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Abstract

For complex perceptual tasks that are char-
acterized by object occlusion and non-
stationarity, recognition systems with adaptive
signal processing front-ends have been devel-
oped. These systems rely on hand-crafted sym-
bolic object models, which constitutes a knowl-
edge acquisition bottleneck. We propose an ap-
proach to automate object model acquisition
that relies on the detection and resolution of
signal processing and interpretation discrepan-
cies. The approach is applied to the task of
acquiring acoustic-event models for the Sound

Understanding Testbed (SUT).

1 Introduction

To meet the challenge of recognition in environments
that are characterized by varying signal-to-noise ra-
tio, unpredictable object activity and possible object
occlusion, Adaptive Perceptual Systems [Draper, 1993;
Lesser et al., 1993; Ming and Bhanu, 1990] have emerged.
Recognition in such systems is dependent on the in-
teraction between feature extraction and interpreta-
tion/matching: failure to account for some or all data
or to adequately support a hypothesis triggers data re-
processing using alternate signal processing algorithms
(SPAs) and/or parameters. Symbolic object models are
used to interpret data, guide reprocessing and predict
object interaction. Typically, these object models are
hand-crafted, a tedious and error prone activity that con-
stitutes a knowledge acquisition bottleneck.

Model acquisition involves selecting for each object the
appropriate SPAs (from a finite set of SPAs) and deter-
mining parameter settings for the selected SPAs such
that the salient features of the object are extracted, en-
abling the induction of unambiguous object models. Au-
tomating model acquisition translates to automating the
above search for SPAs and their parameterizations. Our
approach relys on the very mechanisms that make a sys-
tem adaptive, namely those that detect signal processing
inadequacies and suggest alternate processing strategies.
To counteract the reduced top-down guidance due to a
lack of knowledge about all the object classes, the learn-
ing system uses a greater number of signal processing

discrepancy detectors that rely on comparing processing
results of two or more SPAs. Where available, generic
model expectations may also be exploited. The learning
system has an additional focus: combining the multiple
“views” of the signal that are exposed during the search
process to generate a composite, more complete repre-
sentation of the object that meets the prediction needs
of adaptive perceptual systems.

In Section 2 we briefly discuss learning effort in the
area of model acquisition. In Section 3 salient aspects
of the ound Understanding Testbed are presented along
with an example of a sound event model. Before we
present the learning algorithm, we discuss the ramifica-
tions of parameterized SPAs in Section 4 and the classes
of discrepancies and their diagnosis in Section 5. In Sec-
tion 6 we present the learning algorithm and some ex-
amples. The status of the work and our conclusions are
presented in Sections 7 and 8 respectively.

2 Related Work

Automating model acquisition for adaptive perceptual
systems has received relatively limited attention. Mori
et al [1987) address learning to identify speaker-modes,
viewing it as a planning task that may possibly require
elaboration and/or refinement, which in turn translates
to extracting new features. When the feature set is de-
termined to be insufficient, the domain expert intervenes
to suggest alternate/additional features. Vadala [1992]
presents an approach for acquiring models of sounds in
the context of the SUT [Lesser et al., 1993], an adap-
tive perceptual system for non-speech sound recognition.
The models are acquired through adaptive processing of
the signals, however, the work is limited in that firstly
user guidance is necessary to initialize key SPA parame-
ters and secondly, the number and nature of the sounds
being modeled must be specified a priori. To summa-
rize, the above rely on human intervention to initialize
critical parameters and/or suggest alternate features to
extract when feature inadequacies are encountered.

In the domain of vision, TRIPLE [Ming and Bhanu,
1990] learns models for aircraft identification when pre-
sented two dimensional images. The features used in
the individual concepts are subsets of a fixed set of fea-
tures (or SPA parameterizations) determined to be suf-
ficient for the class of objects. TRIPLE however is not



truely adaptive because it assumes that the images are
adequately segmented. Likewise, Murase and Nayar’s
[1993] work on learning object models for recognition and
pose estimation using principal component techniques,
assumes the availability of adequately segmented images.
More recently, Bhanu et al [1993] have been addressing
adaptive segmentation, independent though of model ac-
quisition.

