A DEBUGGING TOOL FOR DISTRIBUTED SYSTEMS

Peter C, Bates®, Jack C. Wileden®* and Victor R. Lesser®

Department of Computer and Informatiom Science
University of Massachusetts
Amherst, Massachusetts 01003

ABSTRACT
Our belief that traditional debugging
techniques will be inadequate for distributed

programs has led us to take a new look at what
debugging entails and how to approach debugging in
the distributed system environment. This paper
reviews the basis of an approach to debugging
called behavioral abstraction and presents a design
for a debugging tool based on behavioral
abstraction. The tool itself may be distributed in
the network and employs methods to overcome a
number of the difficulties posed by distribution of
programs over systems of processors.

THE - PROBLEM

At some stage of their existence, most
(non-trivial) computer programs contain errors that
cause unacceptable behavior [8]. Errors reveal
themselves in two ways -- either a program exhibits
poor operational performance or it produces
incorrect results that subsequently lead to partial
or total failure of the software. In many cases,
poor performance might be acceptable, at least for
some period of a system's life. Rarely, however,
is outright failure an acceptable system behavior.
Debugging as an activity is an attempt to discover
the causes of, and in some fashion repair, existing
errors in programs. Our bellef that traditional
debugging techniques will be inadequate for
distributed programs has led us to take a new look
at what debugging entails and how to approach
debugging in the- distributed system environment.
In particular, the traditional methods fall short
due to problems related to truly concurrent
activities, the 1lack of absolute control over a
distributed system and the increased complexity
arising when tens or hundreds of processors are
cooperatively performing a complex computational
task.

- e ——

#Supported in part by the National Sciznce
Foundation under Grant MCS-5006327 and by the .
Defense Advanced Research Projects Agency (DOD),

monitored by the
Contract NRO49-0U1.

Office of Naval Resecarch under

#%5upported in part by the National Acronautics and
Space Administration under grant NAG1-115.

Aindicators or

The remainder of this section presents our
view of what debugging entails and the traditional
approach to debugging, followed by arguments as to
why this approach will oot be satisfactory in a
distributed programming environment. The second
section reviews the basis for the application of
behavioral abstraction to debugging. The third
section presents a design for a debugging tool
based on behavioral abstraction.

A Characterization of Software Debugging

An error is a manifestation of a difference
between an assumed system model and the actual
behavior of the system. The debugging activity is
concerned with isolating these differences and
explaining the behavior that has produced them. In
general, the effects produced by errors are only
symptoms of the true errorful
behavior. It may be impossible to predict all of
the effects that a particular error will cause, but
the ability to accurately predict effects other
than the ones. leading to the original error
observation is important to the verification of the
system model under scrutiny.

There are two elements essehsial to the

successful completion of the debugging task: the
ability to monitor, in some meaningful way, the
relevant system behavior so as to gather detailed

information about that behavior and how it differs
from the expected model, and the ability to perform
experiments based (implicitly or explicitly) on the
information gathered¢ [1,6,7,9,101. Through the
interaction of these two elements a debugger (i.e.,
the human who 13 undertaking the debugging task)
attempts to gain an understanding of the causes of
an error or at least to note where the
implementation and the expected behavior differ,
In attempting to attain this understanding (which
is the difficult part of debugging)} a debugger
usually abstracts parts of the program's activity
to match parts of the understocod system model.
Through experiments that perturb parts of the
system in a controlled (fashion, the debugper is
attempting to verify that the implementation, the

abstractions and the model (it together in
meaningful way.
Current debugging technology can be

characterized by the following attributes, which
are all rclated to the process of model building:

michele
Rectangle

michele
Rectangle

michele
Rectangle

michele
Rectangle

michele
Rectangle

michele
Rectangle

o It is state-based — errors are considered
to be the result of one or many incorrect
state transitions during a program's
execution, These errorful transitions are
ultimately the result of incorrect
operator applications or bad data.
Finding the improper transitions should
indicate the sources of the errorful
behavior.

