
one of the stopping criterions for the learning process�

Before we describe in Section ��
 how the SOUs are
used in model synthesis� we present a few examples of
SOUs� At the contour level we have time and frequency
uncertainty SOUs� in Figure 
 the uncertainty in fre�
quency is represented schematically by the width of the
contour� At the microstream level� separate SOUs are
maintained for each microstream hypothesis to represent
the uncertainty with respect to� start time� time the en�
ergy stablises� time the energy begins to decay and �nally
termination time and frequency� At the stream level�
timing uncertainties such as that in the microstream are
maintained along with an SOU that captures the likeli�
hood of not having detected a component microstream�
At the source level� we maintain SOUs with respect to
the start and end times of the source and uncertainty
with respect to having missed a component stream�

��� Model Synthesis

In Section ��� we illustrated how distinct SPA parame�
terizations are necessary to provide good time and fre�
quency resolution� Occassionally� as in the case of a
sound event composed of parallel chirps� both good time
and frequency resolution must be obtained in order to
identify all the salient time and frequency characteris�
tics� However� the dimensions of time and frequency are
orthogonal� the STFT algorithm �Nawab and Quatieri�
�	�� trades o� resolution along the time dimension with
that of frequency� The Wigner algorithm �Claasen and
Meclenbrauker� �	�� introduces cross terms which ob�
scure relevant information when a source is composed
of multiple frequency components� Under such circum�
stances it becomes necessary to combine the �views� or
SPA�correlates to generate a more composite represen�
tation of the object�
At the microstream level� when additional contour

support becomes available� the time and frequency char�
acteristics are updated based on whether the new sup�
port extends the microstream in time and whether the
contour arises of a better time or frequency context
with respect to the best context of these features� The
SOUs are appropriately updated� By selectively using
the supporting data to update features� model synthesis
is achieved and the hypothesis� uncertainty with respect
to time and frequency either decrease or stay constant�
Likewise model synthesis is achieved at the stream level
and reprocessing at this level would concentrate on re�
ducing the uncertainty in its supporting microstreams

and thus its own uncertainty�

��� Generic Models

For complex objects that exhibit many distinct high level
features� the search e�ort involved may be signi�cant�
For example� the harmonic components of a hair dryer
�any motor sound��refer Section 
� are tricky to identify
without the use of a specialized SPA for harmonic en�
hancement� Such SPAs are however not routinely used
due to their associated cost� In addition� for sounds that
display varying stream level activity such as in the case
of a hair dryer� expectations that could be used to appro�
priately select SPAs and their parameter settings would
help to reduce search e�ort� Generic models come into
play to provide such support�

Generic Model Tree

We seek to capture in a generic model a unique fea�
ture or a set of features that frequently co�occur and are
representative of class of sounds such as motors� rings�
buzzes� and impulsive activity� Hair dryers and fans
are instances of motor sounds� In fact� a hierarchy of
generic models may be de�ned with leaf level models for
tonal� complex tonal� noise� and ringing� which consti�
tute simple high level properties� If we had a generic hair
dryer model� it would be supported by the generic motor
and the noise models� with inter�relationships de�ned for
them�

Generic Model Representation

How do we represent these models� Given that we seek
models to represent a class of sounds� a representation as
speci�c �absolute ranges for frequency� energy and dura�
tion� as that in Figure � would be inappropriate� The
model must capture only the intrinsic and not the inci�
dental characteristics of the sound� To make this point
clear� a motor sound should be recognized as such re�
gardless of its intensity� the harmonics that may have
been attenuated �a virtue of the physical casing of the
motor�� or the frequency of its fundamental �dependent
on the power�line frequency�� Likewise a �chirp�� or lin�
early modulated sinusoid� is a chirp regardless of its du�
ration or its shrillness�
Our approach is to associate with each generic model

a unique set of properties� whose existence should be
detectable through regular processing of data�

Indexing

The knowledge encapsulated in the generic models may
be readily used if class information is provided along
with the input signal� This� however� would be a step
backward in the direction of automation� Instead� we fa�
vor using microstream and stream level characteristics to
index into the generic model database� By operating at
the contour or higher levels� we have data that is more
appropriately processed due to the data�data discrep�
ancy detection and reprocessing that would have taken
place� The goal here is to recognize the applicable generic
models and is much like the SUT recognition system ex�
cept for the di�erent �object classes� and the di�erent
data used to index into the database� Applicable generic



models can then be used to set up data�expectation dis�
crepancies and thus direct data processing� When evi�
dence for the presence lower level models accumulates�
expectations for higher level models can be posted thus
recursively supporting search e�ort�

	 Discrepancies and Diagnosis

In this section� we discuss discrepancy detection and di�
agnosis �Lesser et al�� �		
� which form the backbone of
our learning approach� Discrepancies fall into three cat�
egories� data�data� data�expectation� and model�model�
Their occurance indicates inappropriate data processing�
We discuss diagnosis� the process of explaining why a
certain discrepancy may have occurred� with respect to
the discrepancies� Occassionally two or more discrepan�
cies are used in conjunction to arrive at a better diag�
nosis� The results of diagnosis are used to recommend
alternate SPAs� parameters settings and a reprocessing
plan that is most likely to eliminate one or more discrep�
ancies�

��� Data�Data discrepancy

When the signal processing results obtained from the
application of two or more distinct SPAs from a fam�
ily of functionally�similar SPAs are contradictory� we
have a data�data discrepancy� It indicates a need
for SPA�parameter adaptation� For instance� Bitar et
al ��		� describe the use of the Pseudo�Wigner Distri�
bution�PWD� �Claasen and Meclenbrauker� �	�� in con�
junction with the STFT �Nawab and Quatieri� �	�� to
detect inadequacies of time and frequency resolution�

��� Data�Expectation discrepancy

A data�expectation discrepancy is encountered when sig�
nal processing results do not support expectations� The
system is aware of object speci�c expectations when it
encounters a new instance of an earlier encountered ob�
ject or may have generic expectations if a generic object
class has been identi�ed� In addition� the system expects
that all data must support a simple physical explanation
�refer ��� for a detailed discussion��

A Data�expectation discrepancy is indicative of either
invalid expectations or inappropriate data processing� If
on data reprocessing using adapted SPAs and parame�
ters� the discrepancy is resolved� it establishes that the
data was originally inappropriately processed� For in�
stance� when bottom�up signal processing results in sev�
eral �short contours� �refer Section 
��� a discrepancy is
�agged� It indicates that either our expectation that the
source is tonal �as opposed to impulsive or the presence
of noisebeds� is false or that the data was processed with
insu�cient time resolution at the spectral level or that
the contouring radii used were inappropriate�

When the diagnosis process encounters a data�
expectation discrepancy of type short�contours� it checks
whether there is in addition any data�data discrepancy

�where short is de�ned in terms of the number of peaks
supporting the contour and its actual duration with respect
to the context of its creation �spectral� peak and contouring
SPAs and parameters�

of type time�resolution�problem� If yes� it lends support
to the hypothesis that the data may have been processed
with insu�cient time resolution� Its absence would sup�
port the theory that the contouring parameters were in
error� The existance of an impulsive source would be
discounted if the short contours extended over a tenth
of a second of real time�

��� Model�Model discrepancy

When a newly generated model is ambiguous with re�
spect to one or more earlier acquired object mod�
els� a model�model discrepancy is detected� It indi�
cates that one or more object models require re�ne�
ment�specialization through data reprocessing�

Diagnosis of model�model discrepancies involves ex�
amining the competing object models at successively
lower levels of data abstraction in order to determine
the cause of the discrepancy� This then literally trans�
lates to where in time frequency energy space and what
manner of support evidence to seek in order to eliminate
the discrepancy� Occassionally� such discrepancies can�
not be removed if they originate chie�y due to an object
model that was created earlier and whose signal data is
not available for purposes of reprocessing� Under such
circumstances� the database will be ambiguous until such
time as a new instance of the object becomes available�
Note that a �xed number �perhaps one� signal data �le
could be maintained with each object encountered in an
e�ort to mitigate order e�ects on database consistency�


 DiMac� Discrepancy Directed Model
Acquisition

In this Section we present the learning algorithm and ex�
plain how it works through examples involving synthetic
sounds�

��� Learning Algorithm

The learning task we seek to address is stated as follows�
given a set of training instances �signal�label pairs�� and
a �nite set of parameterized SPAs� to seek for each train�
ing instance SPA parameterizations that serve to extract
features that enable the induction of models that are col�
lectively unambiguous and capture the intrinsic charac�
teristics of the objects�



for each object instance {
1. initialize processing context:
     if (object encountered earlier  or
            generic model available) 
        use expectations 
     else  use default SPAs and parameters
2. repeat
    if discrepancies {
        select discrepancy  /* heuristic based */
         diagnose discrepancy
         adapt SPAs and parameters
         reprocess data
         update discrepacies
     }
     else if new data 
                process new data 
               /* exposing discrepancies */
     until not(discrepancies or new data)

Figure �� The learning Algorithm

The main modeling loop seeks to resolve processing
and interpretation discrepancies at successively higher
levels of data abstraction� This involves processing the
data� checking for discrepancies� diagnosing the same
and reprocessing the data after adapting the SPAs and
their parameters accordingly� Resolving a discrepancy
at a given level in the data abstraction could entail data
reprocessing at one or more lower levels of data abstrac�
tion and interpreting the data as necessary� Modeling ef�
fort terminates when all model�model discrepancies �re�
fer Section ��
� and the level of uncertainty within the
model is acceptable�

The algorithm is incremental in two respects� �rstly
objects may be trained for as and when they are encoun�
tered and secondly� the system incrementally re�nes the
object models when additional training instances of the
same become available�

��� Examples

Two examples are presented to describe the sequence of
events that would ensue during a learning session�

After encountering Example��� one may wonder
whether modeling would have been a one�shot process
if the best possible frequency resolution and the lowest
possible energy threshold were used� The energy thresh�
old is intentionally not maintained at the lowest level
in order to minimize spurious e�ects� reduce noise and
e�ectively model only the most essential of the compo�
nents of a source� Example�� illustrates a situation that
shows working with the highest frequency resolution is
not always the solution�

Example��

Input� Two synthetically generated sounds� Steady��
composed of a single frequency component at ���� Hz
and Steady�� composed of a high energy component at
���� Hz and a weak component at ���� Hz� Let both
sounds be of the same duration�
Default Processing Context� STFT algorithm for
spectral analysis with a window length of ���� data
points with data sampling at �� KHz which provides
a frequency resolution of �� Hz� Peak selection based

on accounting for a �xed percentage of total energy with
an absolute energy threshold of ���� units of averaged
energy� Contouring frequency radius of �� Hz�
Assumption� The model database is initially empty�
Once an object model has been incorporated into the
database� its signal data is not available for purposes of
reprocessing�

freq

time

1000 Hz

freq

time

1000 Hz

1040 HzSteady-1,
Steady-2 main component

Steady-2 weak component

a. b.

Figure �� Example	 discrepancy directed signal reprocessing

for automated model acquisition

When the signal data for Steady�� is analyzed using
the default processing context� the object model gener�
ated indicates a single frequency component whose fre�
quency lies in the range �		�� ���� Hz� No discrepancies
are detected of a data�data variety since time resolu�
tionproblems are ruled out by the fact that the sound is
steady and frequency resolution problems are discounted
because the sound has no other frequency component� let
alone one with a distance of �� Hz� Since the database
is initially empty� as is to be expected� no model�model
discrepancies are detected� Note only the relativve en�
ergies of components is maintained in the object models
in order to generalize with respect to loudness�
When Steady�� is encountered� once again no data�

data discrepancies are encountered� However� while
seeking to include the model into the database a model�
model discrepancy is detected since the representations
obtained for Steady�� and Steady�� are equivalent� The
diagnosis process on comparing the models for the two
sources and based on the fact that no frequency or time
resolution problems are detected o�ers a single reprocess�
ing strategy that suggests reducing the energy thresh�
old in the hope of detecting another component� Let us
say the absolute energy threshold is halved and now the
weaker energy component is detected on data reprocess�
ing� The model it gives rise to is distinct from the model
for Steady�� and is incorporated into the database� Had
we �rst encountered Steady�� as opposed to Steady���
the reprocessing of Steady�� data would not have yielded
any disambiguating features� Consequently� the model�
as is� for steady�� would have been incorporated into
the database resulting in an ambiguous database� Only
when another instance of Steady�� is encountered� can
its model be re�ned�

Example��

Input� Consider the arrival of a Chirp as in Figure �a�
Default Processing Context� as before�
Assumption� The model database contains models for
Steady�� and Steady���

The processing results obtained on using the default
processing context for Chirp would be as shown in Fig�



ure �b� If a model were generated based on the data�
no model�model discrepancies would have been detected
since there is no ambiguity with respect to Steady��
or Steady��� However� at the contour level� a data�
expectation discrepancy would be �agged because the
data would not support a simple explanation� In addi�
tion� data�data discrepancy would also be �agged by the
STFT�Wigner discrepancy detection process �Bitar et
al�� �		� indicating a time resolution problem� The diag�
nosis process on encountering these discrepancies would
recommend data reprocessing using a shorter spectral
analysis window and adapting the contouring parame�
ters� increasing the frequency and decreasing the time
radii in order to follow more closely the transient nature
of the signal� Finally� based on the smooth curve ob�
tained� a model would be constructed and incorporated
into the model database�

Recognition� Use of Object Models

Input� Waveform data comprising both Steady�� and
Steady�� starting and ending at the same time�
Default Processing Context� same as before�
Assumption� Model database contains only the models
for Steady��� Steady�� and Chirp�

We examine the sequence of events that would ensue
during a SUT recognition run operating in Con�gura�
tion II �Lesser et al�� �		
� The spectral data obtained
on STFT analysis is grouped over time into spectral�
activity bands� which are used to index into the model
database� For the given scenario� spectral activity is re�
stricted to a single band that indexes both Steady�� and
Steady��� To disambiguate among the alternatives� the
diagnosis component on examining the respective object
models suggests data reprocessing using a reduced abso�
lute energy threshold �based on the relative energies of
the Steady�� model� and paying close attention to the
contour energies in order to establish whether steady���
or steady�� or both Steady�� and Steady�� are active�

Alternately� if the object model for Steady�� and
Steady�� are the same because Steady�� was encoun�
tered before Steady��� that is� we have an inconsistent
database� the recognition system would not be able to
conclusively identify the scenario�

� Status

The learning system produces models of high quality for
real sounds that are purely tonal in nature or transient
in nature� These correspond to signals that require one
of good time or frequency resolution� with the system
detecing which is necessary and to what degree� With
the hair dryer coming�on sound� the system was able to
detect that it needed high time resolution in the knee
region and high frequency resolution in the plateau� but
the model generated was unsatisfactory� This was be�
cause the learning system does not yet handle noisebeds�
an intrinsic feature of sounds that have a forced air com�
ponent� As a result� the contouring knowledge source
was confused as to how to identify a trajectory in the
sea of spectral activity in the knee region� Addressing
this issue is our next step�

We will also be exploring the use of generic models to
guide and hence reduce search e�ort� We will be explor�
ing our intuitions regarding the identi�cation of appli�
cable generic models as discussed� With generic models�
we expect reduced search e�ort in the case of sounds that
display a non�uniform pattern of behavior that may be
either periodic or otherwise� which we will be testing�
Time savings are expected with any knowledge inten�

sive approach as opposed to a pure search process� We
will shortly be collecting timing data for model acquisi�
tion using DiMac and generalized time frequency com�
pute intensive approach �Jones and Parks� �		�for de�
termining the most appropriate processing parameters�
We will also be comparing the models generated by the
respective systems to quantify the accuracy of our sys�
tem�

� Conclusion

The work presented indicates how the very ideas of adap�
tive signal processing can be used to address the knowl�
edge acquisition bottleneck of acquiring object models�
Our initial results with a limited number of discrepancy
detection mechanisms have been promising� The success
of the approach would ease the task of deploying recog�
nition systems in new environments� A challenging next
step would be to acquire object models without supervi�
sion as and when they are encountered �implies no object
label� during a recognition session�
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