3 SUT: The Sound Understanding
Testbed

The SUT seeks to identify acoustic-events given wave-
form data (a sequence of time-amplitude pairs). Signal
understanding proceeds through a bi-directional search
in the space of the SPAs and their parameters. The
bottom-up search is aimed at achieving signal process-
ing results that are free of discrepancies (refer Section 5)
that are detectable through the application of two or
more SPAs of distinct strengths, and comparing their
results. The top-down search is guided by the desire to
find valid signal interpretations based on expectations
about the environment. SUT sound models are patterns
of synchronized [Bregman, 1990] sets frequency compo-

nents [Cohen, 1992].

Source

Str

Micro;i:&

Spectral Activity ~ Contour  Noisebed  Impulse
Bands «

Spectrum

Waveform

Figure 1: Data Abstraction Levels used in the Sound
Understanding Testbed

Figure 1 shows the SUT data abstraction levels. Win-
dowed waveform data that is analyzed for its spectral
content is represented at the spectrum level. Peaks are
localized regions of higher energy in a spectrum. Crite-
ria such as the absolute cut-off energy and the relative
magnitude of a peak with respect to its neighbors deter-
mine what are considered as peaks in a spectrum. Con-
tours are a sequence of peaks that move forward in time
and share the same energy-frequency trend. Noisebeds
are regions of seemingly uncorrelated spectral activity.
Contours that are consecutive in time and bear certain
frequency and energy relationships are grouped together
to form a microstream. Microstreams that are synchro-
nized either in their onset and/or offset times, energy be-
havior with respect to time, or whose frequencies are har-
monically related, are grouped together to form streams.
Groups of streams support a source level hypothesis.
Periodic sources would display a repeating pattern of
stream support units.

To date the SUT database consists of 50 models.
The models were acquired by manually analyzing sev-
eral recordings of each sound. The tediousness of the

task provides the motivation for this work. For exam-
ple, consider the sound produced by a hair dryer. The
acoustic signal is due to the working of a motor and
the forcing of air through a nozzle. The component fre-
quencies of the sound are harmonically related with a
fundamental whose frequency is that of the power line.
The relative energies of the harmonics are dependent on
the speed of operation and the hair dryer construction
(differing for different manufacturer models). Noisebeds,
which are an artifact of the air flow through the noz-
zle of the hair dryer, surround the primary frequency
components. The operation of a hair dryer exhibits two
distinct phases, the transition or chirp phase that corre-
sponds to the hair dryer being turned on or off, and a
steady phase when it is operating at either high or low
speed. The processing parameters that best bring out
the time frequency characteristics in the two phases are
in opposition (refer Section 4.1).
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Figure 2: Acoustic Event Model for an Hair Dryer operating
at a high speed.

The models are specified at the source, stream and
microstream levels of data abstraction. In Figure 2, we
show portions of the SUT model for a given hair dryer
operating at high speed. The source level unit is made
of a single stream level unit: hd-high-st, which in turn is
made of several microstream units, two of which (p-high-
1 and p-high-2) are shown. Note that the microstream
durations are approximately equal and since their rel-
ative temporal offsets with respect to the stream start
time are zero, their onset and end times are said to be in
synchrony. A stream level representation that captures
the complete behavior of a sound source, in terms of its
constituent events, is possible. For example, the hair
dryer sound may be specified as:

HDon(HDhigh + HDlow)*HDof f



where HDon, HDhigh, HDlow and HDoff denote the hair
dryer coming-on, operating at high speed, operating at
low speed and going-off events, respectively. The above
representation indicates that the HDon and HDoff events
are mandatory, and that the HDon event precedes in
time the HDoff event. In contrast, the HDhigh and HD-
low events may each occur zero or more times (denoted
by the *), and in any order (denoted by the 4). Our
goal is to first acquire models for each of the constituent
events of a sound source. Eventually we plan to extend
the work to building representations that capture such
complex temporal patterns.