o The techniques used to monitor and
experiment with the transitions from state

to state are unit-at-a-time, Individual
variables and flow between program

Statements are monitored and the results

obtained serve as the behavioral model to
compare to the assumed model, The
debugger, although possibly aided by

various bookkeeping tools, must create
this model and perform the comparison.
The quality of the debugging will depend
on how much complexity the debugger can
master,

o In order to effect this unit-at-a-time
technique, the notion of absolute control
over the state of a program has become
central. Debugging tools generally allow
breakpoints to be set and/or dumps of
various pieces of state information to be
made at points that are believed to
correspond to crucial transitions 1in a
program's execution. Implicit in this
notion is the assumed availability of the
entire state of a computation. Further,
most debugging monitors allow a debugger
to alter this state (in virtually
uncontrolled ways) to provide the
experimentation capability required for
Successful debugging. ’

Debugging in a Distributed Environment

Many of - the desirable properties of
distributed programming (3,5] make these attributes
much less applicable to the debugging of programs
written in a distributed fashion. Exercise of
absolute control is inhibited by several properties
of distributed programming. ‘The high degree of
autonomy of processes and processors and the
sharing of the system resources in a distributed
system imply that simply stopping an arbitrary
process to examine its state may not be feasible.

First of all, ordering a process to suspend its
operation is a violation of its autonomy. Also,
with server processes acting on behalf of other
computations in the system, stopping a shared
process will affect the autonomy of a (potentially
large) number of processes. If too much control is
exerted, the possibility exists of creating an
‘artificial' system in which debugging is taking
place. The end result of this is that the system
being decbugged will only approximate the system
under which errors were detected and it might
become difficult to correctly identify error
sources, While the value of a system emulator or
simulation cannot be completely discounted, errors

‘determined what units relate to some

due to timing mismatches or contention for
resources cannot be effectively investigated in the
simulated environment, *

A further disadvantage of attempting to
provide absolute control over the gystem is the
difficulty in synchronizing the application of the
control. When debugging on a single processor, a
simple breakpoint instruction will usually freeze
the process to permit examination of its state,
The mechanisms involved in doing this for a
distributed system are not so simple [4#]. 4 small
but possibly annoying aside to this is that it may
be difficult to. determine the whereabouts of a
particular component of a distributed application,
thereby making it difficult to direct attention to
the component. -

Abstraction based on unit-at-a-time techniques
will almost certainly fail in distributed systems,
if for no other reason than the large volume of
information that it might be necessary to sort
through to identify error sources. The complexity
of the interactions of the components as well as
the perceived interactions of unrelated components
spread across a multitude of processing elements
and their controlling software will likely
overvwhelm even the most skillful bug finder. 1In
addition, for reasons related to the 1lack of
absolute control, the information that is gathered
from various units will very 1likely be stale or
inaccurate. Finally, when a debugger has
problem
behavior and gathered information about them, the
question of consistency among the units becom&s
important, ;

With the physical distribution of a system, ‘a
number of new ways to induce errorful behavior in
programs are possible. Truly concurrent activity
occurring in several processing elements of the
system is an error source that state-based thinking
cannot adequately address. Traditional
synchronization problems are generally concerned
with access to common storage locations. In
distributed systems, synchronization problems are
also related to access to the comnunication media
and critical timing relationships' imposed on
processing among cooperating processes [2].
Moreover, because of the complexity of the
collection of state transitions that represent ‘an
execution of a distributed program and the
difficulty in synchronizing the updating of a state
vector of all the components related to this
execution, the concept of total system state has no
meaningful interpretation for a distributed system,

BEHAVIORAL ABSTRACTION AS AN APPROACH TO DEBUGCI&G

Since one of the fundamental things done while
debugging 4is abstraction, it seems natural to
design debugging tools that will aid this process,
Methods and tools based on behavioral abstracticon
[1] provide a foundation for viewing a system in
terms of its behavior rather than its state,
Behavioral abstraction relies on viewing a system
as a gencrator of a stream of events that represent
significant behaviors., Basic system activity is
represented by a set of primitive events which are

michele
Rectangle

“considered to be the

the finest grain of relevant system activity
visible to a debugger. More complex behaviors are
results of interactions or
combinations of the primitive events,

abstraction for

The use of Dbehavioral

debugging is fundamentally different from other

debugging techniques. A debugging monitor based on
behavioral abstraction will allow a user to
describe models of system behavior in terms of
system activities and will then compare these
abstractions with the actual behavior of the
system, The choice of primitive events determines

the lowest level of system activity that it is-

possible to observe and may also suggest a
particular viewpoint on the system. Behavioral
abstraction, however, permits the debugger to
define alternative, higher-level viewpoints on the
system and then to observe the system's behavior

from those alternative perspectives.