4 Ramifications of Parameterized SPAs

In this section we discuss the effect of varying SPA pa-
rameters on the features extracted and introduce the no-
tion of SPA-correlate to emphasize the connection be-
tween the features extracted and the SPAs and their
parameter settings used. We next discuss the inherent
uncertainty in an object model, a consequence of its sig-
nal processing and interpretation history. The need for
model synthesis is then discussed with a brief descrip-
tion of how it is achieved. Finally we discuss how generic
models may be used to reduce search effort.

4.1 Parameterized SPAs

Distinct parameterizations of an SPA extract the same
class of features, but the actual features extracted may
be very different. This is because in the mathematical
formulation of the SPAs, the parameters are used to cap-
ture assumptions about the underlying signal. To em-
phasize the relationship between the features extracted
and its processing context (SPAs and their parameter
settings), the features extracted are also known as SPA-
correlates. Since some parameterizations of an SPA ex-
pose certain salient features while obscuring others, it
is useful to compare the SPA-correlates obtained under
different parameterizations of an SPA. This is possible
using knowledge of the underlying signal processing the-
ory which forms the basis of the SPA implementation
[Lesser et al., 1993].

For instance, consider the analysis of time-amplitude
waveform data corresponding to an acoustic-event com-
posed of two constant-frequency components with an
inter-component spacing of 15 Hz. With a sampling fre-
quency of 8 KHz, a Fourier Transform based algorithm
for frequency analysis would be unable to expose the
relevant frequency detail unless a data window that af-
fords the minimum required frequency resolution is used.
This is illustrated using the Short-Time Fourier Trans-
form (STFT) algorithm [Nawab and Quatieri, 1988] for
spectral analysis in Figure 3. Note that the uncertainty
in frequency spread i.e., “width” of each component re-
duces when the data is processed with greater frequency
resolution.
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Figure 3: Signal corresponding to two closely spaced steady
frequency components, processed with (a) shorter and (b)
longer STFT window. Note the better frequency resolution
obtained in (b) due to the longer window.

Secondly, certain SPA parameterizations afford a view
of the signal data that leads to a simple 'physical expla-
nation. For instance, consider the analysis of a near-
linear rising chirp? sound sampled at a frequency of
8KHz. If the signal data 1s processed for spectral content
using the STFT algorithm [Nawab and Quatieri, 1988]
with a small window and narrow decimation (128 and 64
data points respectively) and then contouring applied,
we would obtain results as shown in Figure 4a. Keep-
ing all other processing parameters constant, but using a
much longer STFT window (1024 data points), a broken
curve as shown in Figure 4b would be obtained. While
the former may be interpreted as a “chirp”, the latter
could be interpreted as the presence of several sound
sources, each of which emits a short burst of sinusoidal
activity that is separated by approximately 10 Hz. Fur-
ther, the latter interpretation indicates that the activity
is highly synchronized in the sense that as a lower fre-
quency source decays, the next higher one becomes ac-
tive. Given the rarity of finding distinct physical events
that are so highly synchronized, this interpretation re-
quires too many assumptions making it not simple and
hence discounted in favor of concluding that the signal
was inappropriately processed. The reasoning embodied
in the learning system is that imple interpretations map
to the notion of intrinsic object characteristics, originat-
ing in the physics of the excitation production mecha-
nism.

Figure 4: Semi-linear chirp processed with (a) shorter and
(b) longer STFT window. Note the broken contours of (b)

due to insufficient time resolution.

1The principle also known as Occam’s Razor or the law
of parsimony may be stated as follows: entities must not
be multiplied beyond what is necessary, that is an argument
must be shaved down to its absolutely essential and simplest
terms.

2A chirp is a
component.

rising/falling frequency modulated



4.2 Model Uncertainty

With any search process, there is inherent uncertainty
due to the limited nature of our search. With DiMac,
it is a consequence of the SPA parameterizations unex-
plored. The learning system maintains Symbolic Sources
of Uncertainty (SOUs) for each hypothesis to capture its
uncertainty as a consequence of the uncertainty present
in its support structures and the SPAs and parameters
used in its creation. Symbolic SOUs recommend them-
selves because they may be examined to direct search in
directions that promise to decrease uncertainty. Unac-
ceptable levels of uncertainty in a model are treated as
a data-expectation discrepancies, effectively serving as
one of the stopping criterions for the learning process.
Before we describe in Section 4.3 how the SOUs are
used in model synthesis, we present a few examples of
SOUs. At the contour level we have time and frequency
uncertainty SOUs; in Figure 3 the uncertainty in fre-
quency is represented schematically by the width of the
contour. At the microstream level, separate SOUs are
maintained for each microstream hypothesis to represent
the uncertainty with respect to: start time, time the en-
ergy stablises, time the energy begins to decay and finally
termination time and frequency. At the stream level,
timing uncertainties such as that in the microstream are
maintained along with an SOU that captures the likeli-
hood of not having detected a component microstream.
At the source level, we maintain SOUs with respect to
the start and end times of the source and uncertainty
with respect to having missed a component stream.

4.3 Model Synthesis

In Section 4.1 we illustrated how distinct SPA parame-
terizations are necessary to provide good time and fre-
quency resolution. Occassionally, as in the case of a
sound event composed of parallel chirps, both good time
and frequency resolution must be obtained in order to
identify all the salient time and frequency characteris-
tics. However, the dimensions of time and frequency are
orthogonal: the STFT algorithm [Nawab and Quatieri,
1988] trades off resolution along the time dimension with
that of frequency. The Wigner algorithm [Claasen and
Meclenbrauker, 1980] introduces cross terms which ob-
scure relevant information when a source is composed
of multiple frequency components. Under such circum-
stances it becomes necessary to combine the “views” or
SPA-correlates to generate a more composite represen-
tation of the object.

At the microstream level, when additional contour
support becomes available, the time and frequency char-
acteristics are updated based on whether the new sup-
port extends the microstream in time and whether the
contour arises of a better time or frequency context
with respect to the best context of these features. The
SOUs are appropriately updated. By selectively using
the supporting data to update features, model synthesis
is achieved and the hypothesis’ uncertainty with respect
to time and frequency either decrease or stay constant.
Likewise model synthesis is achieved at the stream level
and reprocessing at this level would concentrate on re-
ducing the uncertainty in its supporting microstreams

and thus 1ts own uncertainty.

4.4 Generic Models

For complex objects that exhibit many distinct high level
features, the search effort involved may be significant.
For example, the harmonic components of a hair dryer
(any motor sound)(refer Section 3) are tricky to identify
without the use of a specialized SPA for harmonic en-
hancement. Such SPAs are however not routinely used
due to their associated cost. In addition, for sounds that
display varying stream level activity such as in the case
of a hair dryer, expectations that could be used to appro-
priately select SPAs and their parameter settings would
help to reduce search effort. Generic models come into
play to provide such support.

Generic Model Tree

We seek to capture in a generic model a unique fea-
ture or a set of features that frequently co-occur and are
representative of class of sounds such as motors, rings,
buzzes, and impulsive activity. Hair dryers and fans
are instances of motor sounds. In fact, a hierarchy of
generic models may be defined with leaf level models for
tonal, complex tonal, noise, and ringing, which consti-
tute simple high level properties. If we had a generic hair
dryer model, it would be supported by the generic motor
and the noise models, with inter-relationships defined for
them.

Generic Model Representation

How do we represent these models? Given that we seek
models to represent a class of sounds, a representation as
specific (absolute ranges for frequency, energy and dura-
tion) as that in Figure 2 would be inappropriate. The
model must capture only the intrinsic and not the inci-
dental characteristics of the sound. To make this point
clear: a motor sound should be recognized as such re-
gardless of its intensity, the harmonics that may have
been attenuated (a virtue of the physical casing of the
motor), or the frequency of its fundamental (dependent
on the power-line frequency). Likewise a “chirp”, or lin-
early modulated sinusoid, is a chirp regardless of its du-
ration or its shrillness.

Our approach is to associate with each generic model
a unique set of properties, whose existence should be
detectable through regular processing of data.