In our approach to distributed system
debugging, two techniques, filtering and
clustering, are used to give a debugger the ability
to define abstractions over the event stream as an
aid in attaining an understanding of the system's
behavior. Clustering coalesces a designated
sequence of events into a single higher-~level event

_and provides the principal abstraction mechanism of

.

our approach. Such higher-level events can then be
considered as part of the event stream and can be
used as constituents in still higher-level
clustering operations. Filtering the event stream
has the effect of removing selected event instances
from consideration as constituents of higher-level
events. This aids the debugger in focusing on
those events that are relevant to a particular
viewpoint on system activity.

Filtering and clustering greatly increase a

" debugger's ability to project a model onto a

‘filtering and clustering operations on

system's activity. This contrasts sharply with
tracitional methods in which the user must first
determine which among a (generally large) set of
state variables are relevant to the pertinent
system model, then observe their behavior, and
subsequently attempt to integrate- these
observations into abstractions of system activity
suitable for comparison to the assumed system
model.

The Event Definition Language (EDL)

The Event Definition Language [1] was created

to aid a user in describing event-based
abstractions. An EDL event definition describes
how an 1instance of an event might occur and what

the attributes of the instance will be if it does
oceur, Means are provided for specifying both
the event
stream generated by a system. Clustering is
accomplished in EDL by indicating a set of eveonts
and the sequencing relations among these events
that will constitute a higher 1level event. This
specification 1is known as the definition's event
expression. In addition to providing the principal
abstraction mechanism of EDL, the event expression
leads to a coarse filtering of the event stream
since only event types that are consideured relevant

to the abstraction are mentioned in the expression,
A finer filtering based on the attributes of the
events that are the constituents of the event
expression 1s possible by specifying relations
among these attributes in a series of constraining
expressions., To allow for flexible use of this
type of filtering, EDL definitions may also
designate the set of attributes to be associated
with the higher 1level event being defined,
specifying how values are to be bound to these
attributes when an instance of the defined event
occurs,

MONITORING SYSTEM BEHAVIOR

A significant part of a debugging system based
on behavioral abstraction is having the ability to
detect the occurrence of behaviors that match the
abstractions, EDL provides a means for defining
system abstractions in terms of events and event
attributes, Rather than the bottom-up approach to
abstraction employed by the unit-at-a-time methods,
a behavioral abstraction based debugger describes
significant system behavioral models to be observed
by the debugging tools. The simplest version of a
behavioral abstraction based debugging tool would
simply compare the user models to the actual system
behavior. More elaborate and helpful tools would
be able to note differences between user models and
system behavior and have a rudimentary advisory
capability to aid the user in the search for the
error sources., A system to support the necessary
detection capabilities is being constructed based
on the design to be described in this section.
Figure 1 is a diagram of the monitor indicating the
major components, their connections and the kinds
of information that are exchanged by the
components. It is intended that this debugging
tool be capable of being distributed in the network
to take advantage of the desirable properties of
distributed computing, to exploit the conveniences
of behavioral abstraction and to ald in providing a
debugging tool that has 1limited impact on the
system it is being used to debug.

Interface to the Monitored System

The monitoring system is
independent of the system it monitors,
to the monitored system is
provision of three elements: a means of observing
the event stream generated by the system; a
description of the primitive events and their
attributes contained in this event stream; and a
means of making requests on and receiving
information from the system being monitored. The
first two elements are required for even the most
rudimentary event based monitor while inclusion of
the third interface can add a higher level of
sophistication to the monitor and will aid in
distribution of the debugging task.

reasonably
Interface
accomplished through

Event Stream Considerations The form of the

event instances observed by the monitor |is
considered to be a name plus a list of one or more
attributes associated with the instance. For
discussion purposes, an event instance is a tuple

of the form:
<event_name> <attribute_1> ... <attribute_n>,

michele
Rectangle

The event name distinguishes an event from other
types of events generated in a system and the event
_attributes distinguish instances of events of the
same class from each other. This simple active
interface allows the application of the event based
monitoring method to a broad range of systems. On
a uniprocessor or tightly coupled multiprocessor,
event generation could be handled through the
normal signalling mechanism that is usually a part
of the system. For a networked distributed
processing system, the communication scheme can
most 1likely have an additional message type added
— in some cases the existing message traffic might
be the event stream needed.

System Definition The primitive system events .

must be described to the monitor. Since the
monitor only sees the system in terms of event
names and attributes, a natural method is to use
EDL definitions consisting only of an event name
and a 1list of attribute specifications for each
primitive system event. Supplying different sets
of primitives for the same system is obviously an
application of the filtering technique for
specifying viewpoints. Definition of primitive
events simply gives a basis for the construction of
abstractions -- one node's primitive could be
another node's abstraction. However,
kept in mind that some entity must actually supply
the event instantiations., If the primitive event
definitions for a system do not match some subset
of what is actually generated by the system, the
obvious problems will result.

Interaction with the System The level of
interaction with the system that is possible will
define the limits of the monitoring task's power.
The simplest form of interaction with the monitored
system is to simply observe the event streanm. If
the user has the ability to interact with the
system, the monitor might be given the ability to
request transmission of certain events and in turn
respond to requests for recognition of behaviors
from other nodes of a distributed system. An
important aspect of distributing the recognition of
behaviors in a distributed system is the ability to
coordinate the activity of recognizers residing at
key locations throughout the system.

When system interaction is available at a
sufficiently sophisticated level, a number of the
properties of distributed systems .and behavioral
abstraction may be exploited. In particular,
abstracted events and partially recognized events
may be passed among cooperating recognizers,
thereby reducing the amount of overhead due to
event traffic as well as aiding in the use of
abstractions for higher level recognition tasks.
Further, passing of abstractions and requests for
abstracted events will aid in reducing the impact
of a debugging tool on the system by allowing load

sharing of the debugging task by the processors
involved., Finally, the ability to deal |in
abstracted behaviors will help solve problems

concerning the visiblity of certain behaviors due
to network topological constraints or security
considerations. :

it must be.

"interaction

Components of the Monitor

The following description of the monitor
components i3 intended only to show the extant
parts of the monitor and how they interact, not
their implementation details,

Event Compiler and Librarian The event
compiler and event 1library create and hold the
internal form for all event types that are known to

the monitor, Monitor users can add system
abstractions in terms of previously defined events
using these components, Additionally, they can
interrogate the 1library for details of these

abstractions, The event recognizer accesses the
library when it needs definitions to perform its
recognizing task, ‘

Behavior Monitor The behavior monitor is the
chief machine intelligence in the system. The
capabilities of this component can range from
simply interacting with the user and passing direct
requests to the recognizer to a quite sophisticated
version that could digest system events and notice
relations among events or help the user by noting
inconsistencies between what the user is using for
diagnosis and what the system is actually doing.
Our current version of the behavior monitor lies
between these two as its advisory capability is
limited to accumulating statistics on user requests
and requesting the status of recognition tasks from
the event recognizer.

Interaction Handler and Event Receiver The
handler and event receiver are the
monitor's interface to the running system. The
event receiver 1is simply the hook into the system
that filters system event messages from other,
non-event message traffic and changes the resultant
event stream into a form for the event recognizer
to use. The interaction handler knows the formats
for messages into and out from the system and
thereby allows monitor components to make requests
of the system.

. Event Recognizer The event recognizer is the
heart of the monitoring system. It accepts
requests for detection of primitive and high-level
events; makes requests on the event librarian for
event definitions and watches the event stream for
occurrences of these events, When a requested
recognition takes place, the requestor is signalled
and the recognized definition may be placed into
the event stream for possible later use as a
constituent in a further high-level recognition.
Demands on the capabilities of the recoghizer stem
from two sources, the needs of the recognition
algorithm and the needs of other components of the
debugging tools using the recognizer. The latter
are considered to be mainly requests for
recognition of abstracted events and questions
concerning the status of such requests. Responses
to inquiries are easily derivable from structures
involved in the recognizer's implementation and are
not terribly difficult to deal with.