Indexing

The knowledge encapsulated in the generic models may
be readily used if class information is provided along
with the input signal. This, however, would be a step
backward in the direction of automation. Instead, we fa-
vor using microstream and stream level characteristics to
index into the generic model database. By operating at
the contour or higher levels, we have data that is more
appropriately processed due to the data-data discrep-
ancy detection and reprocessing that would have taken
place. The goal here is to recognize the applicable generic
models and is much like the SUT recognition system ex-
cept for the different “object classes” and the different
data used to index into the database. Applicable generic



models can then be used to set up data-expectation dis-
crepancies and thus direct data processing. When evi-
dence for the presence lower level models accumulates,
expectations for higher level models can be posted thus
recursively supporting search effort.

5 Discrepancies and Diagnosis

In this section, we discuss discrepancy detection and di-
agnosis [Lesser et al., 1993], which form the backbone of
our learning approach. Discrepancies fall into three cat-
egories: data-data, data-expectation, and model-model.
Their occurance indicates inappropriate data processing.
We discuss diagnosis, the process of explaining why a
certain discrepancy may have occurred, with respect to
the discrepancies. Occassionally two or more discrepan-
cies are used in conjunction to arrive at a better diag-
nosis. The results of diagnosis are used to recommend
alternate SPAs, parameters settings and a reprocessing
plan that is most likely to eliminate one or more discrep-
ancies.

5.1 Data-Data discrepancy

When the signal processing results obtained from the
application of two or more distinct SPAs from a fam-
ily of functionally-similar SPAs are contradictory, we
have a data-data discrepancy. It indicates a need
for SPA /parameter adaptation. For instance, Bitar et
al [1992] describe the use of the Pseudo-Wigner Distri-
bution(PWD) [Claasen and Meclenbrauker, 1980] in con-
junction with the STFT [Nawab and Quatieri, 1988] to
detect inadequacies of time and frequency resolution.

5.2 Data-Expectation discrepancy

A data-expectation discrepancy is encountered when sig-
nal processing results do not support expectations. The
system 1s aware of object specific expectations when it
encounters a new instance of an earlier encountered ob-
ject or may have generic expectations if a generic object
class has been identified. In addition, the system expects
that all data must support a simple physical explanation
(vefer 4.1 for a detailed discussion).

A Data-expectation discrepancy is indicative of either
invalid expectations or inappropriate data processing. If
on data reprocessing using adapted SPAs and parame-
ters, the discrepancy is resolved, it establishes that the
data was originally inappropriately processed. For in-
stance, when bottom-up signal processing results in sev-
eral “short contours” (refer Section 3)3, a discrepancy is
flagged. It indicates that either our expectation that the
source is tonal (as opposed to impulsive or the presence
of noisebeds) is false or that the data was processed with
insufficient time resolution at the spectral level or that
the contouring radii used were inappropriate.

When the diagnosis process encounters a data-
expectation discrepancy of type short-contours, it checks
whether there is in addition any data-data discrepancy

Swhere short is defined in terms of the number of peaks
supporting the contour and its actual duration with respect
to the context of its creation (spectral, peak and contouring
SPAs and parameters)

of type time-resolution-problem. If yes, it lends support
to the hypothesis that the data may have been processed
with insufficient time resolution. Its absence would sup-
port the theory that the contouring parameters were in
error. The existance of an impulsive source would be
discounted if the short contours extended over a tenth
of a second of real time.

5.3 Model-Model discrepancy

When a newly generated model is ambiguous with re-
spect to one or more earlier acquired object mod-
els, a model-model discrepancy is detected. It indi-
cates that one or more object models require refine-
ment /specialization through data reprocessing.

Diagnosis of model-model discrepancies involves ex-
amining the competing object models at successively
lower levels of data abstraction in order to determine
the cause of the discrepancy. This then literally trans-
lates to where in time frequency energy space and what
manner of support evidence to seek in order to eliminate
the discrepancy. Occassionally, such discrepancies can-
not be removed if they originate chiefly due to an object
model that was created earlier and whose signal data is
not available for purposes of reprocessing. Under such
circumstances, the database will be ambiguous until such
time as a new instance of the object becomes available.
Note that a fixed number (perhaps one) signal data file
could be maintained with each object encountered in an
effort to mitigate order effects on database consistency.

6 DiMac: Discrepancy Directed Model
Acquisition

In this Section we present the learning algorithm and ex-
plain how it works through examples involving synthetic
sounds.