The mest important capability needed by the -
recognizer 1is that of extracting from the event
stream a string of events that matches an event
expression representing an abstraction. The events

michele
Rectangle

michele
Rectangle

that will match a particular abstraction are not
required to be contiguous in the stream. Other.

events, as well as normal system message traffic,
" are present in the stream and the recognizer must
filter this 'noise' from the stream.

Filtering based on the attributes of events is
a principal aid to abstraction of behavior that”

must be supported by the recognizer, This
filtering is expressed in a set of constraining
expressions defined over the attributes posseased
by an individual event and can eliminate many
events in the stream from consideration as

instances to be used in satisfaction of the event:

expression. .

Finally, it is desired that the recognition
algorithm itself be capable of being distributed in

a distributed system or at least that the algorithm’

not frustrate attempts to distribute the debugging
task around the system. The motivation for
investigation of behavioral abstraction based
debugging bhas resulted from recognizing the
potential advantages of writing programs
distributed across a distributed computing system
[3,5). It is envisioned that the debugging tools
developed for this type of work can also benefit
from these advantages in performing their
functions.

Moaitored
Systaa

Massage and
Event Trelfic

Raceiver

Raquests for
Definitions

Pravious
Eveate Raquasts

Sigaal
Rvente

. or
Recogateion

Debugging
Honitor

Tigure 1 - Components and Tlow of Inforsaticn in the Tool

CONCLUSION AND FUTURE WORK

We feel that behavioral abstraction based
techniques for debugging may be applied to any type
of system and wil)l contribute to controlling
problems related to complexity, concurrency and
decentralized control introduced by distributed

computing environments. “Our prototype debugger 13
under construction and will be used on a local area
network that is being assembled in our department.
One ongoing area of research is the construction of
powerful and efficient algorithms for detecting

abstracted behaviors in the system being monitored.

The problem of experimentation, mentioned in

- the first section, has -yet to be adequately

addressed. Experiments performed by a debugger on

‘parts of a software component often provide the key

to detecting the causes of errorful behaviors. The
ability to exploit this may also prove valuable in
behavioral abstraction based debugging monitors.

REFERENCES

{1] Peter C. Bates and Jack C. Wileden, "EDL: A
Basis For Distributed System Debugging
Tools," Proceedings of the Fifteenth Hawaii
International Conference on System Sciences,
(1982) pp.86-93.

[2] Jeremy Dion, “Reliable Storage in a Local
Network,"® Technical Report 16, Computer
Laboratory, University of Cambridge,
February, 1981

"[3) Philip H. Enslow, "What is a 'Distributed’
Data Processing System", IEEE Computer, Vol.

11, no. 1, pp. 13-21, Jan. 1978

(4] A.W. Holt and F. Commoner, "Events and
Conditions™, Record Project MAC: Conference
on Concurrent Systems and Parallel
Computation ACHM, Dec. 1970

[5] Victor R. Lesser and Daniel D. Corkill,
"Functionally Accurate, Cooperative
Distributed Systems," IEEE Transactions on

Systems, Man and Cybermetics, Vol. SMC-11,
no. 1, pp. 81-96, Jan. 1981.

{6] E.H. Sattefthuaite, "Source Language
Debugging Tools,"* Technical Report

STAN=CS-75-U49%4, Computer Science Department,
Stanford University, 1975.

"[7] Robert D. Schiffenbauver, "Interactive
Debugging In a Distributed Computational
Environment ,* Technical Report, Laboratory
for Computer Science, Massachusetts Institute
of Technology, MIT/LCS/TR-264, September 1981

(8) Jacob T. Schwartz, "An Overview of Bugs," in
Randall Rustin (ed.), Debugging Techniques in
Large Systems, Courant Computer Science
Symposium 1, Prentice-Hall, 1971, pp. 1-16

{9] D.C. Swinehart, "COPILOT: A Multiple Process
Approach to Interactive Programming Systems,"

Technical Report, Stanford University,
STAN-CS-74-412, July 1974

(10] D. Van Tassel, Program Style, Design,
Efficiency, Debugging and Testing,

Prentice-Hall, Englewood Cliffs, New Jersey,
1978

michele
Rectangle

michele
Rectangle