6.1 Learning Algorithm

The learning task we seek to address is stated as follows:
given a set of training instances (signal/label pairs), and
a finite set of parameterized SPAs, to seek for each train-
wng instance SPA parameterizations that serve to extract
features that enable the induction of models that are col-
lectively unambiguous and capture the intrinsic charac-
teristics of the objects.



for each object instance {
1. initialize processing context:
if (object encountered earlier or
generic model available)
use expectations
else use default SPAs and parameters
2. repeat
if discrepancies{
select discrepancy /* heuristic based */
diagnose discrepancy
adapt SPAs and parameters
reprocess data
update discrepacies

}
elseif new data
process new data
/* exposing discrepancies */
until not(discrepancies or new data)

Figure 5: The learning Algorithm

The main modeling loop seeks to resolve processing
and interpretation discrepancies at successively higher
levels of data abstraction. This involves processing the
data, checking for discrepancies, diagnosing the same
and reprocessing the data after adapting the SPAs and
their parameters accordingly. Resolving a discrepancy
at a given level in the data abstraction could entail data
reprocessing at one or more lower levels of data abstrac-
tion and interpreting the data as necessary. Modeling ef-
fort terminates when all model-model discrepancies (re-
fer Section 5.3) and the level of uncertainty within the
model is acceptable.

The algorithm is incremental in two respects, firstly
objects may be trained for as and when they are encoun-
tered and secondly, the system incrementally refines the
object models when additional training instances of the
same become available.

6.2 Examples

Two examples are presented to describe the sequence of
events that would ensue during a learning session.

After encountering Example-1, one may wonder
whether modeling would have been a one-shot process
if the best possible frequency resolution and the lowest
possible energy threshold were used. The energy thresh-
old is intentionally not maintained at the lowest level
in order to minimize spurious effects, reduce noise and
effectively model only the most essential of the compo-
nents of a source. Example-2 illustrates a situation that
shows working with the highest frequency resolution is
not always the solution.

Example-1

Input: Two synthetically generated sounds: Steady-1
composed of a single frequency component at 1000 Hz
and Steady-2 composed of a high energy component at
1000 Hz and a weak component at 1040 Hz. Let both
sounds be of the same duration.

Default Processing Context: STFT algorithm for
spectral analysis with a window length of 1024 data
points with data sampling at 10 KHz which provides
a frequency resolution of 10 Hz. Peak selection based

on accounting for a fixed percentage of total energy with
an absolute energy threshold of 0.01 units of averaged
energy. Contouring frequency radius of 10 Hz.
Assumption: The model database is initially empty.
Once an object model has been incorporated into the
database, its signal data is not available for purposes of
reprocessing.

Steady-2 weak component

Steady-1, wsoHzt ]
freq Steedy; main component freq
000kz + [ o00Hz | [
a time b. time

Figure 6: Example: discrepancy directed signal reprocessing
for automated model acquisition

When the signal data for Steady-1 is analyzed using
the default processing context, the object model gener-
ated indicates a single frequency component whose fre-
quency lies in the range [995, 1005] Hz. No discrepancies
are detected of a data-data variety since time resolu-
tionproblems are ruled out by the fact that the sound 1is
steady and frequency resolution problems are discounted
because the sound has no other frequency component, let
alone one with a distance of 10 Hz. Since the database
is initially empty, as is to be expected, no model-model
discrepancies are detected. Note only the relativve en-
ergies of components is maintained in the object models
in order to generalize with respect to loudness.

When Steady-2 is encountered, once again no data-
data discrepancies are encountered. However, while
seeking to include the model into the database a model-
model discrepancy 1s detected since the representations
obtained for Steady-1 and Steady-2 are equivalent. The
diagnosis process on comparing the models for the two
sources and based on the fact that no frequency or time
resolution problems are detected offers a single reprocess-
ing strategy that suggests reducing the energy thresh-
old in the hope of detecting another component. Let us
say the absolute energy threshold is halved and now the
weaker energy component is detected on data reprocess-
ing. The model it gives rise to is distinct from the model
for Steady-1 and is incorporated into the database. Had
we first encountered Steady-2 as opposed to Steady-1,
the reprocessing of Steady-1 data would not have yielded
any disambiguating features. Consequently, the model,
as 1s, for steady-1 would have been incorporated into
the database resulting in an ambiguous database. Only
when another instance of Steady-2 is encountered, can
its model be refined.

Example-2
Input: Consider the arrival of a Chirp as in Figure 4a.
Default Processing Context: as before.

Assumption: The model database contains models for
Steady-1 and Steady-1.

The processing results obtained on using the default
processing context for Chirp would be as shown in Fig-



ure 4b. If a model were generated based on the data,
no model-model discrepancies would have been detected
since there is no ambiguity with respect to Steady-1
or Steady-1. However, at the contour level, a data-
expectation discrepancy would be flagged because the
data would not support a simple explanation. In addi-
tion, data-data discrepancy would also be flagged by the
STFT-Wigner discrepancy detection process [Bitar et
al., 1992] indicating a time resolution problem. The diag-
nosis process on encountering these discrepancies would
recommend data reprocessing using a shorter spectral
analysis window and adapting the contouring parame-
ters: increasing the frequency and decreasing the time
radii in order to follow more closely the transient nature
of the signal. Finally, based on the smooth curve ob-
tained, a model would be constructed and incorporated
into the model database.

Recognition: Use of Object Models

Input: Waveform data comprising both Steady-1 and
Steady-2 starting and ending at the same time.
Default Processing Context: same as before.
Assumption: Model database contains only the models
for Steady-1, Steady-2 and Chirp.

We examine the sequence of events that would ensue
during a SUT recognition run operating in Configura-
tion 11 [Lesser et al., 1993]. The spectral data obtained
on STFT analysis is grouped over time into spectral-
activity bands, which are used to index into the model
database. For the given scenario, spectral activity is re-
stricted to a single band that indexes both Steady-1 and
Steady-2. To disambiguate among the alternatives, the
diagnosis component on examining the respective object
models suggests data reprocessing using a reduced abso-
lute energy threshold (based on the relative energies of
the Steady-2 model) and paying close attention to the
contour energies in order to establish whether steady-1,
or steady-2 or both Steady-1 and Steady-2 are active.

Alternately, if the object model for Steady-1 and
Steady-2 are the same because Steady-2 was encoun-
tered before Steady-1, that is, we have an inconsistent
database, the recognition system would not be able to
conclusively identify the scenario.

7 Status

The learning system produces models of high quality for
real sounds that are purely tonal in nature or transient
in nature. These correspond to signals that require one
of good time or frequency resolution, with the system
detecing which is necessary and to what degree. With
the hair dryer coming-on sound, the system was able to
detect that it needed high time resolution in the knee
region and high frequency resolution in the plateau, but
the model generated was unsatisfactory. This was be-
cause the learning system does not yet handle noisebeds,
an intrinsic feature of sounds that have a forced air com-
ponent. As a result, the contouring knowledge source
was confused as to how to identify a trajectory in the
sea of spectral activity in the knee region. Addressing
this 1ssue is our next step.

We will also be exploring the use of generic models to
guide and hence reduce search effort. We will be explor-
ing our intuitions regarding the identification of appli-
cable generic models as discussed. With generic models,
we expect reduced search effort in the case of sounds that
display a non-uniform pattern of behavior that may be
either periodic or otherwise, which we will be testing.

Time savings are expected with any knowledge inten-
sive approach as opposed to a pure search process. We
will shortly be collecting timing data for model acquisi-
tion using DiMac and generalized time frequency com-
pute intensive approach [Jones and Parks, 1990]for de-
termining the most appropriate processing parameters.
We will also be comparing the models generated by the
respective systems to quantify the accuracy of our sys-
tem.

8 Conclusion

The work presented indicates how the very ideas of adap-
tive signal processing can be used to address the knowl-
edge acquisition bottleneck of acquiring object models.
Our 1nitial results with a limited number of discrepancy
detection mechanisms have been promising. The success
of the approach would ease the task of deploying recog-
nition systems in new environments. A challenging next
step would be to acquire object models without supervi-
sion as and when they are encountered (implies no object
label) during a recognition session.
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